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Abstract. The intensional transformation is a promising technique for
implementing lazy functional languages based on a demand-driven ex-
ecution model. Despite its theoretical elegance and its simple and ef-
ficient execution model, the intensional transformation suffered, until
now, from two main drawbacks: it could only be applied to programs
that manipulate primitive data-types and it could only compile a simple
(and rather restricted) class of higher-order functions. In this paper we
remedy the above two deficiencies, obtaining a transformation algorithm
that is applicable to mainstream lazy functional languages. The proposed
transformation initially uses defunctionalization in order to eliminate
higher-order functions from the source program. The original intensional
transformation is then extended in order to apply to the target first-order
language with user-defined data types that resulted from the defunction-
alization. It is demonstrated that the proposed technique can be used to
compile a relatively large subset of Haskell into portable C code whose
performance is comparable to existing mainstream implementations.
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1 Introduction

The intensional transformation [20, 16, 17] has been proposed as an alternative
technique for implementing lazy functional languages based on a demand-driven
execution model. The key idea behind the intensional approach is to transform
a source functional program into a program consisting of nullary variable defini-
tions enriched with intensional (i.e., context-switching) operators. The transfor-
mation was initially proposed as a technique for implementing first-order func-
tional languages [20] and was also used in the implementation of the first-order
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dataflow language Lucid [19]. Later on, the correctness of the transformation
was formally established [16] and it was extended to apply to a simple class
of higher-order programs [17], in which partially applied objects can only be
top-level function names. For the class of programs that it can compile, the
transformation has been demonstrated to be quite efficient [4].

Despite its theoretical elegance and its simple and efficient execution model,
the intensional transformation continues to suffer from the two main drawbacks
that were present since its inception:

– It can only be applied to programs with primitive data-types (such as in-
tegers, characters, boolean values, and so on). For example, the dataflow
language Lucid never supported user-defined data-types [19, Sec. 7.1].

– It can only compile a simple (and rather restricted) class of higher-order func-
tions. More specifically, the extension of the intensional transformation [17]
can only compile programs that make a Pascal-like use of higher-order func-
tions (i.e., programs that do not use function closures and therefore do not
support currying in its full-generality).

In this paper we remedy the above two deficiencies, obtaining a transfor-
mation algorithm that is applicable to mainstream higher-order lazy functional
languages. The proposed transformation initially uses defunctionalization [15]
in order to eliminate higher-order functions from the source program (at the
cost of introducing data constructors representing explicit closures in the target
first-order program). In this way, the two problems above are trivially reduced
to the first one. The first problem is then solved by demonstrating that the
original intensional transformation can be appropriately extended to handle a
language with user-defined data types (and pattern matching). This problem is
solved in this paper, which extends an idea that was presented last year in an
informal symposium [6]. It is also demonstrated that the proposed technique
can be used to compile a relatively large subset of Haskell into portable C code
whose performance is comparable to existing Haskell implementations, based on
more traditional compilation techniques.

The rest of the paper is organized as follows: Section 2 provides background
on the original intensional transformation and introduces the proposed general-
ized transformation at an intuitive level, whereas Section 3 presents a formaliza-
tion thereof. Section 4 discusses the details of an implementation of the proposed
technique. Section 5 provides a performance comparison with several well-known
and efficient Haskell compilers. The paper concludes (Sections 6 and 7) with a
discussion of related work and directions for future research.

2 From the Original to the Generalized Transformation

In this section we introduce the intensional transformation in an intuitive way.
We start by outlining the original transformation (for an extensive discussion,
see [20, 16]) and proceed by sketching our new approach with a simple example.



2.1 The Original Intensional Transformation

The input to the original intensional transformation [20, 16] is a first-order func-
tional program that only uses base data-types (such as integers, Boolean values,
and so on). We assume that all the variables in the program (i.e., function
names and their formal parameters) are distinct; this can obviously be achieved
by a straightforward preprocessing. The source program is then transformed
into a zero-order intensional program that only contains nullary definitions. The
name “intensional” reflects the fact that the resulting program additionally uses
two context-switching operators, whose semantics will be shortly described. The
transformation can be intuitively described as follows [16]:

1. Let f be a function defined in the source functional program. Number the
textual occurrences of calls to f in the program, starting at 0 (including calls
in the body of the definition of f).

