
The Generalized Intensional Transformation
for Implementing Lazy Functional Languages

Georgios Fourtounis Nikolaos Papaspyrou
National Technical University of Athens
{gfour, nickie}@softlab.ntua.gr

Panos Rondogiannis
University of Athens
prondo@di.uoa.gr

Abstract

The intensional transformation is a promising technique for imple-
menting lazy functional languages based on a demand-driven ex-
ecution model. Despite its theoretical elegance and its simple and
efficient execution model, the intensional transformation suffered,
until now, from two main drawbacks: (a) it could only be applied
to programs that manipulate primitive data-types, and (b) it could
only compile a simple (and rather restricted) class of higher-order
functions. In this paper we remedy the above two deficiencies, ob-
taining a transformation algorithm that is applicable to mainstream
lazy functional languages. The proposed transformation initially
uses defunctionalization in order to eliminate higher-order func-
tions from the source program. The resulting first-order program is
then transformed into a program in a simple tuple-based language.
Finally, the original intensional transformation is extended in order
to be applicable to the tuple language. The correctness of the gen-
eralized transformation is formally established. It is demonstrated
that the proposed technique can be used to compile a relatively
large subset of Haskell into portable C code whose performance
is comparable to existing mainstream implementations.

Keywords Intensional Transformation, Dataflow Programming,
Defunctionalization, Compilation, Lazy Functional Languages

1. Introduction

The intensional transformation [14, 15, 19] has been proposed
as an alternative technique for implementing lazy functional lan-
guages based on a demand-driven execution model. The key idea
behind the intensional approach is to transform a source functional
program into a program consisting of nullary variable definitions
enriched with intensional (i.e., context-switching) operators. The
transformation was initially proposed as a technique for imple-
menting first-order functional languages [19] and was also used in
the implementation of the first-order dataflow language Lucid [18].
Later on, the correctness of the transformation was formally estab-
lished [14] and it was extended to apply to a simple class of higher-
order programs [15]. For the class of programs that it can compile,
the transformation has been demonstrated to be quite efficient [4].

[Copyright notice will appear here once ’preprint’ option is removed.]

Despite its theoretical elegance and its simple and efficient
execution model, the intensional transformation continues to suffer
from the two main drawbacks that were present since its inception:

• It can only be applied to programs that manipulate primitive
data-types (such as integers, characters, boolean values, and so
on). For example, the dataflow language Lucid never supported
user-defined data-types [18, Sec. 7.1].
• It can only compile a simple (and rather restricted) class of

higher-order functions. More specifically, the extension of the
intensional transformation [15] can only compile programs that
make a Pascal-like use of higher-order functions (i.e., programs
that do not use function closures and therefore do not support
currying in its full-generality).

In this paper we remedy the above two deficiencies, obtaining
a transformation algorithm that is applicable to mainstream higher-
order lazy functional languages. The proposed transformation ini-
tially uses defunctionalization [13] in order to eliminate higher-
order functions from the source program (at the cost of introducing
explicit closures in the target first-order program). The two prob-
lems above are therefore trivially reduced to a single one, namely
that of extending the intensional transformation to a language with
user-defined data types (and pattern matching). The next step in the
proposed approach is the elimination of constructor calls by intro-
ducing tuples in the language, whose first member is the construc-
tor’s name and whose subsequent arguments are the constructor’s
arguments. The advantage of the tuple representation is that we can
now eliminate local pattern-matching variables by introducing in
the language a selection operator. In this way we get a first-order
program on which we can easily apply the original intensional
transformation (with minimal modifications). The correctness of
the proposed transformation is formally established. Finally, and
most importantly, it is demonstrated that the proposed technique
can be used to compile a relatively large subset of Haskell into
portable C code whose performance is comparable to existing im-
plementations, based on more traditional compilation techniques.

