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Programming Languages II

Solutions to the exercises are to be handed in to the instructors in electronic form. Deadlines are firm.

You may hand in at most one late exercise.

Exercise 2 Type Inference

Due date: 3/11/2010

In the programming language of your choice, implement type inference for the simply typed
λ-calculus. For your convenience, we suggest that you choose a functional language: Haskell,
Standard ML or OCaml.

Input and output. Your program must read data from the standard input and write the
results to the standard output.

The first line of the input will contain a natural number N . Each of the following N lines will
contain one λ-term. The grammar that describes the λ-terms is given below. The letter “λ” in
abstractions is denoted by the character “\” (backslash). Variable names will start with a letter
and consist of letters and digits. For your convenience, you may assume that there is exactly
one space character after the dot in abstractions, and between the two terms in application.
Parentheses will be used exactly where specified by the grammar.

Your program must output N lines, each of which must contain the type of the corresponding
λ-term, or the message “type error”, in case the type inference fails. Types must be output in
normal form as follows. Type variables must be denoted by @0, @1, @2, and so on. Function
arrows must be denoted by the string “ -> ”, with exactly one space around the arrow. Paren-
theses must be used only when necessary. The choice of variables must be such that the resulting
type is “lexicographically” smaller than any other equivalent type, which can be obtained by
renaming variables. For example, the type

β → (β → α) → α

must be printed as

@0 -> (@0 -> @1) -> @1

and not in any of the following equivalent forms:

@1 -> (@1 -> @0) -> @0

@7 -> (@7 -> @42) -> @42

Notice: the use of “lexicographically” above is not entirely right. According to lexicographical
order, “@2”> “@10”. In contrast, here the variable @2 must be prefered over @10. In short, the
variables that appear in a type, in order of appearance, must be @0, @1, @2, and so on.



Brief description of the solution. The following grammar describes the syntax of λ-terms
(M,N) and types (σ, τ).

M,N ::= x | (λx.M) | (M N)

σ, τ ::= α | (σ → τ)

To construct the set of constraints that is the result of a λ-term’s semantic analysis, you may use
the following rules, which are equivalent to the standard typing rules à-la Curry for the simply
typed λ-calculus.

The typing relation Γ ` e : τ | C means that in the environment Γ, expression e has type τ ,
provided that the constraints in set C are satisfied.

(x : τ) ∈ Γ

Γ ` x : τ | ∅
α fresh type variable Γ, x : α ` e : τ | C

Γ ` λx. e : α→ τ | C

Γ ` e1 : σ | C1 Γ ` e2 : τ | C2 α fresh type variable

Γ ` e1 e2 : α | C1 ∪ C2 ∪ {σ = τ → α}

The type checker that you have to implement will produce the constraints. It will take as input
Γ and e and will produce as output τ and C. The algorithm W for calculating the most general
unifier for C is given e.g. in http://en.wikipedia.org/wiki/Algorithm_W.

Input example.

5

(\x. x)

(\x. (\y. y))

(\x. (\y. x))

(\x. (x x))

(\x. (\y. (\z. ((y z) x))))

Output example.

@0 -> @0

@0 -> @1 -> @1

@0 -> @1 -> @0

type error

@0 -> (@1 -> @0 -> @2) -> @1 -> @2

http://en.wikipedia.org/wiki/Algorithm_W