2. Replace the i-th call of f in the program by call i (f). Remove the formal
parameters from the definition of f, so that f is defined as an ordinary
individual variable.

3. Introduce a new definition for each formal parameter of f. The right hand
side of the definition is the operator actuals applied to a list of the actual
parameters corresponding to the formal parameter in question, listed in the
order in which the calls are numbered.

To illustrate the algorithm, consider the following simple first-order program
on the left. The transformation produces the target program on the right:

result = f 3 + f 5

f x = g (x*x)

g y = y+2

result = call0(f) + call1(f)

f = call0(g)

g = y+2

x = actuals(3, 5)

y = actuals(x*x)

The above intensional code can be easily evaluated with respect to an initially
empty context. Evaluation contexts are in fact lists of natural numbers which,
intuitively, keep track of the exact position in the recursion tree where the ex-
ecution currently is. The operators call i and actuals are context-switching
operators: call i augments a list w by prefixing it with i, whereas actuals

takes the head i of a list, and uses it to select its i-th argument. One can now
easily define an EVAL function which evaluates the intensional program that
results from the transformation, as shown in Figure 1. The function is param-
eterized by the program p in which all evaluation takes place; this will often
be omitted to simplify presentation. The function body(v, p) returns the defining
expression of a variable v in program p. The evaluation of the usual constructs of
functional languages (if-then-else, arithmetic operations, etc.) are all expressed
by the rule for n-ary constants c (which, when n = 0 also covers the case of
nullary constants, such as numbers, characters, and so on). Notice that the or-
der of evaluation in this case depends on the meaning of the constant c: if c is



EVALp(v, w) = EVALp(body(v, p), w)
EVALp(call i (e), w) = EVALp(e, i : w)
EVALp(actuals(e0, . . . , en−1), i : w) = EVALp(ei, w)
EVALp(c(e0, . . . , en−1), w) = c(EVALp(e0, w), . . . ,EVALp(en−1, w))

Fig. 1. The EVAL function for the intensional language.

EVAL(result, [ ])
= EVAL(call0(f) + call1(f), [ ])
= EVAL(call0(f), [ ]) + EVAL(call1(f), [ ])
= EVAL(f, [0]) + EVAL(f, [1])
= EVAL(call0(g), [0]) + EVAL(call0(g), [1])
= EVAL(g, [0, 0]) + EVAL(g, [0, 1])
= EVAL(y, [0, 0]) + EVAL(2, [0, 0]) + EVAL(y, [0, 1]) + EVAL(2, [0, 1])
= EVAL(actuals(x*x), [0, 0]) + 2 + EVAL(actuals(x*x), [0, 1]) + 2
= EVAL(x*x, [0]) + 2 + EVAL(x*x, [1]) + 2
= EVAL(x, [0]) ∗ EVAL(x, [0]) + 2 + EVAL(x, [1]) ∗ EVAL(x, [1]) + 2
= EVAL(actuals(3, 5), [0]) ∗ EVAL(actuals(3, 5), [0]) + 2+

EVAL(actuals(3, 5), [1]) ∗ EVAL(actuals(3, 5), [1]) + 2
= EVAL(3, [ ]) ∗ EVAL(3, [ ]) + 2 + EVAL(5, [ ]) ∗ EVAL(5, [ ]) + 2
= 9 + 2 + 25 + 2 = 38

Fig. 2. Execution of the target intensional program.

an arithmetic operator (e.g., “+”) then the recursive calls to EVAL will have to
be computed strictly; if on the other hand c corresponds to a non-strict operator
(e.g., if-then-else), then evaluation is dictated by the meaning of this operator.

The execution of our example intensional program derived above is given in
Figure 2. Notice that we assume that all source programs have a distinguished
variable result whose value we want to compute.

The evaluation function just described roughly corresponds to call-by-name:
notice how x is evaluated again and again under the same context. To obtain
a call-by-need implementation, one can use an appropriate warehouse, in which
triples of the form (variable, context, value) are stored — see [16, Sec. 12] for a
more extensive discussion on the history and details of this issue. Every time
the value of a variable under a given context is demanded, the warehouse is
searched. If an entry is found, the corresponding value is returned; otherwise,
the value of the variable under the current context is computed and placed in the
warehouse for possible future reuse. A more efficient way of memoizing results,
using lazy activation records (LARs), has been proposed in [4]; the idea of LARs
is generalized and used in Section 4.

