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Abstract
Streaming libraries have become ubiquitous in object-oriented languages, with recent offerings
in Java, C#, and Scala. All such libraries, however, suffer in terms of extensibility: there is no
way to change the semantics of a streaming pipeline (e.g., to fuse filter operators, to perform
computations lazily, to log operations) without changes to the library code. Furthermore, in
some languages it is not even possible to add new operators (e.g., a zip operator, in addition to
the standard map, filter, etc.) without changing the library.

We address such extensibility shortcomings with a new design for streaming libraries. The
architecture underlying this design borrows heavily from Oliveira and Cook’s object algebra
solution to the expression problem, extended with a design that exposes the push/pull character
of the iteration, and an encoding of higher-kinded polymorphism. We apply our design to Java
and show that the addition of full extensibility is accompanied by high performance, matching
or exceeding that of the original, highly-optimized Java streams library.
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1 Introduction

Recent years have seen the introduction of declarative streaming libraries in modern object-
oriented languages, such as Java, C#, or Scala. Streaming APIs allow the high-level ma-
nipulation of value streams (with each language employing slightly different terminology)
with functional-inspired operators, such as filter, or map. Such operators take user-defined
functions as input, specified via local functions (lambdas). The Java example fragment be-
low shows a “sum of even squares” computation, where the even numbers in a sequence are
squared and summed. The input to map is a lambda, taking an argument and returning
its square. Similarly, the input to filter is a lambda, determining whether its argument is
even.

int sum = IntStream.of(v)
.filter(x -> x % 2 == 0)
.map(x -> x * x)
.sum();
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Our work is based on the key observation that streaming operators introduce a sep-
arate (domain-specific) sub-language that is interpreted during program run-time. This
observation is inspired by the architecture of the Java 8 streams library, which aggressively
manipulates the streaming pipeline, as if the library calls were syntax nodes of an inter-
preted program. A pipeline of the form “of(...).filter(...).map(...).sum()” is formed
with sum being at the outermost layer, i.e., right-to-left as far as surrounding code is con-
cerned. However, when the terminal operator (sum) is reached, it starts evaluation over the
stream data by eventually invoking an iteration method in operator of. It is this method
that drives iteration and calls the operators left-to-right. The result of such manipulation
is significant performance gains. The Java 8 streams implementation effectively changes
external (pull-style) iteration into internal (push-style). Recent benchmarking studies [2]
report that, with this change, the library avoids a number of indirect calls and allows much
better downstream optimizations.

The problem with existing library designs is that there is no way to alter the semantics
of a streaming pipeline without changing the library itself. This is detrimental to library
extensibility. For instance, a user may want to extend the library in any of the ways below:

Create push-vs-pull versions of all operators.
Create a logging interpretation of a pipeline, which logs actions and some intermediate
results.
Create an interpretation computing asynchronous versions of an evaluation (futures-of-
values instead of values).
Create an optimizing interpretation that fuses together operators, such as neighboring
filters or maps.

Additionally, the current architecture of streaming libraries prevents the introduction
of new operators, precisely because of the inflexible way that evaluation is performed. As
discussed above, Java streams introduce push-style iteration by default. This approach
would yield semantic differences from pull-style iteration if more operators, such as zip,
were added to the library. Furthermore, in some languages the addition of new operators
requires editing the library code or using advanced facilities: in Java such addition is only
possible by changing the library itself, while in C# one needs to use extension methods, and
in Scala one needs to use implicits.

In our work, we propose a new design and architecture for streaming libraries for Java-
like languages, to maximize extensibility without sacrificing on any other axis. Our ap-
proach requires no language changes, and only leverages features found across all languages
examined—i.e., standard parametric polymorphism (generics).

Underlying our architecture is the object algebra construction of Oliveira and Cook
[13] and Oliveira et al. [14]. This is combined with a library design that dissociates the
push or pull nature of iteration from the operators themselves, analogously to the recent
“defunctionalization of push arrays” approach in the context of Haskell [22].

Based on this architecture, we have implemented an alternative stream library for Java1.
In our library, the pipeline shown earlier gets inverted and parameterized by an alg object,
which designates the intended semantics. For instance, a plain Java-streams-like evaluation
would be written:

1 http://biboudis.github.io/streamalg .

http://biboudis.github.io/streamalg
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PushFactory alg = new PushFactory();
int sum = Id.prj(

alg.sum(
alg.map(x -> x * x,
alg.filter(x -> x % 2 == 0,
alg.source(v))))).value;

(The Id.prj and value elements, above, are part of a standard pattern for simulating
higher-kinded polymorphism with plain generics. They can be ignored for the purposes of
understanding our architecture. We discuss the pattern in detail in Section 4.)

Although the above fragment is slightly longer than the original, its elements are highly
stylized. The user can adapt the code to other pipelines with trivial effort, comparable to
that of the original code fragment in Java 8 streams. Most importantly, if the user desired
a different interpretation of the pipeline, the only necessary change is to the first line of
the example. An interpretation that has pull semantics and fuses operators together only
requires a new definition of alg:

FusedPullFactory alg = new FusedPullFactory();
... // same as earlier

Such new semantics can be defined externally to the library itself. Adding
FusedPullFactory requires no changes to the original library code, allowing for semantics
that the library designer had not foreseen.

This highly extensible design comes at no cost to performance. The new architecture
introduces no extra indirection and does not prevent the JIT compiler from performing any
optimization. This is remarkable, since current Java 8 streams are designed with perfor-
mance in mind (cf. the earlier push-style semantics). As we show, our library matches or
exceeds the performance of Java 8 streams.

Overall, our work makes the following contributions:

We introduce a new design and architecture2 for streaming libraries and argue for its
benefits, in terms of extensibility and low adoption barrier (i.e., use of only standard
language features), all without sacrificing performance.
We demonstrate extensibility and provide several alternative semantics for streaming
pipelines, all in an actual, publicly available implementation.
We provide an example of the use of object algebras in a real-world, performance-critical
setting.

2 Background

We next discuss streaming libraries in Java, Scala, C#, and F#. We also introduce push/in-
ternal vs. pull/external iteration, via reference to specific facilities in these libraries.