The rest of the paper is organized as follows: Section 2 pro-
vides background on the original intensional transformation and
introduces at an intuitive level the proposed generalized transfor-
mation. Section 3 presents the new transformation at a formal level
and establishes its correctness. Section 4 discusses the details of
an implementation of the proposed technique. Section 5 provides
a performance comparison with several well-known and efficient
Haskell compilers. The paper concludes (Sections 6 and 7) with a
discussion of related work and directions for future research.

2. The Generalized Transformation (intuitively)
In this section we introduce in an intuitive way the generalized in-
tensional transformation. We start by outlining the original inten-

Generalized Intensional Transformation 1 2012/6/3

sional transformation for first-order functional languages that sup-
port only base types (for a more extensive discussion, see [14, 19]).

2.1 The Original Intensional Transformation

The input to the original intensional transformation [14, 19] is a
first-order functional program that only uses base data-types (such
as integers, Boolean values, and so on). After a simple processing,
the source program is transformed into a zero-order intensional
program that only contains nullary definitions. The name “inten-
sional” reflects the fact that the resulting program additionally uses
two context-switching operators, whose semantics will be shortly
described. The transformation can be intuitively described as fol-
lows [14]:

1. Let f be a function defined in the source functional program.
Number the textual occurrences of calls to f in the program,
starting at 0 (including calls in the body of the definition of f).

2. Replace the i-th call of f in the program by call i(f). Remove
the formal parameters from the definition of f, so that f is
defined as an ordinary individual variable.

3. Introduce a new definition for each formal parameter of f. The
right hand side of the definition is the operator actuals applied
to a list of the actual parameters corresponding to the formal
parameter in question, listed in the order in which the calls are
numbered.

To illustrate the algorithm, consider the following simple first-
order functional program:

result = f 3 + f 5
f x = g (x-1)
g y = y+2

The transformation produces the following target program:

result = call0(f) + call1(f)
f = call0(g)
g = y+2
x = actuals(3, 5)
y = actuals(x-1)

The above intensional code can be easily evaluated with re-
spect to an initially empty context, which is in fact a list of natural
numbers. Intuitively, the list keeps track of the exact position in
the recursion tree where the execution currently is. The operators
call i and actuals are context-switching operators. Intuitively,
call i augments a list w by prefixing it with i. On the other hand,
actuals takes the head i of a list, and uses it to select its i-th ar-
gument. One can now easily define an EVAL function which evalu-
ates the intensional program that results from the transformation, as
shown in Figure 1. The function is parameterized by the program
P in which all evaluation takes place, which will often be omit-
ted to simplify presentation. The function lookup(v, P) returns the
defining expression of a variable v in program P . The evaluation
of the usual constructs of functional languages (such as if-then-
else, arithmetic operations, and so on) are all expressed by the rule
for n-ary constants c (which, when n = 0 also covers the case of
nullary constants, such as numbers, characters, and so on). The ex-
ecution of our example intensional program derived above, is given
in Figure 2. Notice that we assume that our source programs have
a distinguished variable result whose value we want to compute.

2.2 The New Intensional Transformation

As mentioned in the introductory section, the intensional transfor-
mation was never generalized to apply to a fully higher-order func-
tional language nor to a language that supports user-defined data-
structures. From an implementation point of view, higher-order
functions and data-structures are closely connected, since, using
Reynold’s defunctionalization, one can reduce a higher-order pro-
gram to a first-order one that is enriched with appropriate data-
structures [13]. In other words, the two problems can be simul-
taneously solved if we generalize the intensional transformation to
apply to first-order programs with user-defined data types. For ex-
ample, consider the following second-order Haskell program:

result = inc (add 1) 2 + inc sq 3
inc f x = f (x+1)
add a b = a+b
sq z = z*z

The program is initially transformed into a defunctionalized first-
order program:

data Func = Add Int | Sq

result = inc (Add 1) 2 + inc Sq 3
inc f x = apply f (x+1)
apply cl d = case cl of

Add c → add c d
Sq → sq d

add a b = a+b
sq z = z*z

We now have a first-order program on which however we can
not directly apply the intensional transformation. The problem is
the existence of data structures and in particular the existence of
case definitions. How can local pattern-matching variables (such
as the variable c in the definition of apply) be treated by the
intensional transformation? The problem is both a practical one —
how do we perform the transformation? — but also a semantic one
— what will be the status of a variable like c in the zero-order
intensional program?

