
University of Waterloo
Department of Electrical and Computer Engineering

Final Examination E&CE 355 Solutions
Software Engineering Fall 2003

2:00 Sat. Dec. 13, 2003 180 minutes
Instructors: N. Young, M. Hembruch
NO ADDITIONAL MATERIAL ALLOWED The marking scheme is an initial guide only.
NO CALCULATORS ALLOWED Other solutions and marks apply individually.

NOTES:
Answer all questions.

Guesses on two-valued questions have an expected value of zero.

Question weights are indicated in brackets [...].

Proctors and TA's are NOT allowed to answer questions. Instructors will only correct obvious typos or other
problems with the exam. They will not answer questions.

If information appears to be missing from a question, make a reasonable assumption, state your assumption, and
proceed. Do not simplify the question.

Attempt to answer questions in the space provided. If necessary, you may use the back of another page. If you do
this, please indicate it clearly.

If you separate the pages, make sure your initials are on the top of every page.

The last page includes copies of figures for questions 2, 4, 8 and 9. Tear the last page off, for quick reference. Do
not write answers on this last reference page.

Hand in all pages except possibly the last page.

NAME

Signature:

SN:

1. Software lifecycles 15

2. SDL and MSC 25

3. Real time 15

4. Design patterns 20

5. Brook's Complexity 15

6. Build tools 10

7. V&V 15

8. Cyclomatic complexity 20

9. Coverage 30

10. Integration testing 15

Total 180

1. Software lifecycles [15]
We discussed two software development lifecycles in class, waterfall and incremental.

Our guest speaker, Mauricio De Simone of Nitido, made the following statements:

Build the bones, then put on the meat.
Have a small team that puts together the bones.
Bring development muscle once the bones are in place.

a) [5] Circle “waterfall” or “incremental” indicating whether Mauricio is describing the waterfall or
incremental lifecycles. In two or three sentences, briefly explain your answer.

Waterfall Incremental

The waterfall lifecycle implies that all design effort is completed in a single pass through the
process. The incremental lifecycle first builds a central architecture (“bones”) and returns to
add incrementally more features (“meat”) through successive iterations.

“Waterfall” = -1 mark; “Incremental” = 2 marks
Drawing a parallel between architecture and “bones” = 1 or 2 marks
Drawing a parallel between features and “meat” = 1 or 2 marks
Citing waterfall's strict sequence and/or incremental's multiple iterations = 1 or 2 marks
A thorough attempt based on waterfall is worth a maximum of 2 marks total, for part (a)

b) [10] Sketch the software development lifecycle that you circled in part (a) Label all blocks and arcs.

Incremental
builds

Incremental
requirements

For each increment ...
Analyse

Architectural
requirements

Design

Architectural
specification

Implement

A complete sketch of either lifecycle = 10 marks
A mismatch with what's circled in part (a) = -5 marks

Design

Analyse

Test

Architectural
design

2. SDL and MSC [25]
a) [5] The Specification and Description (SDL) figures shown below describe a small system, S. The
five question marks (?) show where labels are missing. Complete the figures by replacing the question
marks with the correct labels.

c) There are at least two message sequences for the system S that produce exactly one output message
(“o”) to the environment. Complete the two Message Sequence Charts (MSC's) shown below. showing

b) [5] Complete the following table.

Number of blocks 1 or 2

Number of signals 4 or 5

Number of states
in process P

2

Number of inputs
in process P

2

Number of outputs
in process Q

2

Part (a) solution: i, BLOCK B, x, P, Q

Rin

[i]
? (1, 1)? (1, 1)

BLOCK BSYSTEM S

In

[?]

Out

[o]
 ?

[o]

Rout

[?]

Rx

[y]

Ry

Q1

set (t)

t

y

Q2

x

o

PROCESS Q

timer
t := 1;

P1

i

P2

y

x

y

P1

PROCESS P

different message sequences that produce exactly one output of the signal “o”.

