Supporting Separate Compilation in a

Defunctionalizing Compiler

Georgios Fourtounis Nikolaos Papaspyrou

National Technical University of Athens
School of Electrical and Computer Engineering

2nd International Symposium on
Languages, Applications and Technologies (SLATE 2013)
Porto, June 20-21, 2013

Work supported by the project Handling Uncertainty in Data Intensive Applications, co-financed by the
European Union (European Social Fund - ESF) and Greek national funds, through the Operational Program
“Education and Lifelong Learning”, under the program THALES.

Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Defunctionalization

@ Transforms a higher-order program to an equivalent first-order
one (Reynolds, 1972)

@ Requirement: the language of the target program must
support data types with different constructors (sum types)
and pattern matching

@ Applicable to both typed and untyped settings

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Defunctionalization

Example:

data Cl = Add Int
result = double (add 1) 3 | result = double (Add 1) 3
double f x = f (f x) double f x = apply f (apply f x)
add a b =a+b add a b =a+b

apply ¢ z = case c of

Add n —+ add n z

Main ideas:

@ represent higher-order expressions (closures) with constructors
of a new data type C1

@ higher-order expressions are now applied to arguments
through a special apply() function that does pattern matching

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Uses of Defunctionalization

@ Implementation of higher-order source languages with
first-order target languages (MLton, GRIN)

@ Inter-derivation of abstract machines (Danvy et al.)

© Transfer of first-order results to higher-order languages

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Defunctionalization

In practice we have a problem: defunctionalization is considered
a whole-program transformation but to transform big code bases
we need separate compilation

This work: adding support for separate compilation to a compiler
based on defunctionalization

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

The Problem

@ The apply () function must know all functions of the
program that may be used to form higher-order expressions

@ Defunctionalizing two separate pieces of code would create
two different, incomplete versions of apply()

@ Can be addressed in a language with multi-methods (Pottier
& Gautbhier), but this limits the choice of the target first-order
language

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Our Solution

Don't create the apply () function when defunctionalizing a piece
of code but keep enough metadata to reconstruct it later, during
linking of the separately defunctionalized code

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Our Source Language HL,,

A simple higher-order functional programming language with
support for modules:

*

p w=m program

m ::= module i where imports I* §* d* module

I == p(pa) (v:7)* import

d == data p.a= (p.k:7)* data type

T u=b| pal| T—oT type

d = pfaxr=c¢e definition

e == (z | v | op) e | case e of b* expression

v ou= pf | pk top-level name
n= pk It — e case branch

. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Our Source Language HL,,

A simple higher-order functional programming language with
support for modules:

*

p w=m program

m ::= module u where imports [* §* d* module

I == p(pa) (v:7)* import

d == data p.a= (p.r:7)* data type

T u=b| pal| ToT type

d == pfar=e definition

e == (z | v | op) e | case e of b* expression

v ou= pf | pek top-level name
n= ukxF — e case branch

Namespaces implemented with module-qualified names

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

HL»; Example

module Lib where
Lib.high g x = g x
Lib.h y =y +1
Lib.test = Lib.high Lib.h 1
Lib.add a b =a+ b

module Main where

import Lib (Lib.h :: Int—Int ,
Lib.high :: (Int—Int)—Int—Int,
Lib.test :: Int,
Lib.add :: Int—Int—Int)

Main.result = Main.f 10 + Lib.test ;

Main.f a = a + Main.high (Lib.add 1) +
Lib.high Main.dec 2

Main.high g = g 10

Main.dec x =x - 1

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

The Target First-Order Language FL

The

subset of HL,; where:

all functions and data type constructors are first-order

module qualifiers are considered parts of the names of
functions, data types and constructors

all module boundaries have been eliminated; programs are lists
of data type declarations and function definitions

. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Modular Defunctionalization

A transformation in two stages:

© Separate defunctionalization
Each module is separately defunctionalized to:

o the equivalent first-order code (without the apply () functions)
e a defunctionalization interface

@ Linking
All compiled modules are linked together and their
defunctionalization interfaces are read to generate the final

apply () code

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 1: Separate Defunctionalization