2.2 The New Intensional Transformation

As mentioned in the introductory section, the intensional transformation was
never generalized to apply to a fully higher-order functional language nor to a



language that supports user-defined data-structures. From an implementation
point of view, higher-order functions and data-structures are closely connected,
since, using Reynold’s defunctionalization, one can reduce a higher-order pro-
gram to a first-order one that is enriched with appropriate data-structures [15].
In other words, the two problems can be simultaneously solved if we generalize
the intensional transformation to apply to first-order programs with user-defined
data types. For example, consider the following second-order Haskell program:

result = inc (add 1) 2 + inc sq 3

inc f x = f (x+1)

add a b = a+b

sq z = z*z

The source program is initially defunctionalized as shown below:

result = inc (fadd 1) 2 + inc fsq 3

inc f x = apply f (x+1)

add a b = a+b

sq z = z*z

data Func = Fadd Int | Fsq

fadd c = Fadd c

fsq = Fsq

apply cl d = case cl of

Fadd c → add c d

Fsq → sq d

The above is a standard defunctionalization with two small tricks. First, we have
introduced functions fadd and fsq which have replaced all occurrences of the
constructors Fadd and Fsq. Second, in the case pattern corresponding to Fadd,
we have used the same variable c that appears in the definition of fadd. These
two conventions (to be discussed more generally in Section 3) ensure that we
can apply the intensional transformation and obtain an equivalent zero-order
intensional program, exactly as we did before:

result = call0(inc) + call1(inc)

inc = call0(apply)

add = a+b

sq = z*z

fadd = Fadd

fsq = Fsq

apply = case cl of

Fadd → call0(add)

Fsq → call0(sq)



f = actuals(call0(fadd), fsq)

x = actuals(2, 3)

a = actuals(c)

b = actuals(d)

z = actuals(d)

c = actuals(1)

cl = actuals(f)

d = actuals(x+1)

The above program can be executed following the same basic principles as the
one presented in the previous subsection, using a demand-driven interpreter in
the form of a function EVALp(e, w) that will be defined formally in Section 3.

3 A Formal Account of The Generalized Transformation

In this section we present the generalized transformation in a more formal way.
Since defunctionalization is a well-known and broadly used technique, in the
following we will not discuss it any further. Instead, from now on we will as-
sume that our source language is a lazy first-order functional language with
user defined data-types (i.e., a language whose syntax matches the syntax of the
programs that are produced by defunctionalization). We will call this language
FOFL (First-Order Functional Language).

The syntax of FOFL is defined by the following context-free grammar, where
f and v range over variables, c ranges over constants, κ ranges over constructors,
and n,m ≥ 0. When n = 0, we will omit the empty parentheses.

p ::= d0, . . . , dn program

d ::= f(v0, . . . , vn−1) = e definition

e ::= c(e0, . . . , en−1) | f(e0, . . . , en−1) | κ(e0, . . . , en−1) expression

| case e of { b0 ; . . . ; bn } | #m(v)

b ::= κ(v0, . . . , vn−1)→ e case clause

As outlined in the previous section, we assume that FOFL programs are
in a normalized form. We assume that the formal parameters of all functions
are distinct. This can be achieved by simple renaming. Furthermore, for each
constructor κ with n arguments, there will be a function defined as:

fκ(v0, . . . , vn−1) = κ(v0, . . . , vn−1)

and all occurrences of κ in the program will be replaced by occurrences of fκ. We
also assume that patterns corresponding to κ in all case expressions will use the
same variables v0, . . . , vn−1 that appear in the definition of fκ. Unfortunately,
this cannot be achieved by simple renaming, as there may be nested case ex-
pressions. For this reason, we introduce a special form of expressions #m(v) that
will resolve such scoping issues.



Roughly speaking, #m(v) corresponds to the variable v that is bound in a
pattern of the m-th enclosing case expression. For example, function apply in
the example of the previous section will be written as:

apply(cl , d) = case cl of {
Add(c)→ add(#0(c), d);
Sq → sq(d)

}

where #0(c) corresponds to the variable c bound by the pattern Add(c) of the
case expression. An example with nested case follows, where the expression on
the left (in Haskell syntax, calculating the sum of the first two elements of a list)
can be normalized as shown on the right:

case l of

Nil → 0

Cons x xs →
case xs of

Nil → x

Cons y ys → x+y

case l of {
Nil → 0;
Cons(h, t)→

case #0(t) of {
Nil → #1(h);
Cons(h, t)→ +(#1(h), #0(h))

}
}

Notice here that the same set of variables (h, t) is used in both patterns for Cons
and that x and y, which both correspond to h, are distinguished by the value of
m (the nesting depth of case expressions).

