
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Σεδίαση και υοποίηση ενός μεταττιστή
κώδικα μηανής ια τη ώσσα Erlang με

ρήση της LLVM

Διπματική Ερασία
τν

Χρήστου Σταυρακάκη, Γιάννη Τσιούρη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Νοέμριος 2011

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Σεδίαση και υοποίηση ενός μεταττιστή
κώδικα μηανής ια τη ώσσα Erlang με

ρήση της LLVM

Διπματική Ερασία
τν

Χρήστου Σταυρακάκη, Γιάννη Τσιούρη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 7η Νοεμρίου, 2011.

........................
Κστής Σαώνας Νικόαος Παπασπύρου Άρης Κοζύρης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π.

Αήνα, Νοέμριος 2011

... ...
Χρήστος Σταυρακάκης Γιάννης Τσιούρης
Διπματούοι Ηεκτροόοι Μηανικοί και Μηανικοί Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Χρήστος Σταυρακάκης, Γιάννης Τσιούρης, 2011.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Στις μέρες μας, οι υπάροντες μεταττιστές ανοιτού κώδικα ρησιμοποιούν απαραιμέ-
νες τενικές παραής κώδικα μηανής και δεν μοιράζονται μεταξύ τους κώδικα υοποί-
ησης. Επιπέον, αποτεούνται από πούποκο κώδικα υοποίησης, εονός που καιστά
δύσκοο το να μεετηούν και ακόμα πιο δύσκοο το να αάξουν. Η Low Level Virtual
Machine (LLVM) είναι μια ιιοήκη τεευταίας τενοοίας ια μεταττιστές. Παρέει
ένα σύνοο από επαναρησιμοποιήσιμα εραεία που υοποιούν τις καύτερες τενικές με-
ταώττισης και στατικής ανάυσης, εστιάζοντας στην επίδοση του παραόμενου κώδικα
και στο ρόνο μεταώττισης. Ο απώτερος στόος της LLVM είναι να παρέει ανεξάρτητα
εξαρτήματα ια την κατασκευή υψηής ποιότητας μεταττιστών ια ποές διαφορετικές
ώσσες.

Η διπματική αυτή περιράφει την παρούσα αριτεκτονική, τις ασικές σεδιαστικές αποφάσεις
και κάποιες επτομέρειες υοποίησης ενός νέο οπίσιου τμήματος ια τον HiPE, το μετα-
ττιστή κώδικα μηανής του συστήματος της Erlang/OTP, που ρησιμοποιεί την υποδομή
της LLVM. Διαπιστώηκε πς μία από τις ενδιάμεσες ώσσες του HiPE, η Register Trans-
fer Language (RTL), έει πού απή και προφανή απεικόνιση στη συμοική ώσσα της
LLVM. Παρόα αυτά, υπήραν κάποια επτά σημεία, όπς η σύμαση κήσης συναρτήσεν,
ο μηανισμός ειρισμού εξαιρέσεν και η συοή σκουπιδιών, που απαιτούσαν ειδικούς
ειρισμούς ια να διατηρηεί η συματότητα με το Application Binary Interface (ABI) του
Συστήματος Χρόνου-Εκτέεσης της Erlang (Erlang Run-Time System) και κατ’ επέκταση
η ενσμάτση της δουειάς μας να ίνει διατηρώντας την υπάρουσα αριτεκτονική της
Εικονικής Μηανής. Γι’ αυτούς τους όους ρειάστηκε να αάξουμε τo Εξάρτημα Παρα-
ής Κώδικα της LLVM, εφαρμόζοντας τους κανόνες που επέαε το ABI στον παραόμενο
κώδικα.

Στο κεφάαιο της αξιοόησης αναύουμε επτομερώς την τρέουσα πουποκότητα και
την επίδοση του νέου οπίσιου τμήματος που υοποιήσαμε με ρήση της LLVM ια την
οικοένεια επεξεραστών AMD64. Οι ρόνοι εκτέεσης τν μετρο-προραμμάτν που με-
ταττίστηκαν στο δικό μας οπίσιο τμήμα ήταν συκρίσιμοι με εκείνους τν προραμμάτν
που μεταττίστηκαν στο υπάρν οπίσιο τμήμα του HiPE, και σημαντικά πιο μικροί από
εκείνν της Eικονικής Mηανής BEAM και της Erjang, η οποία είναι μια εικονική μηανή
ια την Erlang ασισμένη στην Εικονική Μηανή της Java (JVM). Η πουποκότητα του
τμήματός μας αποδείηκε σημαντικά μικρότερη. Ιδιαιτέρς αν άει κανείς υπόψιν του ότι,
με σετικά απές επεκτάσεις, το οπίσιο τμήμα που υοποιήσαμε μπορεί να καύψει όες τις
αριτεκτονικές επεξεραστών που σήμερα υποστηρίζει ο HiPE. Αρκετές ετιώσεις έουν
ήδη προραμματιστεί ς αντικείμενο μεοντικής ερασίας.

5

6 Περίληψη

Λέξεις Κειδιά

Erlang, μεταττιστής HiPE, μεταώττιση κώδικα μηανής, ιιοήκη LLVM, οπίσιο
τμήμα, συμοική ώσσα υψυού επιπέδου, μετάφραση ενδιάμεσης απεικόνισης, ετιστοποιήσεις
ρόνου μεταώττισης

Abstract

Existing open-source compilers are based on old code generation technology, with code
bases that are difficult to learn and hard to change, and share no code between each
other. The Low Level Virtual Machine (LLVM) is a state-of-the-art compiler infrastructure
providing a set of reusable components that implement the best known techniques focusing
on compile time and performance of the generated code. The goal of LLVM is to provide
modular components for building high quality compilers for many different languages.

This thesis describes the current architecture, design decisions and implementation details
of a new back end for HiPE, the native code compiler of Erlang/OTP, that targets the
LLVM infrastructure. One of HiPE’s intermediate representation, called Register Transfer
Language (RTL), was found to have a very straightforward translation to LLVM assembly.
However, there were a few subtle points, such as the calling convention, the exception
handling mechanism and the garbage collection, that needed to be handled in order to
retain Application Binary Interface (ABI) compatibility with the Erlang Run-Time System
(ERTS) and integrate our work in the existing Virtual Machine architecture. For these
reasons we patched the LLVM Code Generator and imposed the appropriate rules on the
generated binary code.

In the evaluation we detail the current complexity and performance of the new LLVM back
end for the AMD64 architecture. The run-time performance was found to be comparable
with HiPE and signifficantly faster than BEAM virtual machine and Erjang, a virtual
machine for Erlang based on the Java Virtual Machine (JVM). The complexity of the
LLVM back end proved to be far simpler; especially, if you take into consideration that,
with rather plain extensions, it can support all hardware architectures that HiPE currently
targets. Various performance improvements are planned for future work.

Keywords

Erlang, HiPE compiler, native code compilation, LLVM framework, back end, high-level
assembly, intermediate representation transformation, compile-time optimizations

7

Ευαριστίες

Θα ήεα να π ένα μεάο ευαριστώ στον Κώστη Σαώνα ια την διαρκή υποστήριξη και
πούτιμη καοδήηση, η οποία συνέαε καοριστικά στη διαμόρφση αυτής της διπματικής
ερασίας, καώς και ια την εμπιστοσύνη και σεασμό τον οποίο μου έδειξε. Επίσης, α
ήεα να ευαριστήσ τον Νίκο Παπασπύρου ια την πού σημαντική οήεια την οποία μας
προσέφερε.

Χρστά ένα μεάο ευαριστώ στους ονείς μου ια την υποστήριξη που μου έουν
προσφέρει και την εμπιστοσύνη που έδειξαν σε κάε επιοή μου.

Θα ήεα ακόμα να ευαριστήσ το φίο και συνεράτη Γιάννη Τσιούρη. Η συνερασία μας
καέστησε εφικτή την εκπήρση αυτής της διπματικής. Επίσης η διαρκής παρότρυνσή του
ήταν καοριστική στο να ασοηώ με τον προραμματισμό καώς και το εεύερο οισμικό.

Τέος, έ να ευαριστήσ όους τους φίους οι οποίοι με στηρίζουν και στέκονται
δίπα μου σε κάε περίσταση. Ιδιαίτερα έ να ευαριστήσ τον κύκο τν φίν: Άννα
Βήου, Βίκυ Βάου, Πάνο Μάντζιο και Νίκοας Μουσιώνη. Η παρουσία τους στη ζή μου
ομορφαίνει την καημερινότητά μου.

Χρήστος Σταυρακάκης

Αρικά, α ήεα να ευαριστήσ τους ονείς μου, Φώτη και Έφη Τσιούρη, και την αδερφή
μου, Ευαία, που ήταν πάντα δίπα μου ανέοντας τις “ιδιοτροπίες” μου και στηρίζοντας
κάε μου επιοή. Όα όσα μου προσέφεραν με έκαναν αυτό που είμαι σήμερα.

Θα ήεα να ευαριστήσ τον επιέποντα καηητή μου, Κστή Σαώνα, ια την έμπνευση
του έματος της διπματικής, τη διαρκή καοδήηση και τη συνερασία μας κατά τη διάρκεια
του τεευταίου έτους. Επιπέον, ια την εμπιστοσύνη που μου έδειξε από την πρώτη στιμή
ανάεσης της διπματικής.

Θα ήεα επίσης να ευαριστήσ τον Νίκο Παπασπύρου, ο οποίος με ενέπνευσε με τη
συμπεριφορά του και το ήος του και συνέαε στην απόφασή μου να ασοηώ με την
Πηροφορική από το πρώτο έτος τν σπουδών μου.

Τέος, έ να π ένα μεάο ευαριστώ σε όους τους φίους μου που μου στάηκαν τα
τεευταία ρόνια και μου έδειξαν πς σε όα τα πράματα ρειάζεται ένα μέτρο. Χρήστο,
ένας από αυτούς είσαι κι εσύ.

Γιάννης Τσιούρης

9

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Contents 12

List of Figures 13

List of Listings 15

1 Introduction 17

2 Background 19
2.1 Compiler Design . 19
2.2 The HiPE Compiler . 20

2.2.1 Phases in the compiler . 21
2.2.2 Interface issues with Erlang/OTP 23

2.3 Low Level Virtual Machine . 28
2.3.1 LLVM Assembly Language . 29
2.3.2 LLVM Type System . 31
2.3.3 LLVM Instruction Set . 32
2.3.4 Other projects using LLVM . 34

3 The LLVM back end 37
3.1 Pipeline Design . 37
3.2 LLVM Representation . 40
3.3 Generation of LLVM assembly . 40

3.3.1 Handling RTL Virtual Registers . 40
3.3.2 Handling Immediate Values . 42
3.3.3 Handling RTL Instructions . 43
3.3.4 Calling Convention . 44
3.3.5 Calls with Stack Arguments . 45
3.3.6 Garbage Collection . 45
3.3.7 Exception Handling . 47
3.3.8 Frame Management . 48

3.4 Rest Phases . 49
3.4.1 LLVM Assembler . 49
3.4.2 LLVM Optimizer . 49

11

12 Contents

3.4.3 LLVM Compiler . 49
3.4.4 Object File Generation . 50
3.4.5 Object File Parsing . 50

4 Evaluation 51
4.1 Current State of LLVM back end . 51
4.2 Performance of LLVM back end . 51

4.2.1 Results . 52
4.2.2 Performance Analysis . 53

4.3 Complexity of Implementation . 58

5 Conclusion 61
5.1 Concluding remarks . 61
5.2 Future work . 62

Bibliography 63

List of Figures

2.1 The Three Components of a Three-Phase Compiler 19
2.2 Structure of a HiPE-enabled Erlang/OTP system 21
2.3 Call stack for function bar/L in the call chain foo/K → bar/L → baz/M . . 23
2.4 Call stack ”snapshots” when f calls g (f → g) and g tail-calls h (g tail→ h). . . 24
2.5 Icode CFGs for functions foo and bar from Listing 2.1. 25
2.6 The stack frame layout when function bar/7 calls zap/0 and the corre-

sponding stack descriptor. 26

3.1 The new LLVM back end inside the Erlang/OTP system 37
3.2 The LLVM component . 39
3.3 RTL CFG of a function calling bar/1, protected with an exception handler. 48
3.4 LLVM assembly of a function calling bar/1, protected with an exception

handler. 48

13

List of Listings

2.1 An exception thrown by bar is caught by foo. 25
2.2 C example: factorial . 30
2.3 LLVM assembly for factorial (Listing 2.2) 30
3.1 Erlang implementation of function length 43
3.2 RTL example: Length of a list. The ”strange” numbers in the example are

tags and tagged values. Addition is performed either by the ’add’ instruc-
tion or by the ’+’ BIF, depending on the type of the value. 44

3.3 LLVM assembly for handling a GC root . 46

15

Chapter 1

Introduction

Programming languages are notations for describing computations to people and machines.
For these computations to be able to run on machines, the programs written in some high-
level programming language should be first transformed to executable machine code. This
is exactly what compilers do.