2.1 Java
Java is a relative newcomer among streaming facilities, yet features a library that has received
a lot of engineering attention. We already saw examples of the Java API for streaming in the

2 We follow the textbook distinction that “design” refers to how elements are separated into modules,
while “architecture” refers to components-and-connectors, i.e., the machinery determining how elements
of the design are composed. Our work shows a new library design, albeit one that would not be possible
without a different underlying architecture.

ECOOP’15



1002 Streams à la carte: Extensible Pipelines with Object Algebras

introduction. In terms of implementation, the Java library follows a scheme that is highly
optimized and fairly unique among statically typed languages.

In the Java 8 declarative stream processing API, operators fall into two categories: in-
termediate (always lazy—e.g., map and filter) and terminal (which can produce a value or
perform side-effects—e.g., sum and reduce). For concreteness, let us consider the pipeline
below. The expression (serving as a running example in this section) calculates the sum of
squares of all values in an array of doubles.

public double sumOfSquaresSeq(double[] v) {
double sum = DoubleStream.of(v)
.map(d -> d * d)
.sum();
return sum;

}

The code first creates a sequential, ordered Stream of doubles from an array that holds
all values. The calls map and sum are an intermediate and a terminal operation respectively.
The map operation returns a Stream and it is lazy. It simply declares the transformation that
will occur when the stream will be traversed. This transformation is a stateless operation
and is declared using a lambda function. The sum operation needs all the stream processed
up to this point, in order to produce a value; this operation is eager and it is effectively the
same as reducing the stream with the lambda (x,y) -> x+y.

Implementation-wise, the (stateless or stateful) operations on a stream are represented
by objects chained together sequentially. A terminal operation triggers the evaluation of the
chain. In our example, if no optimization were to take place, the sum operator would retrieve
data from the stream produced by map, with the latter being supplied the necessary lambda
expression. This traversing of the elements of a stream is realized through the Spliterator
interface. This interface offers an API for traversing and partitioning elements of a source.
A key method in this interface is forEachRemaining with signature

void forEachRemaining(Consumer<? super T> action);

Normally, for the general case of standard stream processing, the implementation of
forEachRemaining will internally call methods hasNext and next to traverse a collection, as
well as accept to apply an operation to the current element. Thus, three virtual calls per
element will occur.

However, stream pipelines, such as the one in our example, can be optimized. For the
array-based Spliterator, the forEachRemaining method performs an indexed-based, do-while
loop. The entire traversal is then transformed: instead of sum requesting the next element
from map, the pipeline operates in the inverse order: map pushes elements through the accept
method of its downstream Consumer object, which implements the sum functionality. (A
Consumer in Java is an operation that accepts an argument and returns no result.) In
this way, the implementation eliminates two virtual calls per step of iteration and effectively
uses internal (push-style) iteration, instead of external (pull-style). This also enables further
optimizations by the JIT compiler, often resulting in fully fused code.

The following (simplified for exposition) snippet of code is taken from the
Spliterators.java source file of the Java 8 library and demonstrates this special handling,
where a holds the source array and i indexes over its length:

do { consumer.accept(a[i]); } while (++i < hi);

The push-style iteration can be seen in this code. Each of the operators applicable to
a stream needs to support this inverted pattern by supplying an accept operation. That
operation, in turn, will call accept on whichever Consumer<T> may be downstream. The
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consumer of a push stream will provide a consumer function that is instantiated into the
iteration block of the stream.3

The dual of a push stream is a pull stream. Every combinator of a pull stream will build
an iterator that will propagate some effect (e.g., apply a function f if this combinator is map)
to each next element. C#, F# and Scala implement deferred execution over pipelines (all
described in their respective sections) as pull streams. Java, on the other hand, supports
push streams by default. Java additionally provides pull capabilities through the iterator
combinator—we shall see in Section 3 why this facility is not equivalent to full pull-style
iteration functionality.

2.2 Scala

Scala is an object-functional programming language for the JVM. Scala has a rich object
system offering traits and mixin composition. As a functional language, it has support for
higher-order functions, pattern matching, algebraic data types, and more. Since version 2.8,
Scala comes with a rich collections library offering a wide range of collection types, together
with common functional combinators, such as map, filter, flatMap, etc. The most general
streaming API for Scala is that for lazy transformations of collections, which also avoids the
creation of intermediate, allocated results.

To achieve lazy processing, one has to use the view method on a collection. This method
wraps a collection into a SeqView. The following example illustrates the use of view for
performing such transformations lazily:

def sumOfSquareSeq (v : Array[Double]) : Double = {
val sum : Double = v
.view
.map(d => d * d)
.sum
sum

}

Ultimately, SeqView extends Iterable[A]. SeqView acts as a factory for iterators. As an
example, we can demonstrate the common map function by mapping the transformation
function to the source’s Iterable iterator:
def map[T, U](source: Iterable[T], f: T => U) = new Iterable[U] {
def iterator = source.iterator map f

}

The Iterator’s map function can then be implemented by delegation to the source iterator:

def map[T, U](source: Iterator[T], f: T => U): Iterator[U] = new Iterator[U] {
def hasNext = source.hasNext
def next() = f(source.next())

}

Note that there are 3 virtual calls (next, hasNext, f) per element pointed by the iterator.
This is standard pull-style iteration, as in the unoptimized Java case, discussed earlier. Each
operator has to “request” elements from the one supplying its input, rather than having a
push-style pattern, with the producer calling the consumer directly.

3 Intuitively, in internal (push-style) iteration, there is no co-routining between the loop and the con-
sumer. The latter is fully under the control-flow of the former. (The call consuming data returns—with
none of its local data escaping—before the next data are produced.)

ECOOP’15
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2.3 C#/F#

C# is a modern object-oriented programming language targeting the .NET framework. An
important milestone for the language was the introduction of several features in C# 3.0 in
order to enable a more functional style of programming. These new features, under the um-
brella of LINQ [11,12], can be summarized as support for lambda expressions and function
closures, extension methods, anonymous types and special syntax for query comprehen-
sions. All of these enable the creation of new functional-style APIs for the manipulation of
collections.

F# is a modern .NET functional-first programming language based on OCaml, with
support for object-oriented programming, based on the .NET object system.

