
bencherl: A scalability benchmark suite for
Erlang/OTP

Stavros Aronis1 Nikolaos Papaspyrou2 Katerina Roukounaki2

Konstantinos Sagonas1,2 Yiannis Tsiouris2 Ioannis Venetis2

1Department of Information Technology, Uppsala University, Sweden

2School of Electrical and Computer Engineering, National Technical University of Athens,
Greece

Erlang Workshop 2012, Copenhagen

1 / 23

Motivation

Frustrated Erlang programmer

I thought my Erlang program was 100% parallelizable, but when I made
it parallel and ran it on a machine with N CPU cores, I got a speedup
that was much lower than N. Why?

2 / 23

bencherl

Serves both as a tool to run and analyze benchmarks and as an
enhanceable benchmark repository

Focuses on scalability, rather than on throughput or latency

Examines how the following factors influence the scalability of Erlang
applications

Number of Erlang nodes
Number of CPU cores
Number of schedulers
Erlang/OTP releases and flavors
Command-line arguments to erl

Can be used to study the performance of any Erlang application, as
well as the Erlang/OTP itself

3 / 23

Definitions

Application: The piece of software whose execution behaviour we intend
to measure and analyze.

Benchmark: A specific use case of the application that includes setting
up the environment, calling specific functions and using specific data.

Runtime environment: A specific combination of values for the
scalability factors. E.g.

8 Erlang nodes

each node runs on a machine with 8 CPU cores

each node uses 8 schedulers

each node runs the R15B02 release of Erlang/OTP

each node passes “+sbt db” as command-line arguments to erl

4 / 23

Architecture

5 / 23

Coordinator
The module that coordinates everything during a bencherl run.

Determines the benchmarks that should be executed

Determines the runtime environments, where each benchmark should
be executed

Sets up each runtime environment before a benchmark is executed

Prepares instruction files for the executor

Performs any benchmark-specific pre- and post-execution actions

6 / 23

Executor
The module that executes a particular benchmark in a particular runtime
environment.

Receives detailed instructions from the executor about what to do

Starts any necessary Erlang slave nodes

Executes the benchmark in a new process

Stops the Erlang slave nodes it started

Makes sure that the output produced by the benchmark during its
execution is written in an output file

Makes sure that the measurements collected during the execution of
the benchmark are written in a measurement file

Uses erlang:now/0 and timer:diff/2

7 / 23

Sanity checker
The module that checks whether all executions of a particular benchmark produced
the same output.

Runs after a benchmark has executed in all desired runtime
environments

Examines the output produced by the benchmark in all runtime
environments

Decides whether the benchmark was successfully executed in all
runtime environments

Is based on the assumption that if a benchmark produces any output
during its execution, then this output should be the same across all
runtime environments, where the benchmark was executed

Uses diff

8 / 23

Graph plotter
The module that plots scalability graphs based on the collected measurements.

Runs after a benchmark has executed in all desired runtime
environments

Processes the measurements that were collected during the execution
of the benchmark

Plots a set of scalability graphs

Uses gnuplot

9 / 23

Scalability graphs

Both time and speedup graphs

Graphs that show how benchmarks scale when executed with a
specific version of Erlang/OTP and command-line arguments and
with a different number of schedulers (nodes)

Graphs that show how benchmarks scale when executed with a
specific version of Erlang/OTP and with different number of
schedulers (nodes) and runtime options

Graphs that show how benchmarks scale when executed with a
specific runtime options and with different number of schedulers
(nodes) and versions of Erlang/OTP

10 / 23

Benchmarks

bencherl comes with an initial collection of benchmarks.

synthetic

bang

big

ehb

ets test

genstress

mbrot

orbit int

parallel

pcmark

ran

serialmsg

timer wheel

real-world

dialyzer bench

scalaris bench

This collection can be extended in two simple steps.

11 / 23

Step 1: Add in bencherl everything that the benchmark
needs for its execution.

The sources of the Erlang application that it benchmarks

E.g. dialyzer

Any scripts to run before or after its execution

E.g. a script that starts scalaris

Any data that it needs for its execution

E.g. for dialyzer bench the BEAM files

Any specific configuration settings that it requires

E.g. a specific cookie that nodes should share

12 / 23

Step 2: Write the handler for the benchmark.

