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Abstract
We present the Flyweight Object-Oriented (FOO) calculus for the
modeling of object-oriented languages. FOO is a simple, minimal
class-based calculus, modeling only essential computational as-
pects and emphasizing larger-scale features (e.g., inheritance and
generics). FOO is motivated by the observation that recent lan-
guage design work focuses on elements not well-captured either by
traditional object calculi or by language-specific modeling efforts,
such as Featherweight Java. FOO integrates seamlessly both nomi-
nal and structural subtyping ideas, leveraging the latter to eliminate
the need for modeling object fields and constructors. Comparing to
recent formalization efforts in the literature, FOO is more compact,
yet versatile enough to be usable in multiple settings modeling Java,
C#, or Scala extensions.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—
Inheritance, Polymorphism

General Terms Languages

Keywords object-oriented programming, formal semantics, type
system, structural types, nominal types

1. Introduction and Motivation
Modeling programming languages via concise formalisms has a
long history. Languages are complex artifacts whose informal spec-
ifications often weigh in at many hundreds of pages, rivaling in
length and topping in complexity all but few human-produced texts.
Yet, a diminutive formalism, often under a couple of pages in
length, can capture key insights on the language’s design. By es-
tablishing properties of the formalism, researchers can reason about
the correctness of important language elements. Formal modeling
has often helped identify design errors, has been used to settle algo-
rithmic questions (e.g., decidability of core typing), and has aided
the community’s understanding of language features. Researchers
routinely leverage a formalism in order to propose language exten-
sions in their purest form, and to quickly test new ideas and their
interaction with a core model.
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The literature landscape of language formalisms contains sev-
eral core object-oriented calculi [1, 4, 6] as well as more targeted
language modeling efforts [10, 15, 21]. The core calculi are typ-
ically object-based and attempt to capture elements of language
design that have gradually become less studied in the past 15
years. Language-specific modeling efforts are often non-minimal
and carry significant baggage that slows down further formal de-
velopment. It is telling, for instance, that the reference model for
Scala [21] contains elements such as dependent types, and has an
undecidable type system.

In this work, we present the Flyweight OO (FOO) calculus for
modeling object-oriented languages. FOO is inspired by Feather-
weight Java (FJ) [10]: it is also a class-based formalism and em-
phasizes inheritance. Indeed, the motivation for FOO stems from
our own past language modeling efforts [2, 7–9] which were based
on FJ. We found that the language features that are most pertinent to
our language extensions had little to do with key elements of Feath-
erweight Java, such as casts, fields, or constructors. (The modeling
of casts, including the hallmark “stupid cast” problem of FJ, has, to
our knowledge, rarely arisen in the literature subsequent to the orig-
inal Featherweight Java publications.) The same observation holds
regarding the work of others. Recent language models in the litera-
ture focus on high-level features, and not on the structure of expres-
sions or low-level computation in general. Such high-level features
include mixins and traits [3, 17, 18], polymorphism and gradual
typing [12, 22]), modules [11, 14], rich type constraints [23], in-
teractions between different kinds of subtyping [16], and domain-
specific extensions [5, 19].

Therefore, we believe there is a need for a minimal calculus
that abstracts away low-level computation to its essence (much like
a foundational calculus) yet fully supports high-level typing ele-
ments (e.g., nominal and structural subtyping, classes, generics).
The FOO calculus attempts to strike such a balance. FOO mod-
els nominal class-based inheritance, as well as anonymous classes.
The latter enable emulation of fields and constructors as well as
of (breadth) structural subtyping. FOO tries to be language agnos-
tic, however FOO programs directly map to Scala programs (mod-
ulo simple, local syntax transformations). Furthermore, FOO has
a straightforward runtime semantics and a simple type-system that
makes its algorithmic properties (sound and complete subtyping al-
gorithm) elementary, without a need for external assumptions (e.g.,
hierarchy cycle checking). Informal inspection of the recent liter-
ature suggests that FOO could be leveraged for a large number of
language modeling efforts that include a formalism, in the context
of either Java, C#, or Scala, and would yield consistent conciseness
benefits.

In this short paper, we present our language design informally,
via examples (Section 2) and detail a formalism that captures the
essence of our approach (Section 3).
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2. FOO, Informally
Before presenting our formalism, we illustrate its syntactic features
in a more palatable form, with the help of some syntax sugar.
All examples are valid Scala code, but map straightforwardly to
concepts in our calculus.