In C# we can program data streams as fluent-style method calls:

nums.Select(x => x * x).Sum();

or with the equivalent query comprehension syntactic sugar:

(from x in nums
select x * x).Sum();

In F#, stream manipulation can be expressed as a direct pipeline of various combinators.

nums |> Seq.map (fun x -> x * x)
|> Seq.sum

C# and F# have near-identical operational behaviors and both C# methods (Select,
Where, etc.) and F# combinators (Seq.map, Seq.filter, etc.) operate on IEnumerable<T>
objects. The IEnumerable<T> interface can be thought of as a factory for creating iterators,
i.e., objects with MoveNext and Current methods. The lazy nature of the iterators allows
the composition of an arbitrary number of operators without worrying about intermediate
materialization of collections between each call. For instance, the Select method returns an
IEnumerable object that produces the iterator below:

class SelectEnumerator<T, R> : IEnumerator<R> {
private readonly IEnumerator<T> inner;
private readonly Func<T, R> func;
public SelectEnumerator(IEnumerator<T> inner,

Func<T, R> func) {
this.inner = inner;
this.func = func;

}
bool MoveNext() { return inner.MoveNext(); }
R Current { get { return func(inner.Current); } }

}

SelectEnumerator implements the IEnumerator<R> interface and delegates the MoveNext
and Current calls to the inner iterator. From a performance point of view, it is not difficult
to see that there is virtual call indirection between the chained enumerators. We have 3
virtual calls (MoveNext, Current, func) per element per iterator. Iteration is similar to Scala
or to the general, unoptimized Java iteration: it is an external (pull-style) iteration, with
each consumer asking the producer for the next element.

3 Stream Algebras

We next describe our stream library architecture and its design elements, including separate
push and pull semantics, enhanced interpretations of a pipeline, optimizations and more.
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3.1 Motivation

The goal of our work is to offer extensible streaming libraries. The main axis of extensi-
bility that is not well-supported in past designs is that of pluggable semantics. In existing
streaming libraries there is no way to change the evaluation behavior of a pipeline so that
it performs, e.g., lazy evaluation, augmented behavior (e.g., logging), operator fusing, etc.
Currently, the semantics of a stream pipeline evaluation is hard-coded in the definition of
operators supplied by the library. The user has no way to intervene.

The original motivation for our work was to decouple the pull- vs. pull-style iteration
semantics from the library operators. As discussed in Section 2, Java 8 streams are push-
style by default, while Scala, C#, and F# streams are pull-style. A recent approach in
the context of Haskell [22] performs a similar decoupling of push- vs. pull-style semantics
through defunctionalization of the interface, yet affords no other extensibility.

Although Java 8 streams allow some pull-style iteration, they do not support fully plug-
gable pull-style semantics. The current pull-style functionality is via the iterator() com-
binator. This combinator is a terminal operator and adapts a push-style pipeline into an
iterator that can be used via the hasNext/next methods. This is subtly different from chang-
ing the semantics of an entire pipeline into pull-style iteration.

For instance, the flatMap combinator takes as input a function that produces streams,
applies it to each element of a stream, and concatenates the resulting streams. In a true
pull-style iteration, it is not a problem if any of the intermediate streams happen to be
infinite (or merely large): their elements are consumed as needed. This is not the case when
a Java 8 flatMap pipeline is made pull-style with a terminal iterator call. Figure 1 shows a
simple example. Stream s is infinite: it starts with zero and its step function keeps adding
2 to the previous element. The flatMap application produces modified copies of the infinite
stream s, with each element multiplied by those of a finite array, v. Evaluation does not end
until an out-of-memory exception is raised.4

Figure 1 Infinite streams and flatMap.

Stream<Long> s = Stream.iterate(0L, i -> i + 2);

Iterator<Long> iterator = Stream
.of(v)
.flatMap(x -> s.map(y -> x * y))
.iterator();

iterator.hasNext();

Our library design removes such issues, allowing pipelines with pluggable semantics.
Although the separation of pull- and push-style semantics was our original motivation, it
soon became evident that an extensible architecture offers a lot more options for semantic
extensibility of a stream pipeline. We discuss next the new architecture and several semantic
additions that it enables.

4 This is a known issue, which we have discussed with Java 8 streams implementors, and does not seem
to have an easy solution. The underlying cause is that the type signatures of operators (e.g., of or
flatMap) encode termination conditions as return values from downstream operators. For flatMap
to avoid confusing the conditions from its parameter stream (result of map in this example) and its
downstream (iterator in the example) it needs to evaluate one more element of the parameter stream
than strictly needed, and that element happens to be infinite in the example.

ECOOP’15
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3.2 Stream as Multi-Sorted Algebras
Our extensible, pluggable-semantics design of the library is implemented using an architec-
ture based on object algebras. Object algebras were introduced by Oliveira and Cook [13]
as a solution to the expression problem [25]: the need to have fully extensible data abstrac-
tion while preserving the modularity of past code and maintaining type safety. The need
for extensibility arises in two forms: adding new data variants and adding new operations.
Intuitively, an object algebra is an interface that describes method signatures for creating
syntax nodes (data variants). An implementation of the algebra offers semantics to such
syntax nodes. Thus, new data variants (syntax nodes) are added by extending the algebra,
while new operations (semantics) correspond to different implementations of the algebra.

We next present the elements of the object algebra approach directly in our streaming
domain.

In our setting, the set of variants to extend are the different combinators: map, take
(called limit in Java), filter, flatMap, etc. These are the different cases that a semantics
of stream evaluation needs to handle. The “operations” on those variants declare the ma-
nipulation/transformation that will be employed for all produced data items. We will use
the term “behavior” for such operations.

Our abstraction for streams is a multi-sorted algebra. The two sorts that can be evolved
as a family are the type of the stream, which can hold some type of values, and the type of
the value produced by terminal operations. The signature of the former is called StreamAlg
while the latter is ExecStreamAlg. The Exec* prefix is used to denote that this is the algebra
for the types that perform execution. The algebras are expressed as generic interfaces and
classes implementing these interfaces are factories. In our multi-sorted algebra these two
distinct parts are connected with the subtyping relation and classes that implement the two
interfaces can evolve independently, to form various combinations.

