ECE355 – Fall 2005
 Design Specification

V2.0

ECE 355

Software Engineering

Fall 2005

Design Specification Notes
October 31, 2005

v2.0
Instructor

Kostas Kontogiannis

1. Introduction

In this project you will implement a prototype system that allows for the invocation of Web Services from within a SIP protocol environment.
Refer to the http://www.swen.uwaterloo.ca/~kostas/ECE355-05/project/ECE355-2005-Project-Description-v2.0.doc document for the functional and non-functional requirement specifications for this project.
This document presents the Design Specification Document deliverables and includes technical notes regarding the design and the implementation of your project.

2. Design Notes
2.1. SIP Communicator (SIP Client)
The original SIP client can be downloaded at https://sip-communicator.dev.java.net/. To assist on the implementation of the project we have extended the SIP client (SIP Communicator) to accept proxy messages that pertain to Web Service descriptions, allow the user to select which service to be called and, forward to its wrapper the invocation details (web service end point, web service name and, web service description document URI). This extended version of the SIP agent (source code) can be downloaded from the course web site. Please refer to the end of the document for the package location.
This extended SIP agent can be used to register users to the proxy and initiate calls to other SIP agents as a standard SIP agent would do. However, the extended operation of the SIP agent in the context of this project is also to obtain the reply from the Proxy Server and examine whether it is a DECLINE message with a MESSAGE BODY that lists the identified services and handlers. If the received message is a DECLINE message and its MESSAGE BODY (see RFC 3261) contains text, listing the service descriptions and handlers in the format specified, then the client displays these service descriptions in its panel for the user to select a service. Once the user selects a service then the corresponding handler is passed to the wrapper so that the service can be invoked.

A snapshot of the extended SIP client is illustrated in the Figure 1 below.

[image: image1.jpg]oo comnaron -

Co_Seis_ti
‘] Cou]
Somorus
® S e
e —— 7|
/ [Web Service 4 : Send an SMS = =]

bio Rogistoroa

Figure 1. Layout of the extended Client Agent SIP-Communicator

The extended SIP client is associated with a Wrapper. Both the Wrapper and the

the SIP agent maintain a reference to each other. There should be one Wrapper per SIP agent. The Wrapper can be implemented using a Wrapper class. Details on the operation of the SIP agent can be found on the Software Requirements Description document that can be found at http://www.swen.uwaterloo.ca/~kostas/ECE355-05/project/ECE355-2005-Project-Description-v2.0.doc. Further details on the Wrapper class are given in the following section.
2.2. SIP Wrapper
The Wrapper is a Java class that maintains a reference to the Agent that wraps. Similarly, the Agent maintains a reference of its wrapper. There can be only one wrapper per Agent.

The operation of the wrapper is to accept a Web Service handler (i.e. a wsdl file location, a service end point, and a service name), and call the corresponding Web Service, receive the result, and pass the result back to the Agent.

The wrapper invokes the corresponding Web Service by building a SOAP message using the JAX-RPC libraries. Sample code for calling a Web Service can be found at the course Web site. Please refer to the end of the document for the package location. The JAX-RPC library is part of the WSDP package you use for the Service Registry, and the Service Registry query module. Information on https://jax-rpc.dev.java.net/. Also information and a tutorial on the use of JAX-RPC can be found at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/ (see Chapter 8 of that tutorial).
2.3. Web Services Operation

For this project you will consider that SIP Agents can register one type of Web Services we refer to as Selective e-mail Service. The operational template for this service is:

Service: S::Selective e-mail Service

Input: Sender::Agent /*Calling Agent */

 Message::String

Local Variables: Owner::Agent /*Service Owner – Called Agent)
 Agent2::Agent /* Another agent */
Output: String::Result status

/* Operational template */

R=”FAIL”
if (Sender == Sender1 or Sender2 or …) then
 {
 mail-to:B@sample.com (Message::String); R=”Success”;