Compilers are complex software systems that translate source code written in a high-
level programming language (the source language) into a lower level language (the target
language), e.g. another programming language, assembly language or machine code. A
compiler operates as a sequence of phases, each of which transforms the source program
from one intermediate representation to another preserving the meaning of the program
that is compiled. These phases are conceptually grouped in three parts: the front end, the
optimizer and the back end. In the front end, the program is checked as far as the pro-
gramming language syntax and semantics is concerned, errors are spotted and informative
messages are provided to the programmer and, finally, an intermediate representation is
built. The optimizer transforms the intermediate representation into functionally equiv-
alent, yet faster, forms. The back end, constructs the desired target program from the
intermediate representation and the information collected during the front end phases.

In this thesis we will be looking at the generation of executable code for the Erlang pro-
gramming language. We have worked on the Open Telecom Platform (OTP), an industrial
strength system that is the primary implementation of Erlang and provides a framework
to structure Erlang systems offering robustness and fault-tolerance together with a set of
tools and libraries. We will be evaluating an implementation of a new back end target for
High-Performance Erlang (HiPE), the native code compiler of Erlang/OTP.

For our work we have used Low Level Virtual Machine (LLVM), a state-of-the-art compiler
infrastructure supporting both static and dynamic compilation of arbitrary programming
languages. It is an “umbrella” project consisting of a number of tools and libraries for
creating high quality compilers. In detail, we have targeted its high performance code
generator in order to generate Application Binary Interface (ABI) compliant machine
code for the Erlang Run-Time System (ERTS).

The work of this thesis aims at providing multiple back ends for HiPE with the use of the
LLVM compiler infrastructure. The ultimate goal is to improve both the performance and
code maintenance of HiPE back ends.

The rest of the thesis is organised as follows. In Chapter 2 we give an overview of the HiPE

17

18 Chapter 1. Introduction

system and the LLVM framework. Chapter 3 is the main chapter of the thesis, where we
present the most critical design decisions and the implementation of the new Low Level
Virtual Machine back end for HiPE. In Chapter 4 we evaluate the new back end in terms
of complexity and performance. Finally, in Chapter 5 we present our concluding remarks
and future work.

Chapter 2

Background

2.1 Compiler Design

Over the last twenty years, the advent of microprocessor technology along with the evo-
lution of high-level programming languages has resulted in complicating the design and
implementation of compilers. Situated between the modern programming language and
the architecture, the compiler is responsible for making the application perform as well as
possible on a target machine.
The most popular design pattern for a traditional static compiler is the three-phase design
whose major components are the front end, the optimizer and the back end (Figure 2.1).
As already stated, the front end asserts that all language-specific requirements (i.e. syn-
tax and semantics) are met and parses the input code to an intermediate representation
(IR), usually an Abstract Syntax Tree (AST). The AST is optionally converted to a new
representation for optimization and the optimizer and the back end are run on the code .

Frontend Optimizer Backend
Source
Code

Machine
Code

Figure 2.1: The Three Components of a Three-Phase Compiler

The optimizer is responsible for doing a broad variety of transformations to try to improve
the code’s running time, for example by eliminating redundant computations, and is usu-
ally more or less independent of language and target. This usually involves more than one
IR, with each transformation into a new IR simplifying the code and representing it at a
lower abstraction level, closer to the machine architecture on which the compiled program
will run on. Then, the 3rd component is invoked. The back end (also known as the code
generator) maps the code onto the target instruction set. Not only is it responsible for
making correct code, but also good code that often takes advantage of features of the un-
derlying architecture. Common parts of a compiler back end include instruction selection,
register allocation and instruction scheduling.
The most important feature of this design is that it consists of modular components and
it is rather easy to support more than one source language or target architecture. The

19

20 Chapter 2. Background

only requirement would be to have a common representation in the optimizer, and a front
end can be written for any language that can compile to it, and a back end can be written
for any target. This model applies equally well to interpreters and Just-In-Time (JIT)
compilers. The Java and .NET virtual machines are implementations of this model.
Despite the benefits of the three-phase design, there has been little success in fully utilising
the advantages of the model in the past years (see Brown and Wilson’s book [4, Chapter
11]). In practice, various implementations of high-level programming languages, such as
Python, Ruby, Java and Haskell, share no code. The basic problem lies on specifying
a common intermediate representation that can efficiently support the wide variety of
programming languages which exist. This IR needs to be of fairly low level in order to
be eligible to express the significantly different semantics of these programming languages
and support aggressive optimizations as higher level representations do. Furthermore, it
should be designed so as to support high-level services, such as garbage collection and
exception handling, in a universal and portable manner in the IR.
A notable example that has achieved great progress over the past few years on this field is
Low Level Virtual Machine (LLVM). This increasing interest on LLVM is further supported
by the number of projects [28] and publications [29] that use or build on it lately. LLVM is
basically a compiler infrastructure; it is a very straightforward implementation of the three-
phase design pattern that utilises a fairly low-level RISC-like instruction set with a strict
type system designed with many important optimizations, such as lightweight runtime
optimizations, cross-function/inter-procedural optimizations, whole program analysis, and
aggressive restructuring transformations, etc., in mind. Unlike the front end and back end
of the compiler, the optimizer is not constrained neither by a specific source language nor
a specific target machine. LLVM IR is both well specified and the only interface to the
optimizer. LLVM will be discussed further in Section 2.3.

2.2 The HiPE Compiler

HiPE (High Performance Erlang) is a native code compiler for Erlang. Erlang is a con-
current functional programming language designed for developing large-scale, distributed,
fault-tolerant systems. The primary implementation of Erlang, the Erlang/OTP, is by
default based on a virtual machine interpreter (BEAM); but with HiPE it is also allowed
for the user to natively compile those parts of the code where the speedups are worth the
larger code size and longer compilation times, and also keep the non-time-critical part of
the application in interpreted code (i.e. bytecode).
HiPE was an ASTEC1 project at the Department of Information Technology2 (division of
Computing Science) of Uppsala Univerity, aimed at efficiently implementing concurrent
programming systems using message-passing in general and the concurrent functional lan-
guage Erlang in particular [23]. Since October 2001 the HiPE system is fully integrated in
Ericsson’s Open Source Erlang/OTP system. The HiPE compiler currently has backends
for ARM, SPARC V8+, x86, AMD64, PowerPC and PowerPC64.
In this section we will mostly present an overview of the design of the HiPE compiler and
how it is integrated in the Erlang Run-Time System (ERTS) focusing on areas which are
relevant to the implementation of a Low Level Virtual Machine (LLVM) back end.

1http://www.astec.uu.se/
2http://www.it.uu.se/

http://www.astec.uu.se/
http://www.it.uu.se/

2.2 The HiPE Compiler 21

2.2.1 Phases in the compiler

Erlang Run-Time System HiPE Compiler

BEAM

Emulator

Memory

BEAM
Bytecode

Other
Data

Native
Code

BEAM

Dissassembler

HiPE
Loader SPARC X86

Symbolic

BEAM

Icode

RTL

PowerPC...

Figure 2.2: Structure of a HiPE-enabled Erlang/OTP system

The compilation process in HiPE starts by disassembling the bytecode generated by the
BEAM compiler, and representing it in a symbolic version. The overall structure of the
HiPE system is shown in Figure 2.2. HiPE’s pipeline uses various intermediate represen-
tations ending in assembly code [15].

• BEAM: The BEAM code is just a transformation of Erlang source code to vir-
tual machine code generated by triggering the Erlang compiler of the underlying
Erlang/OTP system. BEAM operates on a largely implicit heap and call-stack, a
set of global virtual registers and a set of slots in the current stack frame.

• Icode: Icode is an idealised Erlang assembly language with a minimal instruction
set of only 16 instructions. The Icode IR assumes an infinite number of registers and
an implicit stack. Registers are preserved around function calls and all bookkeeping
operations, such as memory management and process scheduling, are implicit.
BEAM is translated to Icode mostly one instruction at a time. However, some
obviously poor sequences of virtual machine code are peephole-optimised into more
efficient Icode sequences. Common operations, such as fetching an element from a
tuple or pattern-matching, are in-line expanded into fetches and tests.
Temporaries are also renamed through conversion to static single assignment (SSA)
form [34] to avoid false dependencies between different live ranges. This form enables
many optimizations, such as constant and copy propagation, constant folding and
dead-code removal.

• RTL: RTL is a generic three-address register transfer language. RTL itself is target-
independent, but the code is target-specific due to references to target-specific reg-
isters and primitive procedures. The instruction set is similar to MIPS consisting
of 27 instructions. RTL has tagged registers for proper Erlang values and untagged
for arbitrary machine values, such as an address or a raw integer. To simplify the
garbage collector interface, function calls only preserve live tagged values.
In the translation to RTL a large number of operations (e.g. arithmetic, data con-
struction, tests) are in-lined. Data tagging and untagging are made explicit, data
accesses and initialisations are turned into loads and stores. Icode-level switch in-
structions for switching on basic values are translated into code that implements

22 Chapter 2. Background

the switches. In this form, optimizations like common subexpression elimination
and constant propagation and folding are performed. Moreover, stack and exception
handling code is expanded into explicit code.

• Symbolic target-specific assembly: This intermediate representation is just a
simple abstraction of the assembly of the targeted architecture (SPARC, X86, Pow-
erPC, etc.). It differs from the RTL in a way that it better represents architecture-
specific instructions, e.g. in x86 IR memory operands exist which are described by
simple addressing modes (base register plus offset).

The next step in the compilation pipeline is that of register allocation. In this step,
temporaries (virtual registers) are mapped to actual machine registers. Every temporary
that remains unallocated is mapped to a specific stack slot during the subsequent phase
of frame management. Coloring graph-based register allocation is typically performed in
a loop. First an attempt is made to allocate registers for the code. If this fails because
some temporaries were spilled (could not be assigned to registers), the code is rewritten
under the assumption that those temporaries are in memory, and the process continues
with a new allocation attempt. Eventually, however, the allocation will succeed. The
HiPE system has several register allocators implemented: an iterated register coalescing
allocator [13], a Briggs-style graph colouring register allocator [3], a linear scan register
allocator [27, 33] and, lastly, a naive register allocator.
After that, stack frames are introduced to the code. The frame management pass is
responsible for:

• mapping spilled temporaries to stack slots and rewriting uses of these temporaries
as memory operands in the stack frame,

• adding code to the function prologue in order to check for stack overflow and setting
up the call frame (the frame size and maximal stack usage are computed and taken
into consideration),

• creating stack descriptors for each call site, describing which stack slots correspond
to live temporaries (using the result of the liveness analysis) and whether the call is
in the context of a local exception handler, and

• generating code, at each tail call, to shuffle the actual parameters to the initial
portion of the stack frame.

During most phases of the compiler, the code is represented in the form of a Control Flow
Graph (CFG). Before translating to native code, the CFG must be linearised by ordering
the basic blocks and redirecting jump instructions accordingly. The linearization step
is responsible for performing this ordering while taking into account the likelihood of a
conditional jump being taken or not, and the static branch prediction algorithm used in
hardware. The translation from CFG to linear code generates the most likely path first
and then appends the code for the less likely paths. This is a crucial phase of the compiler
as it can lead to generating mature code with considerably better performance.
Finally, the custom assembler converts the final symbolic representation to binary ma-
chine code and produces a loadable object file, with the machine code, constant data, a
symbol table and the patches needed to relocate external references, ready to be loaded
in the runtime system.

2.2 The HiPE Compiler 23

2.2.2 Interface issues with Erlang/OTP

It was an early design decision for HiPE to be based on the Erlang/OTP that was already
an industrial strength system, widely used in real world applications. To achieve that, the
HiPE compiler had to implement all features of Erlang. Furthermore, it had to extend the
Erlang/OTP runtime system to permit Erlang processes to execute both interpreted and
native machine code while maintaining the semantics of code replacement of the language
(i.e. the ability to upgrade code at runtime, without affecting processes currently executing
the old version of that code). In this part, we describe some features of Erlang and the
Erlang/OTP system and how they were implemented in the compiler.

Stack frame layout

The stack frame of a function is composed of two parts: a fixed-size part at the top for
the caller-save registers and spilled temporaries and a variable-size part at the bottom
for pushing the outgoing parameters in calls (see Figure 2.3). On entry, the function first
checks that enough stack space is available for the largest possible frame, calling a runtime
system primitive if this is not the case, and the fixed-size part is set up. The main benefit of
fixed-size frames is their low maintenance cost. On the other hand, they may contain dead
or uninitialised stack slots, which complicate garbage collection and exception handling.

return address

Temp 1

Temp N

Argument M

foo's frame

fixed
part

variable
part

baz's frame

b
a
r
'
s

f
r
a
m
e

s
t
a
c
k

g
r
o
w
t
h .

.
.

.
.
.

Argument L

Figure 2.3: Call stack for function bar/L in the call chain foo/K → bar/L → baz/M

Tail calls

Erlang, like most functional programming languages, relies on tail-recursive function calls
for expressing iteration. In order to implement this in constant stack space, which is a
requirement for the language, the HiPE compiler generates special code that shuffles the
stack contents in tail calls.

