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ABSTRACT

The dynamic proxy API is one of Java’s most widely-used dynamic

features, permitting principled run-time code generation and link-

ing. Dynamic proxies can implement any set of interfaces and for-

ward method calls to a special object that handles them reflectively.

The flexibility of dynamic proxies, however, comes at the cost of

having a dynamically generated layer of bytecode that cannot be

penetrated by current static analyses.

In this paper, we observe that the dynamic proxy API is stylized

enough to permit static analysis. We show how the semantics of

dynamic proxies can be modeled in a straightforward manner as

logical rules in the Doop static analysis framework. This concise set

of rules enables Doop’s standard analyses to process code behind

dynamic proxies. We evaluate our approach by analyzing XCorpus,

a corpus of real-world Java programs: we fully handle 95% of its

reported proxy creation sites. Our handling results in the analysis

of significant portions of previously unreachable or incompletely-

modeled code.
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· Software and its engineering→Compilers;General program-

ming languages; · Theory of computation → Program analy-

sis;
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1 INTRODUCTION

Modern mainstream languages, such as Java and C#, are statically

typed, yet with extensive dynamic features. Reflection and dynamic

loading are the chief features permitting access to data and code of

types unknown at program compilation time. These features are

responsible for much of the real-world value of the host languages.
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Java, for instance, has dominated server-side computing, with a

large part of its appeal deriving from dynamic features: Reflection

allows flexible frameworks that apply to unknown classes, yet

interface with them seamlessly. Dynamic loading enables libraries

that generate on-the-fly glue code for interfacing with distributed

entities, data stores, and other environmental resources. These

dynamic features, as well as others (such as the policy of lazy

loading of interfaces) permit the enhancement of running code

without needing to restart itÐan invaluable feature in enterprise

environments.

Reflection and dynamic loading add flexibility to a language but

make it hard to analyze statically, since the semantics of operations

depend on the dynamic flow of values. This is the Achilles’ heel

of modern static analysis frameworks. Most research tools ignore

dynamic features, resulting in significant unsoundness of their

modeling [32]. In particular, static analysis of the reflection API has

attracted significant research effort [13, 27, 28, 31, 33, 48]. However,

dynamic loading, although prevalent in practice, has enjoyed far

less attention.

The majority of practical uses of dynamic loading occur through

the dynamic proxy API [41]: a standard Java library facility that

allows defining invocation handler code (effectively, a dynamically-

typed interpreter of calls, through a generic invoke method) for

a set of methods. The library generates a proxy class supporting

statically-typed calls to these methods, yet forwarding the calls to

the (dynamically typed) handler method.

Since its introduction in Java 1.3, more than 17 years ago, the

dynamic proxy API has become ubiquitous. A large spectrum of

vanilla applications and libraries now routinely employ dynamic

loading, hidden behind the library API and often unbeknownst to

the application programmers. In a recent survey of 461 open-source

Java projects [26], Landman et al. find that 21% of them use dynamic

proxies. The dynamic proxy API is so powerful that it has found

a myriad of uses: it can efficiently implement its namesake design

pattern [57], aspect-oriented programming features [4, 7, 46], object

algebras [37], and meta-object protocols [19]; it can support design

by contract [10], futures [44] and behavioral types [34]; it underlies

the dynamic deployment of application components [14], mobile or

distributed Java objects [3, 20, 53, 55], and typed publish/subscribe

facilities [12]; it can be used to build modular interpreters [22]

and in general to refactor for modularity [8]; it is leveraged for

interoperability between languages [21]. Dynamic proxying is also

present in Android [2], where the execution environment is locked

down and applications have fewer tools at their disposal to do

dynamic code generation. Android apps frequently have to resort to

the dynamic proxy API to create new classes or implement dynamic

features [1, 52]. The dynamic proxy capability can also be a security

threat as recent Android malware uses such proxies [35, 42].
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The dynamic proxy API owes its power to its dynamism. Thus,

uses of the API present a problem for static analyses: the API essen-

tially creates at runtime additional bytecode that does reflection,

thus negating many of the assumptions that static analysis tools

are based on. In their survey, Landman et al. find proxies to be

łvery harmful for static analysisž, recommending to programmers

to łavoid the use of dynamic proxies at any costž (for statically-

analyzable software), and assess that łno clear solution seems to be

on the horizonž [26]. Indeed, there is little past work on static anal-

ysis of proxies, and only in a domain-specific context [44] (analysis

of transparency violations for proxies used to implement futures).

Concretely, the dynamically-created layer of reflective indirection

can make code appear unreachable and casts appear impossible,

generally inhibiting analysis.

In this paper, we tackle the static modeling of the Java dynamic

proxy API.Wemodel the behavior of dynamic proxies in the general

setting of points-to analysis, at the level of Java bytecode. Points-to

analysis forms the substrate of other program analyses, determining

how object values flow inter-procedurally, via the stack (method

calls/returns) and the heap (field loads/stores). Therefore, our tech-

niques can be leveraged by virtually any practical static analysis.

This is the first general-purpose static analysis modeling of the

dynamic proxy API, i.e., a full capture of the semantic effect of

dynamic proxies on object flow and methods called.

Our analysis is built on the Doop [6] framework, which expresses

analysis algorithms as Datalog logical rules. Modeling of dynamic

proxies is done in mutual recursion with the underlying points-to

analysis logic. Thus, the semantics of dynamic proxy operations

appeal to inferences made by points-to analysis (e.g., values of vari-

ables, methods called at a virtual call site) while they also result in

fresh points-to analysis inferences (abstract proxy objects propa-

gating to program variables, invocation handlers being called). We

handle semantic complexities such as implicit boxing and unbox-

ing for primitive values and appeal to existing algorithms for the

handling of reflection.

We evaluate the analysis on XCorpus, a corpus of modern real

Java programs with an explicit goal of being a target for analyz-

ing dynamic proxies [9]. XCorpus offers several benefits: it is a

sizeable corpus and it supplies ground-truth information, which is

invaluable for a rigorous evaluation.

We find the approach to be effective in capturing the semantic

implications of dynamic proxies. We capture most uses of dynamic

proxies (originating from 95% of proxy creation sites), i.e. hidden

call-graph edges to the łinvocation handlerž objects associated with

each proxy. We only miss the invocations on one dynamic proxy

creation site due to missing XCorpus entry points. We also examine

two case studies of programs that show the analysis of dynamic

proxies in more detail.