FOO is a class-based calculus. Type expressions are hybrid, con-
sisting of a nominal part and an anonymous set of method signa-
tures. This is quite similar to a feature of the Scala language [20],
allowing on-the-fly extension of an existing named class with an
anonymous part.

Example 1 (On-the-fly and anonymous classes). An existing
Scala class, Employee, can be extended with extra functionality
by adding method extra.

(new Employee
{ def extra() = println("add-on") }).extra;

In FOO all types are of the above hybrid form. The anonymous
part of a type can be empty, resulting in purely nominal typing,
while the nominal part of the type can be Object (the root of all
class hierarchies) allowing subtyping to be determined structurally,
by the contents of anonymous method sets.

Example 2 (Structural types for anonymous classes). The fol-
lowing example illustrates subtyping based on the structure of
anonymous classes.

1 def fun1(e : { def extra() }) = e.extra
2 ...
3 fun1(new Object { def extra() =
4 println("subtyping") })

Indeed, inheritance itself (i.e., the extension of a class by an-
other) can be viewed as merely the naming of a hybrid type, con-
sisting of a nominal part (the named superclass) and the anonymous
extension part.

Example 3 (Inheritance defined in terms of anonymous classes).
We see below the typical syntax for declaring a subclass—the
combination of superclass and subclass body can be viewed as
just a hybrid type. This is precisely the view that our formalism
encodes.

1 class EnhancedEmployee extends
2 Employee { def extra() = println("more") }

Anonymous classes allow us to simulate several syntactic con-
veniences without integrating them in the core language. FOO relies
on such encodings, omitting explicit support for fields, construc-
tors, or multiple method parameters.

Example 4 (Encoding of fields). We see in this example the
construction of Employee objects with different field values. The
simulation of (final) fields with methods is faithful.

1 abstract class Employee {
2 def id(): Integer
3 def name(): String
4 def salary() : Integer
5 };
6

7 def newEmployee ( cid : Integer,
8 cname : String,
9 csalary : Integer ) : Employee

10 = new Employee { def id() = cid
11 def name() = cname
12 def salary() = csalary }

Similarly to the encoding of fields, we can encode multiple
function parameters. This is a conventional encoding, listed here
for completeness.

Example 5 (Encoding of multiple formal parameters). Let us
assume that we want to encode a function adding two integers as
follows:

1 class Add {
2 def apply(x : Integer, y : Integer) = x + y
3 }
4 (new Add).apply(5, 10)

The above snippet can be encoded by capturing the first parameter
inside an instance of Add, using the technique of the previous
example, and by invoking method apply which now takes only
the the second argument.

1 abstract class Add {
2 def x (): Integer
3 def apply(y : Integer) = x() + y
4 }
5 (new Add{ def x() = 5 }).apply(10)

3. Language Description
In this section, we introduce the syntax of the FOO calculus and
present its formal semantics.

Our formalism captures the salient features of class-based OO
languages with nominal and structural subtyping elements, but
eliminates unnecessary complexity: we do not model redundant
language features such as fields, constructors, multiple parameters
as they can be encoded in our calculus.

3.1 Syntax
The syntax of FOO is presented below:

Member type Ψ ::= m : N−→ N

Hybrid Type N ::= C & Ψ

Member M ::= m(x) e

Program Value v ::= new N {M} | x
Expression e ::= v | v.m(e)

Top-level classes P ::= class C = N {M}

We adopt many of the notational conventions of well-known formal
calculi such as FJ [10]: C denotes constant class names, N denotes
object types, m denotes method names and x denotes argument
names. Classes and methods are explicitly typed in our calculus.

There are two kinds of type annotations: member types Ψ and
hybrid types N. A method signature maps method identifier m to a
method type N −→ N′, indicating methods taking a single argument
of type N and returning a value of type N′. A class type N consists
of two components expressing both nominal and structural types:
the first component is the parent class C, which is extended by the
method signatures defined in Ψ. The two components are separated
by the ampersand (&) symbol.