To illustrate how calls and tail calls are implemented by HiPE, assume that f calls g, g
tail-calls h and h finally returns to f. Figure 2.4 shows the stack layout changes in this
process. At first, state (a), f’s frame is loaded on the stack. Then, f prepares the stack
for the g-call by pushing the arguments and executes the call. The call instruction is
responsible for storing f’s return address and pushing g’s frame on the stack. On x86, the

24 Chapter 2. Background

f's fixed
frame

(a)

arguments
to g

ret addr(@f)

g's
frame

(b)

arguments
to h

g's
frame

(c)

arguments
to h

h's
frame

(d) (e)

push args
call g

shuffle
stack

drop frame
jmp to h

drop frame
ret $n

f's fixed
frame

f's fixed
frame

f's fixed
frame

f's fixed
frame

ret addr(@f) ret addr(@f)

Figure 2.4: Call stack ”snapshots” when f calls g (f → g) and g tail-calls h (g tail→ h):
(a) ⇒ (b): f pushes arguments to g and executes the call.
(b) ⇒ (c): g prepares the stack for tail-calling h.
(c) ⇒ (d): g tail-calls h by dropping its frame and jumping to h.
(d) ⇒ (e): h returns to f by dropping its stack arguments and frame.

call instruction pushes the return address on the stack, while on SPARC, it stores it on
a register and the loader is responsible for pushing the return address on the stack. After
that, g’s code starts executing and the parameters for h are evaluated. g shuffles the stack
to overwrite the argument area and possibly parts of its frame with the new parameters,
leading to state (c). Then, g tail-calls h by dropping its frame and jumping to h. Notice
that in state (d) the stack is exactly as if f called h directly. Eventually h returns to f by
removing its stacked arguments and dropping its frame, leading state (e).

In this scheme, it is the callee’s responsibility to pop the stacked arguments before the
execution returns to the caller’s code. In the presence of tail calls, the caller (f in this
example) does not know which function finally returns to it, and thus does not know
how many parameters there are on the stack upon return. Therefore, the caller cannot
deallocate the stacked parameters, but the returning function can since it knows how many
parameters it takes. Note that this calling convention is the opposite of the common C
calling convention.

The disadvantage on HiPE’s handling of tail-calls is that the stack shuffle step introduces
some complexity on the runtime. Fortunately, the shuffling is only needed when both the
caller and the callee have arguments on the stack. On the SPARC which passes the first 16
arguments in registers this situation is very rare, while on x86, where at most 5 arguments
can be passed in registers, this shuffling occurs more often.

2.2 The HiPE Compiler 25

Exception handling

In Erlang, an exception thrown in one function bar, can be caught by an exception handler
in a function foo, calling bar (see Listing 2.1). This return from bar with an invoked
exception is handled in HiPE by adding the basic blocks implementing the handler and
one “exception” edge in the CFG of the caller for calls that might fail to it (see Figure 2.5).

� �
1 foo(X) ->
2 %% The catch instruction will set up an exception handler which in
3 %% this simplest form will just turn an exception into an Erlang term.
4 catch bar(X).
5
6 bar(X) ->
7 %% This operation will throw an exception if X is not a number.
8 X + 42.
9
10 %% Example execution:
11 %% > foo(3).
12 %% 45
13 %% > foo(hello).
14 %% {’EXIT’, {badarith, [...]}}� �

Listing 2.1: An exception thrown by bar is caught by foo.

The compiler inserts some code in edges between calls and exception handlers in order
to move exception values to the right local temporary. The loader recognises calls within
exception handlers and registers their address together with the address of the exception
handler in a stack descriptor (see next section). This way there is no runtime cost for
setting up an exception handler. When an exception is thrown, the stack map is used
while traversing the call stack and if a return address has an exception handler the control
is transfered to the handler.

1:
 _ := redtest() (primop)
 v1 := bar/1(v0) -> 9, #fail 5

9:
 return(v1)

5:
 v1 := restore_catch(3)
 goto 9

foo/1(v0)

1:
 v8 := 42
 v0 := '+'(v0, v8) (primop)
 return(v0)

bar/1(v0)

fail

Figure 2.5: Icode CFGs for functions foo and bar from Listing 2.1.

26 Chapter 2. Background

Stack Descriptors

In order to support precise garbage collection and exception handling, HiPE must provide
the necessary information to the runtime system, in order to be able to traverse the stack
frames. This is achieved with the use of stack descriptors. HiPE constructs a stack
descriptor for each call site. The stack descriptor contains all necessary information about
the call:

• the caller’s exception handler

• the caller’s fixed frame size, excluding incoming arguments

• the caller’s stack arity (i.e. the number of arguments that are passed to the stack)

• the indices (from SP) of the live words in the caller’s frame

• the return address of the call site

In Figure 2.6 we can see an example of a stack descriptor. Function bar/7 calls zap/0.
Function bar/7 has no exception handler, the frame size is 5 (3 stacked arguments plus 2
function-local variables) and there are 2 live words while calling zap/0 in indices 0 and 2,
relative to the stack pointer. Finally the stack arity is 3, because function bar has arity
7, but the first 4 arguments are passed in registers.

S
ta

ck
 g

ro
w

th

Stack Descriptor:

{[], 5, 3, [0,2]}

foo/0

bar/7

zap/0

Arg 7

ret addr (@foo)

Dead
Live
Dead
Live

Dead

ret addr (@bar)

Figure 2.6: The stack frame layout when function bar/7 calls zap/0 and the corresponding
stack descriptor. Notice that in the AMD64 back end 4 arguments are passed
in registers, so in this case the rest 3 will be passed on the stack. Also there
are 3 dead variables and 2 live during the call to zap/0.

Garbage Collection

HiPE implements a precise two-phase generational garbage collector. It uses safe point
strategy, with post-call safe points. The compiler emits code which checks if the heap
pointer goes beyond the heap limit, and calls the garbage collector in that case [26]. With
the information from the stack descriptors, the garbage collection is able to traverse the
call stack and identify the live roots.

Mode switching

Each Erlang process has two stacks, one for interpreted code (estack) and one for native
code (nstack). As explained in Concurrent Programming in Erlang [1], this simplifies

2.2 The HiPE Compiler 27

garbage collection and exception handling since each stack contains only frames of a single
type; control flow between these two modes is handled by a mode-switch interface.

Since HiPE compiles individual functions to native code, a mode-switch occurs whenever
there is a transfer of control from a function to another and the two functions are in
different modes. Thus, mode-switches occur at call and return sites, when an exception is
thrown and the most recent handler is in a different mode and when a process is suspended
and the next process to run executes in another mode. The implementation uses linker-
generated proxy code stubs and software trap return addresses to trigger the appropriate
mode-switches when invoked.

Two important design decisions and properties of this interface are that it preserves tail-
recursion (i.e. no sequence of consecutive mode-switching tail calls grow either stack by
more than a constant) and that imposes no runtime overhead on same-mode calls and
returns (i.e. from native to native or from BEAM to BEAM). For more details of how this
is achieved please refer to Erik Stenman’s PhD thesis [35, Chapter 3] and [].

Built-in functions

The Erlang/OTP system is shipped with a number of built-in functions (BIFs) and a
big standard library. Some of these functions are implemented in Erlang, but there are
functions implemented in C (mostly in the runtime system) and, even, in assembly (mostly
calls to special primary operators), e.g. calls invoking the GC, increasing the native stack,
forcing a mode-switches or suspending a process.

In order for these calls to be able to be executed from native code, they should be compiled
using C’s calling convention and the loader should be able to find the address of the C
code at load time. Some of these BIF-calls are recognised by the translation to RTL and
inlined directly in RTL code.

Process switching

The Erlang/OTP system takes advantage of a multi-core or multi-CPU computer by
running one or more scheduler threads (typically, the same as the number of cores). Each
scheduler thread schedules Erlang processes by giving a time slice to each process. This
is implemented in the system with a reduction counter: The process starts with a number
of reductions to execute and at each call this number is decremented. When the number
of reductions reaches zero the process is suspended. Then the scheduler chooses which
process to execute next.

Code loading

As already described, Erlang requires the ability to upgrade code on-the-fly without af-
fecting processes currently executing the old version of that code (hot-code loading).

The underlying Erlang runtime system maintains a global table of all loaded mod-
ules. Each module descriptor contains a name, a list of exported functions and
the locations of its current and previous code segments. At a remote function call

28 Chapter 2. Background

(module:function(parameters...)) a lookup on that table is performed and if no entry
is found an error handler is invoked.

In native code, each function call is implemented as a machine-level call to an absolute
address. When the caller’s code is being linked, the linker tries to initialize the code to
directly invoke the callee. However, if the callee has not been loaded yet, the linker will
direct the call to a stub which performs the appropriate error handling. If the callee exists,
but only in emulated code (bytecode), the linker directs the call to a stub which in turn
will invoke the virtual-machine emulator.

To handle hot-code loading and dynamic compilation at runtime, the linker also main-
tains information about all call sites in native code. This information is used along with
appropriate proxy stubs (trap-to-emulated, trap-to-native) for dynamic code patch-
ing when a native mode function calls another one in emulated mode, a new version of
a native mode function is loaded or a module is unloaded. For more details about the
implementation, refer to Erik Stenman’s PhD thesis [35, Chapter 3].

Pattern matching implementation

In Erlang, as in many other functional programming languages, it is very common to do
pattern matching on some values. This is usually translated by the front end of the com-
piler to some intermediate representation switch instruction that compares the contents
of a temporary to a set of constants and jumps to the label corresponding to the matching
constant. A default label that is used when no constant matches is also given.

In the HiPE compiler, the switch instructions are translated into sequences of lower level
instructions during the translation from Icode to RTL. If the set of constants is too sparse
the switch is split into several smaller switches [2]. There are then several ways these
switches may be translated to: 1) as an in-lined binary search (used when the number of
constants is low), 2) as a direct jump table (for large and dense sets of small integers),
or 3) as a binary search in a table. Atoms are problematic since their runtime values
differ between invocations of the runtime system, so switches on atoms are translated into
semi-symbolic code which is finalised by the code loader.

2.3 Low Level Virtual Machine

The Low Level Virtual Machine (LLVM) is an open source, mature optimizing compiler
framework that began as a research project at the University of Illinois by Chris Arthur
Lattner in 2000 as part of his Master thesis [17]. It provides a modern source- and target-
independent optimizer along with a very efficient code generator that can be used for static
or dynamic (just-in-time) compilation targeting more than 16 CPU and microprocessor
architectures, e.g. ALPHA, ARM, Blackfin, MIPS, MIPSEL, PowerPC32, PowerPC64,
PTX 32-bit, PTX 64-bit, SPARC, SPARC V9, x86, x86-64, XCore and more. We have
used LLVM in this thesis to create a new back end for the HiPE compiler.

The main reason why we decided to use LLVM is that it is a state-of-the-art, very well
designed platform for back end code generation and optimization work. It has a very
active community of developers and the code base is well written and easy to change. Fur-
thermore, LLVM is available under the University of Illinois/NCSA Open Source License

2.3 Low Level Virtual Machine 29

[20] and thus not only is it a great choice for an academic research project but also allows
commercial products to be derived from it. Today, numerous projects are using LLVM
either as a static or as a just-in-time compiler, as well as just for static code analysis.
Some of these projects are described in Section 2.3.4.

Due to the aforementioned reasons, we decided to implement the new back end based on
LLVM; let us now look through the assembly language provided by the LLVM framework
in order to obtain some insight on what the requirements are in order to compile a language
to LLVM Assembly.

2.3.1 LLVM Assembly Language

LLVM defines a high-level portable assembly language, providing abstraction between
assembly and source language. It is basically a common, low-level code representation in
Static Single Assignment (SSA) form [34], with several novel features: a simple, language-
independent type-system that exposes the primitives commonly used to implement high-
level language characteristics; an instruction for typed address arithmetic; and a simple
mechanism that can be used to implement the garbage collection and exception handling
features of high-level languages uniformly and efficiently. LLVM IR aims to be a “universal
IR” able to express many different characteristics and aggressively optimise arbitrary high-
level languages.

The LLVM code representation is designed to be used in three different forms: as an
in-memory compiler IR, as an on-disk bitcode representation (suitable for fast loading by
a Just-In-Time compiler), and as a human readable assembly language representation.
This allows LLVM to provide a powerful intermediate representation for efficient compiler
transformations and analysis, while providing a natural means to debug and visualise the
transformations. In this section we will describe the human readable representation and
notation.