{y(P>Q), i(E>P), x(P>Q), o(Q>E)}; {i(E>P), y(P>Q), x(P>Q), o(Q>E)}
Any first solution = 10 marks; Any second solution = 5 marks

3. Real time [15]
a) [3] In one or two sentences, define the term real-time requirement as we discussed it in class.

Any requirement that includes a reference to physical time in its statement of correctness.

Reference to physical time, or a contrast w.r.t. computer time, etc. = 2 marks
Reference to “specification”, “correctness”, etc. = 1 mark

b) [12] The following table lists four software applications. Classify each application by circling “Not”,
“Soft” or “Hard”, to indicate whether the application includes real-time requirements. Explain each
answer with a sentence or two.

Application / Real time Explanation

1. Stop light, i.e., 3-coloured
traffic light (red, yellow, green)

 Not Soft Hard

Soft: Physical time is part of the requirements (e.g., 2-minute delay)
but correctness is perceived only by humans, i.e., only humans in
the control loop

2. Word processor

 Not Soft Hard

Not: No timing constraints, as long as performance is reasonable;
or
Soft: With some explanation relating performance to time

P

t

Q P

t

Q

Application / Real time Explanation

3. Missile flight surface control

 Not Soft Hard

Hard: Correct performance of the missile depends on controlling
the flight surfaces accurately w.r.t. physical time, i.e., only the laws
of physics in the control loop

4. Phantom Dialer PBX
program

 Not Soft Hard

Not: The specifications included no refernce to physical time; or
Soft: Definition of switchhook events referred to time, but with only
humans in the control loop

4. Design patterns [20]
The following C++ code fragments show an example of a design pattern discussed in lecture.

a) [3] Name the design pattern that this b) [3] How many instances of the design pattern
example illustrates. are created during the execution of main()?

“AbstractFactory” = 3 marks; “1” = 3 marks
“Factory” = 2 marks 0”, “2”, or “3” explained = 3 marks;

“3” or “iof” = 1 mark

c) [5] Files (file), shared memory (shmem) and message queues (msgq) are examples of resources. List
the names of the classes that you need to change and add to extend this example for a socket resource?

Classes changed Classes added
ioPattern
unixIoPattern unixSocket
winIoPattern winSocket
qnxIoPattern qnxSocket

class ioPattern
{
 public:
 virtual file *newfile(String filename);
 virtual shmem *newShmem(int key);
 virtual msgq *newMsgq(int key);
}

class unixIoPattern: public
{
 public:
 unixIoPattern() {
 file *newFile(String filename)
 {
 if (fileType == 1)
 return new unixFile(filename);
 else
 return new unixPipe(filename);
 }
 shmem *newShmem(int key)
 { return new unixShmem(key); }
 ...
}
...

main()
{
 ioPattern *iof;
 #ifdef UNIX
 iof = new unixIoPattern();
 #ifdef WINDOWS
 iof = new winIoPattern();
 #elseif QNX
 iof = new qnxIoPattern();
 #endif
 file xyz = iof-
>newFile(“abc”);
}

“ioPattern” (1) + “[unix, win, qnx]IoPattern” (all=2, some=1) + “[unix, win, qnx]Socket”
(all=2, some=1) = 5 marks

d) [6] List the names of the classes that you would need to change and/or add to extend the original
example (i.e., without the socket resource) for the Apple Macintosh (“mac”) operating system?

Classes changed Classes added
macIoPattern
macFile
macPipe
macShmem @ 1 mark ea.
macMsgq + 1 mark all = 6 marks

e) [3] The use of the #ifdef directive shown in this example illustrates a common technique for
implementing a product family, i.e., for using the same source code to generate a similar but distinct
products for multiple different operating systems. We also discussed this technique in the lectures on
configuration management. What name did we call the different members of a product family?

“variant” = 3 marks; “configuration” = 2 marks; “version” = 1 mark

5. Brooks' complexity [15]
Our guest speaker, Mauricio De Simone of Nitido, referred to Brooks' two categories of complexity.
Mauricio defined the categories as follows:

Category A: Complexity arising from our choice of tools to use in solving a problem

Category B: Complexity inherent in the problem itself

Mattias Hembruch also used the same two catgories to explain the purpose of the Requisite Skills
Package (RSP) portion of the project, where you implemented the Phantom Dialer (PhD).

a) [3] Brooks, De Simone and Hembruch used specific names for the categories. Name the categories.

