Motivation Semantics Formal properties Future directions

Foo
A Minimal Modern OO Calculus

Prodromos Gerakios George Fourtounis
Yannis Smaragdakis

Department of Informatics
University of Athens

{pgerakios,gfour,smaragd}@di.uoa.gr

What

A core OO calculus
with nominal and (width) structural subtyping

2/24

Motivation Semantics Formal properties Future directions

Overview

Motivation
Semantics
Formal properties

Future directions

3/24

Motivation

Why

o Well-known OO calculi (e.g., FJ) are
non-minimal or only express one kind of
subtyping

e We need a simple core calculus with flexibility

- (painfully) minimal
- study both nominal and structural subtyping

e F'0OO motivated by our own language modeling

work
- morphing [Huang and Smaragdakis, 2011,
Gerakios et al., 2013]

24

Semantics

Fundamentals

e Basic idea: hybrid types unify nominal and
structural subtyping

e Very compact, tiny syntax, 15 rules for
everything, non-essential features removed

e Mimics (modulo minor syntactic conventions) a
tiny subset of Scala
e our examples are executable code

5/24

Semantics Formal properties

Example: Extending a class

(new Employee
{ def extra() = println("add-on") }
) .extra();

24

Motivation Semantics Formal properties Future directions

Example: Inheritance

Overriding a method:

class EnhancedEmployee extends Employee
{ def extra() = println("more") }

24

Semantics

Example: Methods and formals

e Methods only accept one formal argument
(plus the implicit this)

e But anonymous classes can see formals from
their environment

class C
{ def f(x : Integer) =
new Object

{ def g(y : Integer) = x +y }

Semantics

Example: Fields

e Fields are represented by dummy-argument
methods that return the field value

e To set a field, we override its method
class C { def field(d : Object) =1 }
new C { def field(d : Object) = 42 }

e Informally, we use obj.field instead of
obj.field(new Object { })

24

Motivation Semantics Formal properties Future directions

Example: Emulating multiple arguments

class Add
{ def apply(x : Integer,
y : Integer) = x +y }
(new Add) .apply(5, 10)
becomes (Scala):
class Add
{ def x(): Integer
def apply(y : Integer) = x() +y

}

(new Add { def x() = 5 }).apply(10)

10/ 24

Motivation Semantics Formal properties Future directions

Example: Structural subtyping

def fun(e : { def extra() }) = e.extra
fun(new Object

{ def extra() = println("subtyping") }
)

11 /24

Semantics

Member type
Hybrid Type
Member
Program Value
Expression

Top-level classes

WD R = e

Syntax

= m:N—N
= C &V

= m(x) e

= new N {M} | x

= v | vn(e)

= class C=N {M}

12 /24

Hybrid types
Purely structural type:
Fg @
Fu Object&¥

(W-0)

Class extended by (optional) structural part:

FpC& ¥

(W-C)

Method signatures (elements of ¥):

Fa N, N

W-M
Fam:N— N ()

13 /24

Motivation Semantics Formal properties Future directions

Reduction

Formal argument can be reduced:

e —p €
new N {M}.m(e) —p new N {M}.m(e")

(R-C)

Formal argument is in normal form, call method:

v =new... mbody(P,N {M},m)=m(x) e
new N {M}.m(v') —p e[(new N {M})/this, v//x]

(R-)

14 /24

Motivation Semantics Formal properties

Subtyping

Based on the hierarchy computation:
VCy

Fa N <: N (5-N)

Width subtyping (C relation)

Future directions

15 /24

Motivation Semantics Formal properties Future directions

Formal properties of FOO

e Correctness proof, being formalized in Coq
e No subsumption axiom
e Substitution lemma is special

16 /24

Proof

Subject reduction, with narrowing.
If e—pe’ and e : N, then IN', " : N' A N <:N

FoO does not admit the standard subject reduction
theorem, like DOT [Amin et al., 2012]

Progress.
If e : N, then IM, e = new N M or Je/, e—pe’

ivation Semantics Formal properties Future directions

17 /24

Formal properties

No subsumption

Subsumption property:

fChgx:Nand N<:N, thenT kg x: N
Usually added as an axiom in the type system
In FOO, expressions have a single type

Substitutivity-of-subtypes-for-supertypes still

captured by rules:
T- "you can use a subtype for formal arguments”

T-M “you can use a subtype for method bodies”

18 /24

Formal properties

Substitution lemma (1)

Without subsumption, the familiar substitution
lemma plays different role in the type safety
proof

Example, identity method, with N’ <: N:

o = new Object { id(N o) : N = o }
t = new N
t’ = new N’

0.id(t) —p t : N

o.id(t’) —p t’ : N

We cannot say that t’ : N, so the substitution
lemma does not hold for formals!

