
A Scalability Benchmark Suite for Erlang/OTP

Stavros Aronis 1 Nikolaos Papaspyrou 2 Katerina Roukounaki 2 Konstantinos Sagonas 1,2

Yiannis Tsiouris 2 Ioannis E. Venetis 2

1 Department of Information Technology, Uppsala University, Sweden
2 School of Electrical and Computer Engineering, National Technical University of Athens, Greece

release@softlab.ntua.gr

Abstract
Programming language implementers rely heavily on benchmark-
ing for measuring and understanding performance of algorithms,
architectural designs, and trade-offs between alternative implemen-
tations of compilers, runtime systems, and virtual machine compo-
nents. Given this fact, it seems a bit ironic that it is often more
difficult to come up with a good benchmark suite than a good im-
plementation of a programming language.

This paper presents the main aspects of the design and the cur-
rent status of bencherl, a publicly available scalability benchmark
suite for applications written in Erlang. In contrast to other bench-
mark suites, which are usually designed to report a particular per-
formance point, our benchmark suite aims to assess scalability, i.e.,
help developers to study a set of performance points that show how
an application’s performance changes when additional resources
(e.g., CPU cores, schedulers, etc.) are added. We describe the scal-
ability dimensions that the suite aims to examine and present its
infrastructure and current set of benchmarks. We also report some
limited set of performance results in order to show the capabilities
of our suite.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed and
parallel languages; Applicative (functional) languages; D.1.3
[Software]: Concurrent Programming—Parallel programming; C.4
[Performance of Systems]: Measurement techniques

General Terms Experimentation, Measurement, Performance

Keywords benchmarking, scalability, multi-core, Erlang

1. Introduction
Concurrent applications in Erlang typically spawn a large number
of processes which by default share no memory and communicate
with message passing. Processes may be created on remote nodes
too; communication with remote processes is transparent in the
sense that it works exactly as communication with local processes.

The improvement of hardware and network technologies makes
it possible to (a) create Erlang nodes that host more processes, as
nodes typically run on systems with many multicore processors and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’12, September 14, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1575-3/12/09. . . $10.00

large amounts of memory, and (b) distribute computation easily
over multiple remote nodes, as the overhead of communication be-
tween them is reduced. We would therefore expect that concurrent
applications in Erlang can benefit immediately and immensely from
the progress of computer technology, especially with the multi-core
direction that this progress has taken recently.

Alas, things are not that simple. Experience with Erlang shows
that some applications do not scale so well for various reasons,
known or unknown. Since 2006, the Erlang/OTP system from
Ericsson has been extended to support Symmetric MultiProcess-
ing (SMP) in the form that is commonly found these days in mul-
ticore machines. A primary goal was to maintain stability while
giving incremental performance improvements in each release.
This approach has proved to work well for the important class
of high-availability server software running on machines with a
small number of cores (up to 16). However, the scalability of the
Erlang/OTP system on real applications running on massively mul-
ticore machines remains to be carefully studied and proven.

One of the goals of the RELEASE project [8]1 is to improve
some core aspects of Erlang’s VM in order to make it possible
for applications to achieve highly scalable performance on high-
end multicore machines of the present and future, with minimal
refactoring. A big part of the responsibility for achieving scalability
must be lifted from the application programmer and pushed to the
VM. Several key components of the VM may have to be redesigned
and reimplemented, in case it is found that they currently hinder the
scalability of applications on large multicore machines.

To pursue this goal, it is necessary to study the performance
and scalability characteristics of a representative set of existing ap-
plications running on the current Erlang VM, in order to identify
bottlenecks and prioritize changes and extensions in the architec-
tural design of the runtime system and in the reimplementation of
key components of the VM. A benchmark suite is required for this
purpose, whose primary focus will be on being able to effectively
measure scalability.

This paper presents a scalability benchmark suite for Erlang.
It begins by presenting its similarities and differences with other
existing benchmark suites (Section 2) and by setting the primary
scalability dimensions that will be under investigation (Section 3).
The benchmarking infrastructure is then presented (Section 4),
followed by an overview of the benchmarks that have been added to
the suite until now (Section 5). In Section 6, we give a summary of
the results that we have obtained so far and some of the lessons that
we have learnt. Section 7 describes the steps that are required for
extending the benchmark suite with new benchmarks, and Section 8
presents some concluding remarks and directions for future work.

1 See the RELEASE project site http://www.release-project.eu/
from which the home page of bencherl is also accessible. Its direct URL is
http://release.softlab.ntua.gr/bencherl/.

http://www.release-project.eu/
http://release.softlab.ntua.gr/bencherl/

2. Related Work
The idea of a benchmark suite that will serve both as a tool to run
and analyze benchmarks and as a repository of programs that can
be used as benchmarks is not new. In the following paragraphs we
analyze a few benchmark suites that have been used extensively or
have similar goals with the benchmark suite that we present in this
paper.

Basho Bench [3] is the only benchmarking tool that is currently
available for the Erlang/OTP. It was originally implemented for
Riak [17], but it can be used to benchmark other applications as
well. Each benchmark defines one or more types of operations, and
the tool is responsible for creating a number of workers, and assign
the execution of a number of operations to them. Basho Bench is
both configurable and extendable, and produces graphs (throughput
and latency), very much like our own suite, but its primary goal is
to execute a benchmark in a single rather than in multiple execution
environments.

The nofib suite [14] started in the early 1990s as a collection
of Haskell programs for benchmarking the implementation of the
Glasgow Haskell Compiler. It has since evolved as a benchmark
suite geared towards functional languages, oriented mostly towards
improving implementations and providing performance compar-
isons. Due to the variety of benchmarks included, another goal of
nofib has been to allow users of the language and a specific im-
plementation to predict the performance of their own programs. A
drawback of this benchmark suite is that it does not include tools to
analyze the reported performance metrics. Furthermore, the bench-
marks included are rather old and it is not clear whether they ac-
curately represent current workloads. The nofib suite has stirred a
lot of discussions in the Haskell community, especially with the de-
velopment of (lots of dialects of) Concurrent and Parallel Haskell.
As a result, several other benchmarking suites and benchmarking
tools for Haskell have evolved since nofib, such as nobench [12],
fibon [15], Criterion [13], and HaBench [9] which is work under
progress.