3.1 The Generalized NVIL

FOFL programs are transformed into zero-order intensional ones in the language
NVIL (Nullary Variables Intensional Language). For more background on such
languages, the interested reader can consult the first sections of [16]. The only
difference of NVIL from the corresponding language defined in [16] is that the
former supports user-defined data types. The syntax of NVIL is given by the
following context-free grammar. Notice that the syntax of the intensional opera-
tors (call and actuals) is slightly different from the one informally introduced
in Section 2 and that #m(v) has been replaced by the more general #m(e).

p ::= d0, . . . , dn program

d ::= f = e definition

e ::= c(e0, . . . , en−1) | f | κ | case e of { b0 ; . . . ; bn } expression

| #m(e) | call`(e) | actuals(〈e`〉`∈I)
b ::= κ→ e case clause

In Section 2, operator call was labeled by a natural number i and opera-
tor actuals received a sequence of expressions, indexed by i. Here, we slightly



EVALp(c(e0, . . . , en−1), w) = c(EVALp(e0, w), . . . ,EVALp(en−1, w))
EVALp(f, w) = EVALp(body(f, p), w)
EVALp(κ,w) = 〈κ,w〉
EVALp(case e of {κ0 → e0; . . . ; κn → en}, 〈`, w, µ〉) = EVALp(ei, 〈`, w,w′ :µ〉)

if EVALp(e, 〈`, w, µ〉) = 〈κi, w
′〉

EVALp(#m(e), 〈`, w, µ〉) = EVALp(e, µm)
EVALp(call`(e), w) = EVALp(e, 〈`, w, •〉)
EVALp(actuals(〈e`〉`∈I), 〈`, w, µ〉) = EVALp(e`, w)

Fig. 3. Semantics of NVIL.

change this and take the index to be any element ` from an appropriate set
Labels. Therefore, call is labeled by ` and actuals receives a sequence of ex-
pressions e` indexed by labels ranging over a subset I ⊆ Labels. We represent
this sequence as 〈e`〉`∈I . This convention does not affect the semantics of NVIL
but will be useful in the definition of the intensional transformation and its proof
of correctness (not discussed in this paper).

The semantics of NVIL is given in Figure 3. As discussed in Section 2, it
is defined in the form of an evaluation function EVALp(e, w), where p is the
program, e is the expression to be evaluated, and w is the intensional context.
In contrast to the simple structure of contexts (lists of labels) used in [16], the
introduction of user-defined data types requires a more complex kind of contexts,
similar to lists with backpointers (b-lists) defined by Yaghi [20].

Contexts are defined by the following grammar. The new element is µ, which
is a list of contexts corresponding to nested case expressions.

w ::= • | 〈`, w, µ〉
µ ::= • | w :µ

The result of function EVALp(e, w) is either a ground value, which is returned
by the meaning of some operator c (e.g., an integer number), or a pair of the form
〈κ,w〉, which corresponds to a value of a user-defined data type. In the latter case,
κ is the constructor that was used to build this value and w is the context that
must be used to evaluate the constructor’s arguments. This semantics is captured
in the equation for EVALp(κ,w); remember that such expressions can only occur
in the bodies of functions fκ that have been introduced for all constructors κ.

The semantics of call and actuals operate on the context in the same way
as informally introduced in Section 2; call adds a new label to the context and
actuals selects the expression to evaluate based on the current label, which it
removes from the context. The most interesting parts of the semantics are the
equations for case and for #m. In the former, the expression to be analyzed is
evaluated and is found to be of the form 〈κi, w′〉 for some constructor κi that
is mentioned in one of the clauses of case. (This is guaranteed if the program
is well typed and case clauses are exhaustive, but we do not discuss typing
issues in this paper.) Evaluation proceeds with the body ei of that clause but
the context w′ is prepended to the list µ of contexts corresponding to nested



case expressions. If later, in the evaluation of ei, an expression of the form
#m(e) is found, the context µm found in the m-th position of the list µ is used
for evaluating e, instead of the current context.