Intermediate Combinators. Our base interface, StreamAlg, is shown below.

interface StreamAlg<C<_>> {
<T> C<T> source(T[] array);
<T, R> C<R> map(Function<T, R> f, C<T> s);
<T, R> C<R> flatMap(Function<T, C<R>> f, C<T> s);
<T> C<T> filter(Predicate<T> f, C<T> s);

}

As can be seen, StreamAlg is parameterized by a unary type constructor that we denote
by the C<_> syntax. This is a device used for exposition. That is, for the purposes of our pre-
sentation we assume type-constructor polymorphism (a.k.a. higher-kinded polymorphism):
the ability to be polymorphic on type constructors. This feature is not available in Java (al-
though it is in, e.g., Scala).5 In our actual implementation, type-constructor polymorphism
is emulated via a standard stylized construction, which we explain in Section 4.

Every combinator of streams is also a constructor of the corresponding algebra; it re-
turns (creates) values of the abstract set. Each constructor of the algebra creates a new
intermediate node of the stream pipeline and, in addition to the value of the previous node
(parameter s) that it will operate upon, it takes a functional interface. (A functional inter-
face has exactly one abstract method and is the type of a lambda in Java 8.)

5 The original object algebras work of Oliveira and Cook [13] did not require type-constructor polymor-
phism for its examples. Later work by Oliveira et al. [14] used type-constructor polymorphism in the
context of Scala.
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Terminal Combinators. The ExecStreamAlg interface describes terminal operators, which
trigger execution/evaluation of the pipeline. These operators are also parametric. They can
return a scalar value or a value of some container type (possibly parameterized by some other
type). For instance, count can return Long, hence having blocking (synchronous) semantics,
or it can return Future<Long>, to offer asynchronous execution.
interface ExecStreamAlg<E<_>, C<_>> extends StreamAlg<C> {

<T> E<Long> count(C<T> s);
<T> E<T> reduce(T identity, BinaryOperator<T> acc, C<T> s);

}

Once again, this algebra is parameterized by unary type constructors and it also carries
as a parameter the abstract stream type that it will pass to its super type, StreamAlg.

3.3 Adding New Behavior for Intermediate Combinators
We next discuss the extensibility that our design affords, with several examples of different
interpretation semantics.

Push Factory. The first implementation in our library is that of a push-style interpretation
of a streaming pipeline, yielding behavior equivalent to the default Java 8 stream library.

Push-style streams implement the StreamAlg<Push> interface (where Push is the container
or carrier type of the algebra). All combinators return a value of some type Push<...>, i.e.,
a type expression derived from the concrete constructor Push. Our PushFactory implemen-
tation, restricted to combinators source and map, is shown below.

Figure 2 Example of a PushFactory.

class PushFactory implements StreamAlg<Push> {
public <T> Push<T> source(T[] array) {

return k -> {
for(int i=0 ; i < array.length ; i++){

k.accept(array[i]);
}

};
}

public <T, R> Push<R> map(Function<T, R> mapper, Push<T> s) {
return k -> s.invoke(i -> k.accept(mapper.apply(i)));

}
}

A Push<...> type is the embodiment of a push-style evaluation of a stream. It carries a
function, which can be composed with others in a push-y manner. In the context of Java, we
want to be able to assign lambdas to a Push<...> reference. Therefore we declare Push<X>
as a functional interface, with a single method, void invoke(Consumer<T>). The Consumer<T>
argument is itself a lambda (with method name accept) that takes as a parameter an item
of type T and returns void. This consumer can be thought of as the continuation of the
evaluation (hence the conventional name, k). The entire stream is evaluated as a loop, as
shown in the implementation of the source combinator, above. source returns a lambda that
takes as a parameter a Consumer<T>, iterates over the elements of a source, s, and passes
elements one-by-one to the consumer.

Similarly, the map operator returns a push-stream embodiment of type Push<...>. This
stream takes as argument another stream, s, such as the one produced by source, and
invokes it, passing it as argument a lambda that represents the map semantics: it calls its

ECOOP’15
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continuation, k, with the argument (i.e., the element of the stream) as transformed by the
mapping function. This pattern follows a similar continuation-passing-style convention as in
the original Java 8 streams library. (As discussed in Section 2.1, this reversal of the pipeline
flow enables significant VM optimizations and results in faster code.)

The next combinator, whichever it is, will consume the transformed elements of type
R. The implementation of other combinators, such as filter and flatMap, follows a similar
structure.

Pull Factory. As discussed earlier, Java 8 streams do not have a full pull-style iteration
capability. They have to fully realize intermediate streams, since the pull semantics is
implemented as a terminal combinator and only affects the external behavior of an entire
pipeline. (As we will see in our experiments of Section 6, this is also a source of inefficiency
in practice.) Therefore, the first semantic addition in our library is pull-style streams.

Pull-style streams implement the StreamAlg<Pull> interface. In this case Pull<T> is an
interface that represents iterators, by extending the Iterator<T> interface. For pull seman-
tics, each combinator returns an anonymous class—one that implements this interface by
providing definitions for the hasNext and next methods. In Figure 3 we demonstrate the
implementation of the source and map operators, which are representative of others.

Figure 3 Example of PullFactory functionality.

class PullFactory implements StreamAlg<Pull> {
public <T> Pull<T> source(T[] array) {
return new Pull<T>() {
final int size = array.length;
int cursor = 0;
public boolean hasNext() { return cursor != size; }
public T next() {
if (cursor >= size)
throw new NoSuchElementException();

return array[cursor++];
}

};
}
public <T, R> Pull<R> map(Function<T, R> mapper, Pull<T> s) {
return new Pull<R>() {
R next = null;
public boolean hasNext() {
while (s.hasNext()) {
T current = s.next();
next = mapper.apply(current);
return true;

}
return false;

}
public R next() {
if (next != null || this.hasNext()) {
R temp = this.next;
this.next = null;
return temp;

} else throw new NoSuchElementException();
}

};
}

}

We follow the Java semantics of iterators (the effect happens in hasNext). Each element
that is returned by the next method of the map implementation is the transformed one,
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after applying the needed mapper lambda to each element that is retrieved. The retrieval is
realized by referring to the s object, which carries the iterator of the previous pipeline step.

Note how dissimilar the Push and Pull interfaces are (a lambda vs. an iterator with next
and hasNext). Our algebra, StreamAlg<C<_» is fully agnostic regarding C, i.e., whether it is
Push or Pull.