At first, let us elaborate a bit on what Static Single Assignment form means. In compiler
design, SSA form is a property of an intermediate representation which says that once
a virtual (pseudo-) register is assigned, it becomes immutable. LLVM assembly provides
an infinite number of virtual registers, abstracting away actual hardware registers, and a
special phi (Φ) instruction to handle control flow in SSA form. A key design point of an
SSA-based representation is how it represents memory. In LLVM, nomemory locations are
in SSA form, which makes things rather simpler. The reason why we want the IR in SSA
form is that it either enables or strongly enhances various data flow optimizations, such
as constant propagation, sparse conditional constant propagation, dead code elimination,
global value numbering, partial redundancy elimination, strength reduction and register
allocation. It is better to see LLVM assembly in detail through an example. Listing 2.2
implements a simple factorial program in C code, while listing 2.3 depicts the equivalent
LLVM program.

LLVM programs are composed of Modules, each of which is a translation unit of the input
programs. Each module consists of meta information, global variables, external symbol
definitions and function definitions. Meta information include definitions of the endianess,
the pointer size and the alignment of the data layout. Global variables define regions of
memory allocated at compilation time instead of runtime. They are pointers to data with
global scope and are prefixed with the @ symbol, as functions. This should be compared

30 Chapter 2. Background

� �
1 int factorial(int X) {
2 if (X == 0) return 1;
3 return X*factorial(X-1);
4 }� �

Listing 2.2: C example: factorial

to the local temporaries (virtual registers) spotted inside a function and denoted by the
% prefix. External declarations define symbols that may be used in the current module
but are meant to be linked later when compiled to a native object file.

� �
1 define i32 @factorial(i32 %X) {
2 %1 = alloca i32
3 %2 = alloca i32
4 store i32 %X, i32* %2
5 %3 = load i32* %2
6 %4 = icmp eq i32 %3, i32 0
7 br i1 %4, label %5, label %6
8
9 ; <label>:5 ; preds = %0
10 store i32 1, i32* %1
11 br label %12
12
13 ; <label>:6 ; preds = %0
14 %7 = load i32* %2
15 %8 = load i32* %2
16 %9 = sub i32 %8, i32 1
17 %10 = call i32 @factorial(i32 %9)
18 %11 = mul i32 %7, i32 %10
19 store i32 %11, i32* %1
20 br label %12
21
22 ; <label>:12 ; preds = %6, %5
23 %13 = load i32* %1
24 ret i32 %13
25 }� �

Listing 2.3: LLVM assembly for factorial (Listing 2.2)

A function definition contains a list of basic blocks, forming the CFG (Control Flow Graph)
for the function. Each basic block may optionally start with a label (giving the basic block
a symbol table entry), contains a list of instructions, and explicitly ends with a terminator
instruction, such as a branch (e.g. br) or function return (ret). The first basic block in a
function is not allowed to have predecessor basic blocks (i.e. there cannot be any branches
to the entry block of a function).

In Listing 2.3, we can see one function definition (@factorial) that takes one 32-bit
integer argument and returns a 32-bit integer. This function consists of 4 basic blocks,
block 0, block 5, block 6 and block 12. The results of all instructions are assigned to
different virtual registers (i.e. %1-%13 and %X) (SSA form). All operations are annotated
with type information, e.g. in line 4 a 32-bit integer value (i32 %X) is stored to a similar
pointer (i32* %2) already allocated on the stack in the previous line (alloca i32).

2.3 Low Level Virtual Machine 31

2.3.2 LLVM Type System

The LLVM type system is one of the most important features of the intermediate repre-
sentation. It is thoroughly designed to give enough information to the LLVM optimizer
and code generator to produce efficient code without having to do extra analysis on the
side before the transformation. See Table 2.1 below for a brief listing of the type system.
LLVM is a strictly typed representation that requires all types to be explicitly stated
and does not do any type inference based on the types involved in an instruction. It
also requires the programmer to handle all type conversions using explicit casts. This
type information enables a broad class of high-level transformations on low-level code. In
addition, type mismatches can be used to detect errors in optimizations by the LLVM
consistency checker.

Type Syntax Description
Integer i1, i2, ..., i32, ... Arbitrary bit width integer.
Floating Point float, double, fp128, ... Floating point numbers of different

standards.
X86MMX x86mmx A value held in an MMX register on

an X86 machine.
Void void Represents no value and has no size.
Label label Represents code labels.
Metadata metadata Represents embedded metadata.
Array [4 x i8], [3 x [4 x i32]],

...
Simple derived type that arranges
elements sequentially in memory.
Requires a size and an underlying
data type.

Pointer i32*, [4 x i32]*, ... The pointer type represents a refer-
ence to an object in memory.

Structure { i32, i32, i32 },
{ float, i32 (i32) * }, ...

Represents a collection of data
members together in memory. The
elements of a structure may be any
type that has a size.

Vector <4 x i32>, <8 x float>, ... A simple derived type that repre-
sents a vector of elements. Vec-
tors are used when multiple primi-
tive data are operated in parallel us-
ing single instruction (SIMD).

Function i32 (i32), i32 (i8*, ...),
...

A function type consists of a return
type and a list of formal parameter
types. Can be thought of as a func-
tion signature.

Opaque %X = type opaque, ... Represent named structure types
that do not have a body specified.
Corresponds (for example) to the C
notion of a forward declared struc-
ture.

Table 2.1: LLVM Type System

32 Chapter 2. Background

2.3.3 LLVM Instruction Set

In this Section we give a brief overview of the most common LLVM instructions. Our
goal is to make the reader somewhat familiar with the syntax and the semantics of all the
LLVM assembly instructions that are required to compile HiPE RTL language to LLVM
assembly, explained in detail in Section 3. The complete LLVM Assembly Language
Reference Manual is available on the LLVM website [16].

Terminator Instructions

Terminator instructions are always the last instructions executed in a basic block, indi-
cating which block should be executed after the current. They produce control flow, not
values (except for the invoke instruction).

• ret: Return control flow (and optionally a value) from a function back to the caller.

• br: Transfer control flow to a different basic block in the current function. It may
either be a conditional or unconditional branch.

• switch: The switch instruction is used to transfer control flow to one of several
possible basic blocks. Will usually be translated to a jump table or a series of
conditional branches.

• indirectbr: Implementation of an indirect branch to a label, stored in a register,
within the current function.

• invoke: Transfer control flow to a specified function, with the possibility of control
flow to transfer back to either the normal or the exception label, depending on
whether the callee returns with the ret or the unwind instruction respectively.

• unwind: Unwind the stack, returning control flow to the first caller which used an
invoke instruction.

Instructions for Binary Operators

Binary operations are used to do most computation in LLVM. They require two operands
that have the same type and produce a single value of the exact same type.

• add, sub, mul, udiv, sdiv, urem, srem: Do addition, subtraction, multi-
plication and division on two integers or vectors of integers. Udiv/sdiv produce
the unsigned/signed integer quotient of the two operands. Urem/srem compute the
remainder of the unsigned/signed integer division of the operands.

• fadd, fsub, fmul, fdiv, frem: The floating point versions of the above binary
operations.

2.3 Low Level Virtual Machine 33

Instructions for Bitwise Binary Operators

Bitwise operations are used to perform various forms of bit-handling. All operations
require two operands of the same type. Valid types are only integers and vectors of
integers.

• shl, lshr, ashr: Perform left-shift, logical right-shift and sign-extended right-shift
respectively.

• and, or, xor: Perform bitwise logical and, or and xor on its two operands.

Memory Access and Addressing Operations

As already stated, in LLVM, no memory locations are in SSA form but are instead mutable.
However, they are accessed through pointers which are themselves in SSA form.

• alloca: Allocate memory on the stack frame of the currently executing function. It
is automatically released when the execution of the function is over (i.e. return to
the caller or perform a tail call). Creates a pointer to that memory location.

• store: Used for writing to memory. It needs a value and a pointer to be written to
along with the appropriate types.

• load: Used for reading from memory. It needs a pointer and a type for the data to
be loaded.

• getelementptr: Used for getting the address of a sub-element of an aggregate data
structure, such as an array, a struct or a vector. It only performs address calculation
and does not access memory.

Other Instructions

The following instructions involve various operations, such as handling of aggregate values,
explicit type conversions, and other miscellaneous instructions.

• extractvalue: Extract the value of a member field from an aggregate value.

• insertvalue: Insert a value into a member field in an aggregate value.

• ptrtoint .. to: Used to explicitly convert a pointer to an integer type. Takes a
pointer along with his type and an integer type to convert to.

• inttoptr .. to: Perform exactly the opposite operation of the above instruction.
It casts an integer value to a pointer of the specified type.

• bitcast .. to: Convert a value to the specified type without changing any bits.

• icmp, fcmp: Take one conditional operator and two operands and return a boolean
value (i1). Valid operands are integer or floating point values or vectors and pointers.

34 Chapter 2. Background

• phi: Implement the φ node in the SSA graph representing the function. Selects a
value from a list according to which predecessor block the control flow came from.

• call: Represent a simple function call. It might have the marker tail indicating
that the call should be tail-call optimized. The optional marker cc n indicates which
calling convention should be used for the call. Also see Section 3.3.4.

• select: Used for choosing a value, out of two having the same type, based on a
boolean condition.

• landingpad: Used by LLVM’s exception handling system for specifying that a basic
block is where an exception lands and corresponds to the code found in a catch case.
It takes as argument a personality function that defines the behaviour for handling
exceptions (by defining the common exception frame for the current compilation
unit). For detailed information refer to the LLVM Exception Handling page [11].

• blockaddress: Used for constant computing the address of a specified basic block
in a specified function. Returns an i8*. The value has defined behavior only when
used as an operand to the indirectbr instruction, or for comparison against null.

Intrinsic Functions

Intrinsic functions are functions with well known names and semantics that extend the
LLVM language without changing all of the transformations in LLVM. They all start with
the llvm. prefix and are used as external functions inside an LLVM module. Only a few
of them, that are used in the RTL-to-LLVM mapping, are described below.

• llvm.gcroot: Declare the existence of a GC root to the code generator and allows
some meta-data to be associated with it. The first argument specifies the address of
a stack object that contains the root pointer while the second pointer contains the
meta-data to be associated with that specific root.

• llvm.{s,u}{add,sub,mul}.with.overflow.*: Perform signed/unsigned addition,
subtraction, multiplication of two integer arguments and return a struct of two
elements: the result of the computation (having the same type with the operands)
and a boolean value indicating whether there has been an overflow.

2.3.4 Other projects using LLVM

Some of the projects that also use LLVM at some point of the compilation or analysis
process are:

• Clang: A very efficient C, C++ and Objective-C native code compiler [6]. Clang’s
Static Analyser [7] uses LLVM to provide very useful error and warning messages.

• VMKit: A framework for building virtual machines that uses LLVM for compiling
and optimising high-level languages to machine code, MMTk to manage memory [25].
VMKit [37] has been successfully used to build two Managed Runtime Environments
(MREs), a Java Virtual Machine and a Common Language Runtime [12].

2.3 Low Level Virtual Machine 35

• Rubinius: A virtual machine for Ruby [32]. It leverages LLVM to compile Ruby code
to machine code using LLVM’s JIT.

• Unladen Swallow: A branch of Python that uses LLVM’s optimization passes and
JIT compiler for efficient execution of Python code [31].

• MacRuby: An implementation of Ruby on top of core Mac OS X technologies, such
as the Objective-C common runtime and garbage collector, and the CoreFoundation
framework. It uses LLVM for optimization passes, JIT and AOT compilation of
Ruby expressions. It also uses zero-cost DWARF exceptions to implement Ruby
exception handling [24].

• Pure compiler: Pure is an algebraic/functional programming language based on
term rewriting. Programs are collections of equations which are used to evaluate
expressions in a symbolic fashion. The interpreter uses LLVM as a back end to
JIT-compile Pure programs to fast native code [30].

• LDC : A compiler for the D programming language [8] that is based on the latest
DMD front end and uses LLVM as its back end for high quality code generation [19].

• llvm-lua: A JIT and static compiler for the Lua programming language that uses
LLVM as the compiler back end [22].

• GHC : David Terei wrote a new code generator for the Glasgow Haskell Compiler
(GHC) which targets the LLVM compiler infrastructure as part of his thesis [36].
The new LLVM back end appears to be very competitive with the GHC native code
generator, a bit slower than the C back end in general, but, should produce big
speedups for particular Haskell programs [9]. This work has been included in GHC
since the 7.0 release [14].

Chapter 3

The LLVM back end

In this chapter we will present the design and implementation of a new back end for HiPE
compiler which produces LLVM assembly and utilises the LLVM compiler infrastructure
to generate executable code along with the necessary information for loading it.

3.1 Pipeline Design

The overall goal in the design of the new back end is to fit as easy as possible with the
existing pipeline of HiPE. Our new LLVM back end is placed after the RTL representation,
which is actually where all the other HiPE back ends are placed. Our decision is based on
the fact that RTL aims to represent Erlang in an as low-level form as possible while still
being abstracted from the underlying hardware; all high-level characteristics of Erlang,
such as exception handling and garbage collection, have been explicitly expanded to code.
Similarly, LLVM assembly uses a low-level instruction set and memory model that are only
slightly richer than standard assembly languages [18]. Thus, the translation from RTL to
LLVM assembly was a neat choice.

The new HiPE pipeline with the LLVM back end can be seen in Figure 3.1.