3.2 The Intensional Transformation from FOFL to NVIL

We start by defining the set labels(f, p), i.e., the set of labels of calls to f in
program p. These labels will form the indices of call operators. More specifically,
the label of a function call f(e0, . . . , en−1) is simply the sequence of its arguments
〈e0, . . . , en−1〉. In other words, the transformed form of the call f(e0, . . . , en−1)
will be call` where ` = 〈e0, . . . , en−1〉. This assumption is slightly different from
the one presented in Section 2.1 but it helps us in two ways. First, using this
assumption, two identical function calls in the program receive exactly the same
label. Second, since a label ` is a sequence of the actual parameters of a function
call, we can write `m in order to specify the m-th actual parameter of this call.
This helps us simplify notation. Recapitulating:

labels(f, p) = {〈e0, . . . , en−1〉 | f(e0, . . . , en−1) in p}

We can now define the overall transformation from FOFL to NVIL, as shown in
Figure 4. Given a program p, the function Trans(p) removes the formal parame-
ters from all definitions and adds one extra definition for every formal parameter
of every function in the program. The creation of these extra definitions is per-
formed by the function actdefs. More specifically, given a function f with formal
parameters v0, . . . , vn−1, the function actdefs(f, p) creates one actuals defini-
tion for each vj ; this definition contains a sequence of all the (processed) actual
parameters of f in p that correspond to the j-th position. Finally, we have the
functions E and B, which process expressions and case clauses. The main role of
these two functions is to replace function calls with corresponding occurrences
of the operator call.

4 The Implementation

In this section we describe an implementation of the generalized intensional
transformation. The key idea of the implementation is that for every definition
in the target intensional program, a corresponding piece of C code is generated,
parameterized by the current context. In fact, the C code implements a more
efficient version of the EVAL function in Figure 3. The runtime system uses a
stack and a heap. However, in contrast to the standard implementation of user-
defined data types that are represented as heap objects, the only entities that
are stored in the stack and the heap are Lazy Activation Records (LARs), which
we adapt here from our previous work [4]. A LAR is created when an expression
of the form call`(f) is encountered during the execution of the program. LARs
are similar to traditional activation records where, among other things, function
parameters are stored. Some of the fields in a LAR are not filled at the time



E(c(e0, . . . , en−1)) = c(E(e0), . . . , E(en−1))
E(f) = f
E(f(e0, . . . , en)) = call`(f) where ` = 〈e0, . . . , en〉
E(κ(e0, . . . , en−1)) = κ
E(case e of {b0; . . . ;bn}) = case E(e) of {B(b0); . . . ; B(bn)}
E(#m(e)) = #m(E(e))

B(κ(v0, . . . , vn−1)→ e) = κ→ E(e)

actdefs(f, p) =

n−1⋃
j=0

{vj = actuals(〈E(lj)〉l∈I)}

where v0, . . . , vn−1 are the formal parameters of f and I = labels(f, p)

Trans(p) =
⋃

f(v0,...,vn−1)=e in p

{f = E(e)} ∪ actdefs(f, p)

Fig. 4. The transformation algorithm from FOFL to NVIL.

of the function call, when the LAR is constructed, but only when their value
is actually demanded by the implementation. Notice that when the value of
a formal parameter under a given context is demanded again during execution,
then the existing value for this formal parameter can be retrieved from the LAR.
In other words, the LARs implement a call-by-need semantics, as discussed at
the end of Subsection 2.1.

A LAR corresponds directly to a context of the form w = 〈`, w′, µ〉 in the
definition of function EVAL in Figure 3. More specifically, it contains the fields:

– prev : a pointer to the parent LAR, i.e., the LAR of the function that invoked
this one. It corresponds directly to w′ above.

– arg0, . . . , argn−1: each arg i points to the code corresponding to the i-th for-
mal parameter of the function call that generated this LAR. This is an
encoding of `, in the formal semantics of NVIL, and can be directly used to
evaluate the function’s arguments.

– val0, . . . , valn−1: each val i memoizes the value of the corresponding arg i. It
is initially empty and will be filled on demand: if at some point the code
stored in arg i is executed and computes a value, this value will be stored in
val i for future use. This implements a call-by-need semantics.