Log Factory. With a pluggable semantics framework in place, we can offer several alterna-
tive interpretations of the same streaming pipeline. One such is a logging implementation.
The log factory expresses a cross-cutting concern, one that interleaves logging capabilities
with the actual execution of the pipeline. Although the functionality is simple, it is inter-
esting in that it takes a mixin form: it can be merged with other semantics, such as push
or pull factories. The code for the LogFactory, restricted to the map and count operators, is
shown in Figure 4,

Figure 4 Example of LogFactory functionality.

class LogFactory<E<_>, C<_>> implements ExecStreamAlg<E, C> {
ExecStreamAlg<E, C> alg;

<T, R> C<R> map(Function<T, R> mapper, C<T> s) {
return alg.map(i -> {
System.out.print("map: " + i.toString());
R result = mapper.apply(i);
System.out.println(" -> " + result.toString());
return result;

}, s);
}

public <T> E<Long> count(C<T> s) {
return alg.count(s);

}
}

The code employs a delegation-based structure, one that combines an implementation of
an execution algebra (of any behavior for intermediates and orthogonally of any behavior for
terminal combinators) with a logger. We parameterize LogFactory with an ExecStreamAlg and
then via delegation we pass the intercepted lambda as the mapping lambda of the internal
algebra. For example, if the developer has authored a pipeline alg.reduce(0L, Long::sum,
alg.map(x -> x + 2, alg.source(v))), then, instead of using an ExecPushFactory that will
perform push-style streaming, she can pass a LogFactory<>(new ExecPushFactory()) effec-
tively mixing a push factory with a log factory.

Fused Factory. An interpretation can also apply optimizations over a pipeline. The opti-
mization is applied automatically, as long as the user chooses an evaluation semantics that
enables it. This is effected with an extension of a PullAlgebra that performs fusion of ad-
jacent operations. Using a FusedPullFactory the user can transparently enable fusion for
multiple filter and multiple map operations. In this factory, the two combinators are rede-
fined and, instead of creating values of an anonymous class of type Pull, they create values
of a refined version of the Pull type. This gives introspection capabilities to the map and
filter operators. They can inspect the dynamic type of the stream that they are applied
to. If they operate on a fusible version of map or on a fusible version of filter then they
proceed with the creation of values for these extended types with the composed operators.
We elide the definition of the factory, since it is lengthy.
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3.4 Adding New Combinators
Our library design also allows adding new combinators without changing the library code.
In case we want to add a new combinator, we first have to decide in which algebra it
belongs. For instance, we have added a take combinator without disturbing the original
algebra definitions. A take combinator has signature C<T> take(int n) so it clearly be-
longs in StreamAlg. We have to implement the operator for both push and pull streams,
but we want to allow the possibility of using take with any ExecStreamAlg. Our ap-
proach again uses delegation, much like the LogFactory, shown earlier in Figure 4. We
create a generic TakeStreamAlg<E, C> interface and orthogonally we create an interface
ExecTakeStreamAlg<E, C> that extends TakeStreamAlg<C> and ExecStreamAlg<E, C>. In the
case of push streams, ExecPushWithTakeFactory<E> implements the interface we created,
where C = Push, by defining the take operator. All other operators for the push case are
inherited from the PushFactory supertype. The ExecPushWithTakeFactory<E> factory is pa-
rameterized by ExecStreamAlg<E, Push> alg. Generally, the factory can accept as parameter
any algebra for terminal operators.

3.5 Adding New Behavior for Terminal Combinators
Future Factory. Our library design also enables adding new behavior for terminal com-
binators. The most interesting example in our current library components is that of
FutureFactory: an interpretation of the pipeline that triggers an asynchronous computation.
Instead of returning scalar values, a FutureFactory parameterizes ExecStreamAlg with a con-
crete type constructor, Future<X>.6 (This is in much the same way as, e.g., a PushFactory
parameterizes StreamAlg with type constructor Push, in Figure 2.) Future is a type that
provides methods to start and cancel a computation, query the state of the computation,
and retrieve its result.

Figure 5 Count and reduce operators in FutureFactory.

class ExecFutureFactory<C<_>> implements ExecStreamAlg<Future, C> {
private final ExecStreamAlg<Id, C> execAlg;
public <T> Future<Long> count(C<T> s) {
Future<Long> future = new Future<>(() -> {
return execAlg.count(s).value;

});
future.run();
return future;

}
public <T> Future<T> reduce(T identity,

BinaryOperator<T> accumulator,
C<T> s) {

Future<T> future = new Future<>(() -> {
return execAlg.reduce(identity, accumulator, s).value;

});
future.run();
return future;

}
}

FutureFactory defines terminal operators count and reduce, to return Future<Long> and
Future<T> respectively. Intermediate combinators are defined similarly to the terminal ones,

6 That is, Future is our own class, which extends the Java library class FutureTask, and not to be
confused with the Java library java.util.concurrent.Future interface.
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but are omitted from the listing.

4 Emulating Type-Constructor Polymorphism

As noted earlier, our presentation so far was in terms of type-constructor polymorphism,
although this is not available in Java. For our implementation, we simulate type-constructor
polymorphism via a common technique. The same encoding has been used in the imple-
mentation of object-oriented libraries—e.g., in type classes for Java [6] and in finally tagless
interpreters for C# [10]. The technique was also recently presented formally by Yallop and
White [27], and used to represent higher-kinded polymorphism in OCaml.

In this encoding, for an unknown type constructor C<_>, the application C<T> is repre-
sented as App<t, T>, where T is a Java class and t is a marker class that identifies the type
constructor C. For example, our stream algebra shown in Section 3.2 is written in plain Java
as follows:
public interface App<C, T> { }

public interface StreamAlg<C> {
<T> App<C, T> source(T[] array);
<T, R> App<C, R> map(Function<T, R> f, App<C, T> app);
<T, R> App<C, R> flatMap(Function<T, App<C, R>> f, App<C, T> app);
<T> App<C, T> filter(Predicate<T> f, App<C, T> app);

}

A subtle point arises in this encoding: given C, how is t generated? This class is called
the “brand”, as it tags the application so that it cannot be confused with applications of
other type constructors; this brand should be extensible for new types that may be added
later to the codebase. This means that (a) t should be a fresh class name, created when C is
declared; and (b) there should be a protocol to ensure that the representation is used safely.