Type annotations and definitions of methods are placed sepa-
rately: a class is defined by listing its hybrid type (i.e., its super-
class, as well as a list Ψ of extra method signatures) and then the
definitions, M, of these methods (i.e., their bodies, without type
annotations) are listed. Both type annotations and definitions are
associated with a unique method identifier. Thus, annotations and
definitions having the same identifier are associated.

Similarly to FJ we use the bar notation to express an ordered
sequence of symbols. For sequences, we use • to denote an empty
one, [σ] for the sequence holding the single element σ, and the
comma operator to add a new element to the front of an existing
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Figure 1 Formal semantics, dynamic (top) and static (bottom).

m ∈ dom(M)

mbody(P, N {M}, m) = M(m)
(M-O)

mbody(P, (N {M′}), m) = M

m /∈ dom(M) P(C) = N {M′}
mbody(P, (C & Ψ) {M}, m) = M

(M-C)

e −→P e
′

new N {M} . m(e) −→P new N {M} . m(e′)
(R-C)

v′ = new . . . mbody(P, N {M}, m) = m(x) e

new N {M} . m(v′) −→P e[(new N {M})/this, v′/x]
(R-I)

x 7→ N ∈ Γ ⊢H N

Γ ⊢H x : N
(T-V)

N = C & Ψ ⊢H N (Γ \ this), this 7→ N ⊢H Ψ M

Γ ⊢H new N {M} : N
(T-N)

Γ ⊢H v1 : N1 Γ ⊢H e2 : N2 ⊢H N2 <: N3
⊢H N1 ⇒ Ψ′; . . . Ψ′(m) = N3 −→ N4

Γ ⊢H v1.m(e2) : N4
(T-I)

Γ, x 7→ N ⊢H e : N′′ ⊢H N
′′ <: N′

Γ ⊢H m : N−→ N′ m(x) e
(T-M)

⊢H Ψ

⊢H Object&Ψ
(W-O)

[this 7→ C & •] ⊢H Ψ M

H(C) = N N = C′ & Ψ ⊢H C & •
⊢H class C = N{M}

(T-C)

Ψ′ ⊆ Ψ

⊢H N ⇒ Ψ; N, N′ ⊢H N
′ ⇒ Ψ′; N′

⊢H N <: N′
(S-N)

⊢H C& Ψ ⇒ Ψ′; . . .

⊢H C& Ψ
(W-C)

⊢H Ψ

⊢H Object&Ψ ⇒ Ψ ; [Object&Ψ]
(H-O)

H(C) = N ⊢H N ⇒ Ψ′; N ⊢H Ψ

for all m ∈ dom(Ψ) ∩ dom(Ψ′) Ψ(m) = Ψ′(m)

⊢H C& Ψ ⇒ Ψ ∪ Ψ′ ; C & Ψ, N
(H-C)

⊢H N, N′

⊢H m : N−→ N′
(W-M)

sequence. We also treat ordered sequences as functions when ap-
plicable. Therefore, Ψ(m) performs a look up on the elements of
Ψ and returns the method signature associated with m. Similarly,
dom(Ψ) returns the set of method names in Ψ. Furthermore, we im-
plicitly overload all predicates applicable to members of a sequence
to apply to the sequence itself, in the usual way.

Class members M consist only of method definitions of the form
m(x) e, where m is a method name and x is the formal parameter of
m, that is bound for the scope of its body e.

A value v can either be a variable x or an object instantiation
expression new N {M}, where N is the class to be instantiated and
M denotes the set of additional methods extending N. Expressions
can either be values or method invocations of the form v.m(e),
where v is the receiver of method m and e an expression. Without
loss of generality, we restrict method receivers to values in order to
simplify our formal semantics.

Finally, P is a set of class declarations mapping class names to
their definitions. The special class Object is considered to be the
root of the nominal class hierarchy and contains no members.

3.2 Operational Semantics
Figure 1 defines the formal semantics of FOO. Our operational
semantics is defined in terms of the reduction relation −→P, which
transforms expressions from e to e′, given the entire program P
that is passed as an implicit parameter. The reduction relation is
defined by two rules, a congruence rule R-C and a reduction rule
R-I . The former rule is standard and applies the reduction relation
recursively until a reducible expression of the form v.m(v′) is
reached. The purpose of the latter rule R-I is to reduce method
invocation expressions to the corresponding method bodies. The
first premise of R-I requires that the argument v′ passed to method
m is an object instantiation expression. The second premise employs
function mbody to lookup the definition of method m using the
receiver object N {M} and the entire program P.

