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Abstract
Pointers in the AMD64 architecture contain unused space, a fea-
ture often exploited by modern programming language implemen-
tations. We use this property in a defunctionalizing compiler for
a subset of Haskell, generating fast programs having a compact
memory representation of their runtime structures. We demonstrate
that, in most cases, the compact representation is faster, uses less
memory and has better cache characteristics. Our prototype shows
competitive performance when compared to GHC with full opti-
mizations on.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Run-time environments; D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

Keywords lazy functional programming; tagged pointers; AMD64;
compact data representations

1. Introduction
Programs written in high-level languages are frequently praised for
expressiveness and independence from hardware details. However,
this comes at a price: hiding low-level details from the programmer
means that language implementations are responsible for obtaining
a good performance.

This is especially true for Haskell [28], a non-strict functional
programming language, whose semantics is very different from
the principles of today’s mainstream hardware. Although Haskell’s
execution model has been adapted to run on such hardware [27,
34], there is still room for improvement, as hardware evolves and
different issues dominate performance.

A significant problem in modern hardware is the processor-
memory performance gap [11, 48]. Processors are too fast com-
pared to memory, making programs stall while waiting for memory
to respond to read/write accesses. An attempt to solve this dispar-
ity is caches, which are fast intermediate memories that sit between
the processor and memory and try to minimize latencies by keep-
ing recently-used data. Caches however are small in size and there-
fore programs must have good cache locality, a factor connected to
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code and data size [31, 49]. The memory gap puts special pressure
on Haskell implementations, since the language is based on im-
mutable data structures and programs spend a lot of time in mem-
ory allocation and garbage collection, exhibiting mediocre cache
behaviour [38].

We present an implementation for a subset of Haskell that uses
a compact memory representation, taking advantage of redundancy
in pointers in AMD64 [36], currently one of the most widespread
computer architectures. Our representation tries to minimize mem-
ory use by clustering runtime structures [17], trading extra memory
usage for bit-field manipulations.

In the rest of this paper, we first describe the AMD64 features
that we use together with our runtime model (Section 2). Then we
show how we used these features in our implementation (Section 3)
and discuss how garbage collection cooperates with our compact
memory representation (Section 4). To evaluate our technique, we
benchmark our prototype compiler against our previous (less com-
pact) implementation and also against a fully optimizing GHC, the
de facto standard Haskell compiler (Section 5). Finally, we examine
related implementation techniques (Section 6) and conclude with a
few remarks and directions for future work (Section 7).

2. Background
We present here the details of the AMD64 architecture that we use
in our implementation, as well as our runtime model.

2.1 Redundancy in AMD64 Pointers
Pointers in the AMD64 architecture have the following properties:

1. They are aligned at 8 bytes [36, p. 12], their last 3 bits always
being zero.

2. They may only be used to handle 48-bit addresses [36, Sec-
tion 3.3.2]. The high 16 bits are assumed to be equal to the
most significant used bit [4, Section 1.1.3].

Every pointer then uses only 45 significant bits (termed from now
on the pointer body), leaving 19 bits per pointer (or 29.69%) that
carry no information and can be reused. The space occupied by a
pointer can now be seen as in Figure 1, where the shaded space has
known contents and is therefore free to reuse, as its contents can be
reconstructed on demand.

Accessing different fields of this space can be done with bitwise
operations, such as logical shifts and boolean operations. For exam-
ple, if bits 48-63 are assumed to contain a 16-bit unsigned integer
(its type in C being uint16 t [45]), then the following C macro
would take a pointer p and apply a logical shift operation to give
back the integer value:

#define INT16(p) ((uint16_t)((uintptr_t) p >> 48))
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Figure 1. Space in a pointer in the AMD64 architecture.

In the rest of this paper, we will use C code like the above to
represent such operations, in the style of Gudeman [25], assum-
ing that this code is compiled by a C compiler for the AMD64
architecture. We will also use the standard C types uintptr t and
intptr t [45] to view pointers as unsigned or signed 64-bit inte-
gers and do unsigned or sign-extended shifts correspondingly.