2 JAVA DYNAMIC PROXIES

This section presents the basics of Java dynamic proxies and shows

why a static analysis can encounter problems in code that uses

proxies.

2.1 Use of Proxies

The Java Dynamic Proxy API [41] captures the idiom of generating

a new class, with a dynamically selected set of methods and dynam-

ically determined method implementations. The class can conform

to any static API it chooses, expressed as a set of interfaces. These

interfaces provide the linkage to the statically compiled code: the

rest of the code can call the methods of the generated class through

these interfaces. (Typically each interface is statically known, but

which interfaces the dynamically generated class implements may

vary per execution.) The actual implementation of the methods is

provided via a generic handler, which accepts a method identifier

(a.k.a., a reified method) and packaged arguments, and determines

how to proceed.

In detail, a dynamic proxy class for a set of interfaces, ins, is a

dynamically generated Java class that is guaranteed to implement

all interfaces in ins, i.e. it supports all methods declared in the

interfaces. This class can then be instantiated to create a dynamic

proxy instance by passing it an invocation handler, h. The proxy

(produced by the library) forwards all calls to the interface methods

to the invoke method of the handler, with appropriate packaging

of arguments [40].

There are two equivalent ways to create a dynamic proxy in-

stance for some interface I:

ClassLoader c = ...

Class <?>[] ins = new Class <?> { I.class };

InvocationHandler h = ...

// (1) Create dynamic proxy class and

// instance at the same time.

I obj = (I)Proxy.newProxyInstance(c, ins , h);

// (2) Create dynamic proxy class and

// instantiate it via reflection.

I obj = (I)Proxy.getProxyClass(c, ins)

.getConstructor(InvocationHandler.class)

.newInstance(h);

The extra class loader passed above is used for security checks and

to load the generated proxy class.

In current Java platforms, both ways to create proxies perform

the same two operations:

(1) They internally call getProxyClass0(c, ins) which creates

the dynamic proxy class (or finds it cached if it has already

been generated). The actual low-level dynamic code genera-

tion is done in sun.misc.ProxyGenerator.generateClassFile()

(OpenJDK) or in java.lang.reflect.Proxy.generateProxy()

(Android).

(2) They call the constructor of this new class and pass it the

invocation handler, to complete the instantiation of the dy-

namic proxy instance.

2.2 Static Analysis Problems

Insufficient modeling of proxies in a static analysis produces con-

crete problems of two kinds.

Problem 1: Impossible casts. Without a static analysis, we

only know that both newInstance() and newProxyInstance() return

Object values. Such a value at some point has to be cast to one of

the expected interfaces, such as I in our example. Here lies the first

problem when performing static analysis on this code: how do we
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know that this cast can succeed? The semantics of the proxy has to

appeal to the handling of values in array ins, which contains the

reified class value I.class.

Problem 2: Reifiedmethods and unreachable code. Assum-

ing that we have solved the problem above, we can proceed to

treat obj as if it implemented interface I. Now a second problem

appears: calling one of the interface methods on the dynamic proxy

instance leads nowhere. An analysis unaware of dynamic proxies

has no sources for the dynamically generated proxy classes, and

thus sees a proxy instance as a black box that cannot be further

analyzed. The semantics of dynamic proxies should help us here

and inform the analysis that such an instance would simply be

a stylized wrapper on top of an invocation handler. Thus, for an

analysis to process methods of proxy objects, we must tell it about

either the dynamically generated code or the intended semantics

of proxies.

2.3 Realistic Example

We will next examine a real-world example of the use of dynamic

proxies. In addition to illustrating the API, the example serves to

emphasize that practical uses of dynamic proxies are often convo-

luted and in code that also heavily employs reflection. Therefore

any modeling of dynamic proxies has to be performed in conjunc-

tion with an analysis that has a good handling of the flow of values

through a program, as well as a modeling of reflection operations.

Consider the following code fragment, heavily simplified but

capturing a pattern in OkHttp [50]: a popular HTTP client library.

(The original code spans 3 different methods, contains extra argu-

ments to the reflective and proxy calls, handles exceptions, and

more.) To achieve multi-platform compatibility, the library uses

the external library ALPN1 without making it a compile-time de-

pendency. Proxies address this need by enabling the handling of

methods in expected interfaces via dynamic code, in an invocation

handler.

// Handle the methods of ALPN's ClientProvider and

// ServerProvider without a compile -time dependency

// on those interfaces.

class JettyNegoProvider implements InvocationHandler {

public Object invoke(Object proxy , Method method ,

Object [] args) {

String methodName = method.getName (); ...

if (methodName.equals("supports")) {...}

else if (methodName.equals("unsupported")) {...}

else if (methodName.equals("protocols")) {...}

else if ...

else { return method.invoke(this , args); }

}

}

String name = "org.eclipse.jetty.alpn.ALPN";

Class <?> clientClass =

Class.forName(name + "$ClientProvider");

Class <?> serverClass =

Class.forName(name + "$ServerProvider");

Object provider =

Proxy.newProxyInstance(Platform.class.getClassLoader (),

new Class[] {clientClass , serverClass},

new JettyNegoProvider ());

Class <?> negoClass = Class.forName(name);

Class <?> providerClass =

1http://www.eclipse.org/jetty/documentation/9.4.x/alpn-chapter.html

Class.forName(name + "$Provider");

Method putMethod =

negoClass.getMethod("put", providerClass);

putMethod.invoke(null , provider); // regular reflection

The top part of the code is the invocation handler class,

JettyNegoProvider. As can be seen, the invoke method, to

which all proxied methods will dispatch, is effectively an

interpreter, dynamically looking up the identities of called

methods and handling them. The handling often involves re-

flection (e.g., method.invoke). The class handles methods of

both interfaces org.eclipse.jetty.alpn.ALPN$ClientProvider and

org.eclipse.jetty.alpn.ALPN$ServerProvider. The second part of

the code establishes the connection, via dynamic proxies. It first

reifies the two interfaces and asks the system for a proxy that for-

wards to the invocation handler all calls to the interfaces’ methods.

The proxy class is generated dynamically, loaded, and instantiated

to yield an object that is the value of provider.