BEAM
Emulator

Memory

BEAM

Bytecode

Other

Data

Native

Code

BEAM
Dissassembler

HiPE
Loader

SPARC X86

LLVM

Erlang Run-Time System HiPE Compiler

Symbolic

BEAM

Icode

RTL

PowerPC...

Figure 3.1: The new LLVM back end inside the Erlang/OTP system

The existing pipeline produces symbolic native assembly for the target architecture and
after optimizing the code, uses HiPE’s custom assembler to produce binary code that will
be loaded to the Erlang runtime system by the loader. Through these phases, along with

37

38 Chapter 3. The LLVM back end

the binary code the compiler produces all the information needed to make the code a
loadable object in the Erlang runtime system:

• the compiled functions and closures,

• Erlang terms, such as constants and atoms,

• function calls, in the form of Module:Function/Arity (MFA), and BIF calls together
with their stack descriptors, and

• jump tables for switch statements.

The new LLVM back end takes the code in the RTL representation and aims to produce
native assembly and all the information that the HiPE loader expects. In this way we
would not need to modify the HiPE loader, which seemed to be a rather painful task.

Our aim was to rejoin with the existing pipeline as soon as possible. We would actually
like to join the pipeline right after the generation of the optimised native assembly, but
this was not possible as HiPE uses a custom assembler which operates specifically on the
symbolic assembly representation generated by HiPE. Because of this, we used the GCC
assembler1 and created an object file parser in Erlang to extract the binary code and the
offsets of all external symbols. So actually the point where we rejoin the pipeline is the
HiPE loader.

As seen in Figure 3.2, our new back end involves many phases which we will now present
shortly and analyze them through the rest of this chapter. These phases are:

• LLVM back end (hipe_rtl2llvm module): In this phase RTL code is translated to
LLVM assembly. This is examined in Section 3.3.

• LLVM assembler (llvm-as): In this phase the human-readable LLVM assembly
language is translated to LLVM bitcode. This is examined in Section 3.4.1.

• LLVM optimizer (opt): This is an optional phase where LLVM bitcode is highly
optimised. This is examined in Section 3.4.2.

• LLVM back end compiler (llc): The LLVM compiler translates LLVM bitcode to
native assembly. This is discussed in Section 3.4.3.

• LLVM-GCC assembler (llvm-gcc): In this phase, an object file is created from the
native assembly. In Section 3.4.4.

• Object File Parser (elf64_format module): Finally, we extract the binary code and
all the other necessary information from the object file. In Section 3.4.5.

Before analyzing each of this phases, we must present how LLVM assembly is generated
inside the Erlang/OTP system.

1Actually any other assembler could be used for the generation of the object file from the native assembly
file.

3.1 Pipeline Design 39

Binary Code

RTL

LLVM Assembly

LLVM Bitcode

Native Assembly

Object Code

LLVM back end

LLVM optimizer

LLVM compiler

LLVM-GCC assembler

Object file parser

LLVM Bitcode

LLVM assembler

LLVM

Figure 3.2: The LLVM component

40 Chapter 3. The LLVM back end

3.2 LLVM Representation

The implementation of our LLVM back end required a way to generate LLVM assembly.
The LLVM FAQ2 suggests three possible approaches:

• Call into the LLVM Libraries using your language’s FFI (Foreign Function Interface).

• Emit LLVM assembly from your compiler’s native language.

• Emit LLVM bitcode from your compiler’s native language.

We selected the second approach as this seemed to be the easiest and most flexible one,
allowing us to direct our work to efficiency and correctness of translation to LLVM assem-
bly. The first approach sounded appealing, but while there were no bindings for Erlang
to the LLVM API, this option was rejected as we believed that the workload would be
overwhelming and should be an independent project. The third approach offers slightly
better compilation time but involves a lot of complex and error prone work in order to
produce the required binary output and thus it was also rejected.

So we created a library that provides a symbolic representation of LLVM assembly in-
structions in Erlang, together with functions which pretty-print them. Our library does
not, currently, fully cover the LLVM assembly language as only the parts that were nec-
essary for the back end were implemented but the extension to cover everything is pretty
straightforward.

3.3 Generation of LLVM assembly

In this section we will present how RTL code, which is the last target-independent rep-
resentation of code in HiPE, is translated to equivalent LLVM code. Code generation
process is done per function, as functions are the compilation units for the HiPE compiler.

RTL is an intermediate representation which has many similarities with LLVM assembly
as they both provide low-level operations. However, LLVM assembly is a typed language
while RTL is untyped. Translating an untyped language to a typed one is not a problem,
as we can bypass the type system by mapping everything to type word or pointer to word.

We should point out that this part aimed to be totally target-independent, but actually
some points depend on the underlying architecture. These points are the size of the word
type and the use of precoloured registers that is analyzed in Section 3.3.1.

3.3.1 Handling RTL Virtual Registers

RTL provides unlimited virtual registers that are actually separated to three kinds:

• variables containing tagged data that are traced by the GC

• registers that are ignored by the GC
2http://llvm.org/docs/FAQ.html

http://llvm.org/docs/FAQ.html

3.3 Generation of LLVM assembly 41

• floating point registers

LLVM assembly provides unlimited virtual registers in a Static Single Assignment (SSA)
representation. However, memory locations are not required to be in SSA form. This
property allows the mapping of no-SSA code to LLVM assembly simply by mapping each
mutable object to a stack variable. Stack variables in LLVM are declared using an alloca
instruction, and reading from or writing to them is done explicitly by using load or store
instructions.

LLVM provides a special pass, called mem2reg, which turns explicit stack allocation into
the use of virtual registers in a way that is consistent with SSA form by using phi nodes.
So, by optimizing stack utilization, mem2reg actually implements SSA conversion.

In the HiPE pipeline, RTL exists in both SSA and no-SSA form. The first, and most
obvious choice, was to use the RTL in SSA form. However, the LLVM garbage collection
infrastructure forces us to retain some virtual registers on the stack, as explained in Section
3.3.6. In order to have a simple and uniform translation, we decided to do the translation
on the second one, and rely on the LLVM for the SSA conversion. So, for each RTL virtual
register, an LLVM stack variable is created. Using an RTL virtual register as a source
operand involves loading the stack variable to a temporary variable and using it instead,
while writing to an RTL virtual register involves writing to a temporary variable and then
updating the corresponding stack variable.

Precoloured Registers

Although RTL registers are virtual and independent of the target architecture, there is
a small subset of them that is not. These registers have special meaning for the Erlang
Run-Time System (ERTS). They are the Native Stack Pointer (NSP), the Process Control
Block Pointer (P) and the Heap Pointer (HP). We will call these registers precoloured (or
pinned). The back end is responsible for moving and retaining these pseudo-registers to
specific hardware registers of the target architecture (in order to be ABI-compliant). For
example, in the AMD64 back end, the above registers are pinned to %rsp, %rbp and %r15,
respectively.

However, LLVM assembly is designed to be target-independent and offers no way to inter-
act with the architecture. Therefore, in order to achieve placing virtual registers to specific
physical ones we used a custom calling convention. This calling convention pins the first
N arguments to registers, where N is the number of precoloured registers. Similarly, it
pins the first N return values to the same physical registers. Our back end translates each
function call with, say, M parameters to a new one which take N+M parameters, and each
function that returns K values to a function that returns N+K values3. The extra arguments
and return values are used for updating the pinned registers.

With this transformation, it is guaranteed that precoloured registers will have the correct
value on function entry and return. At the middle of the function these registers are
handled like any other virtual register. The register allocator may spill them to the stack
if there is high register pressure. However, this is not a problem as precoloured registers
should, in fact, be pinned to hardware registers only on entry and exit of a function, as

3For more information about this technique, please read: http://nondot.org/sabre/LLVMNotes/
GlobalRegisterVariables.txt

http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt
http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt

42 Chapter 3. The LLVM back end

these are the points of interaction with the runtime system. Actually, this approach might
offer better performance since there are more registers available for the register allocator,
and thus more efficient code may be produced.

3.3.2 Handling Immediate Values

In RTL we find the following immediate values:

• simple integers

• constant labels

• atoms

• closure addresses

• MFA and BIF addresses

• code labels

Handling of simple integers is straightforward, however the rest of the immediate values
needs extra care as their actual value is dependent on the loader and the runtime system.
The back end is unaware of what the actual value of them is and can only treat them
as external symbols that will be later patched with the correct value. We will call these
values relocations and we will present how each of them is translated into LLVM code.
The general approach is to declare all relocations as external symbols. However, as we
must be consistent with LLVM type system, each case must be treated differently.

MFA and BIF addresses are the easiest to translate as they just need to be declared
as external functions of the appropriate type. For example the Erlang function er-
lang:length/1 will be declared in the AMD64 back end as:

declare hipe_cc {i64, i64, i64, i64} @erlang.length.1(i64, i64, i64, i64)

Notice that: the hipe_cc keyword defines that the function follows the HiPE calling
convention and, thus, the type of the function is {i64, i64, i64, i64} → {i64, i64,
i64, i64} instead of i64 → i64 (because of the use of three precoloured registers). The
declare symbol is used to define an external function in a module.

Regarding constant labels, atoms and closure addresses we treat them in our back end as
global external constant pointers of type i64*. For example atoms are declared in the
following way:

@AtomName external constant i64

This instruction declares a global variable, which is an external constant of integer type
with 64 bits size, and returns a pointer to this constant. After this, the pointer is converted
to integer with the statement:

%AtomName_LocalVar = ptrtoint i64* @AtomName to i64

3.3 Generation of LLVM assembly 43

In this way the atom can be used in any LLVM expression as an i64 variable. Constants
and closures are treated in the exact same way.

Finally, code labels are mapped directly to LLVM code labels as they have the exact same
semantics.

3.3.3 Handling RTL Instructions

Instruction Description
alu arithmetic/logic operation

alub arithmetic/logic operation and
branch after relational operation on the result

branch conditional branch
call call a function
enter tail-call a function
fconv convert a value to float register
fload load float value from memory
fmove move between floating point registers
fp floating point arithmetic operation

fp_unop floating point unary operation
fstore store floating point register to memory
goto unconditional branch
label gives name in point in the code
load load a value from memory

load_address load the address of a constant or closure
load_atom load the address of an atom

move move value between registers
return return list of variables
store store a value to memory
switch jump to a label according to a value of variable

Table 3.1: The RTL instruction subset that is translated in the LLVM back end

RTL and LLVM are both designed to be minimal languages to abstract the underlying
architecture. For this reason many of their aspects are similar and they both provide a
set of low-level operations. The set of RTL instructions that are used in our back end can
be seen in Table 3.1.� �

1 length([]) -> 0;
2 length([X|Xs]) -> 1 + length(Xs).� �

Listing 3.1: Erlang implementation of function length

In order to get more familiar with RTL we will exhibit a represenative example of RTL
code. In Listing 3.1 we can see a simple function which finds the length of a list, while in
Listing 3.2 we can see the corresponding RTL code. We can see that the code is in the form
of blocks with labels, each of which consists of simple RTL instructions. Variables starting

44 Chapter 3. The LLVM back end

with v represent tagged values, while variables starting with r are arbitrary machine
values.
� �

1 {demo,length,1}(v19) ->
2 L13:
3 r20 <- v19 ’and’ 2 if eq then L2 (0.50) else L3
4 L2:
5 v21 <- [v19+7] % [v19+7] is the address of the tail of the argument
6 v22 <- demo:length(v21)
7 r23 <- 31 ’and’ v22 % ”31” is the tagged value ”1”
8 r24 <- r23 ’and’ 15
9 if (r24 eq 15) then L8 (0.99) else L7
10 L8:
11 r27 <- v22 sub 15
12 v28 <- 31 add r27 if not_overflow then L15 (0.99) else L7
13 L15:
14 v26 <- v28
15 goto L6
16 L6:
17 return(v26)
18 L7:
19 v25 <- ’+’(31, v22)
20 v26 <- v25
21 goto L6
22 L3:
23 if (v19 eq -5) then L10 (0.50) else L11 % ”-5” is the tagged nil value
24 L10:
25 v29 <- 15
26 return(v29)
27 L11:
28 v30 <- atom_no(’function_clause ’)
29 <- erlang:error(v30)
30 return(15)� �
Listing 3.2: RTL example: Length of a list. The ”strange” numbers in the example are

tags and tagged values. Addition is performed either by the ’add’ instruction
or by the ’+’ BIF, depending on the type of the value.

Each RTL instruction is mapped to one or more LLVM instructions in an almost straight-
forward way. The mapping will not be presented here in detail and can be found in the
code4.

3.3.4 Calling Convention

A calling convention (CC) [5] is a scheme for how functions receive parameters from their
caller and how they return a result (e.g. in which registers they are placed, in what order,
etc.). Moreover, it specifies how the task of setting up and cleaning after a function call
is divided between the caller and the callee.