2.2 Lazy Activation Records
Our work is based on GIC, a prototype compiler from a sub-
set of Haskell to C [21]. Our compiler is based on defunctional-
ization [43] from higher-order Haskell to a first-order subset of
Haskell. Defunctionalization replaces all closures with construc-
tors, for example the following higher-order program:

result = double (add 2) 10
double f x = f (f x)
add a b = a + b

is transformed internally to the following first-order program:

data Closure = Add Int

result = double (Add 2) 10
double f x = apply f (apply f x)
add a b = a + b

apply c z = case c of
Add a0 -> add a0 z

The first-order lazy language is implemented using lazy activa-
tion records (LARs) for function and constructor calls [21]. These
are activation records that hold the following information:

prev: The access link [2] to the lazy activation record of the
calling function.

vals: The parameters passed to the function or constructor, rep-
resented as unevaluated thunks.

nested: A display structure [2] containing pointers to the contents
of visible constructors. This is used by pattern match-
ing inside functions, to lazily evaluate constructor com-
ponents.

For example, assume the following function f, that takes two pa-
rameters and contains one pattern-matching expression:

f x y = case x of
[] -> [1]
a:as -> [a + y]

A LAR allocated for a call to f will contain the access link pointer,
two thunks and one nested entry, as pictured in Figure 2.

The thunk is the basic machinery of lazy evaluation, wrapping
code that should only be evaluated when needed (and whose value
must be remembered, in case it is needed again). A thunk contains
three fields:

flag: A flag that shows if the thunk has been evaluated.

code: A pointer to the code that evaluates the thunk.

value: A memoized value, if the thunk has been evaluated.

...

prev: access link

vals[0]: thunk for x

vals[1]: thunk for y

nested[0]

LAR

...

Figure 2. A lazy activation record (LAR) of a function taking two
parameters and doing one level of pattern-matching.

The memoized value is a lazy constructor, which has a head tag
(e.g., Cons or Nil for a classic list data type) and a pointer to a list
of lazy arguments. In our implementation, a constructor is simply a
function that returns a pair of a constructor tag and a pointer to the
LAR containing its own arguments.

Note. For simplicity, in the rest of this paper we will use “func-
tion” to refer to both user-defined functions and constructor func-
tions and “LAR” for lazy activation records created for function
and constructor calls.

3. Single-Word Thunks
As described in §2.2, a thunk should have three fields: (a) a flag
to indicate if it has been evaluated, (b) a code pointer, and (c) a
memoized value. In this section we describe how to fit all of them
in a single machine word.

We first observe that the code pointer is useful only when
the thunk has not been evaluated yet; the opposite is true for the
memoized value, which exists only when the thunk has already
been evaluated. Therefore, we can reuse the same machine word
for both the code pointer and the memoized value, if we keep the
last word bit as the thunk flag that determines the state of the thunk.

The code pointer fits in one machine word by definition and
its three low bits are assumed to be zero.1 The memoized value
is a lazy constructor, i.e., a pair of a constructor tag and a LAR
pointer. If we assume that each data type has at most 216 different
constructors, we can embed the tag in the unused 16 high bits of
the LAR pointer, representing the lazy constructor using just the
machine word of the pointer. Since we use the space of a pointer,
the three low bits will also be zero. As the three low bits have
known content in both cases (code pointer and memoized value),
the last bit can then be reused as the thunk flag.

We now have a compact representation but we still have two
spare bits (1-2). We exploit this and use bit 1 as a value flag to dif-
ferentiate between normal constructors and enumeration construc-
tors (such as True or 42); the latter need no pointer to arguments
and can then use the unused space of the pointer body as well. We
call these values primitive and use them to represent 62-bit integers,
booleans, floating-point numbers, and other enumerations. Because
Haskell is statically typed, the value flag should not be necessary:
all operations are always applied to suitable values during runtime.

1 This property can be forced, e.g. in GCC, by using the option
-falign-functions.
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Figure 3. Space in a 64-bit thunk.

However we need the flag for the garbage collector described in the
following section, which has to examine thunks to find pointers.

Figure 3 shows the layout of unevaluated and evaluated thunks;
the latter case is both for lazy constructors and primitive values.
There is still some unused space (bit 2 in constructor values and
bits 1-2 in unevaluated thunks). We also reserve the pattern 110 of
the last three bits for future use.