Finally, this object (of a dynamic type that never appears in

the program’s source) is registered with class jetty.alpn.ALPN us-

ing regular reflection operations: the reified class object is looked

up (and stored in variable negoClass), its static put method is also

looked up (after retrieving in providerClass the static type of its

argument), and finally that method is invoked to register the in-

stance of the proxy class. Note that the invoke call of the last line

results in a (reflective) call to method put and has no relationship

with the invoke call in the invocation handler. In fact, the last four

statements of the example are equivalent to straightforward Java

code:

org.eclipse.jetty.alpn.ALPN.put(provider);

However, the latter would introduce the precise compile-time

dependency that the library is trying to avoid.

We, thus, see that dynamic proxies are not a feature in isolation.

Their mere presence in the code indicates significantly dynamic

behavior, which is likely to also be associated with reflection. Con-

cretely, for a points-to analysis to reason about this code, it has

to (a) understand reflection objects (e.g., Method, Class), (b) reason

about such objects produced by operations involving substrings

(such as "$ClientProvider"), and finally (c) reason about the seman-

tics of dynamic proxies.

3 MODELING DYNAMIC PROXIES

We next present a high-level model of our analysis of dynamic

proxies.

3.1 Model

Our support for dynamic proxies is implemented in Doop [6]: a

static analysis framework, built around points-to analysis algo-

rithms, that encodes its analyses declaratively, in the Datalog lan-

guage. The use of Datalog for practical static analysis has a long

history (e.g., [5, 18, 23ś25, 29, 36, 45, 49, 58, 59]). The literature on

static analysis for reflection, in particular, is almost entirely based

on Datalog [27, 28, 31, 33, 48]. Datalog is also a good vehicle for

exposition of analysis logic, since it offers a much higher-level se-

mantic view than imperative algorithms. Accordingly, the latest

edition of the Java Virtual Machine specification [30, p.170-320]
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offers a Prolog/Datalog specification of the JVM verifier, using łEng-

lish language text [...] to describe the type rules in an informal way,

while the Prolog clauses provide a formal specification.ž

Our analysis logic is mutually recursive with a baseline analysis

of the flow of values through a programÐi.e., a points-to analysis

(for complex objects) and a substring analysis (for strings). That

is, the analysis for dynamic proxies appeals to inferences about

the values that program variables can take, and at the same time

produces new inferences about the values of program variables.

Datalog is a good fit for such recursive logic: the computational

backbone of the language is the definition of recursive relations.

Computation in Datalog consists of monotonic logical inferences

that apply to produce more facts until fixpoint. A Datalog rule

łC(z,x )← A(x ,y), B(y, z).ž means that if A(x ,y) and B(y, z) are both

true, then C(z,x ) can be inferred.

We next present a model of the dynamic proxy analysis, directly

appealing to the relations defined in an underlying analysis, just

as in our full implementation framework. (The Doop framework

has mature support for substring-flow, points-to, and reflection

analyses [48].)

The domains of the analysis comprise variables, V ; abstract ob-

jects/allocation sites, O ; invocation sites, I ; method signatures, S ;

types, T ; methods, M ; and natural numbers, N . The underlying

analysis (not shown, but standard in the literatureÐsee e.g., [47])

provides several rules for computing relations VarPointsTo(v :

V ,o : O), CallGraphEdge(i : I ,m : M), and ArrayContents-

PointTo(oarr : O,o : O). These relations encode the usual infer-

ences of an analysis that tracks the flow of values: which objects

a variable may point to, which methods may be called at a call

instruction, and which objects (any index of) an array may point

to. Notably, the VarPointsTo and ArrayContentsPointTo rela-

tions also capture substring flow: a variable is considered to point

to a substring if it may point to a string derived from that sub-

string (through any sequence of concatenation operations). Our

own model of dynamic proxies adds to the underlying rules, ex-

ploiting their inferences and adding new ones.

The entire analysis takes as input an intermediate representation

of the program text, the relevant parts of which are encoded in the

relations/tables shown in Figure 1. These relations are part of the

standard treatment of an object-flow analysis with reflection (e.g.,

[47, 48]).

Preliminaries. The first step of modeling dynamic proxies is to

provide new abstract objects. These objects represent proxy in-

stances as well as objects that get implicitly allocated in order to

hold the arguments to the invoke method of the proxy’s invocation

handler. The abstract objects are encoded in two new input relations,

shown in Figure 2. (In our actual implementation, these relations

are not part of the input, but computed before the main value-flow

analysis runs. However, this is a mere engineering concern and the

result is functionally equivalent to supplying the relations a priori.)

Logic Rules. Using the above abstract objects, our model of dy-

namic proxies captures the semantics of standard proxy operations:

newProxyInstance calls, which connect a proxy object to its handler,

and subsequent virtual calls (via an interface) to proxy methods,

which get delegated to the invocation handler. The analysis de-

rives two new relations, useful as intermediate conceptsÐshown in

Figure 3.

Over this schema, the analysis is captured in four logical rules.

We list and explain each of them individually. Note that rules can

have multiple predicates in the head, as a syntactic convenienceÐ

this is equivalent to replicating the rule body for each of the head

predicates.

VarPointsTo(vret ,oproxy ), ProxyObjectHandler(oproxy ,ohandler )

←

Call(i, "Proxy.newProxyInstance"), AssignRetValue(i,vret ),

ActualArg(i, 1,vifaces), ActualArg(i, 2,vhandler ),

VarPointsTo(vifaces,oifaces), VarPointsTo(vhandler ,ohandler ),

ArrayContentsPointTo(oifaces,oi ),

ReifiedType(ti ,oi ), ReifiedProxyInstance(ti , i,oproxy ).

In words, the rule says: if at a call site, i , of newProxyInstance

the analysis establishes that the interface argument points to an

array value, oifaces , that contains the meta object, oi , of interface

type ti , and if the handler argument points to object ohandler , then

a) the return value of the call, stored in variable vret , can take as

value the abstract object representing the dynamic proxy, oproxy ,

corresponding to the pair ti and i; b) the handler object, ohandler is

registered for this proxy object for use by later rules.

As can be seen, the rule both uses regular analysis inferences

(appealing toVarPointsTo twice and toArrayContentsPointTo)

and establishes new inferences for the VarPointsTo predicate.

The above rule handles the semantics of newProxyInstance calls.

The next part of the model deals with interface calls over proxies.