– nested : this field corresponds directly to µ. It is in fact an array which mem-
oizes the values of expressions used in nested case constructs. In particular,
when an expression of the form #m(e) is later encountered, nested [m] points
to the LAR that must be used to evaluate e.

With all this in mind, the compilation of the NVIL program to C code faithfully
follows the rules of EVALp given in Figure 3.

The main difference between our approach and the standard implementation
of non-strict functional languages is the absence of closures. In the traditional



implementation of call-by-need, the field arg i would contain a closure consisting
of: (i) a pointer to the code that will compute the i-th parameter, and (ii) an
environment, providing the values of the captured variables that this code needs
to use. On the other hand, in our implementation, arg i is just a code pointer.
The environment has been eliminated, as the intensional transformation has
encoded it in the context (i.e., a pointer to a LAR) that will be passed to arg i.
All variables correspond to top-level, zero-order definitions and it is the context
that guides evaluation and produces the correct values of these variables.

The implementation includes certain rather simple optimizations which focus
on allocating LARs on the stack whenever this is possible:

– Functions returning ground values (e.g., integers or booleans) or data types
with only nullary constructors allocate their LARs on the stack and deallo-
cate them on return.

– Functions that may return data types built by non-nullary constructors al-
locate their LARs on the heap.

Using this scheme, programs that do not make extensive use of user-defined data
types can benefit from stack allocation. Further optimizations are possible, such
as tail call elimination, but have not yet been implemented. Usage analysis can
also be handy for further optimizations. If, for example, it is known that the
value of some arg i is only used once, then it need not be stored in val i.

Stack-allocated LARs are discarded immediately when the active function
call terminates. On the other hand, a garbage collector is required to discard
heap-allocated LARs. We have currently implemented a simple semi-space copy-
ing garbage collector but we intend to investigate this further and expect that
much better performance can be achieved with a garbage collector more suit-
able for the nature and usage of LARs; this is one of the primary goals for our
future research. The root set for garbage collection is calculated by traversing
stack-allocated LARs and the active context.

5 Performance Evaluation

In order to evaluate the performance of our implementation, we benchmarked it
against four other well-known Haskell compilers:3

– The Glasgow Haskell Compiler (GHC): the definitive compiler for Haskell.
– The Utrecht Haskell Compiler (UHC): implemented using attribute gram-

mars and supporting most features of Haskell 98 and Haskell 2010.
– The NHC98: a small and portable compiler for Haskell 98.
– The JHC: an experimental and fast compiler for Haskell, implemented in

order to test various optimizations for the language.

3 The code of our implementation and the benchmark programs that we used are
available from http://www.softlab.ntua.gr/~gfour/dftoic/.



Program GIC GIC-llvm GHC7 GHC6 NHC UHC JHC

ack 2.47 1.25 0.62 0.48 6.18 40.03 0.05
church 3.55 2.09 0.61 0.55 11.58 68.37 0.17
collatz 0.69 0.41 1.07 2.66 84.28 46.90 0.16
digits of e1 2.30 2.09 0.77 1.74 60.71 75.29 –1

fast-reverse 3.03 1.95 1.74 1.82 1.35 9.41 –2

fib 1.35 1.12 0.50 0.51 10.43 55.55 0.17
naive-reverse 3.02 2.87 0.49 0.42 0.79 3.56 0.75
ntak 8.62 5.87 2.91 3.65 154.74 91.95 7.18
primes 2.55 1.58 2.19 2.30 172.45 173.81 0.73
queens-num 0.33 0.23 0.31 0.33 21.16 12.43 0.14
queens 3.92 3.24 0.44 0.48 27.17 123.98 0.82
quick-sort 3.18 2.77 1.92 1.90 1.51 5.42 8.58
tree-sort 2.19 1.97 0.39 0.33 0.91 6.58 0.72

GMR3 1.38 1.00 0.51 0.57 7.28 18.49 0.33

1 jhc compilation error, 2 jhc runtime error.
3 Geometric mean of the ratios, compared to GIC-llvm.

Fig. 5. Runtime comparison for 13 benchmarks. Execution times are in seconds.