The key idea for solving this problem is to note that the value
of the parameter cl can either be the (nullary) data constructor
Sq or the unary data constructor Add applied to some parameter
c. We can view the result of the application of a data constructor
as a tuple whose first member is the name of the data constructor
itself and the rest of the members (if any) are the parameters of the
data constructor. Viewing cl as a tuple is quite convenient, since
we can introduce a selection function # which returns members
of the tuple. For example, cl#0 returns the name of the data
constructor; if the data constructor has parameters (like Add above)
then cl#1 returns the first such parameter, cl#2 the second, and so
on. In our case, if cl#0 is equal to Add then we can ask for cl#1
which corresponds to the local pattern matching variable c above.
Therefore, the above program can be transformed to:

result = inc 〈Add, 1〉 2 + inc 〈Sq〉 3
inc f x = apply f (x+1)
apply cl d = case cl#0 of

Add → add cl#1 d
Sq → sq d

add a b = a+b
sq z = z*z

Notice that Add and Sq above are now just constants of our lan-
guage and can be understood as (different) labels or natural num-
bers. Notice also that this is not anymore a well-typed program in

Generalized Intensional Transformation 2 2012/6/3

EVALP (v, w) = EVALP (lookup(v, P), w)
EVALP (call i (E), w) = EVALP (E, i : w)
EVALP (actuals(E0, . . . , En−1), i : w) = EVALP (Ei, w)
EVALP (c(E0, . . . , En−1), w) = c(EVALP (E0, w), . . . ,EVALP (En−1, w))

Figure 1. The EVAL function for the intensional language.

EVAL(result, [])
= EVAL(call0(f) + call1(f), [])
= EVAL(call0(f), []) + EVAL(call1(f), [])
= EVAL(f, [0]) + EVAL(f, [1])
= EVAL(call0(g), [0]) + EVAL(call0(g), [1])
= EVAL(g, [0, 0]) + EVAL(g, [0, 1])
= EVAL(y, [0, 0]) + EVAL(2, [0, 0]) + EVAL(y, [0, 1]) + EVAL(2, [0, 1])
= EVAL(actuals(x-1), [0, 0]) + 2 + EVAL(actuals(x-1), [0, 1]) + 2
= EVAL(x-1, [0]) + 2 + EVAL(x-1, [1]) + 2
= EVAL(x, [0])− EVAL(1, [0]) + 2 + EVAL(x, [1])− EVAL(1, [1]) + 2
= EVAL(actuals(3, 5), [0])− 1 + 2 + EVAL(actuals(3, 5), [1])− 1 + 2
= EVAL(3, [])− 1 + 2 + EVAL(5, [])− 1 + 2
= 3− 1 + 2 + 5− 1 + 2
= 10

Figure 2. Execution of the target intensional program.

Haskell, as function inc is applied to two tuples of obviously dif-
ferent types.

We can now apply the intensional transformation in the standard
way [14, 19] and obtain a zero-order intensional program:

result = call0(inc)+call1(inc)
inc = call0(apply)
f = actuals(〈Add, 1〉, 〈Sq〉)
x = actuals(2, 3)
apply = case cl#0 of

Add → call0(add)
Sq → call0(sq)

cl = actuals(f)
d = actuals(x+1)
add = a+b
a = actuals(cl#1)
b = actuals(d)
sq = z*z
z = actuals(d)

The only additions that have to be made to the semantics of
the intensional language for the execution of the above program
are three extra cases: one for the selection operator, one for the
tuples and one for the case expressions. The new EVAL is shown
in Figure 3.