CallGraphEdge(i,minvoke),

VarPointsTo(vthis,ohandler ),

VarPointsTo(vproxy ,oproxy ),

VarPointsTo(vmeth,ometh),

VarPointsTo(vargs,oarr ),

ProxyCallInfo(i,minvoke,oarr )

←

Call(i,m), ActualArg(i, 0,vproxy ),

VarPointsTo(vproxy ,oproxy ),

ReifiedProxyInstance(_, inPI ,oproxy ),

ProxyObjectHandler(oproxy ,ohandler ),

ObjType(ohandler , thandler ),

Lookup("InvocationHandler.invoke", thandler ,minvoke),

FormalParam(minvoke, 0,vthis), FormalParam(minvoke, 1,vproxy ),

FormalParam(minvoke, 2,vmeth), FormalParam(minvoke, 3,vargs),

ReifiedMethod(m,ometh),

ReifiedHandlerArgArray(m, inPI ,oarr ).

Despite the daunting form of the rule, its meaning is straight-

forward, given the previously established predicates. It states that

when a call site, i , of a method is found to have a proxy receiver

object (0-th argument), oproxy , that was created at invocation site

inPI (a call to newProxyInstance), the analysis looks up the handler

for the proxy (using the previously-established predicate ProxyOb-

jectHandler) and finds the invokemethod in that handler, as well

as all its parameter variables. As a result, all parameter variables

are made to point to the appropriate objects (handler, proxy object,
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Call(i : I , s : S) instruction i is an invocation to a method with signature s

ActualArg(i : I ,n : N ,v : V ) at invocation i , the n-th parameter is local var v . For virtual calls, variable this is the 0-th

parameter
FormalParam(m : M,n : N ,v : V ) methodm has v as its n-th formal parameter. The receiver is the 0-th parameter for virtual

calls
AssignRetValue(i : I ,v : V ) at invocation i , the value returned is assigned to local variable v

ReturnVar(m : M,v : V ) v is the return variable (assumed single) of methodm

ObjType(o : O, t : T ) object o has type t

Lookup(s : S, t : T ,m : M) in type t there exists methodm with signature s

ReifiedType(t : T ,o : O) special object o represents the class meta-object of type t . Such special objects are created

up-front and are part of the input
ReifiedMethod(s : S,o : O) special object o represents the reflection object for method signature s

Figure 1: Relations representing the input program and their informal meaning.

ReifiedProxyInstance(tiface : T , i : I ,o : O) o is the abstract object representing dynamic proxies allocated at instruction i (a

newProxyInstance call), for interface type tiface
ReifiedHandlerArgArray(m : M, i : I ,oarr : O) array object oarr represents the argument array supplied to the invocation han-

dler’s invoke method, for calls to methodm (of a proxied interface) over proxy

objects created at instruction i (a newProxyInstance call)

Figure 2: Extra input relations for proxy instances and their argument arrays.

ProxyObjectHandler(oproxy : O,ohandler : O) abstract proxy object oproxy has its method calls handled by the invoke method

of object ohandler
ProxyCallInfo(i : I ,minvoke : M,oarr : O) call instruction i invokes a proxy method, whose implementation is provided

dynamically by calling (the handler’s) methodminvoke and passing it as argument

array oarr

Figure 3: Intermediate relations for proxy reasoning.

reified method, argument array), per the dynamic proxy seman-

tics, and a call-graph edge is inferred from the invocation site to

the invoke method of the handler. Auxiliary predicate ProxyCall-

Info is also populated, to be used in later propagation of argument

values.

Again, the dynamic proxy semantics appeal to predicates of

the underlying points-to/string-flow analysis (VarPointsTo) and

produce more inferences for such predicates (VarPointsTo, Call-

GraphEdge).

Finally, we use the established ProxyCallInfo inferences of

the above rule to also propagate values for arguments and returns,

when such information is available. This is done via the two rules

below:

ArrayContentsPointTo(oarr ,oarg)←

ProxyCallInfo(i, _,oarr ), ActualArg(i, _,varg),

VarPointsTo(varg ,oarg).

VarPointsTo(vret ,oret )←

ProxyCallInfo(i,minvoke, _),

ReturnVar(minvoke,vhRet ), VarPointsTo(vhRet ,oret ),

AssignRetValue(i,vret ).

The first of these rules states that, at a proxy call site, i , any value,

oarg , that an actual argument points to also flows to the contents of

the argument array of the invoke call on the handler. The second

rule does the inverse: any value held by the return variable, vhRet ,

inside the handler, also becomes a value of the return variable, vret
at the call-site.

3.2 Discussion

Compared to a realistic treatment (as in our full implementation)

the model of the previous section is simplified in several ways:

• The model only captures the first pattern of dynamic proxy in-

stantiation from Section 2.1: via Proxy.newProxyInstance(), and

not via Proxy.getProxyClass() and reflection. This is a straight-

forward addition.

• The model shows a context-insensitive version of the rules. It is

standard to add context-sensitivity through extra variables (rep-

resenting a calling context or a heap context) in all relations [47].

• We use simplified method signatures and pre-allocated abstract

objects for proxies, for ease of exposition.

• We postpone to Section 4 the discussion of special cases, such as

boxing and methods (e.g., hashCode) with special semantics, per

the dynamic proxy specification.

Additionally, our model integrates an important design choice,

which is a good fit for our target analysis, but may need to be

revisited in other settings: According to the definition of our Rei-

fiedProxyInstance predicate, we generate an abstract proxy ob-

ject per-interface and not per-combination-of-interfaces. At every

proxy generation site, there is a separate abstract object for each

interface, but the concrete code can generate a single proxy object

that implements multiple interfacesÐe.g.:

void meth(I1 x, I2 y) { ... }

void meth2() {

...

InvocationHandler h = ...;

Class <?>[] ins = new Class <?>[] { I1.class , I2.class };
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Object p = Proxy.newProxyInstance (..., ins , h);

meth((I1)p, (I2)p);

}

This is not a limitation in our setting. Although there are two

abstract proxy objectsÐone for interface I1 and another for I2Ð

they both have the same handler object: the value of h. The identity

of proxy objects does not matter, nor do the proxy objects have

user-visible state other than their handler. Since our target analysis

is a path-insensitive analysis of where objects flow, proxy object

identity has no semantic bearing on the analysis. (E.g., the analysis

will disregard object equality checks.) Therefore, it is fine to use two

abstract proxy objects that correspond to the same concrete proxy

object: the only analysis semantics of the proxy objects are those

of implementing methods by delegating to their handler, and both

abstract objects will have the same handler. In the above example,

the two arguments to meth will receive different abstract objects

(due to the casts) but these will be functionally equivalent.