HiPE uses a custom calling convention which is different from the C calling convention.
The two calling conventions differ in: the registers that are unallocatable and reserved for

4lib/hipe/llvm/hipe_rtl2llvm.erl

3.3 Generation of LLVM assembly 45

special use, the registers used for arguments and return values, the definitions of callee-
/caller-save registers, and which (either the callee or the caller) pops the arguments from
the stack.

At the same time, LLVM provides the infrastructure for creating a new calling convention.
We defined a new CC that is compliant with HiPE’s AMD64 ABI. However, the LLVM
calling convention mechanism is not complete. Call-clobbered registers are not determined
by the defined calling convention but are hard-coded in the back end and correspond to
call-clobbered registers of the common C calling convention. Therefore, we were forced to
patch LLVM and change the call-clobbered registers to go with HiPE calling convention.

3.3.5 Calls with Stack Arguments

Depending on the architecture, some arguments are passed to registers and some are
passed on the stack. LLVM reserves argument space for call sites in the fixed part of the
function’s frame. This eliminates, in general, the need for add/sub SP brackets around
call sites (use simple mov instead of push/pop). However, this is not the case when the
calling convention defines that the callee should pop the arguments (like in HiPE) because
the sub instruction cannot be avoided.

A problem, arises when this technique is combined with garbage collection and creation of
stack descriptors. As already mentioned, each stack descriptor must contain the informa-
tion about the size of the fixed part of the function’s frame. For ERTS, callee-arguments
that are passed on the stack are considered to belong to the variable part of the frame;
arguments are just push-ed. However, with reserved call frame, LLVM stores arguments
to the fixed part. As a result of this inconsistency in the handling of stack arguments
between HiPE and LLVM, the runtime has a problem to traverse the stack since the in-
formation in the stack descriptors is incorrect. With this information from LLVM, the
runtime will try to walk the stack by first bypassing the arguments and then the fixed
part of the caller’s frame, without knowing that the arguments are actually counted in the
caller’s fixed frame size.

LLVM does not provide a simple way for disabling the reserved call frame feature. Instead
of hacking the code generator, we preferred the approach of correcting the stack descriptors,
by subtracting the space for passing stack arguments from the fixed part of the caller’s
frame. Each stack descriptor is associated with the return address of a call. So, in order to
fix the stack descriptors, we must know the addresses of the calls that have arguments on
the stack (the return address is always the call address plus the size of a CPU word). This
information is exported to the object file and can be extracted rather easily for named
function calls (i.e. MFAs and BIFs) but not for no-name calls (closures). For this reason
we created a new BIF, the hipe_bifs:llvm_expose_closure/0 and inserted a call to it
before every closure call. A call to this BIF, which is exported in the object file, notify
us that the next call in the code is a closure call. In that way, we expose the closure call
address and we can associate each call with the corresponding stack descriptor.

3.3.6 Garbage Collection

As already mentioned in Section 2.2.2, HiPE utilises a precise generational garbage collec-
tor. Precise garbage collection needs support from the compiler in order to know the set of

46 Chapter 3. The LLVM back end

live roots in the function’s frame at each safe point. To support garbage collection, LLVM
provides a special intrinsic function, the llvm.gcroot, with which you can mark all the
roots. After the compilation phase, the LLVM GC plugin is responsible for emitting the
information about the roots in the object file.

The llvm.gcroot intrinsic is used to inform LLVM that a stack variable references an
object on the heap and is to be tracked. This intrinsic takes as argument a value referring
to an alloca instruction or a bitcast of an alloca, and some metadata related to that
specific root.

So, for LLVM the root property is not a characteristic of a value but of a stack slot. Instead
of marking values as garbage collection roots, LLVM marks stack slots whose contents are
GC roots. As stack slots are live through the lifetime of a function by default, it is the
responsibility of the front end to mark them when variables that inhabit them are no
longer live. We do this by saving to the slot a value that is not traceable by the garbage
collector. In our case we store the tagged representation of the empty list (nil). It’s value
is -5.

This approach taken by LLVM is inadequate for garbage collection support and creates
inefficient code. Root property should actually be a property of a value and liveness
analysis of the roots should be a responsibility of the LLVM back end. The back end
should spill and restore garbage collection roots around safe points with the ability of
reusing stack slots when roots are not live at the same time.

To understand how marking of garbage collection roots works we will present a short
example. In Listing 3.3 we can see the LLVM assembly that is generated in order to mark
virtual register %X as root.

� �
1 Entry:
2 ;; In the entry block for the function, allocate the stack space for
3 ;; virtual register X.
4 %X = alloca i64*
5
6 ;; Tell LLVM that the stack space is a stack root.
7 %tmp = bitcast i64** %X to i8**
8 call void @llvm.gcroot(i8** %X, i8* null)
9 ;; Store a nil value into it, to indicate that the value it not live
10 ;; yet. ”-5” is the tagged representation of nil.
11 store %i64 -5, %64** %X
12 ...
13 ;; ”CodeBlock” is the block corresponding to the start of the scope
14 ;; of the virtual register X.
15 CodeBlock:
16 store i64 %some_value, i64** %X
17 ...
18 ;; As the pointer goes out of scope, store a nil value into it, to
19 ;; indicate that the value is no longer live.
20 store %i64 -5, %64** %X� �

Listing 3.3: LLVM assembly for handling a GC root

With this approach we are forced to create a separate stack slot for each value, which may
be a live root. As it is understood this has a very bad impact on performance. Our future

3.3 Generation of LLVM assembly 47

goal is to minimise the stack, for example by storing more roots in the same stack slot,
when they are not live at the same time.

3.3.7 Exception Handling

Exception handling in HiPE is implemented by adding an extra label to call instructions,
if they are in the scope of some exception handler. A local exception handler is represented
by the basic block that implements it. So exceptions in HiPE’s CFG are just edges between
a basic block that ends with a call and a basic block that implements the handler. An
example of a CFG that holds a call that is protected with an exception handler can be
seen in Figure 3.3. The address of the call together with the address of the exception
handler is information that are passed to the runtime system with stack descriptors. In
this way there is no runtime cost for setting an exception handler, since when an exception
is thrown the stack map is used while traversing the stack and if a return address has an
exception handler the control is transfered to the handler.

LLVM implements the invoke instruction, which causes control to transfer to a specific
function with the possibility of control flow transfer to either a “normal” label or an “ex-
ception” label. This instruction operates as a standard call, with the only difference that
it creates a connection between the call and the two labels, which is used at runtime. Each
basic block that is an unwind target of an invoke instruction must start with a landingpad
instruction. Because in RTL a basic block that is an unwind target may also belong to a
separate execution path, we create a new basic block for each unwind target. This new
block contains only the landingpad instruction and then the control flow is passed to the
“unwind block”.

In the code below, we can see a call to a function foo. The exception handler is denoted
as the unwind label %L10.

%t0 = invoke hipe_cc {i64, i64, i64, i64} @foo(i64 %nsp, i64 %hp, i64 %p, i64 %arg1)
to label %L5 unwind label %L10

...
L5:
%nsp1 = extractvalue {i64, i64, i64, i64} %t47, 0
%hp1 = extractvalue {i64, i64, i64, i64} %t47, 1
%p1 = extractvalue {i64, i64, i64, i64} %t47, 2
%t1 = extractvalue {i64, i64, i64, i64} %t47, 3
...
L10: ; Fail block
landingpad { i8*, i32 } personality i32 (i32, i64, i8*, i8*)*

@__gcc_personality_v0 cleanup
;; cleanup code

The return address of the call and the address of the fail block are emitted to the object
file and, after extracting them, they are used to create the stack descriptors.

This approach seems to work well. However, things go wrong with the usage of the
precoloured registers and the calling convention. As already mentioned, the precoloured
virtual registers must be updated after each call. There are two major problems that need
to be solved.

At first, an invoke instruction must be a terminating instruction of a block. So, the update
of the precoloured registers must be moved to another block. We cannot move them to

48 Chapter 3. The LLVM back end

the continuation block (“normal” return) because there might be a separate execution
path reaching this block. Thus, we created a new block where we update the precoloured
registers.

Secondly, according to the semantics of the invoke instruction, the result of an invoke does
not dominate its use in the path that corresponds to the unwind label. This means that
we cannot access the result (containing the updated values of the precoloured registers)
after an exception is thrown. In order to solve this, we introduced a new BIF in the HiPE
compiler, the hipe_bifs:llvm_fix_pinned_regs/0. The trick with this BIF is that it
takes no arguments, not even the precoloured registers. The BIF actually does nothing
(returns the atom ok) and, thus, its call does not modify any important register. On
return, we extract the precoloured registers from the return value, that have the correct
values because of the register pinning and the calling convention, and store them back to
the corresponding stack slots.

L1:
 v19 <- 1
 <- bar(v19) to L3 fail to L5

L5:
 ; begin handler
 <- erlang:get_stacktrace()
 ...
 goto L3

L3:
 v21 <- atom_no('ok')
 return(v21)

Figure 3.3: RTL CFG of a function
calling bar/1, protected
with an exception han-
dler. Block with label
L5 represents the excep-
tion handler.

L1:
 store i64 1, i64* v19
 %hp1 = load i64* %hp
 t0 = invoke bar(i64 %hp1 64, 1) to label %CL3
 unwind label %FL5

L5:
 ; begin handler
 %t4 = load i64* %hp
 %t5 = erlang:get_stacktrace(i64 %t4)
 ...
 br label %L3

L3:
 store i64 %ok_var, i64 %v21
 %t6 = load i64* %v21
 %hp2 = load i64* %hp
 %t7 = insertvalue {i64, i64} undef, i64 %hp2, i64 0
 %t8 = insertvalue {i64, i64} %t7, i64 %t6, i64 1
 ret {i64, i64, i64} %t8

CL3:
 %t1 = extractvalue {i64,i64} %t0, i64 0
 store i64 %t1, i64 %hp
 br label %L3

FL5:
 landingpad {i8*,i32} personality i32 (i32,i 64, i8*,i8*)*
 @gcc_personality_v0 cleanup
 %2 = call hipe_bifs:llvm_fix_pinned_regs()
 %t3 = extravalue {i64, i64} %t2, i64 0
 store i64 %t3, i64* %hp
 br label %L5

Figure 3.4: LLVM assembly of a function calling
bar/1, protected with an exception han-
dler. CL3 and FL5 are the two new basic
blocks.

In Figure 3.4 we can see how the CFG of Figure 3.3 is translated to LLVM code. You
can notice that two new blocks are added (CL3 and FL5) which hold the landingpad
instruction and the pinning of the precoloured registers.

3.3.8 Frame Management

As already mentioned in Section 2.2.1, HiPE generates code for managing the stack ex-
plicitly. Actually the code checks that enough space is available for maximum frame that
the function may need. If there is not enough space, a call to BIF inc_stack is inserted.
The check for the maximum possible frame for the function requires the fixed part of
the frame to be known. This cannot happen before the generation of assembly, and this
piece of code is not part of the RTL code of a function. In fact, it is inserted after the
register allocation and the minimization of the frame. In LLVM there is a special pass
called prologue/epilogue insertion which is responsible for finalizing the function’s frame

3.4 Rest Phases 49

layout, saving callee-saved registers, and emitting proper prologue and epilogue code for
the function.

We modify this pass, and specifically the function TargetFrameLowering::emitPrologue,
to insert the necessary code to the entry block of each function. The pseudo-code below
defines the code that is inserted:

Entry:
push %rbp

CheckStack:
temp0 = sp - MaxStack
if(temp0 < SP_LIMIT(P)) goto IncStack else goto NewEntry

IncStack:
call inc_stack
goto CheckStack

NewEntry:
...

3.4 Rest Phases

3.4.1 LLVM Assembler

The llvm-as tool reads a file containing human-readable assembly (.ll), translates it to
a binary format, the LLVM bitcode, and writes it to a new file (.bc). This format is better
as the LLVM can use the more-efficient bitcode reader when interfacing to the middle end.

3.4.2 LLVM Optimizer

In this phase, a series of optimizations is applied to LLVM bitcode by invoking the LLVM
opt tool. Optimizations are implemented as Passes that traverse some portion of a pro-
gram to either collect information or transform the program. Every pass is implemented
as a plugin library that can be dynamically loaded in the optimizer. Opt is used with
the standard optimization groups of -O1, -O2, -O3, depending on the level of optimiza-
tion requested by the user when triggering the HiPE compiler, and the -mem2reg pass
that promotes memory references to register references. The result of this phase is a new
binary file (.bc) with the optimized version of LLVM code.

3.4.3 LLVM Compiler

In this phase, the LLVM bitcode file is compiled to native assembly code for the target
machine. This is achieved by invoking the llc tool with the appropriate options to impose
rules about the memory model and the stack alignment on the generated assembly.

50 Chapter 3. The LLVM back end

3.4.4 Object File Generation

In this phase, we use the llvm-gcc tool5 in order to invoke the GCC assembler and create
an ELF64 formatted object file from the native assembly.

3.4.5 Object File Parsing

This final phase involves extracting the binary code and the relocations offsets from the
object file and creating the appropriate data structure for the HiPE loader. The Erlang
module elf64_format6 is responsible for this task.