The DaCapo benchmark suite [5] is an enhanceable set of open-
source, real and non-trivial Java benchmarks. Although DaCapo
focuses on performance rather than scalability, its developers rec-
ommend some rather interesting methodologies for the selection,
measurement, and evaluation of benchmarks for the Java Virtual
Machine. Although these ideas cannot be directly applied to bench-
marks for the Erlang Virtual Machine, they have influenced to some
extent the way we collect and assess benchmarks for our bench-
mark suite.

The NAS suite is a suite of parallel performance benchmarks.
They were originally developed at the NASA Ames Research Cen-
ter in 1991 [2] to assess high-end parallel supercomputers. The
original NAS Parallel Benchmarks consisted of eight individual
benchmark problems, each of which focused on some aspect of sci-
entific computing. In their current incarnation, these benchmarks
are implemented using two widely used parallel programming
models: MPI and OpenMP. Recently, the benchmarks have been
updated with new Grid and “multi-zone” versions, which better
reflect modern Computational Fluid Dynamics computations [11].
A significant drawback of the suite is the fact that the implemen-
tations of the benchmarks are reference applications and not fully
optimized. Furthermore, there is no support in the suite to easily
execute sets of experiments and collect and analyze the produced
results.

Finally, PARSEC [4] is a recent benchmark suite created to
drive the design of the new generation of multiprocessors and mul-
ticore systems. Therefore, its main target is to provide applica-
tions that have been parallelized with a variety of programming
models and are diverse in their characteristics. Furthermore, the
benchmarks included in the suite represent emerging workloads

that implement state-of-the-art algorithms and are more relevant
for contemporary systems. With respect to its overall architecture,
PARSEC is similar to our benchmark suite in the sense that it is
largely automated, allowing users to create scripts that will run the
benchmarks with the requested combinations of input parameters.
An additional feature is the inclusion of an instrumentation API
that the user can exploit in order to expand the characteristics of a
benchmark that are measured.

3. Dimensions in Benchmarking
Quoting from wikipedia:

Scalability is the ability of a system, network, or process, to
handle growing amount of work in a capable manner or its
ability to be enlarged to accommodate that growth [6]. For
example, it can refer to the capability of a system to increase
total throughput under an increased load when resources
(typically hardware) are added.

It is precisely the last sentence that captures the notion of scalability
that we want a user to be able to analyze and measure with our
benchmarking suite.

The behaviour of a benchmark is often affected when one or
more dimensions of the execution environment change. We begin
by identifying the dimensions that are important for scalability
benchmarking in massively concurrent Erlang applications. These
dimensions define a multi-dimensional space, each point of which
corresponds to a different possible configuration of the execution
environment.

Number of nodes. This is the number of virtual machines on
which the application is executed. Small scale applications typi-
cally run on a single node, located on a single physical computer.
When computation is distributed in multiple physical machines,
e.g., in a cluster or a cloud of computing devices, there will be
more than one node. It is also possible to start multiple nodes even
on a single physical computer, either using virtualization or even
without such separation. Such a configuration usually provides re-
dundancy in cases of failure of a whole node.

Number of cores. A single node running on a multiprocessor
computer is capable of parallelizing computation, executing differ-
ent processes in parallel on different processors or processor cores.
Typically, when a node is started, it is configured to use as many
CPU cores as are available, but it is possible to restrict the number
of CPU cores to a smaller value.

Number of schedulers. A single node may start any number of
scheduler OS processes, which in turn handle the execution of
Erlang processes. Typically, one scheduler is started for every CPU
core (or for every logical core, in case hyper-threading is involved)
that is available to the node, with the intention that all schedulers
execute in parallel and independently of each other (of course the
Erlang node is usually not the only executing application in the
OS and therefore this does not always work exactly so). If fewer
schedulers are started, then fewer CPU cores will be used. It is
also possible, to start more schedulers than the number of available
CPU cores; in this case, some cores will be shared by multiple
schedulers.

Erlang/OTP release and flavor. Each new Erlang/OTP release
contains bug fixes and introduces new features that have a positive
(or occasionally a negative) effect on the performance of some
applications. It is often the case that developers of the Erlang/OTP
want to experiment with different flavors of the VM, different
configuration options, different algorithms for implementing the
same functionality, and measure the effects of all these.

Command-line arguments to erl. The performance measure-
ments obtained for a program may vary, depending on the options
that are used to control aspects of the runtime system. An example
of such an option is the +sbt emulator flag that is used to determine
whether and how the schedulers are bound to logical processors.

4. Benchmarking Infrastructure
The benchmark suite is built around two basic notions that need to
be explained, not because they are complicated but because they
may be used with different meanings in other benchmarking suites
or in the literature.

• An application is the piece of software whose execution be-
haviour we intend to analyze and measure. For example, we
have used Dialyzer as an application, a piece of software that
we further describe in Section 5. Typically, an application con-
sists of a set of Erlang modules, each of which exports a num-
ber of functions. There may be a starting point, the application’s
“main” function, or there may be no such thing and the appli-
cation will then be considered as a library of modules and func-
tions. It may also be the case that the application we want to
study is the Erlang/OTP distribution itself.

• A benchmark is a specific use case of the application and in-
cludes setting up the environment, calling specific functions in
specific ways and using appropriate data for this. There may be
more than one benchmarks for a given application, each study-
ing a different use case, e.g., different sizes of input, different
functionality of the application, etc. Each benchmark can be ex-
ecuted in multiple points of the multi-dimensional space that we
defined in Section 3. Furthermore, a benchmark can be param-
eterized with a number of size variables, which are specific for
this benchmark and may be thought of as additional dimensions
of the multi-dimensional space.