This simplifying design choice is advantageous in engineering

terms because it avoids the need for pre-generating a large number

of abstract types (an infeasible 2N dynamic proxy classes for a

program with N interfaces) or running the analysis multiple times:

first to over-approximate what values can reach the interfaces ar-

gument (ins in our example) of newProxyInstance and then with

the appropriate types for all useful interface combinations created.

4 SEMANTIC ADD-ONS AND SPECIAL

FEATURES

The previous section showed the core of our handling of dynamic

proxies. This section shows how our analysis handles details of the

dynamic proxy API.

4.1 Proxy Argument Boxing

Java does implicit conversions between primitive types and their

wrapper classes (e.g. int-to-Integer and vice versa) [17]. This con-

version of a primitive value to an object (łboxingž) is important for

a points-to analysis, since a new object may have to be allocated

and thus a new allocation site for that object exists behind the

scenes. (Although this new object is an encoding of a mere integer,

it needs to be represented in the analysis, since it may have other

semantic implications, such as getting methods called on itÐe.g.,

wait or other methods with synchronization semantics.)

Boxing in Java is normally done by the compiler. All necessary

conversions are explicit at the bytecode level and should pose no

problems for static analyses working at that level. For example,

Doop, which uses the Soot framework [54] to derive an initial

representation of the input bytecode, is mostly oblivious to boxing,

only seeing its results: the analysis just encounters allocations via

new as if the programmer had written the conversions by hand.

Dynamic proxying, however, performs boxing that is not re-

flected in the statically-available bytecode. A caller of a proxy

method can supply primitive arguments, which is what the proxied

interface expects, yet these will be transformed into object refer-

ences when passed to the handler’s invoke method. This boxing

transformation is performed in the dynamically generated code.

As an example of the problems when ignoring boxing, assume we

have the Java code in the listing below. If we do not handle boxing,

then variables arg0 and arg1 will have no values flowing into them

and our analysis loses information.

interface G { float mult(float x, float y); }

G g = (G)Proxy.newProxyInstance (..., G.class ,

new AHandler ());

class AHandler implements InvocationHandler {

Object invoke(Object proxy , Method m, Object [] args)

throws Throwable {

String mn = m.getName ();

if (mn.equals("mult") &&

args != null && args.length == 2) {

Float arg0 = args [0];

Float arg1 = args [1];

// Do something with these two objects.

}

}

We deal with boxing in our modeling of proxies by generating

extra abstract objects per-boxed-type-and-parameter and storing

them in predicateReifiedBoxedPrimitive(v : V ,oboxed : O )), only

for variables v that are formal arguments with a primitive type.

A new argument propagation rule is employed (in addition to the

earlier-shown rule that covers the case when actual arguments

have abstract objects flow to them).

ArrayContentsPointTo(oarr ,oboxed )←

ProxyCallInfo(_,minvoke,oarr ), FormalParam(minvoke, _,v),

ReifiedBoxedPrimitive(v,oboxed ).

Notably, although the dynamic proxy semantics also involve

unboxing of returned objects, our analysis does not care about

unboxing. Unboxing is irrelevant for a points-to or string-flow

analysis: it creates primitive values, not heap allocations. For other

analyses of dynamic proxies (e.g., related to constant propagation),

unboxing should also be taken into account.

4.2 Special Semantics

According to the specification of dynamic proxies, the invoca-

tion handler must have a special treatment for methods that

have the same signature and name as java.lang.Object’s meth-

ods hashCode(), equals(), and toString(). For these methods, the

reified Method object should not come from an interface (even if

it exists for that too) but from Object. This semantic complexity

means that the second of our rules in Section 3.1 needs to be repli-

cated twice, with each version employing the appropriate condition

(whether the called method is special or not), and with the rule’s

ReifiedMethod clause appropriately adapted. Since the rule is

long and the change is straightforward but tedious, we do not show

it here.

The rest of the methods of class Object do not pass through

the invocation handler, as they are declared final and there is no

dynamic dispatch for them.

Finally, an interesting observation is that the CallGraphEdge

inferences in our approach have to interact correctly with the

exception-handling logic of the underlying analysis. The imple-

mentation of exception handling in the Doop framework [5, 23]

satisfies this property: the rules handling exception propagation ap-

peal to the CallGraphEdge relation without concern of what this

encodes. Recall that our CallGraphEdge derivations connect the
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handler’s invoke method to the proxy’s call site. This is effectively

equivalent to re-throwing (in the proxy) all exceptions that the

handler’s invoke method throws, as also mandated by the dynamic

proxy specification.

4.3 Discussion

Our approach makes several realistic design choices and compro-

mises. It also offers significant opportunities for extensions.

• Class loader handling. Currently, we omit modeling the class

loader argument, since its uses are orthogonal to our points-to

analysis. For other analyses that might need it (e.g., to check

security domains across programs that use multiple class loaders),

this argument should be easy to add in the model, as its value is

not modified by proxy class generation.

• Packages and visibility. Having single-interface proxy classes

means we cannot follow the dynamic proxy specification for what

the package of the proxy will be. The specification states that if all

interfaces are public, then the proxy’s package is com.sun.proxy;

however, if all non-public interfaces come from some package

P , then the proxy’s package is P . The modeling of packages is

unimportant for our analysis.

We also ignore subtleties such as the visibility of proxy classes:

a proxy class must be public if its interface is public, otherwise

it is non-public.

• Implicit Exceptions. While our approach handles exceptions

thrown by the invocation handler, the dynamic proxy specifica-

tion also mandates the implicit throwing of exceptions in cases

of type-incompatibility: when the value returned (or thrown) by

invoke is not convertible to the type declared by the proxied inter-

face, a ClassCastException or UndeclaredThrowableException or

NullPointerException should be thrown. Supporting these cases

required simple changes to Doop’s exception analysis logic and is

orthogonal to the basic analysis that we have already presented.

• Array argument granularity.Our analysis relies on arrays and

their analysis since (a) the interfaces argument is an array and

(b) method-based reflection is based on Java’s varargs, which Soot

translates into arrays. The Doop points-to analyses (as well as

most points-to analyses in languages without extensive use of

constant indices) are array-insensitive: they do not reason about

specific indices of arrays. If an object flows into an array, we

only know afterwards that some array location may point to this

object. For proxies, this means that we do not capture the ordering

semantics of proxies or the constraint that the interfaces argument

must be a list of unique Class values [39, 41]. The ordering of

interfaces is significant when a dynamic proxy implements many

interfaces having duplicate methods. Our modeling with single-

interface proxy classes means that in an ambiguous call to a

method existing in multiple interfaces implemented by a proxy, a

call graph edge is created for all of these methods, thus capturing

all possible interface orderings. Not having ordering information

is thus not a threat to correctness but to precision: this information

might be useful for additional filtering of the possible outcomes

of a proxy generation call.

