The Intensional Transformation for Functional
Languages with User-Defined Data Types

1,% 2

Georgios Fourtounis Nikolaos Papaspyrou! Panos Rondogiannis

gfour@softlab.ntua.gr nickie@softlab.ntua.gr prondo@di.uoa.gr

! National Technical University of Athens, School of Electrical and Computer Engineering
2 University of Athens, Department of Informatics and Telecommunications

Abstract

We extend the intensional transformation [0 4] so as to apply to first-order lazy func-
tional languages with user-defined data types. Since higher-order functional programs can
be translated to first-order ones with the use of data types [3], the proposed approach can
also be used to transform fully higher-order lazy functional programs.

1 Introduction

The intensional transformation [6l 4, [5] is a promising implementation technique for lazy func-
tional languages, whose performance has been shown to compete with existing graph-reduction
implementations [I]. The transformation was initially defined for a first-order functional lan-
guage [0, 4], and was later extended to apply to a higher-order language with a restricted
syntax [5]. In both of these cases, the source language supported only base data types (such
as integers and reals). The problem of treating user-defined data types under the intensional
transformation, has never been given a satisfactory answer so far.

In this paper we describe how we can extend the intensional transformation so as to apply to
first-order lazy functional languages with user-defined data types. Since higher-order functional
programs can be encoded as first-order ones with the use of data types [3], the proposed approach
can be used to transform fully higher-order lazy functional programs. Due to space limitations,
the interested reader should consult the article of Rondogiannis and Wadge [4] for the relevant
background and the basic notions regarding the intensional transformation.

2 The Source Functional Language FL*

The source language of our transformation is FL ', a simple first-order, lazy functional language.
FL* extends the language FL [5] by additionally supporting user-defined data types and pattern
matching. The full syntax of FL T can be found in Figure [1, while Figure [2 shows a valid FL™
program. We make certain simplifying assumptions regarding the syntax of our source programs.
First, we assume that every program has a definition for the variable result; the output of the
program will simply be the value of result. We also assume that the formal parameters of all
functions defined in the program are different. Finally, the components of a pattern match clause
(such as e0 and es0 in Cons(el, es0)) always have the same names anywhere in the program.
The underlined variables of the syntax are those that are bound by patterns and refer to
constructor components. It should be noted that the user does not have to explicitly state which
variables of the input program are bound by patterns, as they can be statically detected.

*Partly supported by the EEA FM EL0086 NTUA Mobility and Scholarship Program.

gfour@softlab.ntua.gr
nickie@softlab.ntua.gr
prondo@di.uoa.gr

Intensional Transformation with User-Defined Data Types Fourtounis et al.

dtype_name: datatype names def := var(var*) = expr

c_name: constructor names expr = num | var(expr*) | var | expr binop expr
prog := (dt*, def) | if expr then expr else expr | c_name(expr*)
constr := c_name (cc*) | match ezpr with pmatch™

cc := dtype_name var | Int var binop:=+|—1|x|/| < | ==

dt := dtype_name : constr™ pmatch := c_name(var®) — expr

Figure 1: The syntax of FLT.

List : Nil, Cons (Int e0) (List es0)

result = head(f(300))

head(hl) = match hl with Cons(e0, es0) — €0

f(x) = if (x < 0) then Cons (x+10, Nil) else Cons(x*2, f(x—1))

Figure 2: A program in FLT.

3 The Target Intensional Language NVIL™

The target language of the proposed transformation is the zero-order intensional language NVIL™
which extends the language NVIL of Rondogiannis and Wadge [4] in order to allow the handling
of user-defined data types in the source language FL ™. The syntax of NVIL™, is given in Figure
In the following, we start by giving an informal presentation of the semantics of NVIL™ which
is subsequently formalized by providing a corresponding interpreter for the language.

In order to evaluate an expression of the form (match e with...), the expression e is
evaluated first until a call to a constructor is encountered; then there is enough information to
select the appropriate branch of the matching clause. The effect of evaluating a constructor is
memory allocation: the current context is saved in a heap in order to be later used when the
constructor contents are requested inside the match branches. This memory allocation is made
explicit in the semantics by the thunk operator of NVIL™, which updates the heap with the
current context.