Our suite thus comprises (i) a set of target applications that
we intend to study, (ii) a collection of benchmarks for studying
these applications, corresponding to both synthetic and real-world
use cases, and (iii) an infrastructure, whose purpose is to build
and run the benchmarks and applications, as well as to analyze
and compare their performance in various points of the multi-
dimensional space to assess scalability. The rest of this section
describes the infrastructure, while the next one is dedicated to the
benchmarks and their target applications.

4.1 Overview
The benchmarking infrastructure is intended to be a tool that runs
benchmarks and collects scalability measurements during their ex-
ecution. A benchmark can be executed in different runtime envi-
ronments which, as far as the benchmark suite is concerned, are
identified by the following parameters:

• the number of Erlang nodes;
• the number of scheduler OS processes on each node;
• the erl program used to start each node; and
• the command-line arguments passed to this erl program.

In the default runtime environment, there is a single Erlang node
with as many schedulers as the number of CPU cores in the system.
The node is started using the erl program found in the OS path and
called with no extra arguments.

If we run a specific benchmark in a specific runtime environ-
ment multiple times, we may get different measurements each time.
Hopefully, the differences will be small, unless the benchmark has
a large degree of randomness. In order to eliminate or at least re-
duce such “noise” in our measurements, we can choose to run a

Figure 1. The current directory structure of bencherl.

benchmark multiple times and keep statistics, e.g., use the average,
the median, the last, or the best value of the elapsed time.

The benchmark suite can optionally perform a sanity check to
verify that the given benchmark has run to completion correctly, in
all the different runtime environments that were tested. In order to
do that, the suite compares the output that the benchmark produces
during its execution in all runtime environments, and the results
should normally match.

The scalability measurements that the suite collects during the
execution of a benchmark are dumped in files that we can easily
read and examine. The suite can also produce scalability graphs
that visualize the same information.

For making it possible to alter benchmark sizes easily, each
benchmark can have three different versions: a short, an interme-
diate, and a long one. The different versions of a benchmark differ
only in the size parameters, which may depend on the number of
available cores and should affect execution time.

Finally, the users of the benchmark suite can specify which
benchmark or benchmarks they want to run, in which runtime
environments, with which size parameters, etc.

4.2 Current directory structure

This section describes the current directory structure of the bench-
mark suite, which is shown in Figure 1.

• The app/ directory is where the source code of the applications
resides. Each sub-directory under it corresponds to a different
application.

• Inside the bench/ directory, there is one sub-directory for each
benchmark in the suite. In general, a benchmark corresponds to
an application in app/ but we have used two different trees to
make it simpler to include synthetic benchmarks that are self-
contained, or even to include benchmarks that test larger pieces
of existing software, possibly not written in Erlang, that are not
part of the suite. We will give more details about the internal
structure of a benchmark directory in Section 7, where we will
talk about how the suite can be enhanced with new benchmarks.

• The conf/ directory contains, among other things, a file named
run.conf. This is the run configuration file that contains all
the information that the suite needs, in order to know what to
execute and how.

• For each run of the benchmark suite, a new sub-directory is cre-
ated in the results/ directory. The name of this sub-directory
can either be a mnemonic name that we choose for this run,
or just the date and time when the run started. In there, one
sub-directory is created for each benchmark that was executed,
which in turn contains the following sub-directories:

graphs/: it contains the scalability graphs that the suite
produced;

output/: it contains the output that the benchmark pro-
duced during its execution; and

Figure 2. The architecture of bencherl.

measurements/: it contains the scalability measurements
that were collected during the execution of the benchmark.

• The scratch/ directory is used by the suite as a place to store
temporary files.

• Finally, the suite/ directory contains the code that implements
the benchmarking infrastructure.

4.3 Architecture and what goes on behind the scenes

The benchmark suite consists of four components: the coordinator,
the executor, the sanity checker, and the graph plotter. Figure 2
shows how these components interact with each other. Each one of
these components is described in detail in the rest of this section.

4.3.1 The coordinator

In each run of the suite, the coordinator reads the configuration file
(i.e., conf/run.conf) in order to find out what to execute and how
(e.g., which benchmarks, what version of the benchmarks in case
there are multiple versions, in which execution environment, etc.).
It creates a new sub-directory in results/ for the results of this
run and starts the execution of the benchmarks.

Before executing a benchmark, the coordinator reads the bench-
mark’s configuration file for changes to the execution plan for this
specific benchmark (the settings specified in a benchmark’s config-
uration file always override those specified in the global configura-
tion file of the suite).

For each runtime environment in which the benchmark must
run, the coordinator sets up the environment, performs any benchmark-
specific pre-execution actions, and invokes the executor to handle
the actual execution of the benchmark. When the executor has
finished its job, the coordinator takes over again, performs any
benchmark-specific post-execution actions, and might repeat the
execution of the benchmark in some other runtime environment.

Once the execution of the benchmark has completed, the coordi-
nator asks the sanity checker to verify the correctness of the output
that the benchmark produced during its execution. It also asks the
graph plotter to use the collected measurements to produce scala-
bility graphs, and then continues with the next benchmark.

4.3.2 The executor

The executor is responsible for the execution of a specific bench-
mark in a specific runtime environment. The coordinator has pre-
pared a configuration file with instructions on what the executor

must do, and has put it in the suite’s scratch/ directory for the
executor to find and use.

The runtime environment has already been partially set up by
the coordinator: an Erlang runtime system has been started with
the appropriate number of schedulers, using the appropriate version
of the erl program, and passing the appropriate command line
arguments to it. The runtime environment, in which the executor
must run the benchmark, is the environment in which the executor
itself runs. So, all that is left for the executor to do is start the
appropriate slave nodes, if any.