 }

elseif (Sender==Sender3 or . . .)
 {
 mail-to:B2@another.com(Message); R=”Success”

 }
elseif
.

else R=”FAIL”
(Please note completion is with string “Success”.
Since the Services utilize the SMTP protocol do not use any other e-mail addresses except your own ones (from the group members) unless for testing purposes you get explicit permission from any person you are using his or her id in your service.
A service is essentially a Java class that has an invoke type of method, Sample code for a service can be found at the course Web site. Please refer to the end of this document for the sample code location package. This class must be copied (deployed) in a specific directory of the Web Server who is “serving” the service. This directory is at /webapps/group<group-number> (i.e. /webapps/axis/group01/) at the SUN EE machines. (ampere, watt, etc.). Once the service is deployed in this directory can be invoked by a JAX-RPC client. The server uses Axis to run the service on the server side.
Sample code for a template service is given at the course Web site. Please refer at the end of this document for the package location.
2.4. Service Registry Operation

The service descriptions are stored on a UDDI compliant service registry that is installed on the www.ece.uwaterloo.ca:8080 server. The service registry has also a user interface (beta version and not very reliable) that can be accessed at http://www.ece.uwaterloo.ca:8080/soar/registry/thin/browser.jsp
For the project you will consider that an organization (a project group) has registered services with the server. To “post” a service description (i.e. its name, location, server, etc.) you can use the client sample programs for adding a new organization (your group), adding a service, adding a service to an organization, and deleting a registry entry. These programs run as stand alone applications. Their parameters determine which organization and, service to add or delete. The API for the samples can be found at the course Web site. Please refer to the end of this document for the sample code location.
There are also sample programs to query the registry, that is what services an organization has posted.

The sample program for querying the services of an organization returns a Vector of ServiceInfo Objects. Each such an object encapsulates the service details for each service found for this organization (anem, wsdl URI, access end point). Look at the ServiceInfo.java file distributed in the sample package for more details. The sample program for querying a service comes with a class you can directly use in your programs. See the end of this document for the location of the sample code package.

If you decide to deploy your own repository you can comment out the security / authentication certificates that are needed to access the registry.
2.4. Location Server Operation

The operation of the Location Server for this project is to find out whether the called agent has a service registered or not. If there are no services registered for an Organization (group) then the Location server returns the location details of the called party (Agent B), and the protocol proceeds as in the normal SIP operation. Otherwise it forwards the handlers to the Proxy and the Proxy builds the appropriate DECLINE message with the appropriate MESSAGE BODY.
The format of the message body is:
<Number-of-services:Integer> -- <Service1-description:String> <Service1-Wsdluri::URL> <Service1-EndPoint> -- <Service2-description:String> <Service2-Wsdluri::URL> <Service2-EndPoint>
(Please note slight format change in Message Body compared toRequirements Document).
An example Message Body involving 2 services is:

“2 – EmailToOfficeService http://www.foo.com:8080/axis/e355gXX/sample1.jws?WSDL http://www.foo.com:8080/axis/e355gXX/sample1.jws -- EmailToHomeService http://www.foo.com:8080/axis/e355gXX/sample2.jws?WSDL http://www.foo.com:8080/axis/e355gXX/sample2.jws --”

The Pseudo-code that describes the operational profile of the extended Location Server is:
..........
/* Point where Location server requests Agent’s location */

result = Query-Service-Registry(agent); /* Obtain services and service

 bindings for all services

 related to agent. The result

 variable is a collection

 (Vector) of ServiceInfo

 objects*/

if result == NULL then

 find-agent-location-IP(agent)

else {

 msg = build-message-to-proxy(result);

 send-message-to-proxy(msg);

}

........
2.5. Proxy Server Operation

The normal operations of the Proxy Server are:

a) To contact the Location Server to obtain information on the called Agent;
b) To contact the called Agent and inform it of the call request by the calling party/and;
c) To obtain reply from the called Agent whether the call will be accepted, declined etc. and forward this reply to the calling party.