A lemma still holds for substitution of this

19 /24

Formal properties

Substitution lemma (II)

e Intuitively, lack of a substitution lemma for
formals is not a problem

e Values are passed/returned by rules T-I/T-N,
which accept subtypes

e Formally, our proof just uses the fact above

directly, instead of going through a separate
substitution lemma for formals

20 /24

Future directions

Other core calculi
e DOT

- combines nominal and structural subtypes
- more features (path-dependent types), bigger
calculus

o Unity [Malayeri and Aldrich, 2008]

- structural subtyping with branding

- similarity: internal vs. external methods

- intersection types, depth subtyping, abstract
- bigger calculus, e.g. 13 subtyping rules

e Tinygrace

- almost as minimal as FOO, extra feature (casts)
- structural subtyping, supports nominal subtyping if
further extended with branding [Jones et al. 2015]

21 /24

Future directions

Future directions and applications

e We already have an extension of FOO with
generics, to match FJ

e To be used in formalizing universal morphing
(see our JUCM paper at MASPEGH]I)

e Finish Coq proof (the usual culprit: binding
representation)

22 /24

Future directions

Thank You!

Motivation

[
B

Semantics Formal properties Future directions

References

N. Amin, A. Moors, and M. Odersky. Dependent Object Types:
Towards a foundation for Scala’s type system. FOOL '12.

P. Gerakios, A. Biboudis, and Y. Smaragdakis. Forsaking
inheritance: Supercharged delegation in DelphJ. OOPSLA '13.

S. S. Huang and Y. Smaragdakis. Morphing: Structurally shaping a
class by reflecting on others. ACM Transactions on Programming
Languages and Systems, 33(2):1-44, 2011.

T. Jones, M. Homer, and J. Noble. Brand Objects for Nominal
Typing. ECOOP '15.

D. Malayeri and J. Aldrich. Integrating Nominal and Structural
Subtyping. ECOOP '08.

24 /24

Extra slides

Expression and method typing
Variables, new objects, method invocations:

x—NeT l_HN
Fl_HX:N

N=C&Y% FyzN (T\this),this—>NFz¥ M

(T-V)

_ (T-N)
Thgnew N{M} : N
Fl—Hvl:Nl Fl_He2:N2 l_HN2<:N3
Fa Ny = ;... ¥(m) = N3 — N
H N1 (m) 3 4 (T—/)

Iy vim(es) 1 Ny

Method definitions:

Ix+— Nbkge: N FygN <N

-M
Thym:N— N m(x)e (T-M)

25 /24

Extra slides

Hierarchy computation

e Given a hybrid type N, extracts the pair ¥;N:
¥: signatures for all methods that can be called on N
N: the “path” of parent classes towards Object

e Purely structural case:

_w¥ —— (H-0)
Fy Object&¥ = ¥ ; [Object&Y]
e Involving classes:
H(C) =N Fg N = ¥;N by ¥

for all m € dom(¥) Ndom(¥) ¥(m) = ¥(m)

FeC& ¥ =TUV ; C & ¥, N

(H-C)

26

24

Extra slides

Method lookup

Look up method in structural part of object:

mbody(I:j ?;;Sf)) — M(m) (M-0)
Look up method in the parent class:
mbody(P, (i {'}).m) = 1
w ¢ dom(i) P(C) =N (K}

mbody (P, (C & ¥) {M},m) =M

27 /24

Extra slides

Class definitions

[this +— C & o] Fy ¥ M
HC)=N N=C&¥ FyC&e

by class C = N{M}

(T-C)

28 /24

	Motivation
	Semantics
	Formal properties
	Future directions
	Appendix