Handling unevaluated thunks. The following macro can check
if a thunk has already been evaluated, by testing the thunk flag:

#define IS_VAL(t) (((uintptr_t) t & 1) == 0)

If the flag is set, then the CODE macro can be used to mask out the
flag and give back the code pointer that must be called to evaluate
the thunk:

#define CODE(t) ((uintptr_t) t & ~1)

If the thunk flag is cleared, then bits 2-63 contain an already
computed value, which is either a lazy constructor or a primitive
value, and the macros of the following paragraphs can be used to
access its contents. As explained before, the type of the value is
known statically, without testing bit 1.

Lazy constructors. A lazy constructor contains two fields: a con-
structor tag and a pointer to the LAR containing the constructor
components as thunks. The constructor tag can be accessed by sim-
ple shifting:

#define CONSTR(p) ((uintptr_t) p >> 48)

The constructor pointer must be reconstructed from bits 3-47. As
shown in Figure 1, to reconstruct a pointer from its pointer body,
the three low bits must be cleared and the highest-bit in the pointer
body must be sign-extended to the left. The following CPTR macro
shows this operation, where the (intptr t) cast makes the right
shift signed:

#define CPTR(p) (((intptr_t) p << 16 >> 16) & ~7)

Primitive values. These are 62-bit signed integers, residing in bits
2-63 and can be read and written by the following macros:

#define PVAL_R(p) ((intptr_t) p >> 2)
#define PVAL_W(i) ((intptr_t) i << 2)

The cost of this representation is that for every built-in operation,
each argument must be shifted 2 bits to the right, the operation
performed, and the computed value must be shifted 2 bits to the
left again, to be a valid thunk. However, we can do better for some
operations, since the lower bits are always 0, for example, two
positive integers can be added without shifting as follows [25]:

#define SUM(p1,p2) ((intptr_t) p1 + (intptr_t) p2)

Why use this layout of the low bits? As shown in the previous
paragraph, the representation of primitive integers has an advan-
tage, since the low bits are 0 and some operations can be simplified.
Another choice would be to have the low bits of constructors be 0,
so that dereferencing the constructor LAR pointer would not have
to use the ~7 mask. We could also have the three low bits be 0 for
unevaluated thunks, so that CODE would not need the ~1 mask. In
practice, we did not see any performance difference between these
three representations.

4. Garbage Collection
Although our code generator produces C, we cannot directly use
a general-purpose conservative collector, such as Boehm-Demers-
Weiser [10], because the information embedded in pointers masks
them beyond recognition.2 We need a garbage collector that under-
stands the representation of thunks and lazy activation records. In
this section we will describe the basic interface that our representa-
tion presents to a custom semi-space garbage collector [26].

There is only one way to allocate memory in our implementa-
tion: creating a LAR for a function or constructor call. Our garbage
collector is then simple: the roots are pointers to lazy activation
records found in registers or in the stack; collection proceeds recur-
sively to all lazy activation records reachable from them. Pointers
to other LARs can be found (a) in the prev link, (b) in evaluated
thunks containing constructors, and (c) in the nested fields.

As described in §2.2, lazy activation records of different func-
tions have different layouts: the activation record of a function tak-
ing a ≥ 0 arguments and containing n ≥ 0 levels of nested pattern
matching clauses has a thunks and n nested fields. This information
must be stored in each LAR, so that the garbage collector knows its
layout. Since functions may take no arguments or do no pattern-
matching, the only part of an activation record that is always there
is the access link pointer prev. It is then convenient to use its high 16
bits to encode a and n as two adjacent 8-bit quantities. (This effec-
tively restricts our implementation to support functions taking up
to 255 arguments and containing pattern-matching clauses nested
at most 255 levels deep, which seem to be reasonable restrictions
in practice.) Bit 0 is also used by the garbage collector and will be
described later in this section.

The resulting layout of the prev pointer is shown in the top of
Figure 4. In the following code, PTRMASK is the mask that extracts
the pointer body and ARINFO initializes the prev pointer during
LAR construction:

#define PTRMASK 0x0000fffffffffff8
#define ARINFO(a,n,prev) (((uintptr_t) a << 56) \

| ((uintptr_t) n << 48) \
| ((uintptr_t) prev & PTRMASK))

The two fields for arity and nesting can be extracted with these
macros:

#define AR_a(p) ((uintptr_t) p >> 56)
#define AR_n(p) (((uintptr_t) p >> 48) & 0xff)

2 We can modify such a collector to identify our pointers, but it is not clear
how well such a strategy would work in practice in a conservative setting.
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Figure 4. Embedding information for garbage collection in the
prev field.