Now that the runtime system is ready, the executor runs the
appropriate version (short, intermediate, long) of the benchmark.
Execution of the benchmark’s code takes place in a new process,
which notifies the executor as soon as it is complete. Thus, the
executor knows the running time of the benchmark. The executor
repeats the benchmark execution as many times as specified, and
keeps statistics. In order to measure time, the executor uses the
erlang:now/0 and timer:diff/2 functions.

Finally, the executor makes sure that the output that the bench-
mark produces during its execution is stored in the appropriate
file in the output/ sub-directory of the benchmark’s result direc-
tory (so that the sanity checker can later find and use it), and that
the collected measurements end up in the appropriate file in the
measurements/ sub-directory of the benchmark’s result directory
(so that it can later be processed by the graph plotter).

4.3.3 The sanity checker

When a benchmark runs, it may produce output. In case the bench-
mark is deterministic and the output depends only on the given
input, the output should be the same across all the executions of
the benchmark in all the runtime environments. The sanity checker,
which is a component of the benchmark suite, can verify that.

The suite considers everything that the benchmark writes on the
standard output during its execution as the benchmark’s output. All
this information is stored in a file in the output/ sub-directory of
the benchmark’s result directory. There is one file in this directory
for each runtime environment, in which the benchmark runs.

What the sanity checker does is compare all the files that reside
in the benchmark’s output/ directory.2 If there are any differences
between any pair of output files, then the sanity check is considered
to have failed.

4.3.4 The graph plotter

The graph plotter processes the scalability measurements that have
been collected during the execution of a benchmark. It produces
graphs that visualize all this information in a way that can help us
get a feeling of how well a benchmark scales.

The scalability measurements gathered from the execution of a
benchmark are stored in files in the measurements/ sub-directory
of the benchmark’s result directory. In particular, this directory con-
tains two files that correspond to the execution of the benchmark
with a specific erl program and with specific command-line ar-
guments: one with scalability measurements for the execution of
the benchmark with different number of schedulers, and one with
scalability measurements for the execution of the benchmark with
different number of nodes.

The graph plotter produces one graph for each one of the files
in the benchmark’s measurements/ directory. Each one of these
graphs shows how the increase of schedulers (or the increase of

2 For the time being, the diff application is used for comparing files, and
differences in white space are ignored. If needed, it should be easy however,
to extend the sanity checker with custom ways of validating the sanity of
output files, e.g., by running a benchmark-specific piece of code.

nodes) affects the behaviour of the benchmark, when the bench-
mark is executed with the same erl program and with the same
command-line arguments.

In case the benchmark was executed using more than one erl
program (i.e., with different releases of Erlang/OTP), the graph
plotter combines the files that concern a specific set of command-
line arguments and produces a graph that compares the behaviour
of the benchmark when executed with different erl programs, but
with the same command-line arguments.

The same happens if the benchmark was executed using more
than one command-line argument sets. The graph plotter uses the
scalability measurements collected during the execution of the
benchmark with a specific erl program, and produces a graph
that shows how the different command-line arguments affect the
scalability of the benchmark, when all the other parameters of the
runtime environment remain the same.

Finally, the graph plotter produces speed-up graphs, apart from
time graphs, to make the results easier to understand from the
scalability point of view.

5. Benchmarks
The benchmark suite comes with an initial collection of parallel
and distributed benchmarks. We classify these benchmarks into two
categories:

• Synthetic benchmarks, which are typically small pieces of code
that measure the execution behaviour of some specific aspect of
Erlang execution (e.g., spawning processes, message passing,
etc.). Most of these benchmarks do not correspond to applica-
tions but are self-contained.

• Real-world benchmarks, which typically study various aspects
of the behaviour of large, existing Erlang applications.

In the rest of this section, we give a brief description of each one of
the suite’s benchmarks.

5.1 Synthetic benchmarks

The benchmarks in this category can be used to measure scalability
of specific aspects of Erlang-style concurrency and expose possible
bottlenecks in the virtual machine of Erlang/OTP, e.g., the (ab)use
of the erlang:now/0 function — see Section 6.

bang: A benchmark for many-to-one message passing that spawns
one receiver and multiple senders that flood the receiver with mes-
sages. The parameters of the benchmark are the number of senders
to spawn and the number of messages that each sender will send to
the receiver.

big: A benchmark that implements a many-to-many message
passing scenario. Several processes are spawned, each of which
sends a ping message to the others, and responds with a pong
message to any ping message it receives. The benchmark is pa-
rameterized by the number of processes.

ehb: This is an implementation of hackbench [20] in Erlang,
a benchmark and stress test for Linux schedulers. The number of
groups and the number of messages that each sender should send
to each receiver in the same group are the two parameters that this
benchmark receives.

ets test: This benchmark creates an ETS table and spawns sev-
eral readers and writers that perform a certain number of reads
(lookups) and writes (inserts), respectively, to that table. The
benchmark is parameterized by the number of readers, the num-
ber of writers and the number of operations (insert/lookup) that
each reader or writer should perform.

genstress: This is a generic server (gen server) benchmark
that spawns an echo server and a number of clients. Each client fills
its message queue with a number of dummy messages; it then sends
some messages to the echo server and waits to get them back as a
response from the server. The benchmark can be executed with or
without using the gen server behaviour, as well as with a different
number of clients, dummy messages and messages exchanged with
the echo server.

mbrot: This benchmark extrapolates the coordinates of a 2-D
complex plane that correspond to the pixels of a 2-D image of a
specific resolution. For each one of these points, the benchmark
determines whether the point belongs to the Mandelbrot set or not.
The total set of points is divided among a number of workers. The
benchmark is parameterized by the dimensions of the image.