5http://llvm.org/cmds/llvmgcc.html
6lib/hipe/llvm/elf64_format.erl

http://llvm.org/cmds/llvmgcc.html

Chapter 4

Evaluation

In this chapter we will evaluate the new LLVM back end in comparison to BEAM, the
existing HiPE AMD64 native code generator and Erjang, a virtual machine for Erlang
based on Java Virtual Machine (JVM). The evaluation of a back end, usually, focuses on
the quality of code and the execution time. However, there are more factors that must
be taken into account, like what the compilation times are, how maintainable the code is,
how easy it is to extend the back end, etc. So, we will try to evaluate our back end in a
more complete way.

4.1 Current State of LLVM back end

Firstly, we will present the state of the LLVM back end. We have focused on the AMD64
architecture and implemented a HiPE back end that targets it. In only a short period
of development, the LLVM back end has gone from scratch to being able to handle any
Erlang program. Today, the new back end passes HiPE’s test-suite and, among others, is
able to build the complete Standard Library1 (stdlib) and HiPE itself.

4.2 Performance of LLVM back end

The performance will be studied primarily by considering the execution time and, secondly,
other metrics, such as the compilation time and the size of the compiled code. The
evaluation will be performed against different Erlang implementations: BEAM, HiPE
AMD64 back end, and Erjang.

Erjang [10] is a virtual machine for Erlang based on the Java Virtual Machine (JVM)
which just-in-time compiles BEAM to JVM bytecode. It loads Erlang’s binary .beam file
format, converts it into Java’s .class file format, and loads it into the JVM. Erjang, also,
has a BEAM interpreter. It uses a shared heap memory model, so messages are not copied
between processes. The main benefit of Erjang is that it is running on a virtual machine
with mature implementation technology and a lot of engineering effort put into it that
does dynamic compilation and selective inlining.

1http://www.erlang.org/doc/man/STDLIB_app.html

51

http://www.erlang.org/doc/man/STDLIB_app.html

52 Chapter 4. Evaluation

All the benchmarks were run on a sixteen-core Intel Xeon CPU E7340 at 2.40 GHz with
16 GB primary memory, running on a Debian GNU/Linux with 2.6.32 kernel in 64-bit
mode. The benchmark suite consists of the following programs:

fib A recursive Fibonacci function. Uses integer arithmetic to calculate fib(40) 30 times.
tak Takeuchi function, uses recursion and integer arithmetic intensely. 1,000 repetitions

of computing tak(32,24,17).
length A tail-recursive list length function finding the length of a list of 200,000 elements

50,000 times.
qsort Ordinary quicksort. Sorts a short list 500,000 times.
smith The Smith-Waterman DNA sequence matching algorithm. Matches a sequence

against 200 others; all of length 64. This is done 30 times.
huff A Huffman encoder which decodes a 32,026 character string 60 times.
decode Part of a telecommunications protocol. 5,000,000 repetitions of decoding an

incoming message. A medium-sized benchmark (∼ 400 lines).
ring This concurrent benchmark creates a ring of 600 processes and sends 100,000 mes-

sages. The benchmark is executed 5 times.
life A concurrent benchmark executing 10,000 generations in Conway’s game of life on

a 30 x 30 board where each square is implemented as a process. This benchmark
spends most of its time in the scheduler.

barnes Simulates gravitational force between 1,000 bodies 40 times. Executed 5 times.
yaws_html An HTML parser from Yaws (Yet another Web Server) parsing a small

HTML page 1,000,000 times.
prettypr Formats a large source program for pretty-printing, repeated 42 times. Recurses

very deeply. A medium-sized benchmark (∼ 1, 100 lines).
nrev Naive reverse of a 1,000 element list 800 times.
stable Solves the stable marriage problem concurrently with 30 men and 30 women.

Creates 60 processes which send messages in fairly random patterns.
estone Computes an Erlang system’s Estone ranking by running a number of common

Erlang tasks and reporting a weighted ranking of its performance on these tasks.
This benchmark stresses all parts of an Erlang implementation, including its runtime
system and concurrency primitives.

Moreover, we have used the Erlang/OTP’s Standard Library and HiPE for measuring the
compilation time and the size of the generated code.

4.2.1 Results

The run-time results are summarized in Table 4.1 in terms of speedup. The LLVM back
end presents noticeable speedups compared with interpreted code across a range of Erlang
programs. On the contrary, the HiPE AMD64 back end still offers the best performance.
It is worth to notice that Erjang’s superiority on the concurrent benchmarks is attributed
to the shared heap model it uses between processes and the huge heap it allocates at start.

4.2 Performance of LLVM back end 53

Program BEAM/LLVM Erjang/LLVM HiPE/LLVM

Se
qu
en
tia
l

fib 2.31 0.74 0.76
tak 1.89 0.65 0.47
length 3.00 3.23 1.48
qsort 1.94 1.89 0.81
smith 3.19 1.05 0.82
decode 2.28 1.60 0.88
nrev 1.02 1.44 0.77
yaws_html 1.17 2.62 0.76
huff 1.26 1.26 0.78
barnes 2.55 1.12 0.72
prettypr 1.06 5.66 0.42

Co
nc
ur
re
nt life 0.97 0.06 1.00

stable 0.99 0.23 0.94
ring 0.83 0.33 0.97
w_estone 1.66 1.54 0.78
Average 1.74 1.56 0.83

Table 4.1: Runtime Performance of the LLVM back end (in terms of speedup)

The new back end has clearly not managed to outperform HiPE. However, the results are
quite promising regarding the early stage of development of the LLVM back end against
the years of development and optimization of HiPE. In Section 4.2.2, we indicate some
problems which we consider responsible for the slightly disappointing performance of the
LLVM back end.

In Table 4.2, we can see the comparison between compilation times of the pre-existing
AMD64 and the LLVM AMD64 back end. BEAM was excluded from this comparison
since both the other back ends require existence of a .beam file in order to generate native
code. We can see that the HiPE back end is approximately 50% faster than LLVM. This
fact is not surprising since the LLVM back end is still immature, and attention was put
to correctness rather than efficiency. The main problem lies on the fact that the new back
end uses an inefficient way for representing LLVM assembly and many intermediate files
for passing data from one tool to the other. We believe that the compilation time is an
area that can be improved considerably in the future.

Finally, in Table 4.3 we see the comparison of the binary code sizes. LLVM back end
produces slightly larger binaries than HiPE. This is imposed by the way we have to handle
GC roots (they have to be stack allocated and cannot be promoted to registers) and the
precoloured registers (they, also, live on the stack). Moreover, with our approach, we
introduce extra BIF calls to the code in order to handle closures with stack arguments
(see Section 3.3.5).

4.2.2 Performance Analysis

In this section we will try to examine in depth the reasons behind the performance of
the LLVM back end. Specifically, we are presenting the issues which we consider to have
critical impact on the quality of the generated native code.

54 Chapter 4. Evaluation

Program HiPE/LLVM
array 0.33
ets 0.32
io 0.61
lists 0.66
qlc 0.86
random 0.56
re 0.83
string 0.81
timer 0.64
zip 0.77
(69 more) ...
Average for stdlib 0.52
erl_bif_types 0.71
erl_types 0.82
hipe_amd64_assemble 0.76
hipe_bb 0.49
hipe_beam_to_icode 0.70
hipe_coalescing_regalloc 0.72
hipe_graph_coloring_regalloc 0.78
hipe_ls_regalloc 0.66
hipe_icode_ssa_copy_prop 0.62
hipe_rtl_ssa 0.37
hipe_x86_assemble 0.23
(185 more) ...
Average for hipe 0.49
Total Average 0.50

Table 4.2: HiPE/LLVM ratio of Compilation Times

4.2 Performance of LLVM back end 55

Program HiPE LLVM HiPE/LLVM
array 37188 61393 0.61
beam_lib 51532 70210 0.73
dict 23628 36266 0.65
erl_compile 7840 13182 0.59
io 15100 21353 0.71
lists 123932 182353 0.68
random 4620 6901 0.67
re 40688 56232 0.72
string 14048 22437 0.62
sys 18168 27002 0.67
(69 more)
Average for stdlib - - 0.67
hipe_amd64_assemble 35680 54273 0.65
hipe_amd64_liveness 4276 7108 0.60
hipe_amd64_ra 1260 2549 0.49
hipe_beam_to_icode 91332 147010 0.62
hipe_icode2rtl 21384 38659 0.55
hipe_main 32224 51525 0.63
hipe_rtl 44188 75625 0.58
hipe_rtl_cfg 27700 43223 0.64
hipe_rtl_exceptions 1868 2658 0.70
hipe_rtl_to_amd64 23332 44261 0.53
hipe_rtl_to_arm 22400 40258 0.56
(185 more)
Average for hipe - - 0.61
Total Average - - 0.63

Table 4.3: Binary Code Sizes (in Bytes)

56 Chapter 4. Evaluation

Spilling/Reloading of Precoloured Registers

While the HiPE back end permanently stores the precoloured registers to specific hard-
ware registers and marks them as unavailable to the register allocator, the LLVM back
end moves them around as function-arguments and return-values and uses the calling con-
vention to retain them to those registers. As already mentioned in Section 3.3.1, this may
produce better code as during the execution of the function these registers may be spilled
and used for something else, provided that there is high register pressure.
Precoloured registers have special use in the code (they are the heap pointer, the native
stack pointer, the current process control block pointer, etc.) and are not always clobbered
by each function. However, the LLVM back end spills and reloads them, around each call
site, as it has no way to know which call can modify them. In addition, function calls in
Erlang programs are very frequent as even primary operations are implemented as BIF
calls. Thus, performance is reduced not only because of spilling and restoring of those
registers but also because the register allocation will be suboptimal.

Code Pattern

LLVM supports all default groups of optimizations (-O0, -O1, -O2, -O3), but their impact
is not reflected on the run-time results to the expected degree. In Table 4.4 we can
see a comparison of the run-time speedups of our benchmark suite when compiled with
three different optimization levels. We can see that the performance is only improved
slightly when compiled with the -O2 optimization group (≈ 10%); -O3 produces no further
improvement. This is quite disappointing given that the LLVM optimizer is one of LLVM’s
most advertised features. We believe that the main reason for this is the nature of the
compiled code.

Program O1 O2 O3
fib 0.95 1.09 1.10
tak 1.14 1.20 1.19
length 1.12 1.47 1.39
qsort 1.00 1.03 1.03
smith 1.03 1.21 1.21
decode 1.04 1.06 1.06
nrev 1.07 1.06 1.05
yaws_html 1.05 1.05 1.05
huff 1.02 1.06 1.04
barnes 1.04 1.07 1.06
prettypr 1.03 1.03 1.03
life 0.96 1.01 1.02
stable 1.01 1.01 1.01
ring 1.07 1.03 1.04
w_estone 1.05 1.09 1.09
Total Average 1.04 1.10 1.09

Table 4.4: Runtime speedups gained by various optimization levels in LLVM

It is common for Erlang modules to consist of small and simple functions; the native code
usually follows a pattern of a few primary operations and low register usage but many func-

4.2 Performance of LLVM back end 57

tion calls and high memory traffic. Additionally, because of the dynamic typing of Erlang,
even primary operations may involve BIF calls, for example Erlang uses arbitrary-sized
integers (“bignums”) and integer arithmetic is performed with a built-in function (when
needed). Finally, hot-code loading restricts the effect of interprocedural optimizations;
the unit of compilation in HiPE is a single function and, thus, each function is compiled
independently in our back end. Therefore, no optimization can occur even between func-
tions in the same module. Because of all these factors, most of the optimization passes
have no significant effect currently. We believe that there is work to be done in the future
in order to take advantage of all of these optimizations that LLVM offers.

Stack Usage and Garbage Collection

In our opinion, interaction with the garbage collector and the effect it has on the register
allocator is the main bottleneck in the LLVM back end. As already mention in Section
3.3.6, each probable garbage collection root occupies a stack slot, and all operations that
involve this value are mapped to memory operations, i.e. reads and writes to the corre-
sponding stack slot. Roots should be register allocated, instead, where possible, and be
spilled and restored around safe points.

Even worse, as all probable roots are indicated in the stack descriptors, the garbage col-
lection is forced to traverse those roots. Of course we store a value that the garbage
collector cannot traverse to stack slots that host dead roots. However, accessing a root
slot and checking its value has a considerable cost. Especially in functional languages
where garbage collection occurs very often.

New BIFs

Updating precoloured registers in exception handling blocks, and exposing closure call
return addresses required the creation of some new built-in functions. Calls to these BIFs
is added when needed. Even if the execution time of these functions is minimal, the
operations of setting up the stack frame, performing the call and, then, destroying the
frame are not negligible. Additionally, these calls are affecting the register allocator since
all values, that are allocated in non callee-saved registers, must be spilled on the stack and
be restored after the call.