The low three bits of the prev pointer are initially cleared by
PTRMASK and the garbage collector bit is always cleared when the
collector is not running. Consequently, when the program is not
doing a collection, prev can be accessed during runtime without
masking the low bits:

#define AR_prev(p) ((intptr_t) p << 16 >> 16)

A semi-space garbage collector needs space to store the for-
warded address [26] of an already copied object — in practice,
implementations usually repurpose some space on the collected ob-
ject for this field. In our case, we reuse the prev pointer to store the
forwarded address of the LAR and set bit 0 of prev to indicate if
the LAR is forwarded so that we can take its new address (macros
IS FORWARDED and FORWARDED ADDR):

#define IS_FORWARDED(lar) ((uintptr_t) lar->prev & 1)
#define FORWARDED_ADDR(lar) ((uintptr_t) lar->prev & ~1)

The resulting representation is shown in the bottom of Figure 4.

5. Benchmarks
We evaluate our prototype in two ways: (a) we measure its perfor-
mance against GHC, to ensure that it is efficient, and (b) we com-
pare the compact representation with a less compact thunk repre-
sentation, used in a previous version of our prototype.

5.1 Evaluation against GHC
To evaluate the performance of our prototype, we run a set of
standard Haskell benchmarks compiled by both GIC and GHC
and compare running times. Of course, the benchmarks compare
not only the efficiency of the memory representation proposed in
this paper. They depend heavily on the efficiency of the complete
GIC compiler, which is based on defunctionalization [20] and the
intensional transformation [21].

GHC is the state-of-the-art compiler for Haskell, incorporat-
ing decades of research on optimizations and on implementation
techniques for lazy languages. On the contrary, our compiler3 is at
an early development stage, missing many features; for example it
does not do any optimizing code transformations, such as fusion or
inlining. It does however two simple optimizations based on static
analysis: (i) a sharing analysis [19] that evaluates unshared thunks
using a call-by-name strategy, and (ii) an analysis that allocates
LARs on the stack for functions that return values that do not let
their environment escape (such as integers) [6].

The experiments were performed on a machine with four In-
tel Xeon R© E7340 CPUs (2.40 GHz), having a total of 16 cores,

3 Available from https://github.com/gfour/gic.
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Figure 5. Execution time of benchmarks compiled with GHC and
GIC (smaller is better).

with 4 MB cache and 16 GB RAM, running Debian GNU/Linux
7.3. We used GHC 7.6.3 as the reference Haskell compiler and
LLVM 3.3/Clang as the C back-end of our compiler. We also tested
GCC and the Intel C Compiler on our benchmarks, to account for
compiler-specific performance quirks. We ran GHC with all op-
timizations turned on (-O3), using its default back-end. Explicit
type signatures were inserted in all benchmarks, to remove any un-
needed polymorphism overhead that GHC might introduce, espe-
cially when handling integers. We compiled the code generated by
GIC with all optimizations turned on as well, in all three C compil-
ers.

Figure 5 shows a comparison of the execution time for several
benchmark programs, compiled with GHC and GIC. We see that
(a) collatz performs better when compiled with GIC, (b) primes,
queens-num and quicksort have roughly the same performance,
and (c) the rest (ack, digits of e1, fib, ntak, church, queens,
reverse, tree-sort) run faster with GHC. We also find that
Clang, GCC, and the Intel C Compiler do not differ much regarding
the performance of the selected benchmarks, although there are
cases where the first (ntak, tree-sort), the second (fib), or the
third (ack, queens) performs better.

Figure 6 shows the cache behavior of the test programs, mea-
sured using the Cachegrind tool [38]. We see here that (a) collatz,
digits of e1 and queens-num exhibit fewer cache misses when
compiled with GIC, (b) ntak, primes, and queens show similar
cache misses, and (c) ack, church, fib, quick-sort, reverse,
and tree-sort show fewer misses when compiled with GHC.