Category A Category B
incidental or accidental essential

“incidental” or “accidental” = 1 mark; “essential” = 1 mark; swapped = 1 mark; Both = 3

b) [6] In one or two short paragraphs, explain the purpose for the Requisite Skills Package (RSP) using
Brooks' two categories. (If you don't know the specific terms, just use “Category A” and “Category
B”.)

The purpose of the Requisite Skills Package (RSP) was to move the effort and risk arising from the
incidental complexity of the project to the early part of the academic term. The incidental complexity in
the project came from having to use specialized languages, software development tools and

environment, many of which were new to the students (e.g., SDL, MSC, Unix, multi-process
programming, IPC, PBX hardware emulator, RCS or CVS, ACAT). Dealing with the incidental
complexity on a simple problem early in the term gave the students more time to learn about how to
use the tools before using them on the larger Call Processing problem.

The essential complexity of the Call Processing software arose from the need to design multi-user
control software with real-time performance constraints, based on a communicating finite-state
machine specification of the software. The inherent challenge of this design work was better met after
having learned about the appropriate specification and design techniques during lecture (e.g., models
of computation, transformational design, cohesion and coupling, DARTS, information hiding).

Relating tools and/or environment to category A = 2 marks
Relating specification and/or design challenge to category B = 2 marks
Refering to a reduction in any of effort, risk, and calendar time = 2 marks
Mismatching category terms with what was written as part (a) answer = -2 marks

c) [4] Circle “agree” or “disagree”, depending on whether you agree that the RSP fulfilled its purpose
for your project team. In about two or three sentences, explain why you agree or disagree. Refer to your
project team's actual experience.

Agree Disagree

Circling an answer = 1 mark; Contradicting the circled answer = -1 mark
Citing some important criteria for the project's measure of success or failure (e.g., effort, risk,
calendar time, software correctness, software performance, etc.) = 2 marks
Relating the benefit or detraction to the complexity catgories = 1 mark

6. Build tools [10]
Assume the file, t.c, shown at right. Also,
assume the function test() in file test.c as
shown on the last page (and as mentioned again
in the cyclomatic complexity question).

a) [6] Complete the Makefile shown at right
such that it will compile the program “t” from
t.c and test.c. Use the command gcc to
compile and/or link the files. Do not assume the
use of built-in makefile rules.

/* t.c */

#include <stdlib.h>
extern void test(int a, int b);
int main(int argc, char *argv[])
{
 if(argc == 3)
 test(atoi(argv[1]), atoi(argv[2]));
}

Makefile to compile t

all: t

t: t.o test.o
gcc t.o test.o -o t

t.o: t.c
gcc -c t.c

test.o: test.c
gcc -c test.c

b) [4] Assume t.c and test.c have been
checked into a version control system which
creates a repository file in the current directory
with a “.vc” extension (that is, test.c.vc and
t.c.vc). Assume the command “cmd update
<filename>” will retrieve the latest version of
the file. Write the additional Makefile rules to
automatically check that the working copies of
t.c and test.c are the latest version.

7. V&V [15]
a) [3] In one or two sentences, define verification.

Verification evaluates a system or component to determine whether the products of a
development activity satisfy the conditions imposed at the start of the activity. Verification is
only done by the development organization.

Reference to individual steps, actvities, work products or components = 1 mark
Reference to correctness, evaluation, or specification = 1 mark
Coherent presentation of the same = 1 mark
“Building the product right”, also = 3 marks

b) [3] In one or two sentences, define validation.

Validation evaluates whether a system or component at or near the end of the development
cycle to determine whether the software does what the user really requires. Validation is likely
done by the customer, or may be done by the development organization on behalf of the
customer.