Details on the Proxy Server operation semantics can be found on the Requirements Description document. In summary, the Pseudo-code that describes the operational profile of the extended Proxy Server is:

..........

/* Point in Proxy Server where the information is received from */

/* Location Server */

if (result-from-Location-Server == NULL) /* No Services found */

{

proceed with normal operation as per the SIP specification

}

else /* A list of services is found */

{

msg = build-message(DECLINE, list-of-services-and-handlers);

send-message-to-calling-agent(msg, calling-agent);
3. Classes of Interest (for quick reference)
3.1. SIP Communicator
· WSPanel class (from extended SIP Communicator)
· ChatPhoneFrame class (from extended SIP Communicator)

· SIPCommunicator class (from extended SIP Communicator. Look handleInvokeWSRequest method)

· GUIManager class (From extended SIP Communicator. Look at InvokeButton_actionPerformed, and InvokeListener methods if you are interested to know how the extended interface works)

· WSListData class (An object of this class will contain the information that is extracted from the MESSAGE BODY. Information from this object is passed around to the GUI and to the wrapper to invoke the selected service)

· SIPManager class (from SIP Communicator. This is a place to process the MESSAGE BODY through a WSEvent object. Look at the processResponse method)

· CallProcessing class (from SIP Communicator. Look at processWebServiceCalled method)

· WSEvent class (from SIP Communicator. This has to be implemented and you process the Message Body to create a WSListData object that will be used by the GUI. The method that does the processing is processMessageBody)

· SipCommunicator class (from SIP Communicator. Look at serviceListReceived method. This method gets the WSListData object and calls the displayWebServices. Also look at the handleInvokeRequest method)

· GuiManager class (Look at displayWebServices method. It uses information encapsulated in the WSListData object)
The extended SIP communicator can be readily used. You need to interface it appropriately with the Proxy server (i.e. obtain the data from the MESSAGE BODY if you see a DECLINE message). Also you should set the PUBLIC_ADDRESS of your SIP Agent to your e-mail address. This will be used to create a From field in the e-mail service. This PUBLIC_ADDRESS will be part of the parameters you pass in the invokeService method.
3.2 Registry Query/Update

· WSQueryClient class (from samples – try it out as a stand alone application)
· WebServicesQuery class (from samples – you can use it at the Location server to get the services details for a given organization)
· JAXRPublishService class (from samples – try it out as stand alone application)
· JAXRPublishOrg class (from samples – try it out as a stand alone application)
· JAXRDelete class (from samples – try it out as a stand alone application)
· ServiceInfo class (from samples – has the results of a query for one service. The WebServicesQuery class has a method called findServicesForOrg that returns a Collection of ServiceInfo objects).
The information that is returned in each ServiceInfo object is:

· ProvidingOrganization for the service;
· Name for the service
· Description for the service

· EndPoint for the service
· Wsdluri for the service
3.3. Proxy

Proxy class (from JAIN-SIP)
MessageFactory class (from JAIN-SIP)

ServerTransaction class (from JAIN-SIP)

SipProvider (from JAIN-CLASS)

RequesyEvent class (from JAIN-SIP. Look at processRequest method).
3.4. Wrapper
WebServicesInvocationWrapper (Look at invokeService method to call the service given its wsdl, its endpoint, and a list of parameters e.g. who is calling the service plus some other parameters if needed. It can use the strategy pattern. Look at the WebServiceInvoker interface)
MailServiceInvoker class (from samples) – Note that you need to create the Wrapper and use the MailServiceInvoker to invoke a service.
4. Summary of Tasks
The programming tasks for this project are summarized as follows:

1. To modify the Location server to be able to query the service registry (sample code to query the registry using the JAXR API will be given to you), and pass the list of services or NULL to the Proxy for further processing.
2. To modify the proxy server to be able to accept service descriptions from the registry and to compose MESSAGE BODY strings as specified in Section 2.5.