orbit int: The orbit problem is defined as follows: Given a space
X , a list of generators f1, ..., fn : X → X and an initial vertex
x0 ∈ X , compute the least subset Orb ⊆ X , such that x0 ∈ Orb
and Orb is closed under all generators. We consider a special case
of the orbit problem, where X is a finite subset of the natural
numbers. This benchmark operates on a distributed hash table,
and follows a master/worker architecture. The master initiates the
computation, and waits for its termination. Each worker hosts a
chunk of the hash table. When a worker receives a vertex, it stores
it into its chunk, applies all generators to it, and then sends the
generated vertices to the corresponding nodes that are responsible
for them. The master and all the workers are processes on the
same or on different Erlang nodes. The benchmark creates the hash
table, distributes it evenly across the workers, and computes the
orbit in parallel. The parameters of the benchmark are a list of
generators, the size of the space, the number of workers, a list of
nodes to spawn workers on, and whether there will be intra-worker
parallelism or not.

parallel: A benchmark for parallel execution that spawns a num-
ber of processes, each of which creates a list of N timestamps
and, after it checks that each element of the list is strictly greater
than its previous one (as promised by the implementation of
erlang:now/0), it sends the result to its parent. The benchmark
is parameterized by the number of processes and the number of
timestamps.

pcmark: This benchmark is also about ETS operations. It cre-
ates five ETS tables, fills them with values, and then spawns a
certain number of processes that read the contents of those ta-
bles and update them. As soon as one process finishes, a new pro-
cess is spawned, until a certain total number of processes has been
reached. The benchmark is parameterized by the number of initial
processes and the total number of processes.

ran: Another benchmark for parallel execution that spawns a
certain number of processes, each of which generates a list of
10000 random integers, sorts it and sends its first half to the parent
process. The benchmark receives the number of processes as a
parameter.

serialmsg: A benchmark about message proxying through a dis-
patcher. The benchmark spawns a certain number of receivers, one
dispatcher, and a certain number of generators. The dispatcher for-
wards the messages that it receives from generators to the appro-
priate receiver. Each generator sends a number of messages to a
specific receiver. The parameters of the benchmark are the number
of receivers, the number of messages and their length.

timer wheel: A timer management benchmark that spawns a
certain number of processes that exchange ping and pong mes-
sages. Each process sends a ping message to all other processes,
and then waits (with or without a timeout) to receive a pong mes-
sage as a response. In the meantime, the process responds with a
pong message to any ping message it receives. In case of a time-
out, the corresponding process dies. The benchmark is parameter-
ized by the number of processes.

5.2 Dialyzer benchmarks

Dialyzer [10] is a static analysis tool that identifies software dis-
crepancies (e.g., definite type errors, unreachable code, redundant
tests) in single Erlang modules or entire applications. It is designed
to be sound for defect detection, meaning that all the warnings it
emits regard errors that the developer can (and should) act upon
(i.e., it produces no false positives). This has made Dialyzer one of
the most widely used tools among Erlang developers.

Dialyzer assigns a type to each function in each module that
is given as input, using a combination of constraint-based type
inference and dataflow analysis. A bottom-up approach is used,
starting with functions that have no calls and moving higher in the
call graph until all the functions have been processed. This was
originally done sequentially, with the functions being processed in
reverse topological order3. After types have been inferred, they are
used to detect discrepancies in the code base which is analyzed.

A parallel version of Dialyzer was developed [1], exploiting
the possibility to concurrently infer types for functions that only
have calls to functions that have already been analyzed. A sepa-
rate Erlang process is spawned for each function and then message
passing is used to determine when the dependencies of each func-
tion have been processed. The types inferred are stored in an ETS
table. Parallel Dialyzer is therefore an application that has a large
number of processes, communicating freely with small messages
and relying on ETS to store data shared among processes.

dialyzer bench: This benchmark is divided in two separate
parts, executed one after the other. These two parts correspond
to the two most common use cases of the Dialyzer tool.

• The first part measures the time required for the generation
of a Persistent Lookup Table (PLT) that includes the main
applications in the Erlang/OTP distribution. This PLT contains
the standard set of “trusted code” that most Erlang developers
rely upon when analyzing their own applications.

• The second part measures the time required for the actual anal-
ysis of most of applications in the Erlang/OTP distribution.

5.3 Scalaris benchmarks

Scalaris [16, 19] is an Erlang implementation of a distributed key-
value store, which has been designed for good horizontal scala-
bility, i.e., good performance for simple read/write operations dis-
tributed over many servers. It is based on the Chord# protocol [18],
and supports fail-over, data and service distribution and replication,
strong consistency and transactions.

The nodes are connected in a ring topology and store their data
in memory. When data have to be distributed over nodes, key ranges
are assigned to nodes, instead of the more typical approach that
uses hashing to distribute the data. As a result, a query does not
need to go to every node and if the distribution of keys is performed
carefully it may allow for better load balancing. Replication of data
on several nodes also helps towards this goal. The combination

3 As functions might form call cycles, this reverse topological ordering is
actually obtained from the condensation of the call graph into strongly
connected components.

of the ring topology and replication allows every read/write of a
key/value pair to complete in log(N) time, where N is the number
of nodes.

scalaris bench: Scalaris has been successfully used to imple-
ment a number of applications, like Web 2.0 services, in a dis-
tributed manner [16]. A common operation in these cases is to read
data that are requested from clients. Thus, this benchmark creates
a ring with a certain number of Scalaris nodes, and spawns a cer-
tain number of processes on each one of them. Each process picks
a random key and reads its value a certain number of times. The
benchmark has three parameters: the number of Scalaris nodes, the
number of processes to spawn on each node, and the number of
reads that each process executes.

5.4 Sim-Diasca benchmark

Sim-Diasca [7] stands for Simulation of Discrete Systems of All
Scales. It is a lightweight simulation platform, released by EDF
R&D under the GNU LGPL, offering a set of simulation elements,
including notably a simulation engine, to be applied to the simu-
lation of discrete event-based systems made of potentially numer-
ous interacting parts. This class of simulation encompasses a wide
range of target systems, from ecosystems to information systems,
i.e., it could be used for most applications in the so-called com-
plex systems scientific field. A classical use case for Sim-Diasca is
the simulation of industrial distributed systems federating a large
number of networked devices.