Reference to the end of, whole, or completed development process or product = 1 mark
Reference to customer, user or real requirements = 1 mark
Coherent presentation of the same = 1 mark
“Building the right product”, also = 3 marks

The Cleanroom software development method emphasizes fault prevention over failure detection. All
failures of the product are traced to faults in the development process: the failed product is discarded;
the process fault is isolated and corrected. The Cleanroom method was created by Harlan Mills at IBM
Federal Systems and has been used at organizations such as NASA, Ericsson and Texas Instruments.

c) [9] The following table outlines three important aspects of the Cleanroom method. For each aspect,
provide two pieces of information. First, circle “static” or “dynamic” indicating whether the aspect
applies static or dynamic verification or validation. Second, write about two or three sentences
explaining the benefit that the aspect brings to the development process and/or product quality.

Makefile to retrieve latest versions

test.c: test.c.vc
cmd update test.c

t.c: t.c.vc
cmd update t.c

Cleanroom Benefits explanation

1. Individual developers are not allowed to
compile or run their own modules. Each developer
is responsible for their own modules' entire
syntactic and semantic correctness, which the
developer achieves purely by inspection.

Static Dynamic

Static = 1 mark; Any reasonable benefit = 2
marks

Reduced faults; Lower cost; Faster delivery

Preventing individual developers from compiling
or running their own modules forces them to
understand their modules thoroughly, thereby
reducing the likelihood of them overlooking
faults. This prevents faults from being passed on
to later, more expensive process steps, where
more developers are involved and the cost of
correcting faults is higher.

2. Modules are specified as the functional
composition of other modules, through the
elementary constructs of sequence, alternation and
iteration. Each module's correctness is verified by
mathematically proving that the module
implements its specified function.

Static Dynamic

Static = 1 mark; Any reasonable benefit = 2

Reduced faults; Lower cost; Faster delivery

Specifying each module mathematically
eliminates ambiguity, thereby reducing the
likelihood of developers and inspectors making
mistakes. Use of the elementary program
constucts further ensures that the inspection
process remains orderly and objective.

3. Completed systems are validated through tests
that are selected according to statistical models of
how the system will be used. Features that are
used more often are tested more than features that
are used less often.

Static Dynamic

Dynamic = 1 mark; Any reasonable benefit = 2

Reduced faults; Lower cost; Faster delivery

Testing cannot show the absence of faults, only
the presence. Of the practically-infinite set of
possible tests, applying the tests that reflect the
actual system usage will improve the chances of
revealing failures that are relevant to the actual
system usage.

8. Cyclomatic complexity [20]
a) [12] In the space below, draw the control flow
graph for the C function, test(). Label the edges to
show which condition each edge represents. (Assume
short-circuit evaluation, i.e., the same as in class.)

b) [4] The cyclomatic complexity, V(G), can be
calculated by counting the regions of the graph. Label
the regions of the graph, R1, R2, etc., and state the
cyclomatic complexity.

V(G) = 8

c) [4] In addition to counting the regions of the graph,
we discussed two other methods of calculating the
cyclomatic complexity. Choose either method and
calculate the cyclomatic complexity again. Clearly
show all steps in detail, including the original
equation and variable substitutions.

V(G) = E -N + 2 = p + 1
= 15 - 9 + 2 = 7 + 1
= 8 = 8

 /* test() function */
 void test(int a, int b)
 {
 int i, x, y;

01 x=a*b+2;
02 y=(b+a)*5;

03 if((a<0) && (b<0)) return;

04 for(i=0;i<4;i++)
 {
05 if((a>b) && (x>a))
06 printf(“Case 1!\n”);
07 else if((b>a) && (y>b))
08 printf(“Case 2!\n”);
09 else printf(“Case 3!\n”);
10 y++;
11 x--;
 }
 }

9. Coverage [30]
Consider the C function, test(), in the previous question, and the three test cases listed in the table.

a) [20] Complete the table by listing the statements and edges covered by each of the test cases. The
first test case is done for you, as an example.

b) [5] Circle “yes” or “no”, indicating whether the set of three cases give statement coverage of the
program. If you circle “no”, write at least one statement not covered.

c) [5] Circle “yes” or “no”, indicating whether the set of three cases give edge coverage of the program.
If you circle “no”, write at least one edge not covered.