• Java 8 support. Java 8 default interface methods can also be

accessed via proxy. This requires two elements inside an in-

vocation handler: a meth.isDefault() check and some complex

code [16]. We currently do not offer support for default interface

methods in proxies, since the underlying Doop reflection anal-

ysis also does not fully model the necessary reflection API (e.g.,

java.lang.invoke.MethodHandles). This support is part of future

work.

• Other Dynamic Proxy Patterns. Our analysis intends to cover

common uses of proxies, in conjunction with other analyzable

language features. Clearly, some dynamic patterns are missed.

For instance, if an interface is loaded from a file and then it is

used to generate a proxy, we will miss this case. We also may

miss reflective uses of reflection (this also happens for ordinary

reflection in Doop). More generally, dynamic proxies are just

one instance (albeit, the most popular) of dynamic loading. Less

disciplined uses of dynamic loading are harder to model.

There are, however, generalizations of the standard dynamic

proxy pattern that could be modeled with an approach similar

to ours. Uniform proxies [11] are similar to Java’s dynamic prox-

ies, but work for classes instead of interfaces, i.e., support the

dynamic generation of new subclasses of given classes. Such func-

tionality is provided for example by Android’s ProxyBuilder2

and the Enhancer class of the bytecode manipulation library

cglib.3 While dynamic proxy classes in Java are subclasses of

java.lang.reflect.Proxy, and thus cannot admit a second su-

perclass, our technique does not depend on having Proxy as a

superclass.

Notably, a common non-standard-library dynamic proxy pat-

tern is Guava’s dynamic proxy, which is a particularly good fit

for our approach. Guava’s dynamic proxies can only support a

single interface. This means that the implementation can leverage

generic methods, therefore eschewing the need for the cast that

appears in standard Java proxies.4 (Due to erasure, the cast must

still appear in the bytecode.) Note that in Section 5.2 we evaluate

our analysis on Guava as the latter is part of XCorpus.

• Dynamic proxies in other languages. Dynamic proxies also

arise in other languages, in closely related form. The .NET plat-

form offers a similar concept, both in the standard library and in

third-party libraries [43]. Scala has Dynamic Proxy functionality

but its use does not seem widespread.5

5 EVALUATION

We evaluate our analysis on the programs of XCorpus, a corpus of

real Java programs, which explicitly mentions dynamic proxies as

one of the features it captures [9]. We also examine two case studies

(the okhttp library and the guice dependency injection framework)

to discuss the analysis of patterns of dynamic proxies in detail.

5.1 Methodology

All analyses are run on a 64-bit machine with an Intel Xeon E5-

2687Wv4 3.00GHzwith 512 GB of RAM.We use the Soufflé compiler

(v.1.2.0), which compiles Datalog specifications into binaries via

C++ and run the resulting binaries in parallel mode using four

2https://android.googlesource.com/platform/dalvik/+/26f9572/dx/src/com/android/
dx/gen/ProxyBuilder.java
3http://cglib.sourceforge.net/apidocs/net/sf/cglib/Enhancer.html
4https://github.com/google/guava/wiki/ReflectionExplained#dynamic-proxies
5http://lampwww.epfl.ch/~hmiller/scaladoc/library/scala/reflect/DynamicProxy.html
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jobs. Doop uses the Java 8 platform as implemented in Oracle JDK

v1.8.0_121.

For all programs, we know beforehand (from XCorpus reports

or manual inspection for the two case studies) which are the target

newProxyInstance() sites that should be analyzed and run a context-

insensitive points-to analysis without dynamic proxy support to

test if the static analysis also finds them reachable. We then run the

static analysis augmented with the proxy suport rules, measure the

runtime, and examine the results.

Our context-insensitive analysis uses the łclassic reflectionž

mode of Doop. This provides a reflection analysis with the fol-

lowing features:

• Forward reasoning of reflection operations based on string con-

stants passed as arguments [31, 33].

• Reasoning about the flow of substrings through string buffers

and string builders and generalization of the above reflection

reasoning [48].

• Limited backward reasoning about reflective operations by lever-

aging how reflective objects are being used in later code [27]. The

combination of forward and backward reasoning is optimized for

precision, not soundness: the reasoning has to be with very high

confidence (e.g., input strings or use of the reflective object in the

same method) otherwise forward and backward inferences need

to agree in order for a reflective call to be resolved.

Running times are to be seen only as indicative measurements:

they represent a single run and (empirically) variations of around

5%-10% are not uncommon. However, our experimental assessment

is about capturing the semantics of dynamic proxiesÐtimings are

only assessed in rough, qualitative terms, i.e., to indicate either

order-of-magnitude slowdowns or minimal overhead of the proxy

analysis.

5.2 XCorpus

XCorpus consists of executable Java programs accompanied by test

suites to ensure code coverage. XCorpus provides a mechanism that

records the features used in its programs, reporting 13 programs

containing calls to newProxyInstance(), i.e. programs possibly cre-

ating dynamic proxy objects.

XCorpus stops at reporting call sites to newProxyInstance(), as

reasoning about the possible calls involving invocation handlers

needs a full-blown static analysis, similar to the one we present in

this paper. Our analysis should be able to go one step further than

the XCorpus result: it should show where calls on dynamic prox-

ies create call-graph edges to the invoke() method of invocation

handlers. Thus, we must answer the following research question:

RQ: For proxies created by a newProxyInstance() site reported by

XCorpus, do we find call-graph edges to the proxy’s invocation

handlers?
Table 1 shows the results of our analysis on XCorpus. For each

program, the second column shows whether Doop actually finds

reachable calls to newProxyInstance() reported by XCorpus. If yes,

the third and fourth columns show if our static analysis resolves

calls on the proxy: Def-handled means calls are resolved by our de-

fault reflection-based technique (Def-Reflective), while Opt-handled

means calls are resolved by our optimized, limited-reflection tech-

nique (Opt-Reflective, more on the difference between these two

variants of the analysis follow in Section 5.2.2).