Brand freshness. The freshness of the brand name is addressed by declaring t as a nested
class inside the class of the new type constructor. Since t exists at a unique point in the
class hierarchy, no other class may declare a brand that clashes with it, and its declaration
happens at the same time as C is declared. In the following, we see the encoding of the type
constructor Pull<T>, with its t brand:
public interface Pull<T> extends App<Pull.t, T>, Iterator<T> {

static class t { }
static <A> Pull<A> prj(App<Pull.t, A> app) { return (Pull<A>) app; }

}

We see that the encoding above has an extra method prj, which does a downcast of
its argument. The OCaml encoding of Yallop and White needs two methods inj and prj
(for “inject” and “project”) that cast between the concrete type and the instantiation of
the type application. In Java, we define prj, which takes the representation of the type
application and returns the actual Push<T> instantiation. In contrast to OCaml, Java has
subtyping, so inj functions are not needed: a Pull<T> object can always be used as being of
type App<Pull.t, T>. The Iterator interface in the declaration above is not related to the
encoding, but is part of the semantics of pull-style streams.

Safely using the encodings. This encoding technique has a single unchecked cast, in the
prj function. The idea is that the cast will be safe if the only way to get a value of
type App<Pull.t, X> (for any X) is if it is really a value of the subtype, Pull<X>. This
property clearly holds if values of type App<Pull.t, X> (or values of any type involving
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Pull.t) are never constructed. In the Yallop and White technique for OCaml, this is ensured
syntactically by the “freshness” of the brand, t, which is private to the type constructor. In
Java, the property is ensured by convention: every subtype S of App has a locally defined
brand t and no subtype of App<S.t, X> other than S exists.

Type expressions without type-constructor polymorphism. Another detail of the encod-
ing is the representation of type expressions that are not parametric according to a type
constructor; for those we need an identity type application, Id.

public class Id<T> implements App<Id.t, T> {
public final T value;
public Id(T value) { this.value = value; }
public static class t { }
public static <A> Id<A> prj(App<Id.t, A> app) { return (Id<A>) app; }

}

Using the class above, the type expression List<Integer> can then be represented as
Id<List<Integer».

5 Using Streams

With the encoding of type-constructor polymorphism, our description of the library features
is complete. A user can employ all combinators to build pipelines, and can flexibly choose
the semantics of these pipelines.

The example of Figure 6 declares a pipeline that filters long integers and then counts
them. The expression assumes an implementation, alg, of a stream algebra. Note that
the prefix, Id.prj, and suffix, value, of the pipeline expression are only needed for our
type-constructor polymorphism simulation.

Figure 6 Count of filtered items.

Long result = Id.prj(alg.count(
alg.filter(x -> x % 2L == 0,
alg.source(v)))).value;

Similarly, Figure 7 constructs a sum of the cartesian product pipeline between two arrays.
The factory object (implementing the algebras) is factored out and becomes a parameter of
the method cart.

Figure 7 Sum of the cartesian product.

<E, C> App<E, Long> cart(ExecStreamAlg<E, C> alg) {
return alg.reduce(0L, Long::sum,

alg.flatMap(
x -> alg.map(y -> x * y,

alg.source(v2)),
alg.source(v1)));

}

The above can be used with any of the various semantics factories presented in Section 3,
depending on the kind of evaluation the user wants to perform. In Figure 8 we present a
summary of all the combinations of factories that can be used. The first five expressions
return a scalar value Long and the last two a Future<Long>.
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Figure 8 Examples.

Id.prj(cart(new ExecPushFactory())).value;
Id.prj(cart(new ExecPullFactory())).value;
Id.prj(cart(new ExecFusedPullFactory())).value;
Id.prj(cart(new LogFactory<>(new ExecPushFactory()))).value;
Id.prj(cart(new LogFactory<>(new ExecPullFactory()))).value
Future.prj(cart(new ExecFutureFactory<>(new ExecPushFactory())));
Future.prj(cart(new ExecFutureFactory<>(new ExecPullFactory())));

6 Performance

It is interesting to assess the performance of our approach, compared to the highly optimized
Java 8 streams. Since our techniques add an extra layer of abstraction, one may suspect
they introduce inefficiency. However, there are excellent reasons why our design can yield
high performance:

Object algebras are used merely for pipeline construction and not for execution. Once
the data processing loop starts, it should be as efficient as in standard Java streams.
Our design offers fully pluggable semantics. This is advantageous for performance. We
can leverage fusion of combinators, proper pull-style iteration without materialization of
full intermediate results, and more.
Our benchmarks aim to showcase these two aspects. In this sense, some of the bench-

marks are unfair to Java 8 streams: they explicitly target cases for which we can optimize
better. We point out when this is the case.

We use a set of microbenchmarks offering various combinations of streaming pipelines:7

reduce: a sum operation.
filter/reduce: a filter-sum pipeline.
filter/map/reduce: a filter-map-sum pipeline.
cart/reduce: a nested pipeline with a flatMap and an inner operation, with a map
(capturing a variable), to encode the sum of a Cartesian product.
fused filters: 8 consecutive filter operations and a count terminal operation. The
implementation is push-style for Java 8, push-style, pull-style & fused for our library.
fused maps: 8 consecutive map operations and a count terminal operation. The imple-
mentation is push-style for Java 8, push-style, pull-style & fused for our library.
count: a count operation (pull-style).
filter/count: a filter-count pipeline (pull-style).
filter/map/count: a filter-map-count pipeline (pull-style).
cart/take/count: a nested pipeline with a flatMap and an inner operation, with a map,
to encode taking the first few elements of a Cartesian product and then counting them
(pull-style).

Although our library is not yet full-featured, it faithfully (relative to Java 8 streams)
implements the facilities tested in these benchmarks.

7 The benchmark programs are adapted from our earlier benchmarking study [2] of streams in various
languages. As shown in that study, Java 8 streams typically significantly outperform other imple-
mentations. Still, performance of streaming libraries lags behind hand-optimized code. This is to be
expected, since hand-written code can remove most overhead of lazy evaluation, by fusing the consumer
of data with the producer. JDK developers have shown significant interest in future VM optimizations
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(a) Basic pipelines.

(b) Fusible pipelines.

(c) Pull based reduction.

(d) Pull & Push based flatMap/take.