Separate defunctionalization of a module:
@ transforms all data types and defined functions

@ keeps the necessary metadata

We do defunctionalization in a typed setting:

@ instead of one big apply (), we have a family of apply, ()
functions, to apply closures of type T

@ instead of one closure data type, we have a family of C/(7)
data types, each containing closures of type 7

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 1: Defunctionalize Data Types

Transform all higher-order types to first-order:
T (data p.a WK1 S T1 v [k & Th)

J
data N(u.a) = N(p.k1) : lower(r)

,./\./;(M./@n) . lower(7y,)

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 1: Defunctionalize Data Types

Transform all higher-order types to first-order:
T (data p.a WK1 S T1 v [k & Th)

Y
data N(u.a) = N(p.k1) : lower(r)
N (p.ky) : lower(r,)
N (...) generates unique names for source names

lower(7) transforms higher-order types to first-order, e.g.:
lower(Int — (Int — Int) — Int) = Int — Cl(Int — Int) — Int

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 1: Defunctionalize Types

Example, higher-order record:
data Record = R : Int— (Int—Int) —Record

4

data Record = R : Int—Cl(Int—Int)—>Record

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 1: Defunctionalize Function Definitions

Standard defunctionalization, formally:

D(p.f x1...2p = €)

E(x)

E(xTer ... en)

EWTer ... en)

EWT ey ... en)

E(oper ... en)
E(caseeof by ; ... ; by)
B(pkxy ... &, — e€)

N(f) z1...2n = E(e)

T

A(r,n) x E(er) ... E(en)
ifn>0
Nw) E(er) ... E(en)
if n = arity(r)
C(v,n) E(e1) ... E(en)

if n < arity(7)

op E(er) ... E(en)
case £(e) of B(b1) ; ... ; B(by)
N(pk)z1 ... zy — E(e)

arity(7) returns the arity of a type, A(7,n,) is the apply, O
function of closures of type 7 to n arguments

G. Fourtounis, N. Papaspyrou

Separate Compilation and Defunctionalization

Stage 1: Generate Defunctionalization Interfaces

Defunctionalization interface of a module: the set of all closure
constructors for the functions of the module

Example: add : Int — Int — Int — Int can form these closures:

arguments | residual type

0 Int — Int — Int — Int
1 Int — Int — Int

2 Int — Int

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 1: Separate Defunctionalization

Defunctionalization interface for the example:

F(adg®»t —1Int =Int =Int) — [(Tpt — Int — Int — Int,add,|]),
(Int — Int — Int,add, [Int]),
(Int — Int,add, [Int, Int]) }

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 2: Linking

At the final linking stage, we must generate:
(a) all closure constructors (C¢(T) data types)
(b) all closure dispatchers (apply, () functions)

given I: the union of all generated defunctionalization interfaces

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 2: (a) Generate Closure Constructors

For each closure type 7, generate data type C{(7):
dataCl(t) = { C(x,n): 7" = Cl(T) | (1,z,7*) € I and n = arity(7) }

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Stage 2: (b) Generate Closure Dispatchers

For all constructors of closures of type 7 in the defunctionalization
interfaces, create the apply, () function to m arguments:

A(r,m) z9 1 ... x,, = case xg of
{Clx,n) y1 -0 Yk —
Clr,m—m)yy ... Yo L1 ... Ty

| (1,2,7%) € I,n = arity(7),k =|7%| }

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Implementation

@ We use modular defunctionalization in GIC, a compiler from a
subset of Haskell to C
@ The standard infrastructure of C linking fits well with our
technique:
e separate defunctionalization generates C object files with
extern symbols
e our linker uses the C linker
@ Simple heuristics can slim down the defunctionalization
interfaces, to control closure constructor explosion

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

@ Extend the technique to polymorphic higher-order languages

@ Benchmark separate compilation and linking times for
different kinds of programs

G. Fourtounis, N. Papaspyrou Separate Compilation and Defunctionalization

Thank you!

ourtounis, N. Papaspyrou rate Compilation a functionalization

	Main Talk
	Introduction