The comparison is based on a set of 13 benchmark programs, most of which are
standard benchmarks for lazy functional languages, e.g. coming from the NoFib
benchmark suite [11]. Some of the programs perform purely numerical compu-
tations (such as the programs ack, fib, primes and queens-num), pure list pro-
cessing (such as naive-reverse and fast-reverse), numerical computations
combined with list-processing and/or higher-order functions (such as church,
ntak, collatz, digits of e1, quick-sort), and other user-defined data types
(such as queens and tree-sort).

The benchmarks were performed on a machine with four quad-core Intel
Xeon E7340 2.40GHz processors and 16 GB memory, running Debian 6.0.5. The
versions of the compilers tested were GHC 7.4.1 and GHC 6.12.1, UHC/EHC
1.1.4, NHC98 1.22, and JHC 0.8.0. Our own compiler is shown in the benchmarks
table as GIC (the Generalized Intensional Compiler). All benchmarks were exe-
cuted five times and the median (elapsed) execution time was recorded. For all
compilers the effects of garbage collection were minimized by setting a large size
for the heap — in practice all programs either did no garbage collection at all
or only a few. Finally, we disabled strictness analysis from all compilers that
supported such an option, so as to focus on the performance of genuine lazy im-
plementations. As this results in a significant slowdown for compilers like GHC,
we will have to repeat the experiment when a competitive strictness analysis has
been implemented for our compiler.

The performance results are depicted in Figure 5. In this table, GIC-llvm is
the generalized intensional compiler whose C output is compiled using llvm-gcc,
the front-end of gcc to the LLVM compiler. We used GCC 4.4.5 and LLVM 2.6.
The benchmarks appear to suggest the following conclusions:



– Compiling the target C code of the generalized intensional compiler with
llvm-gcc is quite more efficient than with standard gcc. Very similar re-
sults were also obtained using clang. In the following, when we refer to the
intensional compiler, we mean GIC-llvm.

– The intensional implementation is on the average 2-3 times slower than
the fully optimized implementations GHC6 and GHC7. Notably, for collatz,
primes, and queens-num, the intensional system performs better than GHC6

and GHC7. Since the intensional compiler does not currently support any so-
phisticated optimizations, we believe that there is room for much improve-
ment in our implementation.

– In certain programs (e.g., ack and church) GHC6 performs better that GHC7.
This has been reported (ticket #5888 in the GHC bug tracking system); it
is related to a GHC optimization for unboxing integer values which seems
to have deteriorated in GHC 7. It is expected to be fixed in release 7.6.1.

In general, we feel that the performance results are quite promising for the
intensional approach, especially if we take into consideration that it is a far less
mature compiler and that its implementation mainly aimed at simplicity and
not performance, at this point.

6 Related Work

The work described in this paper, has its roots in the area of dataflow program-
ming, which flourished more than three decades ago. It is also connected to the
area of intensional and multidimensional programming [2] which was later devel-
oped as an extension of dataflow programming. The proposed technique has its
origins in the key ideas that have been developed in order to implement dataflow
and intensional languages.

Implementation Techniques for Dataflow Languages. In the dataflow model of
computation, data are processed while they are flowing through a network of
interconnected nodes (or dataflow network). A dataflow network is a system of
processing units (or nodes) which are connected with communication channels
(or arcs). Nodes can have multiple input and output arcs. The most advanced
form of dataflow is the so-called tagged token dataflow in which the data-items
are labeled with tags (or contexts). A node can fire if it receives in its input arcs
data-items that have the same tags. The tagged-token approach obviates the
need of data-items to arrive in a strictly pipelined way.

The majority of languages that were used to program dataflow computers
were functional in flavor. Therefore, there existed an obvious need to compile
recursive functions in a way compatible with the tagged-token model. Many
such implementations were developed (e.g., see [9, 1]). The key idea of such
implementations was to use tags to distinguish data items that belong to different
function invocations. This tag-based implementation of recursive functions was
known in the dataflow circles as coloring. Under the coloring scheme, higher-
order functions were implemented by introducing special apply nodes in the
dataflow graph that used a closure representation for function dispatch [18, 12].



The similarity of coloring with the approach proposed in this paper should be
apparent by now. Tags correspond to the contexts in our technique. In particular,
a context in our technique is used in order to uniquely identify a particular
function call in the recursion tree of a program. One can say that the proposed
approach transfers the key ideas of dataflow implementations to mainstream lazy
functional languages. The novel aspects of our approach are the extension of the
coloring technique to a language with user-defined data-types and its efficient
implementation on stock hardware.