The church benchmark makes extensive use of closures, stress-
ing our implementation of defunctionalization (as Danvy and
Nielsen indicate, Church encoding is in fact the inverse of de-
functionalization [18]). Our worse performance than GHC may be
the result of missing optimizations or it could mean that our de-
functionalization is not mature for closure-heavy programs. The
latter can be addressed if specialized optimizations are used, such

https://github.com/gfour/gic


GHC GIC, previous representation GIC, compact representation
I1 LLi D1 LLd LL I1 LLi D1 LLd LL I1 LLi D1 LLd LL

ack 0.0 0.0 6.1 2.1 0.3 0.0 0.0 10.1 0.0 0.0 0.0 0.0 10.8 0.0 0.0
church 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
collatz 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.3 0.2 0.1 0.0 0.0 0.1 0.1 0.0
digits of e1 0.0 0.0 3.2 0.0 0.0 0.0 0.0 2.4 1.8 0.6 0.0 0.0 1.3 0.8 0.2
fib 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ntak 0.0 0.0 1.6 0.0 0.0 0.0 0.0 2.4 1.9 0.8 0.0 0.0 1.0 0.9 0.2
primes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0
queens 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.8 0.6 0.2 0.0 0.0 0.4 0.3 0.0
queens-num 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
quick-sort 0.0 0.0 4.2 0.5 0.1 0.0 0.0 11.2 3.9 1.6 0.0 0.0 8.2 1.7 0.5
reverse 0.0 0.0 8.2 0.0 0.0 0.0 0.0 23.4 8.0 3.3 0.0 0.0 15.0 3.6 1.0
tree-sort 0.0 0.0 7.3 0.0 0.0 0.0 0.0 14.4 3.4 1.4 0.0 0.0 7.9 1.6 0.4

Figure 6. Cache miss rates reported by Cachegrind (%). I1: first-level instruction cache. LLi: last-level instruction cache. D1: first-level data
cache. LLd: last-level data cache. LL: last-level combined cache. Zeroes are shown as greyed out values.

as the flow-directed analysis of the defunctionalizing compiler ML-
ton [15]. However, defunctionalization is a technique orthogonal to
the compact representation proposed in this paper; we chose to in-
clude this benchmark for completeness, as higher-order programs
are an essential part of the Haskell style of programming.

We also found that the fast arithmetic operators mentioned in
Section 3 (such as SUM) did not make a noticeable difference in
practice for these benchmarks.

In general, the benchmarks show potential, as our prototype
is rather simple (7908 lines of Haskell and C)4 and lacks most
optimizations implemented by GHC. For the small programs at
hand, this compact representation for thunks and activation records
exhibits program running times in the same order of magnitude as
the state-of-the-art GHC.

5.2 Evaluating the representation
We compare the compact representation with the previous version
of our implementation, in which thunks were less compact. The
previous representation was simpler, using three words for each
thunk: (a) the code pointer, (b) the constructor tag or an integer,
and (c) the context pointer (or zero, if the thunk is an evaluated
integer). The code pointer doubled as a thunk flag, using the NULL
pointer to indicate that the thunk had already been evaluated. Lazy
activation records also kept information for garbage collection, in a
separate word.

We compiled the test programs using both representations and
benchmarked them, comparing running time, memory use, and
cache behavior.

The first measurement shown in Figure 7 is the runtime compar-
ison, where the compact representation performs better for most
programs except primes and queens-num. We believe that the
worse performance in the two benchmarks indicates that repeated
mathematical operations (such as the primality and the n-queens
tests) may be expensive in a very compact representation.

The measurements in Figure 6 display the cache behavior of
the two representations: here the compact representation causes
smaller miss rates in the simulated cache hierarchy of Cachegrind,
with the exception of ack, which has slightly more first-level data-
cache misses. Some programs show a small improvement (e.g.
primes), while others show a substantial advantage (quick-sort,
reverse, tree-sort).

An expected outcome of our technique was that programs using
the compact representation needed less space than the ones using
the previous representation. This is shown in the table of Figure 8,

4 The line count was generated using David A. Wheeler’s SLOCCount.
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Figure 7. Runtime comparison between the two representations.

which shows how much heap space was used by the programs,
assuming no garbage collection has taken place yet. We do not
show ack, fib, and primes, since they only use the stack. In
general, there is an average 68.2% reduction in heap usage; this
more than triple reduction makes sense, since most functions of
the test programs have few arguments and the savings on the LAR
metadata are also significant. Stack measurements are not shown
here; all programs ran with a maximum of 262,144 bytes of stack,
so similar reduction applies in this smaller scale, as the same data
(LARs containing thunks) are stored in the stack.