It can be checked (see Figure 4) that the above program can
be easily evaluated using a demand-driven interpreter. Notice that
for clarity we present separately the evaluation of the two subex-
pressions that comprise the right hand side of the result variable.
Obviously, the final result of the evaluation of the program is the
sum of the results of the two subcomputations.

3. The Generalized Transformation (formally)
As mentioned in the previous sections, we assume that our source
language is a first-order language with user defined data-types,
which in the following we call FOL (First-Order Language). In or-
der to eliminate pattern-matching variables from FOL programs,

the selection operator # is introduced, as outlined in the previous
section. The programs that result belong to the language FOLT
(First-Order Language with Tuples). Finally, FOLT programs are
transformed into zero-order intensional ones that belong to the lan-
guage NVIL (Nullary Variables Intensional Language). The syntax
and semantics of the three languages, as well as the two transfor-
mations from FOL to FOLT and from FOLT to NVIL are described
below. In the rest of this section, we assume some familiarity with
the basic notions of denotational semantics, as well as the basic
ideas regarding intensional languages (the reader is referred to the
first few sections of [14]).

3.1 The Language FOL

The syntax of FOL is given by the following context-free grammar,
where f, v ∈ Var range over variables, c ∈ Con ranges over
constants, δ ranges over user defined data types, κ ranges over
constructors, b ranges over basic types (such as Int, Bool, and
so on), and n,m ≥ 0.

Prog ::= Tdef 0, . . . , Tdef n−1, Fdef 0, . . . , Fdef m
Tdef ::= data δ = Cdef 0 | . . . | Cdef n
Cdef ::= κ Typ . . . Typn−1

Typ ::= δ | b
FDef ::= f(v0, . . . , vn−1) = Expr

| f(v0, . . . , vn−1) = CExpr

Expr ::= c(Expr0, . . . , Exprn−1)
| f(Expr0, . . . , Exprn−1)
| κ(Expr0, . . . , Exprn−1)

CExpr ::= case Expr of { Cls0; . . . ; Clsn }
Cls ::= κ(v0, . . . , vn−1)→ Expr

We omit the parentheses around empty sequences of expres-
sions and variables. As we have already mentioned, we assume
that every program in our language contains a distinguished vari-
able result whose value will represent the desired output of the

Generalized Intensional Transformation 3 2012/6/3

EVALP (v, w) = EVALP (lookup(v, P), w)
EVALP (call i (E), w) = EVALP (E, i : w)
EVALP (actuals(E0, . . . , En−1), i : w) = EVALP (Ei, w)
EVALP (c(E0, . . . , En−1), w) = c(EVALP (E0, w), . . . ,EVALP (En−1, w))
EVALP (〈E0, . . . , En−1〉, w) = 〈EVALP (E0, w), . . . ,EVALP (En−1, w)〉
EVALP (E # i, w) = EVALP (E,w)# i
EVALP (case E of i0→E0; . . . ; in−1→En−1, w) = EVALP (Ek, w) if EVALP (E,w) = ik

Figure 3. The EVAL function for the extended intensional language.

EVAL(call0(inc), [])
= EVAL(inc, [0])
= EVAL(call0(apply), [0])
= EVAL(apply, [0, 0])
= EVAL(case cl#0 of { Add → call0(add); Sq → call0(sq) }, [0, 0])

EVAL(cl#0, [0, 0])
EVAL(cl, [0, 0])# 0
EVAL(actuals(f), [0, 0])# 0
EVAL(f, [0]|#0
EVAL(actuals(〈Add, 1〉, 〈Sq〉), [0])# 0
EVAL(〈Add, 1〉,))[]# 0
〈Add, 1〉#0
Add