3.3 Static Semantics
The typing rules of FOO are presented in Figure 1. There are
two environments used in typing judgments, the typing context Γ
that maps method variables to hybrid types and the program type

schema H, which maps class names to hybrid types for the given
program P. In contrast with the context Γ, the type schema H is
constant during type checking and is provided as input. The type
checker also assumes that the types residing in H are well-formed,
that is, their definitions satisfy the judgment established by rule T-
C. The type schema H is defined as follows:

H ≡ {C : N | class C = N {M}}

The typing relation is defined as Γ ⊢H e : N. The type schema
H is placed as a subscript of the entails symbol to indicate that it is
a constant context, as opposed to Γ, which may expand. Given the
typing environments, the typing relation assigns a unique type N to
expression e.

The static semantics rules can be divided into five groups:

Hierarchy computation. The hierarchy computation relation is
⊢H N ⇒ Ψ; N and is realized by rules H-O and H-C. The first
component of the hierarchy (a sequence of method type signa-
tures) computes the intermediate “interface” of a hybrid type. It
is crucially used in rule T-I to guarantee type-safe method lookup.
The second component of the hierarchy records the chain of su-
perclasses (full hybrid types) towards the Object root class. This
chain is used (in the subtyping rule, S-N) to distinguish between
two different hybrid types, even if these happen to have the same
method signatures. Given a class type N and an implicit type schema
H, the hierarchy rules compute the full set of method signatures in
a class hierarchy Ψ, as well as the hierarchy N itself.

This relation guarantees the following invariants: (a) there exist
no cyclic definitions in the class hierarchy (no separate cycle check-
ing is required or implied), (b) the returned Ψ contains all methods
of the hierarchy, and (c) methods having the same name also have
the same type signature. Most importantly, the hierarchy computa-
tion rule simplifies subtyping, which involves both structural and
nominal types.

Well-formedness. Rules W-O and W-C are the class type well-
formedness rules, which ensure a non-cyclic hierarchy. Rule W-M
lifts well-formed class types to well-formed method types. We use
abbreviations for sequences of elements: for instance, ⊢H Ψ is an
abbreviation for ∀m : N −→ N′ ∈ Ψ. ⊢H m : N −→ N′.
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Subtyping. The subtyping relation (rule S-N) is defined as ⊢H

N <: N′ and holds when N is a subtype of N′. Our subtyping relation
does not permit depth structural subtyping; we only allow width
subtyping for structural types.

Expression typing. The expression typing relation is Γ ⊢H e : N,
where Γ is the method variable typing context, H is the type schema.
There are three rules for typing expressions: the method invocation
rule, T-I , the object instantiation rule, T-N, and the variable typing
rule, T-V. Notice that the ability to define new classes within
methods has the following consequences: (a) method signatures
Ψ and method definitions M must be validated at the instantiation
point, (b) the outer this variable binding is replaced by the new
type binding of this (i.e., (Γ \ this), this 7→ N) and (c) methods
may capture variables from the enclosing context, since a method
can see the formals of all enclosing methods.

Declaration typing. There are two kinds of declarations. Method
declarations are of the form Ψ M and are validated by Γ ⊢H Ψ M
(rule T-M), while class declarations are validated by rule T-C.

4. Conclusions
We presented a minimal calculus for class-based OO languages
that permits hybrid representation of nominal and structural types.
There have been several related calculi either combining structural
and nominal systems or providing core formal bases for language
design work. However, such calculi either lack some key features or
add significant complexity with features such as external dispatch,
traits, or dependent types. An interesting quick comparison is with
the recent Tinygrace calculus [13], which also aims for minimality
while capturing different core features. In contrast to Tinygrace,
FOO does not model casts and has classes introduce new types, thus
capturing both nominal and structural typing elements. Also FOO
is more compact (e.g., 2 reduction rules instead of 6). Based on its
feature set, its small size and its minimal set of rules, we believe
that FOO can be employed as a basis for the modeling of common
language extension efforts with small extra baggage.

We seek input on avenues for improving FOO or validating its
suitability for language modeling. In this direction, we are currently
completing a Coq proof of soundness for FOO.
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