The results show that in most cases the compact representation
is better than the previous one: it needs one third of the memory,
it is usually faster, and has better cache characteristics. Also, the
small memory usage makes our technique suitable for restricted
memory environments, such as embedded systems.

6. Related Work
Hiding information in the low bits of aligned pointers (pointer tag-
ging) is an old and tested technique used in language implementa-



Heap usage in bytes
Benchmark Previous Compact Reduction
collatz, 41,360,250 13,200,080 68.1%
digits of e1 602,368,070 192,246,560 68.1%
ntak 11,516,398,810 3,636,757,520 68.4%
church 2,198,570 672,690 69.4%
queens 1,503,132,770 498,798,920 66.8%
queens-num 8,140 2,600 68.1%
quicksort 2,788,938,330 875,448,910 68.6%
reverse 685,380,260 216,432,080 68.4%
tree-sort 1,652,780,690 525,870,220 68.2%

Figure 8. Memory usage in the two representations, without
garbage collection.

tions [25]. For example, Smalltalk embedded 15-bit signed integers
(instances of the SmallInteger class) in 16-bit aligned pointers [23]
and ML constructors were implemented using tagged pointers [12].
Another more recent example is the Erlang/OTP runtime system
which uses an elaborate tag scheme to represent many objects as
single words (or even half-words in 64-bit systems) [42].

Implementations of lazy programming languages have also used
tagged pointers [29]. In particular, GHC uses aligned pointer tag-
ging [34] to distinguish data constructors for types with few con-
structor tags. Our technique can be seen as a generalization, permit-
ting the use of data types with many constructors. GHC is based on
the STG machine [27], which assumes that thunks are more heavy-
weight than ours, containing an info pointer to useful metadata
(such as information for debugging and parallel execution). In our
representation we do not support debugging metadata. To support
concurrent thunk evaluation, a solution would to be to add an extra
thunk field containing a lock or equivalent synchronization mecha-
nism. However, we could still keep our compact one-word thunks
if we used a test-and-set instruction on the highest thunk bit (bring-
ing constructor tags down to 15 bits and primitive values down to
61 bits), effectively using that bit to implement a spin lock. One or
more bits can be used to implement more complex synchronization,
such as the black-hole technique used in GHC [35], in which case
the runtime system should keep extra memory for book-keeping
(such as queues for suspended computations).

The prevalence of the AMD64 architecture with its 48-bit ad-
dressing has pushed other implementations of statically typed pro-
gramming languages to utilize the spare high bits in pointers. For
example, high-bit tagging is used in the 64-bit Objective-C runtime
in recent releases of the Mac OS X and iOS operating systems [7].

NaN-boxing is another technique that embeds information in-
side floating-point numbers, exploiting redundancy in the IEEE-
754 representation [25]. It has also become popular, being incor-
porated in recent implementations of dynamic languages such as
Lua [41], JavaScript [8], and Ruby [37].

An interesting application of NaN-boxing for Haskell was
Caro’s encoding that embeds 52-bit pointers inside 64-bit double-
precision numbers in pH [13]. Compared to our representation, the
encoding supports another subset of integers (−263 . . . 252 − 1),
in favor of direct representation of double-precision numbers.
Our representation has enough space for unboxed single preci-
sion floating-point numbers; to support double-precision, a similar
technique based on NaN-boxing should also be used. Caro’s repre-
sentation handles I-structures and M-structures, which have paral-
lel semantics and are implemented with lenient evaluation [14].
The representation needs additional space, outside the 64 bits,
for the thunk and synchronization flags; our representation starts
from the sequential lazy case, with parallel evaluation as an or-

thogonal extension, keeping everything in a single 64-bit word.
Caro also modified the technique to fit everything inside a 64-bit
word, reducing addresses to 44 bits and supporting more integers
(−263 . . . 263 − 1− 251) [14].