A benchmark handler is a standard Erlang module exporting two functions.

bench args: a function that returns the different argument sets that
should be used for running a specific version of the benchmark

bench_args(Vrsn, Conf) -> Args

when

Vrsn :: ’short’ | ’intermediate’ | ’long’,

Conf :: [{Key :: atom(), Val :: term()}, ...],

Args :: [[term()]].

run: a function that runs the benchmark on specific Erlang nodes,
with specific arguments and configuration settings

run(Args, Slaves, Conf) -> ’ok’ | {’error’, Reason}

when

Args :: [term()],

Slaves :: [node()],

Conf :: [{Key :: atom(), Val :: term()}, ...],

Reason :: term().

13 / 23

A benchmark handler example

-module(scalaris_bench).

-include_lib("kernel/include/inet.hrl").

-export([bench_args/2, run/3]).

bench_args(Version, Conf) ->

{_, Cores} = lists:keyfind(number_of_cores, 1, Conf),

[F1, F2, F3] = case Version of

short -> [1, 1, 0.5];

intermediate -> [1, 8, 0.5];

long -> [1, 16, 0.5]

end,

[[T,I,V] || T <- [F1 * Cores], I <- [F2 * Cores], V <- [trunc(F3 * Cores)]].

run([T,I,V|_], _, _) ->

{ok, N} = inet:gethostname(),

{ok, #hostent{h_name=H}} = inet:gethostbyname(N),

Node = list_to_atom("firstnode@" ++ H),

rpc:block_call(Node, api_vm, add_nodes, [V]),

io:format("~p~n", [rpc:block_call(Node, bench, quorum_read, [T,I])]),

ok.

14 / 23

Experience #1: Some benchmarks scale well.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

S
p

e
e

d
u

p

Schedulers

big - R15B01 - DEFARGS

([1536])

15 / 23

Experience #2: Some benchmarks do not scale well on
more than one node.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

S
p

e
e

d
u

p

Schedulers

orbit_int - R15B01 - DEFARGS

([true,#Fun<bench.g1245.1>,10048,128])
([false,#Fun<bench.g1245.1>,10048,128])

16 / 23

Experience #2: Some benchmarks do not scale well on
more than one node.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

S
p

e
e

d
u

p

Nodes

orbit_int - R15B01 - DEFARGS

([true,#Fun<bench.g1245.1>,10048,128])
([false,#Fun<bench.g1245.1>,10048,128])

17 / 23

Experience #3: Some benchmarks do not scale.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

S
p

e
e

d
u

p

Schedulers

parallel - R15B01 - DEFARGS

([70016,640])

18 / 23

Experience #4: Some benchmarks scale better with
specific runtime options.

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Schedulers

dialyzer_bench - R15B01

(TNNPS,[plt])
(TNNPS,[otp])

(U,[plt])
(U,[otp])

19 / 23

Experience #5: Some benchmarks scale better with
specific Erlang/OTP releases.

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

S
p

e
e

d
u

p

Schedulers

scalaris_bench - DEFARGS

(R14B04,[64,1024,32])
(R15B01,[64,1024,32])

(R15B,[64,1024,32])

20 / 23

Conclusions

bencherl is a publicly available scalability benchmark suite for
Erlang/OTP

⇒ http://release.softlab.ntua.gr/bencherl

Examines how nodes, cores, schedulers, Erlang/OTP versions and erl

command-line options affect the scalability of Erlang applications

Collects scalability measurements

Plots scalability graphs

Serves as a benchmark repository, where people can add their own
benchmarks, so that they can be accessed and used by other people

21 / 23

Future work

bencherl currently collects only execution times

⇒ Collect more information during the execution of a benchmark (e.g.
heap size)

bencherl currently can only answer questions like
“Does this application scale well for this scenario?”

⇒ Try to answer questions like
“Why doesn’t this application scale well for this scenario?”

bencherl could use DTrace

22 / 23

Thank you!

23 / 23

