
Programming SIP (Sisalem et.al) 
Examples

“discard all calls from Monica during my business hours”

“redirect authenticated friends to my cell phone, anyone else to
my secretary”

“if busy, return my homepage and redirect to recorder”

Users and third parties may program

SIP follows HTTP programming model

Mechanisms suggested in IETF: CGI, Call Processing 

Languahge (CPL), Servlets                                            



Call Processing Logic 

Example

#1 INVITE jku

Jku’s call processing logic:

If ($caller is in {Jane, Bob})

proxy to jku@cell.com

else proxy to voicemail@trash.com

#2 pass invitation

to call processing

logic

#3 return an

action

#4a INVITE jku@cell

#4b INVITE voicemail@trash

Jku’s call processing 

logic:

If ($caller ==Jane)

play Mozart

else

play Smetana

#5



Where May Signaling 

Services Live?

Some services have to live in the network:

call distribution

services for dial-up users without always-on IP 
connectivity

Some services can be implemented in both 
places:

forward on busy

Some services work best in end-devices:

distinctive ringing



Service Location Examples

Feature End-device Proxy Network w/media

Distinctive Ringing Yes Can assist Can assist

Visual call id Yes Can assist Can assist

Call Waiting Yes No Yes

CF Busy Yes Yes Yes

CF No Answer Yes Yes Yes

CF No Device No Yes Yes

Location hiding No Yes Yes

Transfer Yes No Yes

Conference Bridge Yes No Yes

Gateway to PSTN Yes No Yes

Firewall Control No No Yes

Voicemail Yes No Yes

Source: H. Schulzrinne: “Industrial Strength IP Telephony”



CGI

Follows Web-CGI. Unlike Web-CGI, SIP-CGI supports 
proxying and processes responses as well.

Language-indpendent (Perl, C, ...)

Communicates through input/output and environment 
variables.

CGI programs unlimited in their power. Drawback: 
Buggy scripts may affect server easily.

Token is passed between SIP server and CGI to keep 
state across requests and related responses.



Call Processing Language

Special-purpose call processing language.

May be used by both SIP and H.323 servers.

Target scenario: users determine call processing logic 
executed at a server. 

Limited languages scope makes sure server’s security 
will not get compromised.

Portability allows users to move CPL scripts across 
servers.

Scripts may be manually written, generated using 
convenient GUI tools, supplied by 3rd parties, ...



CPL Example

<incoming>

<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">

<location url="sip:jones@example.com">

<proxy timeout="10">

<busy> <sub ref="voicemail" /> </busy>

<noanswer> <sub ref="voicemail" /> </noanswer>

<failure> <sub ref="voicemail" /> </failure>

</proxy>

</location>

</address>

<otherwise>

<sub ref="voicemail" />

</otherwise>

</address-switch>

</incoming>

Actions may include redirection, proxy, rejection



Java Servlets

Compromise between security and power: still a 
powerful generic language but security provided 
by Java “sand-box”.

Well-defined API is needed. As APIs are not 
IETF’s business this work moved to JAIN.

JAIN thought to be a generic API applicable to 
almost any signaling (SIP, H.323, PSTN, etc.)

http://java.sun.com/products/jain/index.html



Call Processing Tradeoffs

Generality versus security
multipurpose programming languages provide a huge service 
space

but also a huge vulnerability space

Performance versus portability
portable languages (CPL) need to be interpreted

higher processing delay

portability needed if services deployed at multiple servers or 
end-devices (e.g. if stored at USIMs)

Recommendation
choice of appropriate service creation mechanism depends on 
deployment scenario, i.e. where the service is executed and by 
whom the service is maintained