Figure 9 Microbenchmarks on JVM in milliseconds / iteration (average of 10).
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* Input: All tests were run with the same input set. For all benchmarks except cart/re-
duce and cart/take/count we used an array of N = 10, 000, 000 Long integers (boxed),8
produced by N integers with a range function that fills the arrays procedurally. The cart/re-
duce test iterates over two arrays. An outer one of 10, 000, 000 long integers and an inner
one of 10. For the cart/take/count test, the sizes of the inner and outer arrays are reversed
and the take operator draws only the first n = 100, 000 elements. Fusion operations use
1, 000, 000 long integers.

Setup: We use a Fedora Linux x64 operating system (version 3.17.4-200.fc20) that runs
natively on an Intel Core i5-3360M vPro 2.8GHz CPU (2 physical x 2 logical cores). The
total memory of the system is 4GB. We use version 1.8.0.25-4.b18 of the Open JDK.

Automation: We used the Java Microbenchmark Harness (JMH) [17]: a benchmarking tool
for JVM-based languages that is part of the OpenJDK. JMH is an annotation-based tool
and takes care of all intrinsic details of the execution process, in order to remove common
experimental biases. The JVM performs JIT compilation so the benchmark author must
measure execution time after a certain warm-up period to wait for transient responses to
settle down. JMH offers an easy API to achieve that. In our benchmarks we employed
10 warm-up iterations and 10 proper iterations. We also force garbage collection before
benchmark execution. Additionally, we used 2 VM-forks for all tests, to measure potential
run-to-run variance. We have fixed the heap size to 3GB for the JVM to avoid heap resizing
effects during execution.

Results: The benchmarks are cleanly grouped in 4 sets:
In Figure 9a we present the results of the first 4 benchmarks: reduce, filter/reduce,
filter/map/reduce, and cart/reduce. These are “fair” comparisons, of completely
equivalent functionality in the two libraries. As can be seen, the performance of our
push algebra implementation matches or exceeds that of Java 8, validating the claim
that our approach does not incur undue overheads.
Figure 9b presents the results for the next two benchmarks: fused filters and fused
maps. These benchmarks are intended to demonstrate the improvement from our fusing
semantics. The Java 8 implementation compared is push-style. Still, our fused pull-style
semantics yield a successful optimization, outperforming even the efficient, push-style
iteration. Due to our design, this optimization is achieved modularly and independently
of the rest of the stream implementation.
Figure 9c includes the next 3 benchmarks: count, filter/count, and filter/map/-
count. These are benchmarks of semantically uneven implementations. Java 8 streams
support pull-style functionality by transforming the stream into an iterator, but this is
not equivalent to full pull-style iteration. As can be seen, a true pull semantics for all
operators can be much faster.
Finally in Fig 9d we show the cart/take/count benchmark. This contains a pipeline
that is pathological for the Java pull-style streams, in much the same way as the infinite
evaluation of Section 3.1. (Push-style streams have the same pathology, by definition:
they cannot exploit the fact that only a small number of results are needed in the final

that will allow Java streams to approach the performance of hand-written code [16].
8 Specialized pipelines for primitive types is not supported in our library, but should be a valuable future
engineering addition.
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operator.) Instead of an infinite stream we reproduce the nested flatMap/map pipeline
but with the larger array being the nested one. As flatMap needs to materialize nested
arrays (effectively applying the inner map function to create the inner stream) it suffers
from the effect of inner allocations. Our proper pull-style pipeline does not present this
behavior. The result is spectacular in favor of our pull algebra implementation, because
of the small number of elements actually needed by the take operator.

7 Discussion

We next present observations related to our library design and its constituent elements.

7.1 Fluent API
Object Algebras drive the “interpretation” of streams in our work, so a nested,
reversed pattern occurs when declaring the combinators of a pipeline: instead
of “of(...).filter(...).count()”, our pipeline looks like “alg.count(alg.filter(...,
alg.source(...)))”. This reversed pattern follows the declaration order of the combina-
tors, contradicting the natural ordering of a fluent API.

We created an experimental fluent API in Java using static methods in the interface
of the object algebra,9 but the result was cumbersome. In contrast, we created skeletal
C# and Scala implementations of a fluent API for our library design, for demonstration
purposes. (Our object algebra streaming architecture applies to any modern OO language
with generics, so C# and Scala libraries based on the same principles can be developed in
the future.)

Figure 10 Example of Fluent API creation in C#.

static class Stream {
public static Func<F, App<C, T>> OfArray<F, C, T>(T[] array)

where F : IStreamAlg<C>
{ return alg => alg.OfArray(array); }

public static Func<F, App<C, T>> Filter<F, C, T>(this Func<F, App<C, T>> streamF,
Func<T, bool> predicate)

where F : IStreamAlg<C>
{ return alg => alg.Filter(streamF(alg), predicate); }

public static Func<F, App<E, int>> Count<F, E, C, T>(this Func<F, App<C, T>> streamF)
where F : IExecStreamAlg<E, C>

{ return alg => alg.Count(streamF(alg)); }

public static App<E, int> Example<E, C, F>(int[] data, F alg)
where F : IExecStreamAlgebra<E, C> {

Func<F, App<E, int>> streamF =
Stream.OfArray(data)

.Filter(x => x % 2 == 0)

.Count();
return streamF(alg);

}
}

In C# the user can create a fluent API through the use of extension methods. Extension
methods enable the user to “add” methods to existing types without creating a new derived

9 Static methods in interfaces is a feature introduced in Java 8.
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type, recompiling, or modifying the original type. Extension methods are simply a compiler
shorthand that enables static methods to be called with instance syntax. Using that feature,
the user can create a static class enclosing extension methods that capture the reversed flow.

Figure 10 shows the relevant C# code snippet. Extension methods are defined for the
function type, Func<F, App<C, T». The user wraps all methods of an algebra with methods
that, instead of returning C<T>, return a function that takes as parameter an algebra object.
The algebra object is, thus, hidden from the original code and introduced implicitly in calls
to such returned functions.

The above technique enables fluent ordering, as shown in the Example method of the
listing. The fluent API also has immediate side benefits in current programming tools: the
user is able to retrieve the list of combinators via the intelligent code completion feature of
the IDE.

We also retrieve fluency in Scala using a similar technique, enabled by the feature of
implicit classes [21] as shown in Figure 11.