= EVAL(call0(add), [0, 0])
= EVAL(add, [0, 0, 0])
= EVAL(a+b, [0, 0, 0])
= EVAL(a, [0, 0, 0]) + EVAL(b, [0, 0, 0])
= EVAL(actuals(cl#1), [0, 0, 0]) + EVAL(actuals(d), [0, 0, 0])
= EVAL(cl#1, [0, 0]) + EVAL(d, [0, 0])
= EVAL(cl, [0, 0])#1 + EVAL(d, [0, 0])
= EVAL(actuals(f), [0, 0])# 1 + EVAL(actuals(x+1), [0, 0])
= EVAL(f, [0])# 1 + EVAL(x+1, [0])
= EVAL(actuals(〈Add, 1〉, 〈Sq〉), [0])# 1 + EVAL(x, [0]) + 1
= EVAL(〈Add, 1〉, [])# 1 + EVAL(actuals(2, 3), [0]) + 1
= 1 + 2 + 1
= 4

EVAL(call1(inc), [])
= EVAL(inc, [1])
= EVAL(call0(apply), [1])
= EVAL(apply, [0, 1])
= EVAL(case cl#0 of { Add → call0(add); Sq → call0(sq) }, [0, 1])

EVAL(cl#0, [0, 1])
EVAL(cl, [0, 1])# 0
EVAL(actuals(f), [0, 1])# 0
EVAL(f, [1])# 0
EVAL(actuals(〈Add, 1〉, 〈Sq〉), [1])# 0
EVAL(〈Sq〉, [])#0
〈Sq〉#0
Sq

= EVAL(call0(sq), [0, 1])
= EVAL(sq, [0, 0, 1])
= EVAL(z*z, [0, 0, 1])
= EVAL(z, [0, 0, 1]) ∗ EVAL(z, [0, 0, 1])
= EVAL(actuals(d), [0, 0, 1]) ∗ EVAL(actuals(d), [0, 0, 1])
= EVAL(d, [0, 1]) ∗ EVAL(d, [0, 1])
= EVAL(actuals(x+1), [0, 1])# 1 ∗ EVAL(actuals(x+1), [0, 1])
= EVAL(x+1, [1]) ∗ EVAL(x+1, [1])
= (EVAL(x, [1]) + 1) ∗ (EVAL(x, [1]) + 1)
= (EVAL(actuals(2, 3), [1]) + 1) ∗ (EVAL(actuals(2, 3), [1]) + 1)
= (3 + 1) ∗ (3 + 1)
= 16

Figure 4. Execution of the target intensional program.

Generalized Intensional Transformation 4 2012/6/3

program. Moreover, we assume that the FOL programs under con-
sideration are well-typed.

The semantics of FOL is the standard domain-theoretic seman-
tics for a first-order functional language with data-structures (see
for example [16]).

3.2 The Language FOLT

The language FOLT is similar to FOL, the main difference being
that all user-defined data types have been replaced by a single one,
namely the tuple. Moreover, there is a selection operator # that ap-
plies to tuple expressions. Finally, case expressions are somewhat
simpler since they don’t contain pattern matching variables. The
syntax of FOLT is as follows, where i ≥ 0:

Prog ::= Def 0, . . . , Def n
Def ::= f(v0, . . . , vn−1) = Expr

| f(v0, . . . , vn−1) = CExpr

Expr ::= c(Expr0, . . . , Exprn−1)
| f(Expr0, . . . , Exprn−1)
| 〈Expr0, . . . , Exprn〉
| Expr # i

CExpr ::= case Expr of { Cls0; . . . ; Clsn }
Cls ::= c→ Expr

Notice how constructor names have been replaced by constants
in the clauses of case expressions.

The semantics of FOLT is similar to that of FOL, the only
difference being the existence of tuples in the language instead of
data types. Let us denote byB the semantic domain of basic values
of FOLT. For example, when:

B = {⊥}+ N+ {true, false}
our base domain consists of the natural numbers, the Boolean
values and the bottom element for handling non-termination.

The denotations of the zero-order variables of FOLT (such as
nullary function definitions or formal parameters of functions) are
elements of the following domain:

D = B +
∑
n∈ω

Dn

Intuitively, D consists of the denotations of the base types as well
as the denotations of tuples.

The denotation of an n-ary function in FOLT is a member of
Dn → D. Notice that this is isomorphic to D, when n = 0, and
we will use the two interchangeably.