Appel noted that implementations of statically typed languages
have all information necessary to eliminate runtime tags that in-
form the garbage collector [5]. As he studied a strict language, his
remark is not about the thunk flag, which is a standard tag on lazy
language implementations. His technique can be applied in our im-
plementation too, if we eliminate the arity and nesting fields and
the value flag in the thunks, in favor of statically generated LAR-
specific type information. This information may be embedded as a
LAR tag or kept as additional space. However, Appel also noted
that this may not affect performance in practice.

Pointer compression is another technique that tries to reduce the
space used by pointers, when the address space can be compressed
to a smaller range, e.g. when data may only need a part of address-
able memory [9, 30], or when different addresses share a common
prefix [49]. The technique has been applied successfully in Java
virtual machines [1, 39, 46, 47]. Our approach differs in that it can
use the full address space, without any assumptions on the size or
the use of the data structures of the program.

Runtime systems based on tagged pointers can be seen as
software equivalents of language-specific tagged hardware archi-
tectures. Such architectures had been proposed in the past for
the execution of functional programming languages (e.g., Lisp
machines [24]) but were found to be unneeded for the non-
dynamically-typed languages that were then available [22]. Our
experiments show that AMD64 hardware, although radically differ-
ent from these architectures, can be efficiently programmed using
tag-bit techniques.

Finally, a by-product of our experiments is that C is a good
back-end language for lazy implementations and buys a lot of off-
the-shelf compiler technology; this is an observation also made re-
cently by Liu et al. when developing the Intel Labs Haskell Re-
search Compiler [33]. On the other hand, the AMD64 architecture
offers convenient instructions such as INSERTQ/EXTRQ that operate
on parts of 64-bit words [3] and can be used in a machine-code
generator using our representation.

7. Concluding Remarks
We have presented an implementation of a lazy functional lan-
guage, where redundancy in AMD64 pointers is exploited to store
thunks as single 64-bit words. Programs compiled with our imple-
mentation are relatively fast, compared to the state-of-the-art com-
piler, and have a compact memory representation.

Our technique is not only applicable to modern AMD64 sys-
tems; future extensions of the architecture may change the address-
ing space to 52 bits [4, Section 1.1.2], still leaving unused space for
the constructor tags. Our technique can also be used to implement
lazy languages on 64-bit ARMv8 and SPARC processors, since
their pointers show similar redundancy [32, 40]. It should also be
noted that some versions of the Microsoft Windows operating sys-
tem offer even more unused space in pointers, having just 44-bit
addresses on AMD64 hardware [16].

Our representation can have an advantage on some parallel im-
plementations of lazy languages. Simultaneously updating more
than one bit fields in the same word is an atomic operation, elimi-
nating the possibility of some data races in concurrent updates. We
also believe that our technique can be adapted for use in compilers
for strict functional programming languages.

Our prototype compiler currently targets a subset of Haskell,
supporting monomorphic and (parametric) polymorphic programs,
and GADTs. Its front-end is very simple, not supporting com-
plex patterns in case clauses, let bindings (relying instead on a



lambda-lifter), or type classes. We are working on these features
and we do not expect that adding them will affect our represen-
tation. In particular, type classes are implemented in Haskell us-
ing dictionary arguments, which can be seen as constructors [43].
Also, at present, our prototype does not support tail calls (except
those possibly inserted by the C compiler), so there is much more
potential for memory-efficiency in our compiler.

It must be noted that defunctionalization is not required for our
compact representation to work but was merely used to simplify
the implementation. As indicated in Figure 3, bit 2 of evaluated
constructor thunks is unused and can be used to tag a distinct rep-
resentation for closures. We believe that this alternative should be
explored in practice; having 16-bit constructor tags means at most
216 different closure constructors may appear in the whole pro-
gram, which is a serious restriction when compiling big programs.

There is still redundancy in our representation. In particular,
prev pointers have spare bits that can be used for example as extra
flags by a more sophisticated garbage collector or by a JIT compiler
such as Schilling’s [44]. Code pointers have bits 1-2 and 48-63
unused, where information can be stored about unevaluated thunks.
Pointers in the nested fields are only present when a function does
pattern matching, so their unused space should be used for case-
clause-specific runtime information. Finally, 16 bits for constructor
tags may be too many in practice; some of this space can be reused
to store some other constructor-specific information.

Since memory pressure and bandwidth limitations are very im-
portant in multi-core systems, we are working on extending our
prototype with a parallel runtime, in order to evaluate our approach
in a parallel setting.
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