Figure 11 Example of Fluent API creation in Scala.

object Stream {
trait StreamAlg[C[_]] {

def ofArray[T](array: Array[T]) : C[T]
def filter[T](f : T => Boolean, app : C[T]) : C[T]

}
trait ExecStreamAlg[C[_], E[_]] extends StreamAlg[C] {

def count[T](app : C[T]) : E[Long]
}
def ofArray[T, C[_], E[_], F <: ExecStreamAlg[C, E]]

(array: Array[T]) : F => C[T] = {
alg => alg.ofArray(array)

}
trait Push[T]
trait Pull[T]
type Id[A] = A
implicit class RichReader[T, C[_], E[_], F <% ExecStreamAlg[C, E]]

(func : F => C[T]) {
def filter(p : T => Boolean) : F => C[T] = {
alg => alg.filter(p, func(alg))

}
def count() : F => E[Long] = {
alg => alg.count(func(alg))

}
}
def example[T, C[_], E[_]](array: Array[Int])

(alg : ExecStreamAlg[C, E]) : E[Long] = {
Stream.ofArray[Int, C, E, ExecStreamAlg[C, E]](array)

.filter((x:Int) => x%2==0)

.count()(alg)
}

}

7.2 Generalized Algebraic Data Types

We observe that the encoding of type-constructor parameterization that we employed in
Section 4 is sufficient for emulating Generalized Algebraic Data Types (GADTs) in Java.
GADTs are algebraic data types that permit data constructors to specify their exact return
type. The standard example of a GADT is a generic expression evaluator, which can be
captured via an abstract visitor that uses type-constructor polymorphism:
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abstract class Visitor<R<_>> {
abstract R <Integer> caseIntLit (IntLit expr);
abstract R <Boolean> caseBoolLit (BoolLit expr);
abstract R <Integer> casePlus (Plus expr);
abstract <Y> R <Y> caseIf (If<Y> expr);

}

The emulation of GADTs with type-constructor polymorphism is not new—it is, for
instance, mentioned by Altherr and Cremet [1] and by Oliveira and Cook [13].

As discussed in Section 4 the safety of the emulation depends on following the convention
that the only subtype of App<S.t, ...> is S.

8 Related Work

“Stream programming” is an overloaded term, encompassing streaming algorithms (a sub-
area of the theory of algorithms), synchronous dataflow, reactive systems, signal processing
applications, spreadsheets, and embedded systems [4,19,24]. These are conceptually related
to our work in terms of intuitions, but hardly related in terms of the techniques employed.
A more appropriate context for our work is streams in the sense of the Java Stream API [15],
which provides stream-like functionality for data collections. In the rest of this section, we
discuss related work both from dedicated streaming systems, and from streaming APIs built
on top of general-purpose programming languages.

Streaming DSLs and interpreters. From the implementor’s point of view, our stream al-
gebras expose a DSL for stream programming. The DSL is embedded in Java and takes
advantage of the optimizing nature of the underlying JIT-based implementation. In a sim-
ilar fashion, the StreamIt language, which needed a special implementation with stream-
specific analyses and optimizations [23], was recently implemented atop the Java platform,
as StreamJIT [3]. However, while StreamJIT required a full implementation effort, our tech-
nique is more lightweight, being available as a Java library, with an API extending that of
native Java streams. StreamIt generally has a very different focus from our work: although
it offers flexible, declarative combinators, its domain of applicability is multimedia streams
of very large data, as opposed to general functional programming over data collections.

The DirectFlow DSL of Lin and Black also supported push and pull configurations for
information-flow systems with extensible operators [9]. Compared to our design, it uses a
compiler, exposes the internal “pipes” that connect different stream operators, and requires
the management (instantiation and connection) of objects for these pieces of the flow graph.

The operator fusion semantics that we showed is only one example of stream-based
optimizations. Other optimizations that can be unlocked by our technique are operator
reordering, redundancy elimination in the pipeline, and batching [8].

Our DSL representation follows a shallow embedding with Church-style encodings [13];
as Gibbons and Wu have demonstrated, this makes it natural and simple to implement the
interpreter in recursive style [5].

Our design permits not only the definition of completely new operators, but also com-
posite operators that reuse existing ones. This expressiveness enables modularity in our
design in a manner similar to the modularity offered by the composite operators of high-
level streaming languages such as SPL [7].

Collections and big data (including Java streams). Su et al. showed how Java streams
can support different compute engines in the same pipeline [20], for the domain of distributed
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data sets. Unlike our design, there is no infrastructure for the change of evaluation engine
without affecting the library code.

Our approach can process the pipeline, so in that respect is similar to the “application
DSL” of ScalaPipe [26]. ScalaPipe operates as a program generator. It generates an Au-
toPipe application that produces C, OpenCL etc. The high level program is written in Scala.
The target program is C.

StreamFlex offers high-throughput, low-latency streaming capabilities in Java, taking
advantage of ownership types [18]. StreamFlex is an extension of Java (due to type system
additions), and, furthermore, comes with an altered JVM to support real time execution.
It focuses on event processing and especially on the scheduling of filters (so that priority is
given to the threads that handle the stream without GC pressuring, etc.).

Compared to the above, our work is smoothly integrated in the language (as an embed-
ded, internal DSL—effectively a plain library). We discover the DSL hidden inside the Java
Streams API and show how its implementation can improve, with pluggable and modular
semantics, via object algebras.

Svensson and Svenningsson demonstrated how pull-style and push-style array semantics
can be combined in a single API using a defunctionalized representation and a shallow
embedding for their DSL [22]. However, they propose a new API and a separate DSL layer
that passes through a compiler, while we remain compatible with existing Java-like stream
APIs. Furthermore, our approach enables full semantic extensibility, beyond just changing
the pull vs. pull style of iteration.

9 Future Work and Conclusions

We presented an alternative design for streaming libraries, based on an object algebras
architecture. Our design requires only standard features of generics and is, thus, widely
applicable to modern OO languages, such as Java, Scala, and C#. We implemented a Java
streaming library based on these principles and showed its significant benefits, in terms of
transparent semantic extensibility, without sacrificing performance.

Given our extensible library design, there are several avenues for further work. The
clearest path is towards enriching the current library implementation with shared-memory
parallel evaluation semantics, cloud evaluation semantics, distributed pipeline parallelism,
GPU processing, and more. Since we expose the streaming pipeline, such additions should
be transparent to current evaluation semantics, and can even be performed by third-party
programmers.
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