As usual, environments assign denotations to function variables
according to their arity:

Env =
∏
n∈ω

(Varn → Dn → D)

where Varn is the subset of Var whose members are variables of
arity n ≥ 0.

Finally, the denotations of constant symbols are assigned by the
constant interpretation function C:

C :
∏
n∈ω

(Conn → Dn → D)

where Conn is the subset of Con whose members are constants of
arity n ≥ 0.

The semantics of FOLT expressions with respect to u ∈ Env is
defined in Figure 5 as a function of type:

J·K : Expr → Env → D

The meaning of a FOLT program P is expressed by the least en-
vironment u that satisfies all the definitions in P ; it can be con-
structed as the least upper bound of a sequence of approximations
u0, u1, . . . (see for example [16] for details).

3.3 The Language NVIL

The language NVIL is a zero-order intensional language. For more
background on such languages, the interested reader can consult
the first sections of [14]. The of this NVIL from the corresponding
language defined in [14] is that the former supports tuples and
the selection operator #. The syntax of NVIL is given by the
following context-free grammar, where Labels is a set of labels,
` is a variable ranging over this set and I ⊆ Labels . Notice that
the syntax of the actuals operator is slightly different than the one
informally introduced in Section 2. This syntax will be explained
shortly and will be more convenient in the proof that will be given
in Section 3.5.

Prog ::= Def 0, . . . , Def n
Def ::= f = Expr

| f = CExpr

Expr ::= c(Expr0, . . . , Exprn−1)
| f
| call`(f)
| 〈Expr0, . . . , Exprn〉
| E # i
| actuals(〈Expr `〉`∈I)

CExpr ::= case Expr of { Cls0; . . . ; Clsn }
Cls ::= c→ Expr

In Section 2, operator call was labeled by a natural number i
and operator actuals received a sequence of expressions, indexed
by i. Here, we slightly change this and take the index to be any el-
ement ` from an appropriate set Labels . Therefore, call is labeled
by ` and actuals receives a sequence of expressions E` indexed
by labels ranging over a subset I ⊆ Labels . We represent this se-
quence as 〈Ei〉i∈I . This convention will help us formally define
and prove the correctness of the intensional transformation in an
easier way.

The semantics of NVIL is defined with respect to a set of
contexts. In Section 2, contexts were lists of natural numbers (see
the third argument of EVAL in Figures 3 and 4). Since we have
now replaced numeric labels with elements ` ∈ Labels , the set of
contexts now becomes the set of finite lists of such labels `:

Ctxt =
∏
n∈ω

Labelsn

The semantic domains B and D are the same as in the case
of FOLT. The domain of denotations of zero-order intensional
variables is now

I = Ctxt → D

and intensional environments assign elements of I to nullary vari-
ables:

IEnv = Var0 → I

The semantics of NVIL with respect to û ∈ IEnv is defined in
Figure 6 as a function of type:

J·K : Expr → IEnv → I

Notice that this function is in fact the denotational analogue of the
EVAL function of Figure 3. The meaning of an NVIL program P is
the least environment û that satisfies the definitions of P .

Generalized Intensional Transformation 5 2012/6/3

Jc(E0, . . . , En−1)K(u) = C(c)(JE0K(u), . . . , JEn−1K(u))
Jf(E0, . . . , En−1)K(u) = u(f)(JE0K(u), . . . , JEn−1K(u))
J〈E0, . . . , En−1〉K(u) = 〈JE0K(u), . . . , JEn−1K(u)〉
JE # iK(u) = di if JEK(u) = 〈d0, . . . , dn−1〉 and 0 ≤ i < n
Jcase E of {c0 → E0; . . . ; cn → En}K(u) = JEiK(u) if ci = JEK(u)

Figure 5. The denotational semantics of FOLT.