The analysis uses the XCorpus tests as entry points for every pro-

gram, except for picocontainer, for which there is a freely available

example program6 that we use to exercise dynamic dependencies.

In jhotdraw, the XCorpus tests exercising one proxy creation site

were also fixed to actually create proxies (since they would only

test failed creation of dynamic proxies); the fix was based on the in-

tended use of these proxies as documented in jhotdraw comments.7

5.2.1 Call Sites That Create Dynamic Proxies. In total, the static

analysis finds (i.e., reports as reachable) 19 call sites that create

dynamic proxies out of 20 possible call sites in the XCorpus code.

This check is done in a preliminary context-insensitive analysis

supporting reflection but not dynamic proxies. The original 20

call sites are those reported by running the łfeature analysisž of

XCorpus. The call site in squirrel-sql is not found as the XCorpus

suite does not offer appropriate entry points that reach it.

Thus we fully handle 95% (19/20) of the sites reported by XCor-

pus when using our Opt-Reflective analysis vs. 55% (11/20) when

using Def-Reflective (see below for the differences between the two

analyses). For all these sites, our analysis finds the associated invo-

cation handler and resolves method calls on the proxy by creating

call-graph edges that point to the handler’s invoke() method. If we

only examine the sites analyzable in the given time/memory con-

straints, then the success rate is 100%: in all experiments, whenever

the analysis terminates, it has successfully analyzed every proxy cre-

ation site it found. It should be noted that running out of resources is

not caused by a looping analysis (we use Datalog for its terminating

behavior) but due to input programs being too big or containing a

lot of reflective code.

5.2.2 Opt-Reflective vs. Def-Reflective Analysis. We try two

variants of our dynamic proxy analysis:

• The Def-Reflective analysis is the complete analysis shown in

this paper, which is mutually recursive with Doop’s reflection

analysis [24]. It thus adds dynamic proxy support on top of the

default reflection analysis of Doop.

• The Opt-Reflective analysis is the analysis shown in this pa-

per, coupled with a focused part of Doop’s reflection analy-

sis that only reasons about expressions of the forms X.class

and Class.forName("constant string").8 This analysis is often

enough to reason about the Class objects representing interfaces

that flow into the array parameter of newProxyInstance(). This

analysis thus does not track the flow of reified method values and

misses the rule of Section 3.1 that can reason about calls via such

objects in the invoke()method of an invocation handler. However,

this analysis can still track simple intraprocedural uses of reflec-

tive method calls, which allows it to penetrate the proxy-based

OSX adapters used in aoi, batik, jedit, and jhotdraw.

We observe that Opt-Reflective and Def-Reflective are both useful

but have different performance: if we only want to find call-graph

6https://github.com/avh4/picocontainer-example
7https://sourceforge.net/p/jhotdraw/svn/728/tree/branches/ConnectorStrategy/
jhotdraw7/src/main/java/org/jhotdraw/gui/event/GenericListener.java
8In practice, javac compiles the former to the latter.
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Table 1: XCorpus evaluation.

Benchmark Proxy creation sites Invocation handler edges Analysis time

XCorpus Doop Opt-handled Def-handled Opt-Reflective Def-Reflective

reported reachable

aoi-2.8.1 1 1 1 ś 6,911 ś 206min, timeout (4hr)

batik-1.7 1 1 1 1 411 4,459 8min, 87min

castor-1.3.1 3 3 3 ś 9,384 ś 26min, timeout (4hr)

drools-7.0.0.Beta6 1 1 1 ś 15,205 ś 143min, timeout (4hr)

guava-21.0 2 2 2 2 5,350 10,214 11min, 42min

jedit-4.3.2 2 2 2 2 4,516 23,653 29min, 213min

jhotdraw-7.5.1 2 2 2 2 880 3,628 11 min, 183 min

jrat-0.6 1 1 1 1 10 10 3 min, 8 min

mockito-core-2.7.17 1 1 1 1 13 16 4 min, 8 min

picocontainer-2.10.2 1 1 1 1 881 6,943 2 min, 213 min

pmd-4.2.5 3 3 3 ś 9 - 19 min, timeout (4hr)

quartz-1.8.3 1 1 1 1 12 4,828 7 min, 25 min

squirrel_sql-3.1.2 1 0 0 ś 0 ś 10min, timeout (4hr)

Total 20 19 19 11

edges to invocation handlers, Opt-Reflective is a good choice, as it

usually works as well as Def-Reflective, but terminates in less time.

This is particularly telling for aoi, castor, drools, and pmd, where

Def-Reflective times out, yet Opt-Reflective works.

However, the Def-Reflective analysis is necessary when analyz-

ing reflective code, such as the picocontainer library. Although

both analyses find uses of the same invocation handler object, Def-

Reflective finds 6,943 call-graph edges, while Opt-Reflective only

finds 881 edges. In this and other benchmarks (batik, guava, jedit,

and quartz), we see significantly more call-graph edges under Def-

Reflective, as full reflection support is needed to uncover extra code

to analyze.

In general, the Def-Reflective analysis is necessary if we want

to analyze invoke() methods that do reflection, interacting with

the java.lang.reflect.Method parameter: for such code, the Opt-

Reflective analysis will not be able to analyze method calls on these

method objects.

5.3 Case Studies

We next discuss in more detail two additional applications and their

dynamic proxy patterns. One corresponds to our earlier motivating

example, while the other exhibits very extensive proxy-related

behavior.

OkHttp. As we saw in Section 2.3, OkHttp makes use of dynamic

proxies. The library uses dynamic proxies for setting up TLS, which

is needed in practice [51] for HTTP/2 (one of the library’s main fea-

tures). Not having information about the proxymeans the TLS setup

of the library is not analyzed and there is incomplete information

about the calls made by the fundamental łplatformž object.

The total size of the OkHttp library is 50,919 lines of Java code.9

For our evaluation, we analyze mockwebserver, the scriptable web

server of OkHttp that exercises the full HTTP stack and thus makes

realistic use of the library.

9Commit version de8699b62d24e3b31205229a259be5b26b040957 in the library’s
Github repository [50].

Our analysis discovers that the provider variable can point

to objects of the two dynamic proxy classes that implement

the ALPN interfaces org.eclipse.jetty.alpn.ALPN$ClientProvider

and org.eclipse.jetty.alpn.ALPN$ServerProvider. Our analysis

also finds that the invoke() method of the invocation handler is

reachable and creates 2,866 new call graph edges. As we described

in Section 2.3, this analysis is only possible because we have support

for reasoning about substrings in the reflection analysis.