The simulator is designed to be parallel both on a single node
(multiple models can be evaluated simultaneously by the available
cores) and on a distributed system (a simulation can take place
over a set of networked computation nodes), and all this without
hurting the properties deemed important but difficult to preserve in
that context, such as:

• the correctness of the evaluation of models;
• the preservation of causality between simulation events; and
• the ability to have completely reproducible simulations.

Sim-Diasca can be used to simulate any kind of complex dis-
crete system and has so far been used successfully to model two
projects related to the massive roll-out of communicating meters
for millions of residential customers. This flexibility comes from
the fact that the simulation engine is completely separate from the
models it can support and Sim-Diasca offers an extensive library
for the development of models.

sim diasca bench: The benchmark of Sim-Diasca is based on
a real-world scenario of power distribution networks, but it is still
under development as sensitive information needs to be cleaned out
before it can be included in our public suite. The simulator has al-
ready been tested with a mock model of the network but this model
is too lightweight to provide any useful scalability measurements.

6. Scalability Results
We now describe some of the experiments that we performed using
the benchmark suite. In this context, the experiments themselves
are not important, except as use cases for the benchmark suite. All
benchmarks were run on a machine with four AMD Opteron 6276
(2.3 GHz, 16 cores, 16M L2/16M L3 Cache), giving a total of 64
cores and 128 GB or RAM, running Linux 3.2.0-amd64.

Experience #1: Some benchmarks already scale well.
A typical representative of our first experience is the big bench-

mark. We executed the long version of the benchmark (1536 pro-
cesses) using 1 to 64 schedulers in Erlang/OTP R15B01, and we

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70

T
im

e
 (

m
s
)

Schedulers

big - R15B01 - DEFARGS

([1536])

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Schedulers

big - R15B01 - DEFARGS

([1536])

Figure 3. Running the long version of the big benchmark with
Erlang/OTP R15B01 on a different number of schedulers.

specified a number of 5 iterations, in order to get more accurate
measurements. The results are shown in Figure 3 and it is obvious
why big is the most used benchmark in presentations that show how
well Erlang scales on big multicores. Its speedup reaches a factor
of 43 with 64 schedulers.

Experience #2: Some benchmarks scale well only in one node.
We experimented with the orbit int benchmark on two dimen-

sions: (a) on a single node with 1 to 64 schedulers, and (b) on 1 to
64 nodes with 1 scheduler each. We used the long version of the
benchmark (space of size 10048, 128 workers, 4 generators, with
or without intra-worker parallelism) in both experiments. Based on
the results of the first experiment, shown in Figure 4, the execu-
tion time of the benchmark continuously decreases as we add more
schedulers to it. On the other hand, the behaviour of the benchmark,
when we used more than one nodes to execute it, was not what we
expected (see Figure 5); the execution time increases when 8 or
more nodes are used and we suspect that creating more nodes on a
single machine is not as effective as using more schedulers..

Experience #3: Some benchmarks do not scale.
A different set of benchmarks shows that some concurrent pro-

grams do not scale well at all, some for reasons that are obvious and
some for reasons that may elude us for long. The parallel bench-
mark belongs to the latter subcategory. As Figure 6 shows, with
each additional core, we witness a significant slowdown in this
benchmark, up to 8 cores where something changes and we have
a small speedup until 32 cores, and then again a slowdown.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70

T
im

e
 (

m
s
)

Schedulers

orbit_int - R15B01 - DEFARGS

([true,#Fun<bench.g1245.1>,10048,128])
([false,#Fun<bench.g1245.1>,10048,128])

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Schedulers

orbit_int - R15B01 - DEFARGS

([true,#Fun<bench.g1245.1>,10048,128])
([false,#Fun<bench.g1245.1>,10048,128])

Figure 4. Running the long version of the orbit int benchmark
with Erlang/OTP R15B01 on a different number of schedulers, with
and without intra-worker parallelism.

The benchmark is very simple and seems to be very similar
to ran, which scales almost as well as big. There is a very small
difference, easily overlooked, that explains this behaviour. In order
to make timestamps, parallel invokes the function erlang:now/0,
whose implementation acquires a global lock for returning a unique
timestamp. This lock is precisely the bottleneck in the VM that
obstructs the scalability for this benchmark.

Experience #4: Different command-line options and scalability.
Dialyzer is an example of an application that scales relatively

well. In order to investigate how the scheduler bind type affects
scalability, we ran the dialyzer bench benchmark with two dif-
ferent values for the +sbt emulator flag which is used to deter-
mine the scheduler bind type: with the value u, which indicates
that schedulers will not be bound to logical processors, and with
the value tnnps, which indicates that schedulers will be spread
over hardware threads across NUMA nodes, but only over proces-
sors of one NUMA node at a time. As shown in Figure 7, the di-
alyzer bench benchmark performs better when there is no binding
between schedulers and logical processors.

Experience #5: Different Erlang/OTP releases and scalability.
In April 2012, there were complaints on the Erlang mailing

list from the development team of Scalaris that the performance
of their application in Erlang/OTP R15B and R15B01 dropped, in
comparison to its performance in R14B04. In order to reproduce the
experience reported, we ran the long version of the scalaris bench

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70

T
im

e
 (

m
s
)

Nodes

orbit_int - R15B01 - DEFARGS

([true,#Fun<bench.g1245.1>,10048,128])
([false,#Fun<bench.g1245.1>,10048,128])

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Nodes

orbit_int - R15B01 - DEFARGS

([true,#Fun<bench.g1245.1>,10048,128])
([false,#Fun<bench.g1245.1>,10048,128])

Figure 5. Running the long version of the orbit int benchmark
with Erlang/OTP R15B01 on a different number of nodes with 1
scheduler each, with and without intra-worker parallelism.

benchmark (32 nodes, 64 threads per node, 1024 reads per thread).
Figure 8 shows that the performance of Scalaris indeed deteriorates
in Erlang/OTP R15B and R15B01, compared to its performance in
R14B04, especially beyond 16 schedulers.