Heap allocation is only forced by pattern matching, as this is where the constructor call
will be invoked. This makes pattern matching the only point in a program where thunks are
created and lazy data structures are processed. The domain of NVILT contains two classes
of values: normal values, and lazily created heap structures that may be forced to evaluate
their contents. This means that a program can have two kinds of results: either a value, or
a suspended constructor (which could lead to an infinite data structure). In the second case,
the user must have a way to force its evaluation. This mechanism is external to the technique
described here and should be provided by the implementation, either as a top-level interactive
loop, a pretty printer, or any other suitable mechanism.

The heap is modeled as a context-indexed dictionary of contexts. These contexts link the
program point that a constructor subexpression is needed, to the point when the constructor

def := var = expr | var = case(expr™)

expr := num | var | var | expr binop expr | if expr then expr else expr | thunk c_name
| call,, - expr | actuals,, - expr | match expr with pmatch™

pmatch := c_name — expr

Figure 3: The syntax of NVIL™T.

Intensional Transformation with User-Defined Data Types Fourtounis et al.

Semantic domains: Helper functions:

Var, Var, C_name lookup :: (Var + Var) — Ctxt — Prog — Ezpr
Ctxt = List[Nat] val :: Value — Int

Heap = Ctzt — Clat cstr 2 Value — Constructor

Value := FValue Int | Thunk C_name Heap h :: Value — Heap

Evaluation function:

eval :: (Ezpr, Ctzt, Heap, Prog, Ctat) — Value

eval(num, ctxt, heap, p, sc) = FValue num

eval(var, ctxt, heap, p, sc) = eval(lookup(var, ctxt,p), ctxt, heap, p, sc)

eval(var, ctxt, heap, p, s¢) = eval(lookup(var, ctzt', p), ctat’, heap, p, sc)
where ctzt’ = heap(ctrt)

eval(e; + ez, ctxt, heap, p, sc) = FValue(val(vi) + val(vz))
where v1 = eval(ey, ctxt, heap, p, sc) and vy = eval(eg, ctat, heap, p, sc)
(similar rules for other strict binary operators like —, , /, <, ==)

eval(thunk c, ctzt, heap, p, sc) = Thunk ¢ (heap U [sc — ctat])

eval(call; - e, ctat, heap, p, sc) = eval(e, (j : ctzt), heap, p, sc)

eval(actuals; - e, (j : ctat), heap, p, sc) = eval(e, ctzt, heap, p, sc)

eval(match e with patterns, ctat, heap, p, sc) = eval(pat, ctzt, h(res), p, sc)
where res = eval(e, ctzt, heap, p, ctzt) and pat = patterns[cstr(res)]

eval(if e then e; else ey, ctat, heap, p, sc) = eval(€', ctat, heap, p, sc),
where ¢’ = e; if val(eval(e, ctat, heap, p, sc)) = 1 and e’ = ey otherwise

Figure 4: An interpreter for NVIL™.

was initially reached. To reference the constructor components, we introduce bound (“heap”)
variables that may only exist inside a pattern branch that corresponds to a constructor. The
variables of a program are thus of two kinds: normal variables and bound variables. The first
are evaluated as normal, but the second are evaluated under a new context, which is looked up
on the heap, according to the current context.

For example, when a Cons constructor is reached, the context needed for its subexpressions
is saved in the dictionary, using the originating context sc of the match expression as the key.
During the rest of the execution, when the value of e0 or es0 is needed, it will be demanded in the
context that amounts to the start of the specific branch that was followed. Using this context,
the correct thunk will be retrieved and the evaluation will proceed for its subexpressions.

The above discussion is formalized by the interpreter for NVILT given in Figure The
set Var contains the normal variables var of the intensional transformation, while the set Var
contains the heap variables var that depend on the heap to be computed. The set C_name
contains the constructor names c_name. Evaluation of the program P starts in the empty
context ctxty and the empty dictionary heapy with an empty saved context. The following
auxiliary functions are used:

e lookup returns a (normal or heap) variable definition from the NVIL™ program structure
e val returns the value of a result (if it is a normal value)

e cstr returns the constructor of a result (if it is a thunk)

e h returns the stored heap of a result (if it is a thunk)

Given a constructor ¢, the notation patterns|c| selects the correct branch of the patterns cases of
a match expression. The intensional operators call and actuals have their standard semantics,

Intensional Transformation with User-Defined Data Types Fourtounis et al.