Jc(E0, . . . , En−1)K(u)(w) = C(c)(JE0K(u)(w), . . . , JEn−1K(u)(w))
JfK(u)(w) = u(f)(w)
Jcall`(f)K(u)(w) = u(f)(` : w)
J〈E0, . . . , En−1〉K(u)(w) = 〈JE0K(u)(w), . . . , JEn−1K(u)(w)〉
JE # iK(u)(w) = di if JEK(u)(w) = 〈d0, . . . , dn−1〉 and 0 ≤ i < n
Jactuals(〈Ej〉j∈I)K(u)(` : w) = JE`K(u)(w)
Jcase E of {c0 → E0; . . . ; cn → En}K(u)(w) = JEiK(u)(w) if ci = JEK(u)(w)

Figure 6. The denotational semantics of NVIL.

3.4 The Intensional Transformation for FOLT

As we have discussed in the previous sections, the source FOL pro-
grams are initially transformed to FOLT programs using a simple
preprocessing. Since FOL and FOLT are both standard functional
languages, the transformation from the former to the latter and the
corresponding correctness proof are easy to establish. For this rea-
son, we mainly focus here on the formal definition of the transfor-
mation from FOLT programs to NVIL programs. This will allow us
to derive the correctness proof of the proposed technique, in Sec-
tion 3.5.

We start by defining the set labels(f, P), i.e., the set of la-
bels of calls to f in program P . These labels will form the in-
dices of call operators. More specifically, the label of a func-
tion call f(E0, . . . , En−1) is simply its sequence of arguments
〈E0, . . . , En−1〉. In other words, the transformed form of the call
f(E0, . . . , En−1) will be call` where ` = 〈E0, . . . , En−1〉. This
assumption is slightly different from the one presented in Sec-
tion 2.1 but it helps us in two ways. First, using this assumption,
two identical function calls in the program receive exactly the same
label. Second, since a label ` is a sequence of the actual parameters
of a function call, we can write `m in order to specify the m-th
actual parameter of this call. This helps us simplify notation. Reca-
pitulating:

labels(f, P) = {〈E0, . . . , En−1〉 | f(E0, . . . , En−1) in P}

We can now define the overall transformation from FOLT to NVIL,
as shown in Figure 7. Given a program P , the function Trans(P)
removes the formal parameters from all definitions and adds one
extra definition for every formal parameter of every function in
the program. The creation of these extra definitions is performed
by the function actdefs . More specifically, given a function f
with formal parameters v0, . . . , vn−1, the function actdefs(f, P)
creates one actuals definition for each vj ; this definition contains
a sequence of all the (processed) actual parameters of f in P
that correspond to the j-th position. Notice that since a label `
is in fact a sequence of the actual parameters, by writing `j we
select the the j-th such parameter. Finally, we have the function E
which processes expressions of the program. The main role of E
is to replace function calls with corresponding occurrences of the
operator call.

3.5 Correctness Proof

In this section we demonstrate the correctness of the extended in-
tensional transformation. In the following we assume some famil-
iarity with the basic definitions and techniques used in the proof of
the original intensional transformation (see [14]).

In order to establish the correctness of the generalized in-
tensional transformation, it suffices to show that given a FOLT
program P , the transformed program Trans(P) is semantically
equivalent to P . Since our programs have a distinguished variable
result which holds the output of the program, it suffices to show
that the denotation of result is the same in both programs. Ac-
tually, let u, û be the least environments satisfying the definitions
of P and û respectively. Then, it suffices to show that for every
w ∈ Ctxt it is u(result) = û(result)(w). In order to establish
this fact, we show the following more general theorem.

Theorem 1. Let P be a FOLT program, let u be the least environ-
ment satisfying the definitions in P and let û be the least environ-
ment satisfying the definitions in the translated program Trans(P).
Consider a definition in P whose formal parameters are v0, . . . , vk.
Then, for every subexpression S that appears in the body of the
aforementioned definition and for every context w, we have:

JE(S)K(û)(w) = JSK(u⊕ ρ)
where ρ is an environment such that ρ(vj) = û(vj)(w) and u⊕ ρ
is an environment u′ such that for every v ∈ Var , if v ∈ dom(ρ)
then u′(v) = ρ(v), else u′(v) = u(v).