7. Extending the Benchmark Suite
As mentioned, the benchmark suite is designed to be enhancable
with new benchmarks, both synthetic and real-world. This section
describes the steps that must be followed to add a new benchmark
to the suite.

If the benchmark is written for a real-world, open-source ap-
plication, one can add this application in a directory under the
suite’s app/ directory. This helps the benchmark suite to be self-
contained. It also allows the target application to be built and run
with the same Erlang/OTP as the benchmark.

The first step is to create a directory for the benchmark under
bench/. This is where everything related to the new benchmark
will end up.

The next step is to create a src/ sub-directory in the new
benchmark directory and put there the benchmark’s source code.
One needs to write a handler for the benchmark, which needs to be
added to the same directory. A benchmark handler is a standard
Erlang module that has the same name as the benchmark and
exports two functions: bench_args/2 and run/3. It is essentially
the module with which the executor interacts when it executes this
benchmark.

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60 70

T
im

e
 (

m
s
)

Schedulers

parallel - R15B01 - DEFARGS

([70016,640])

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Schedulers

parallel - R15B01 - DEFARGS

([70016,640])

Figure 6. Running the long version of the parallel benchmark with
Erlang/OTP R15B01.

Function bench_args/2 has the following signature:

bench_args(Vrsn, Conf) -> Args
when
Vrsn :: ’short’ | ’intermediate’ | ’long’,
Conf :: [{Key :: atom(), Val :: term()}, ...],
Args :: [[term()]].

It returns the different argument sets that should be used to run this
version (Vrsn) of the benchmark. Information from the configu-
ration (Conf) of the benchmark can be used (e.g., the number of
available cores), in order to generate an appropriate argument set
for each execution environment. For example, the orbit int bench-
mark defines bench_args/2 as shown below:

bench_args(Vrsn, Conf) ->
{_,Cores} = lists:keyfind(number_of_cores, 1, Conf),
[G0,N0,W0] = bench_args_aux(Vrsn),
[[IWP,G,N,W] || IWP <- [true,false], G <- [G0],

N <- [N0 * Cores], W <- [W0 * Cores]].

bench_args_aux(Vrsn) ->
case Vrsn of
short -> [fun bench:g13/1, 11, 2];
intermediate -> [fun bench:g124/1, 157, 2];
long -> [fun bench:g1245/1, 157, 2]

end.

The parameters G, N and W are different for each size. On the other
hand, the benchmark is run both with enabled and with disabled

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 2 4 6 8 10 12 14 16

T
im

e
 (

m
s
)

Schedulers

dialyzer_bench - R15B01

(TNNPS,[plt])
(TNNPS,[otp])

(U,[plt])
(U,[otp])

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Schedulers

dialyzer_bench - R15B01

(TNNPS,[plt])
(TNNPS,[otp])

(U,[plt])
(U,[otp])

Figure 7. Running the dialyzer bench benchmark, first to build
a PLT and then to analyze all the Erlang libraries, with
Erlang/OTP R15B01 and different scheduler bind types (u and
tnnps).

intra-worker parallelism (i.e., with the parameter IWP being first
set to true and then to false).

Function run/3 has the following signature:

run(Args, Slaves, Conf) -> ’ok’ | {’error’, Reason}
when
Args :: [term()],
Slaves :: [node()],
Conf :: [{Key :: atom(), Val :: term()}, ...],
Reason :: term().

It uses the arguments in Args, the slave nodes in Slaves and the
settings in Conf to run the benchmark. For example, the following
is the definition of run/3 in the orbit int benchmark:

run([true,G,N,W|_], [], _) ->
io:format("~p~n", [bench:par(G,N,W)]);

run([false,G,N,W|_], [], _) ->
io:format("~p~n", [bench:par_seq(G,N,W)]);

run([true,G,N,W|_], Slaves, _) ->
io:format("~p~n", [bench:dist(G,N,W,Slaves)]);

run([false,G,N,W|_], Slaves, _) ->
io:format("~p~n", [bench:dist_seq(G,N,W,Slaves)]).

This function ignores Conf, and uses Args and Slaves, in order to
calculate the orbit and display its size. Depending on whether intra-
worker parallelism is enabled or not, and whether the benchmark is
to run on multiple nodes, the appropriate function of module bench
is called.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0 10 20 30 40 50 60 70

T
im

e
 (

m
s
)

Schedulers

scalaris_bench - DEFARGS

(R14B04,[64,1024,32])
(R15B01,[64,1024,32])

(R15B,[64,1024,32])

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Schedulers

scalaris_bench - DEFARGS

(R14B04,[64,1024,32])
(R15B01,[64,1024,32])

(R15B,[64,1024,32])

Figure 8. Running the long version of scalaris bench, with
Erlang/OTP R14B04, R15B and R15B01.

Each benchmark directory can also contain a conf/ directory.
If the user wants to specify a specific run configuration for the
benchmark (that will override the run configuration of the suite),
he can add a bench.conf file in the conf/ sub-directory of the
benchmark directory, and specify all the settings in it. Apart from
this file, the conf/ directory can also contain two more files: a
pre_bench and post_bench file. These files serve as “hooks”
that are called before and after the execution of a benchmark in
a new runtime environment, respectively. Finally, in case the new
benchmark needs external data, these can be placed in a data/ sub-
directory.

8. Concluding Remarks and Future Work
We introduced a benchmark suite for Erlang applications that can
be used to analyze their scalability, rather than their performance.
We have identified nodes, cores, schedulers, Erlang/OTP versions
and erl command-line arguments (i.e., run options) as the different
dimensions that might affect the scalability of an application.