3. To modify the Client Agent to reference a Wrapper. The code for the new Client Agent (SIP-communicator) UI as illustrated in Section 2.6 will be given to you

4. To create a Wrapper class that references the Client Agent. This Wrapper class should use the JAX-RPC API to invoke the Web Service that has been selected using the extended Client Agent UI.

5. To modify the template service and the wsdl specification file that will be given to you to create variant Web Services to use in your system.

We have prepared a package with project code for you to use. In the package there are samples to update and query the registry, to create a service, to call a service. There are also instructions how to post a service in the server so that it can be later invoked.

Finally, there is also code for the extended interface. Refer to the end of this document for the package location.
Feel free to alter the samples, to include or modify the parameters, and to change the code. For your implementation and design include any possible design pattern you may consider appropriate (Iterator, Visitor, Factory, Singleton, Strategy etc.).
5. Deliverables for the Design Document
Your deliverable is an SDD document that follows the template of the sample SDD. The template can be found on www.ece.uwaterloo.ca/~kostas/ECE355-05/project/sdd-template.doc
The SDD document needs to be filled with the following information:

1. Component Diagram of the system (Architecture). The level of detail and granularity will be at the Java Package level of detail. You only need to consider the JAIN-SIP, and SIP Communicator packages The rest you can treat as gross components. In this respect you do not need to consider the WSDP, the JAX-R, and JAX-RPC as individual packages but rather as gross components.
2. Deployment Diagram of the system. You can assume the current run-time configuration that will be used to test your system.
3. Detailed class diagram for all classes you create or modify in the system. Add the immediate associations with all other classes, your modified classes associate with, or inherit from (you need to consider only one level of associations). The detailed class diagram contains the classes in UML notation and a table for each class with its data members and methods with the appropriate signatures. Use where possible design patterns. The ones that should be implemented or identified in the sample code are the Factory, Singleton, and Strategy patterns. You may find also possible to implement or use Iterator and Visitor.
4. Pseudo code for all major methods in the classes you write or modify. The major methods are the ones in the Proxy/Location server and, the SIP Communicator wrapper. These are the methods that initiate the request to the Location server/registry (Proxy server), querying the repository (Location server), building the message to be returned to the agent (Proxy), processing the message from the proxy (SIP Agent), calling the service (Wrapper).
5. State Diagram for the Call class.

The final deliverable (implementation) at the end of the class will be in the form of two archives, one for the updated proxy/location servers, and one for the extended SIP Communicator and Wrapper. You would deploy you sample services in the ece service registry. There we will have some also other sample services to consider (i.e. no valid e-mails, etc.). The deadline for the SDD is November 17 midnight.
6. References and Downloads

References for different technologies used in the project and download links (for development at home) are listed below:

Eclipse: http://www.eclipse.org/downloads/index.php
WSDP: http://java.sun.com/webservices/jwsdp/index.jsp
JAXR: http://java.sun.com/webservices/jaxr/index.jsp
JAXRPC: http://java.sun.com/webservices/jaxrpc/index.jsp

WSIF: http://ws.apache.org/wsif/

JAIN-SIP: https://jain-sip.dev.java.net/
SIP-COMMUNICATOR: https://sip-communicator.dev.java.net/
ebXML (preferred Registry for our project): http://www.ebxml.org/

UDDI: http://www.uddi.org/
WSDL: http://www.w3schools.com/wsdl/default.asp

Java System Application Server: http://java.sun.com/j2ee/1.4/download.html#sdk

AXIS: http://ws.apache.org/axis/
SAMPLE CODE LOCATION : http://www.swen.uwaterloo.ca/~kostas/ECE355-05/project/ece355-project-package.zip

The archive contains four directories
1. Invocation_Samples: Samples to invoke a web service

2. Publish-Query_Samples: Samples to update and query the registry

3. WebService_Samples: A sample template web service

4. sip_v2: The extended SIP Communicator with the new GUI and the event handlers

Page 1 of 10