Case Statements Edges

(a = 0, b = 0) 01, 02, 03, 04,

05, 07, 09,

10, 11

a >= 0,

a <= b,

b <= a,

i < 4, i >= 4

(a = 2, b = 2) 01, 02, 03, 04,

05, 07, 09,

10, 11

5 marks

a >= 0,

a <= b,

b <= a,

i < 4, i >= 4

5 marks

(a = 9, b = 1) 01, 02, 03, 04,

05, 06, 07, 09,

10, 11

5 marks

a >= 0,

a > b,

x > a, x <= a,

b <= a,

i < 4, i >= 4

5 marks

Coverage Yes No Yes No

Not covered No: 08

“No” = 2, “Yes” = -1, “08” = 3

No: y<=b, y>b, a<0, b<0, b>a, b>=0

“No” = 2, “Yes” = -1, Either = 3

10. Integration testing [15]
Our guest speaker, Mauricio De Simone of Nitido, made the following statements.

Integration is the hardest part.
Independently test layers. Divide and conquer the layers of your system.

a) [2] Define the term “integration”.

Reference to the action “combination”, “composition”, etc. = 1 mark
Reference to pieces “unit”, “component”, “layer”, etc. = 1 mark

b) [6] In a short paragraph, explain why Mauricio would say “Integration is the hardest part.” Give at
least two reasons. Use the the concepts and terms we discussed in class.

Integration is difficult because of at least four factors. First, integration combines the components of
the software system for the first time. If the actual interfaces for the components do not match the
originally-specified interfaces, then the interfaces and/or components must be corrected before
integration can proceed. This is an example of an internal problem area. Second, the integration often
combines the components with an operating system or other outside software for the first time. If the
supplied software does not perform as required, then the integration can be delayed for having to
obtain corrected software, or for having to adjust the components to work around the problems. This is
an example of an external problem area. Third, fault isolation is more difficult among multiple
combined components than among separately-tested components. Fourth, integration often involves
components and people from multiple separate groups, which can complicate communication and
scheduling, by having more people involved who are not accustomed to working together.

Reference to any two of the sample factors or other good reasons = 2 factors x 3 marks ea. = 6

c) [2] Circle “yes” or “no” indicating whether Mauricio recommends performing integration testing
separately from system testing. In one or two sentences, briefly explain your answer.

Yes No

“Independently test the layers”
Circling “yes” = 1 mark; Inconsistent explanation = -1 mark
Consistent explanation = 1 mark

2. SDL and MSC

 8. Cyclomatic Complexity
& 9. Coverage

4. Design patterns
class ioPattern
{
 public:
 virtual file *newfile(String filename);
 virtual shmem *newShmem(int key);
 virtual msgq *newMsgq(int key);
}

class unixIoPattern: public
{
 public:
 unixIoPattern() {
 file *newFile(String filename)
 {
 if (fileType == 1)
 return new unixFile(filename);
 else
 return new unixPipe(filename);
 }
 shmem *newShmem(int key)
 { return new unixShmem(key); }
 ...
}
...

main()
{
 ioPattern *iof;
 #ifdef UNIX
 iof = new unixIoPattern();
 #ifdef WINDOWS
 iof = new winIoPattern();
 #elseif QNX
 iof = new qnxIoPattern();
 #endif
 file xyz = iof-
>newFile(“abc”);
}

 /* test() function */
 void test(int a, int b)
 {
 int i, x, y;

01 x=a*b+2;
02 y=(b+a)*5;

03 if((a<0) && (b<0)) return;

04 for(i=0;i<4;i++)
 {
05 if((a>b) && (x>a))
06 printf(“Case 1!\n”);
07 else if((b>a) && (y>b))
08 printf(“Case 2!\n”);
09 else printf(“Case 3!\n”);
10 y++;
11 x--;
 }
 }

P1

i

P2

y

x

y

P1

PROCESS P

Q1

set (t)

t

y

Q2

x

o

PROCESS Q
timer
t := 1;