Intensional Languages and their Implementation. The development of dataflow
languages was continued during the nineties with the invention of an extension
of dataflow programming, namely intensional programming [2]. The first inten-
sional/dataflow language was Lucid [19] whose implementation was based on
the original intensional transformation which was formalized through the use of
intensional logic in A. Yaghi’s Ph.D. dissertation [20]. The correctness of the in-
tensional transformation was established in [16]. The novel aspect of the current
approach with respect to the original intensional transformation is the support
of user-defined data-types and pattern matching.

A recent extension of Lucid is the language TransLucid [13]. The problem
of implementing higher-order functions in the context of TransLucid has been
considered and the solution that has been proposed is through an explicit rep-
resentation for closures using extra dimensions (which amount to multiple con-
texts). To our knowledge, the technique for implementing TransLucid has not
been applied to more mainstream functional languages.

Finally, we should note that (to our knowledge) all implementations of in-
tensional languages rely on a runtime structure known as the warehouse. The
warehouse is a hash-table in which intermediate results are stored in order to
be reused when demanded again. Despite the fact that our technique shares the
same underlying demand-driven execution model with the intensional languages
(since they all rely on the original intensional transformation), our runtime struc-
tures and implementation decisions are completely different.

Implementations of Functional Languages. In general, the intensional approach
to implementing functional languages appears to differ in philosophy with re-
spect to the graph-reduction-based implementations. The work that appears to
be closest to our approach is Boquist’s GRIN compiler [3], which is also based
on a defunctionalized representation. While GRIN uses a variety of “tags” to
characterize different constructs of a lazy language (constructors, function ap-
plications, and partial applications), we use a uniform representation for these
three types of constructs. GRIN was based on a strict first-order language, in
contrast to our source language, FOFL, which is non-strict. Moreover, GRIN
directly compiled its language for graph reduction using custom optimizations
such as a unique interprocedural register allocation algorithm; we transform it
to a zero-order intensional language and compile the intensional representation
into C code, using a runtime that is based on lazy activation records.

The generalized intensional transformation has some conceptual similari-
ties with environment-based abstract machines, like the work of Friedman and



Wise [7], Henderson and Morris [8], and Krivine [10], or the environment-based
STG machines of De La Encina and Peña [5]. One important distinction of the
intensional approach with respect to the above, is that our technique is based
on a first-order source language. However, one could say that the contexts of
our technique play in some sense the role of the environment, since they guide
the execution mechanism to perform the correct substitution in the body of a
function. We feel that a further investigation of the connections between the two
approaches is quite worthwhile.

7 Conclusions and Future Work

We have introduced the generalized intensional transformation, an extension
of the original intensional transformation that can be used to implement lazy
functional languages with user-defined data types. We have demonstrated the
usefulness of the proposed technique by implementing such a compiler for a
subset of Haskell and by comparing its performance with existing Haskell imple-
mentations. There are certain aspects of the technique that appear to require a
more extensive investigation:

– Our implementation currently compiles only a fragment of Haskell. It is our
intention to extend the implementation to cover the full language. One pos-
sibility would be to make our implementation a back-end to GHC, since the
GHC core language is (roughly speaking) a higher-order version of our FOFL
language. This would allow us to take advantage of all the optimizations and
language extensions of GHC.

– Our technique is heavily based on defunctionalization. It is a well-known
fact that defunctionalization is a whole-program transformation and there-
fore one cannot do separate compilation. This is one aspect of our approach
which we intend to further investigate. The discussion given in the con-
cluding section of [14] might be a good start on lifting this shortcoming of
defunctionalization.

– At present, the compiler only supports a minimal set of optimizations and the
runtime system was implemented having simplicity as the driving criterion
rather than efficiency. We are currently investigating optimizations at the
intensional level and we plan to fine-tune the runtime in order to achieve
a better performance. We also intend to investigate the possibility of using
LLVM (instead of C) as the compiler’s target language.

– We have implemented a simple-minded garbage collection scheme for LARs,
which is currently non-portable and not mature enough to be discussed in
this paper. We expect the implementation of an efficient garbage collector
to be one of the major efforts of our future research, in conjunction with a
possible re-implementation of the runtime system.

We feel that the simplicity of the technique and the promising performance
results suggest that the intensional approach is worth further consideration as
an alternative technique for implementing lazy functional languages.
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