In practice, the analysis of this medium-size codebase takes more

time, 178 vs 294 secs (no proxy support vs. proxy support).

Guice JNDI Client. Google Guice10 is a lightweight framework

for the dependency injection design pattern (DI) [15] that uses

dynamic proxies.

The dependency injection pattern addresses (among other is-

sues) the automated construction of object graphs in programs.

This automation is orchestrated by the programmer, who gives a

description of the parts making up a program and their dependen-

cies. The DI framework will then compose the graph of objects by

constructing appropriate ones, parameterized by their dependen-

cies, according to a user-provided configuration.

Dependency injection is commonly used with resource locators,

such as the Java Naming and Directory Interface (JNDI) [38], to

find the objects that correspond to a given configuration. The Guice

framework contains JNDI functionality [56] and includes an exam-

ple of how to implement a JNDI provider client, guice-jndi. For

this case study, we examined version 4.1 of Guice, containing 62,093

lines of Java code in total and ran our analysis on guice-jndi.

Compared to other dependency injection frameworks that use

explicit code or external configuration resources (e.g., XML files)

for dependency declarations, Guice uses Java annotations in the

sources of the original program. However, the Java annotations

parser uses dynamic proxies and thus a critical path in the Guice

code is not followed by analyses that are not aware of proxies.

10https://github.com/google/guice
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We confirm this by checking what are the reachable methods

containing calls to newProxyInstance()when running a simple anal-

ysis without dynamic proxy support. (This analysis is the standard

context-insensitive analysis of Doop, but with dynamic proxy sup-

port turned off, so that the analysis finds calls to newProxyInstance()

in already reachable code but cannot reason about them.) The fol-

lowing classes and reachable methods are found (to avoid ambiguity

we show method descriptors, omitting package prefixes for clarity):

(1) In AnnotationParser:
Annotation annotationForMap(Class, Map)

(2) In ConstructionContext:
Object createProxy(Errors, InjectorImpl$InjectorOptions,

Class)

(3) In Annotations:
Annotation generateAnnotationImpl(Class)

Without support in the analysis for dynamic proxies, the set of

reachable invocation handler methods contains mostly class and

instance initializers (constructors):

(1) In DelegatingInvocationHandler:
void <init>()

void setDelegate(Object)

(2) In AnnotationInvocationHandler:
void <init>(Class,Map)

void <clinit>()

(3) In Annotations$2:
void <init>(Class,Map)

The existence of the initializers means the current analysis can

already see that some handlers are createdÐthus, their classes have

to be initialized and their constructors become reachable. However,

the incomplete modeling of dynamic proxies means that the results

of proxy instantiations can never be cast to the interface type: for

Doop, these casts can only fail and, thus, no method can be called

on these returned values.

When we turn on support for dynamic proxies, the set of reach-

able methods now contains the methods in the invocation handlers:
(1) In AnnotationInvocationHandler:

void <init>(Class,Map)

Object invoke(Object,Method,Object[])

Object cloneArray(Object)

String toStringImpl()

Boolean equalsImpl(Object)

AnnotationInvocationHandler asOneOfUs(Object)

Method[] getMemberMethods()

int hashCodeImpl()

String memberValueToString(Object)

boolean memberValueEquals(Object,Object)

int memberValueHashCode(Object)

Class access$000(AnnotationInvocationHandler)

void <clinit>()

void access$100(AnnotationInvocationHandler,Method[])

void validateAnnotationMethods(Method[])

(2) In DelegatingInvocationHandler:
void <init>()

Object invoke(Object,Method,Object[])

void setDelegate(Object)

(3) In Annotations$2:
void <init>(Class,Map)

Object invoke(Object,Method,Object[])

In this case, the analysis is successful in fully tracking the uses

of the annotation parser code.

Our analysis also creates 13,172 call-graph edges due to dynamic

proxies, a high number compared to the previous case study and

most programs in XCorpus. It also shows that 524 different methods

are called on proxy objects (and are intercepted by the invocation

handler’s invoke()). Thus Guice makes extensive use of dynamic

proxies, instead of using them locally in a confined piece of code.

Similarly, many call-graph edges were measured for the XCorpus

program picocontainer, another DI framework. These observations

indicate that dynamic proxies are pervasive in DI designs.

The running time of the reflection analysis without the proxy

rules is 342 secs, compared to 1,298 secs for the same analysis

supporting dynamic proxies. Clearly, this is a substantial difference,

reflecting the extra call-graph edges and overall inferences of the

analysis. (For instance, the main analysis relation, VarPointsTo,

grows from a size of 104M tuples to 366M.)

5.4 Summary

Our experiments demonstrate the effectiveness of our dynamic

proxy support for modeling the behavior of proxies and their clients.

Over realistic programs with complex dynamic proxy patterns, our

approach captures the semantics of dynamic proxies and models

the relevant subsystems that they implement.

6 CONCLUSION

We have discussed a static modeling of the Java dynamic proxy

patternÐthe most widespread use of dynamic loading in Java pro-

grams. The modeling reveals several insights. Chief among them is

the need for mutually recursive handling of dynamic proxies and

other object flow through the program, both via regular operations

(calls and heap loads/stores) and via reflective actions. Static mod-

eling of proxies can rarely be effective without a full treatment of

other program semantics (e.g., flow of string constants, or of reified

interface objects) and needs to be integrated in a more general anal-

ysis model. We performed this integration both in our simplified

formal model, consisting of a handful of Datalog rules that appeal

to standard points-to and reflection analysis relations, and in our

full implementation in the Doop framework.

Our model can be seen as a validation of the approach of ex-

pressing static analyses in terms of mutually recursive relations.

A complex semantic task is made easily manageable as part of a

declarative analysis that simultaneously tackles several semantic

concerns.

Arguably, improving the soundness of a static analysis by cov-

ering complex language features also has great intangible value.

Static analysis is rarely about covering the easy cases of program

behaviorÐit excels, relative to shallower techniques, at covering

hard-to-reveal cases. Additionally, static analysis is about achieving

certainty, and the lack of modeling of a language feature has a high

cost in loss of perceived certainty. Under this light, we consider the

modeling of dynamic proxies to be a very-high-value proposition

for static analysis techniques.
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