Original source program in FL*
|} (preprocessing, adding functions for constructors)

List : Nil, Cons (Int e0) (List es0)

result = head(f(300))

head(hl) = match hl with Cons(e0, es0) — 0

f(x) = if (x < 0) then cons(x+10, nil) else cons(x*2, f(x—1))
cons(e0, es0) = thunk Cons

nil = thunk Nil

| (intensional transformation, to NVIL™)

constructors : Nil, Cons

result = cally - head

head = match hl with Cons — el

hi = caselactuals - callj - f]

f=1if (z <0) then callj - cons else call; - cons
x = caselactuals - 300, actuals; - (z — 1)]

el = case[actualsy - (z + 10), actuals; - (z * 2)]
es0 = case[actuals - nil,actuals; - call; - f]
cons = thunk Cons

nil = thunk Nil

Figure 5: The transformation process for the program of Figure

i.e. they push and pop values in the context. Another standard intensional construct is case,
which uses the current context’s head to select an expression to return. Variables look up their
definition in the program and continue evaluating that (under a new looked up context in the
case of the heap variables). A thunk expression will store context information in the dictionary
and a match will evaluate its expression until it reaches a thunk, at which point it will select
the correct branch to evaluate with the new dictionary that now contains the thunk.

4 The transformation

The first step in the proposed transformation is to create a function definition for each con-
structor in the source program. The body of each such definition is simply a thunk. For
example, if the source FLT program contains the constructor Cons, we add the function def-
inition cons(e0,es0) = thunk Cons and replace calls to Cons with calls to cons. We then
apply the standard intensional transformation (e.g., as described by Yaghi [6]), treating the
newly added definitions in the same way as ordinary function definitions. Notice that in pattern
matching clauses we simply remove the bound arguments from pattern constructors (without
introducing any intensional operators). The example given in Figure |5 illustrates the above
ideas. One can easily verify that by executing the resulting intensional program, the correct
output is obtained.

Intensional Transformation with User-Defined Data Types Fourtounis et al.

5 Discussion

The transformation described in this paper can be used in order to intensionalize a fully higher-
order functional language: higher-order programs are initially defunctionalized using the well-
known technique introduced by Reynolds [3]. The program that results from the defunctional-
ization is an FLT one and can therefore be transformed in the way that we have described in
the previous sections. In conclusion, given a higher-order functional program, we can obtain
a zero-order NVIL™ one in the way just described. The target program can then be executed
following an extended demand-driven evaluation strategy; the details of such an implementation
will be reported in a forthcoming paper.

The problem of intensionalizing functional languages with user-defined data types has not
(to our knowledge) been considered before in the literature. The problem of intensionalizing
higher-order functional languages has been considered before, but not in such a generality. For
example, Rondogiannis and Wadge [5] only treat a restricted class of higher-order programs.
Another interesting proposal for this problem is the one proposed by Plaice and Mancilla [2] in
which extra dimensions are used in order to represent closures.

An interesting direction for future work would be the implementation of a fully higher-
order functional language based on the above ideas, and the comparative evaluation of such an
implementation against existing graph-reduction based implementations of functional languages.

References

[1] Angelos Charalambidis, Athanasios Grivas, Nikolaos S. Papaspyrou, and Panos Rondogiannis. Effi-
cient intensional implementation for lazy functional languages. Mathematics in Computer Science,
2(1):123-141, 2008.

[2] John Plaice and Blanca Mancilla. The practical uses of TransLucid. In Proceedings of the 1st
International Workshop on Context-aware Software Technology and Applications (CASTA’09), pages
13-16, New York, NY, USA, 2009. ACM.

[3] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of the 25th ACM Annual Conference, volume 2, pages 717-740, New York, NY, USA, 1972. ACM.
Reprinted in Higher-Order and Symbolic Computation, 11(4):363-397, 1998.

[4] Panos Rondogiannis and William W. Wadge. First-order functional languages and intensional logic.
Journal of Functional Programming, 7(1):73-101, January 1997.

[5] Panos Rondogiannis and William W. Wadge. Higher-order functional languages and intensional logic.
Journal of Functional Programming, 9(5):527-564, 1999.

[6] Ali A. G. Yaghi. The Intensional Implementation Technique for Functional Languages. PhD thesis,
Department of Computer Science, University of Warwick, Coventry, UK, 1984.

	Introduction
	The Source Functional Language FL+
	The Target Intensional Language NVIL+
	The transformation
	Discussion