Although at the moment we can use the suite to get a pretty
good idea about whether an application scales well under certain
conditions, if an application does not scale well, the suite does not
provide enough information to understand what is actually wrong.
Thus, we are planning to extend the suite so that it collects more
information during the execution of a benchmark (perhaps by using
the tracing mechanism of Erlang or by taking advantage of the
DTrace support that has been recently added in Erlang/OTP).

Acknowledgments
This work has been supported by the European Union grant IST-
2011-287510 “RELEASE: A High-Level Paradigm for Reliable
Large-scale Server Software”.

We thank Kenneth Lundin, Rickard Green and Patrik Nyblom
for sending us the first versions of the synthetic benchmarks,
Patrick Maier for sending us the Orbit benchmark, Nico Cruber
for helping us with the benchmarking of Scalaris, and Olivier
Boudeville for Sim-Diasca.

References
[1] S. Aronis and K. Sagonas. On using Erlang for parallelization: Expe-

rience from parallelizing dialyzer. In draft proceedings of the Sympo-
sium on Trends in Functional Programming, June 2012.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, R. L. Carter, T. A. Lasinski,
D. S. Browning, L. Dagum, R. A. Fatoohi, P. O. Frederickson, and
R. S. Schreiber. The NAS parallel benchmarks. International Journal
of High Performance Computing Applications, 5(3):63–73, 1991.

[3] Basho Bench. Basho: Benchmarking. URL http://wiki.basho.
com/Benchmarking.html.

[4] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, Jan. 2011.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the 21st annual ACM SIGPLAN conference on
Object-Oriented Programing, Systems, Languages, and Applications,
pages 169–190, New York, NY, USA, Oct. 2006. ACM Press. doi:
10.1145/1167473.1167488.

[6] A. B. Bondi. Characteristics of scalability and their impact on perfor-
mance. In Proceedings of the 2nd International Workshop on Software
and Performance, pages 195–203, Ottawa, Ontario, Canada, 2000.
ACM. doi: 10.1145/350391.350432.

[7] O. Boudeville. Technical Manual of the Sim-Diasca Simulation En-
gine. EDF R&D, 2012.

[8] O. Boudeville, F. Cesarini, N. Chechina, K. Lundin, N. Papaspyrou,
K. Sagonas, S. Thompson, P. Trinder, and U. Wiger. RELEASE: a
high-level paradigm for reliable large-scale server software. In draft
proceedings of the Symposium on Trends in Functional Programming,
June 2012.

[9] HaBench. Habench: Haskell benchmark suite. URL http://www.
haskell.org/haskellwiki/HaBench.

[10] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story. In W.-
N. Chin, editor, APLAS, volume 3302 of Lecture Notes in Computer
Science, pages 91–106. Springer, 2004. ISBN 3-540-23724-0. doi:
10.1007/978-3-540-30477-7 7.

[11] NAS. NAS parallel benchmarks. URL http://www.nas.nasa.
gov/publications/npb.html.

[12] nobench. The nobench suite of benchmark programs. URL http:
//code.haskell.org/nobench/.

[13] B. O’Sullivan. Criterion, an improved Haskell benchmarking li-
brary. URL http://www.serpentine.com/blog/2009/11/
06/criterion-0-2-an-improved-haskell-benchmarking-
library.

[14] W. Partain. The nofib benchmark suite of Haskell programs. In Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming,
pages 195–202, London, UK, 1993. Springer-Verlag. ISBN 3-540-
19820-2.

[15] D. M. Peixotto. The fibon package. URL http://hackage.
haskell.org/package/fibon.

[16] A. Reinefeld, F. Schintke, T. Schütt, and S. Haridi. A scalable,
transactional data store for future internet services. In G. Tselentis,
J. Domingue, A. Galis, A. Gavras, D. Hausheer, S. Krco, V. Lotz,
and T. Zahariadis, editors, Towards the Future Internet: A European
Research Perspective, pages 148–159. IOS Press, 2009. ISBN 978-1-
60750-007-0. doi: 10.3233/978-1-60750-007-0-148.

[17] Riak. Riak. URL http://wiki.basho.com/Riak.html.
[18] T. Schütt, F. Schintke, and A. Reinefeld. A structured overlay for

multi-dimensional range queries. In A.-M. Kermarrec, L. Bougé, and
T. Priol, editors, Euro-Par, volume 4641 of Lecture Notes in Computer
Science, pages 503–513. Springer, 2007. ISBN 978-3-540-74465-8.

[19] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: reliable transac-
tional P2P key/value store. In Proceedings of the 7th ACM SIGPLAN
workshop on Erlang, pages 41–48, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-065-4. doi: 10.1145/1411273.1411280.

[20] Y. Zhang. Hackbench, 2008. URL http://people.redhat.com/
mingo/cfs-scheduler/tools/hackbench.c.

http://wiki.basho.com/Benchmarking.html
http://wiki.basho.com/Benchmarking.html
http://www.haskell.org/haskellwiki/HaBench
http://www.haskell.org/haskellwiki/HaBench
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://code.haskell.org/nobench/
http://code.haskell.org/nobench/
http://www.serpentine.com/blog/2009/11/06/criterion-0-2-an-improved-haskell-benchmarking-library
http://www.serpentine.com/blog/2009/11/06/criterion-0-2-an-improved-haskell-benchmarking-library
http://www.serpentine.com/blog/2009/11/06/criterion-0-2-an-improved-haskell-benchmarking-library
http://hackage.haskell.org/package/fibon
http://hackage.haskell.org/package/fibon
http://wiki.basho.com/Riak.html
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

	Introduction
	Related Work
	Dimensions in Benchmarking
	Benchmarking Infrastructure
	Overview
	Current directory structure
	Architecture and what goes on behind the scenes
	The coordinator
	The executor
	The sanity checker
	The graph plotter

	Benchmarks
	Synthetic benchmarks
	Dialyzer benchmarks
	Scalaris benchmarks
	Sim-Diasca benchmark

	Scalability Results
	Extending the Benchmark Suite
	Concluding Remarks and Future Work