Branch Mechanism

HiPE incorporates a branch prediction mechanism in order to take advantage of hardware
branch prediction technology and optimize the code. As HiPE is aware of the semantics
of each branch, a notation is added to each branch in the form of a probability to be taken
or not. After that, the code is linearized with respect to these probabilities. In this way,
branches that are actually taken are minimized and better spatial locality is achieved.

Currently, there is no way to pass this information to LLVM. So the information that some
branches will rarely be taken is not taken advantage of in our back end.

58 Chapter 4. Evaluation

4.3 Complexity of Implementation

In this section we evaluate the new LLVM back end as far as the complexity is concerned.
The term “complexity” refers to the amount of work that is required to build, maintain
and extend the back end, and is of primary concern for the HiPE developers.
The creation of each back end of HiPE required the development of a native code compiler
from RTL and an assembler to create object code. On the contrary, the new LLVM back
end requires only the translation from the RTL intermediate representation to LLVM
assembly, independently of the target machine. It is clear for any compiler developer that
mapping from one intermediate representation to another is far more easy than creating
a back end for each machine architecture.

Back end Size

ARM
Total: 5362
Code: 3891
Comments: 883 (17.6%)

SPARC
Total: 5148
Code: 3622
Comments: 881 (19.6%)

X86/AMD64
Total: 10474
Code: 7463
Comments: 1953 (18.6%)

PPC/PPC64
Total: 6695
Code: 5009
Comments: 892 (15.1%)

LLVM
Total: 5288
Code: 3408
Comments: 1293 (27.5%)

Table 4.5: Code Sizes for various HiPE’s back ends. We counted X86 and AMD64 back
ends as one because they share a lot of important code. The same goes for
PPC and PPC64 back ends.

In Table 4.5, we can see the sizes, in lines of code (LOC), for the various HiPE back ends.
These numbers do not involve common code that all back ends may share, e.g. code from
the icode, rtl, flow or misc directories. It is clear that the LLVM back end is one of
the smallest. Actually, only 4072 lines correspond to the back end (many of which are
comments) while the rest belong to the elf64_format module, that we use for extracting
information from a Linux ELF64 object file.
Also, the LLVM back end allows HiPE to be extended to run on more target architectures
which is a very important fact for the Erlang community. While HiPE currently supports
six back ends, LLVM supports more than fifteen. This gives the opportunity to HiPE to
support those architectures only by making the relevant extensions to the runtime system.
On the other hand, while the HiPE compiler offers a complete pipeline, the new back end
requires the installation of LLVM. Even worse, it requires the installation of a custom
version of LLVM to support HiPE features, such as calling convention and Application
Binary Interface (ABI). This increases the Erlang/OTP distribution and installation size.
To conclude, maintenance and development of the LLVM back end is easier. That is a big

4.3 Complexity of Implementation 59

gain for the developers since they can maintain only one back end instead of six, while
the code of it is more straightforward than that of an assembler. Furthermore, LLVM
has a very active development community that is quickly progressing in all areas and that
progress can benefit HiPE, without extra effort for HiPE developers.

Chapter 5

Conclusion

5.1 Concluding remarks

This thesis described the architecture, design decisions, technical issues and implementa-
tion details of a new back end for the HiPE compiler which uses the LLVM infrastructure
for code generation. The goal of this thesis was to examine if the creation of an LLVM
back end for HiPE is feasible and efficient.

After introducing all the necessary background information for HiPE compiler and LLVM
to understand this thesis, we presented the design and implementation of the new back
end, and evaluated it in regard to two broad dimensions: complexity and performance.
Special attention was given to being fully compliant with the HiPE Application Binary
Interface (ABI) and supporting all features of Erlang, such as hot-code loading, garbage
collection and exception handling.

As far as the implementation complexity is concerned, the LLVM back end has a smaller
code base and is clearly simpler and more straightforward than the other HiPE’s back ends.
Furthermore, it effectively outsources a sophisticated part of HiPE’s compilation pipeline
and frees developer resources to concentrate on issues that are more directly relevant to
the Erlang community. However, currently the LLVM back end needs to also distribute a
custom version of LLVM with it in order to generate code that is on par with the HiPE’s
code generator. We hope that this will change in the near future by by contacting the
LLVM developers and bringing our patch in an upstream-acceptable state.

Benchmark results indicate that code generated from LLVM back end is significantly
faster than BEAM while slightly slower than HiPE AMD64 back-end’s code. We have
meticulously studied the reasons that we consider responsible for this. Based on this
examination, we conclude that there are good indications that the LLVM back end will
be able to produce at least as efficient code as HiPE in the near future.

High compilation times is, currently, another drawback of the LLVM back end. However,
this area can be improved considerably by optimizing the LLVM assembly printing and
avoiding the use of intermediate files between the various phases of transformations.

All in all, we consider the whole work as successful. We have managed to create a new back
end for HiPE that can compile any Erlang program and has achieved good performance
in only a short period of development. We strongly believe that this work can become

61

62 Chapter 5. Conclusion

the basis for further work focusing on improving the HiPE compiler considerably in the
future.

5.2 Future work

The primary future goal of the LLVM back end is to be extended to provide all six back
ends that HiPE currently supports. This involves patching LLVM to implement HiPE’s
ABI for these back ends and should be rather straightforward.

An important inefficiency that has a major impact on the performance, lies on the in-
frastructure that LLVM provides for implementing Garbage Collection. LLVM does not
allow marking a common virtual register as GC root but forces all GC roots to be stack
allocated variables. There is active discussion on the LLVMdev mailing list1, on how this
infrastructure should be changed in the future LLVM releases. Maybe some work should
be done in this direction.

To continue, there are some things that could be done to improve the compilation time.
Printing of the LLVM assembly is currently done line-by-line. This results in performing
many system calls and, thus, delaying the compilation. Other ways of printing, such
as collecting data in a write buffer and periodically flushing it to the file or using other
caching techniques, should be examined as solutions. Another solution would be to use the
Erlang LLVM bindings [21] in order to create an in-memory representation of the LLVM
assembly.

Last but not least, it would be good for both the LLVM patch and the HiPE LLVM back
end to be accepted upstream in LLVM and Erlang/OTP, respectively. This involves work-
ing closely with the developers on modifying the patches to bring them on an acceptable
form for the projects. The big win of this is that it significantly reduces distribution com-
plexity and size of the back end. Furthermore, it motivates the Erlang/OTP community
to work on implementing more back ends that are currently supported in LLVM by doing
the needed extensions to the Erlang Run-Time System (ERTS).

1http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-July/041290.html

http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-July/041290.html

Bibliography

[1] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming
in Erlang. Prentice-Hall, 1996.

[2] R. L. Bernstein. Producing good code for the case statement. Software - Practice
and experience, 1985.

[3] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph colouring register
allocation. In ACM Transactions on Programming Languages and Systems, pages
428–455. ACM, 1994.

[4] A. Brown and G. Wilson. The Architecture of Open Source Applications: Elegance,
Evolution, and a Few Fearless Hacks. 2011. http://www.aosabook.org/en/.

[5] Wikipedia: Calling Convention. http://en.wikipedia.org/wiki/Calling_
convention.

[6] clang: a C language family front end for LLVM. http://clang.llvm.org/.

[7] Clang Static Analyzer. http://clang-analyzer.llvm.org/.

[8] The D Programming Language. http://www.digitalmars.com/d/2.0/index.html.

[9] Smoking fast Haskell code using GHC¢s new LLVM
codegen. http://donsbot.wordpress.com/2010/02/21/
smoking-fast-haskell-code-using-ghcs-new-llvm-codegen/.

[10] Erjang: A virtual machine for Erlang which runs on Java. http://github.com/
trifork/erjang/wiki.

[11] LLVM Exception Handling. http://llvm.org/docs/ExceptionHandling.html.

[12] N. Geoffray. Fostering Systems Research with Managed Runtimes. PhD thesis, Uni-
versité Pierre et Marie Curie, Paris, France, September 2009.

[13] L. George and A. Appel. Iterated register coalescing. In ACM Transactions on
Programming Languages and Systems, pages 300–324. ACM, 1996.

[14] GHC: The LLVM backend. http://hackage.haskell.org/trac/ghc/wiki/
Commentary/Compiler/Backends/LLVM.

[15] E. Johansson, M. Pettersson, K. Sagonas, and T. Lindgren. The development of the
hipe system: design and experience report. International Journal of Software Tools
for Technology Transfer, 4, 2002.

63

http://www.aosabook.org/en/
http://en.wikipedia.org/wiki/Calling_convention
http://en.wikipedia.org/wiki/Calling_convention
http://clang.llvm.org/
http://clang-analyzer.llvm.org/
http://www.digitalmars.com/d/2.0/index.html
http://donsbot.wordpress.com/2010/02/21/smoking-fast-haskell-code-using-ghcs-new-llvm-codegen/
http://donsbot.wordpress.com/2010/02/21/smoking-fast-haskell-code-using-ghcs-new-llvm-codegen/
http://github.com/trifork/erjang/wiki
http://github.com/trifork/erjang/wiki
http://llvm.org/docs/ExceptionHandling.html
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM

64 Bibliography

[16] LLVM Assembly Language Reference Manual. http://llvm.org/docs/LangRef.
html.

[17] C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL,
Dec 2002. See http://llvm.cs.uiuc.edu.

[18] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[19] LDC Compiler for the D Programming Language. http://www.dsource.org/
projects/ldc/.

[20] The University of Illinois/NCSA Open Source License (NCSA). http://www.
opensource.org/licenses/UoI-NCSA.php.

[21] LLEVM: An erlang wrapper to the C API functions of LLVM. http://www.github.
com/garazdawi/llevm.

[22] LLVM-Lua. http://code.google.com/p/llvm-lua/.

[23] D. Luna. Efficiently compiling a functional language on amd64: the hipe experience.
In In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 176–186. ACM Press, 2005.

[24] MacRuby. http://macruby.org/.

[25] MMTk. http://jikesrvm.org/MMTk.

[26] M. Pettersson, K. Sagonas, and E. Johansson. The hipe/x86 erlang compiler: System
description and performance evaluation. In Proceedings of the Sixth International
Symposium on Functional and Logic Programming, number 2441 in LNCS, pages
228–244. Springer, 2002.

[27] M. Polleto and V. Sarkar. Linear scan register allocation. In ACM Transactions on
Programming Languages and Systems, pages 895–913. ACM, 1999.

[28] Projects built with LLVM. http://llvm.org/ProjectsWithLLVM/.

[29] LLVM Related Publications. http://llvm.org/pubs/.

[30] The Pure Programming Language Compiler. http://pure-lang.googlecode.com/,.

[31] Unladen Swallow. http://code.google.com/p/unladen-swallow/.

[32] Rubinius. http://github.com/evanphx/rubinius.

[33] K. Sagonas and E. Stenman. Experimental evaluation and improvements to linear
scan register allocation. In Software: Practice and Experience, pages 1003–1034.
ACM, 1996.

[34] Static single assignment. http://en.wikipedia.org/wiki/Static_single_
assignment_form.

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://www.dsource.org/projects/ldc/
http://www.dsource.org/projects/ldc/
http://www.opensource.org/licenses/UoI-NCSA.php
http://www.opensource.org/licenses/UoI-NCSA.php
http://www.github.com/garazdawi/llevm
http://www.github.com/garazdawi/llevm
http://code.google.com/p/llvm-lua/
http://macruby.org/
http://jikesrvm.org/MMTk
http://llvm.org/ProjectsWithLLVM/
http://llvm.org/pubs/
http://pure-lang.googlecode.com/
http://code.google.com/p/unladen-swallow/
http://github.com/evanphx/rubinius
http://en.wikipedia.org/wiki/Static_single_assignment_form
http://en.wikipedia.org/wiki/Static_single_assignment_form

Bibliography 65

[35] E. Stenman. Efficient implementation of Concurrent Programming Languages. PhD
thesis, Uppsala University, November 2002.

[36] D. A. Terei. Low Level Virtual Machine for Glasgow Haskell Compiler. Master’s thesis,
Computer Science and Engineering, The University of New South Wales, October
2009.

[37] VMKit. http://vmkit.llvm.org/.

http://vmkit.llvm.org/

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Listings
	Introduction
	Background
	Compiler Design
	The HiPE Compiler
	Phases in the compiler
	Interface issues with Erlang/OTP

	Low Level Virtual Machine
	LLVM Assembly Language
	LLVM Type System
	LLVM Instruction Set
	Other projects using LLVM

	The LLVM back end
	Pipeline Design
	LLVM Representation
	Generation of LLVM assembly
	Handling RTL Virtual Registers
	Handling Immediate Values
	Handling RTL Instructions
	Calling Convention
	Calls with Stack Arguments
	Garbage Collection
	Exception Handling
	Frame Management

	Rest Phases
	LLVM Assembler
	LLVM Optimizer
	LLVM Compiler
	Object File Generation
	Object File Parsing

	Evaluation
	Current State of LLVM back end
	Performance of LLVM back end
	Results
	Performance Analysis

	Complexity of Implementation

	Conclusion
	Concluding remarks
	Future work

	Bibliography