Proof. The proof consists of two parts. In the first part we demon-
strate that JE(S)K(û)(w) v JSK(u⊕ ρ) and in the second part that
JE(S)K(û)(w) w JSK(u ⊕ ρ). We give the full details for the for-
mer statement; the proof for the latter statement can be performed
symmetrically.

In order to establish the former statement we perform a double
induction: an outer induction on the approximations û0, û1, . . . of
û and an inner structural induction on S.

The base case for the outer induction is:

JE(S)K(û0)(w) v JSK(u⊕ ρ0)
where ρ0 is an environment such that ρ0(vj) = û0(vj)(w). By
a structural induction on S, the above can easily be shown, as û0

maps all variables to ⊥.

Generalized Intensional Transformation 6 2012/6/3

E(v # i) = v # i
E(c(E0, . . . , En−1)) = c(E(E0), . . . , E(En−1))
E(f(E0, . . . , En)) = call`(f) where ` = 〈E0, . . . , En〉
E(〈E0, . . . , En−1〉) = 〈E(E0), . . . , E(En−1〉
E(case E of {c0 → E0; . . . ; cn → En}) = case E(E) of {c0 → E(E0); . . . ; cn → E(En)}

actdefs(f, P) =

n−1⋃
j=0

{vj = actuals(〈E(lj)〉l∈I)} where v0, . . . , vn−1 are the formals of f and I = labels(f, P)

Trans(P) =
⋃

f(v0,...,vn−1)=E in P

{f = E(E)} ∪ actdefs(f, P)

Figure 7. The transformation algorithm from FOLT to NVIL.

Assume that the statement holds for k, namely that for every S:

JE(S)K(ûk)(w) v JSK(u⊕ ρk)
where ρk is an environment such that ρk(vj) = ûk(vj)w. We
prove the result holds for k + 1, i.e., we show that:

JE(S)K(ûk+1)(w) v JSK(u⊕ ρk+1)

We perform an inner structural induction on S.
Structural Induction Basis: The base cases are for S = c (a nullary
constant) and S = v (a nullary variable). Consider first the former
case. The left hand side is equal to JE(S)K(ûk)(w) = C(c), while
the right hand side gives also C(c). The result in the latter case
follows immediately from the relationship between ρk+1 and ûk+1.
Structural Induction Step: We distinguish cases for S:
Case S = c(E0, . . . , En−1). Then, for every w ∈ Ctxt , we have:

JE(S)K(ûk+1)(w)
= JE(c(E0, . . . , En−1))K(ûk+1)(w)

(Assumption for S)
= Jc(E(E0), . . . , E(En−1))K(ûk+1)(w)

(Definition of E)
= C(c)(JE(E0)K(ûk+1)(w), . . . , JE(En−1)K(ûk+1)(w))

(Semantics of NVIL)
v C(c)(JE0K(u⊕ ρk+1), . . . , JEn−1K(u⊕ ρk+1))

(Structural induction hypothesis and monotonicity of J·K)
= Jc(E0, . . . , En−1)K(u⊕ ρk+1)

(Semantics of FOLT)
= JSK(u⊕ ρk+1)

(Assumption for S)

Case S = f(E0, . . . , En−1). Assume that f is defined in P as
f(x0, . . . , xn−1) = Bf . Then, for every w ∈ Ctxt , we have:

JE(S)K(ûk+1)(w)
= JE(f(E0, . . . , En−1))K(ûk+1)(w)

(Assumption for S)
= Jcall`(f)K(ûk+1)(w)

(Definition of E)
= JfK(ûk+1)(` : w)

(Semantics of call`)
= JE(Bf)K(ûk)(` : w)

(Because f = E(Bf) in Trans(P))
v JBf K(u⊕ ρ′), where ρ′(xj) = ûk(xj)(` : w)

(Outer induction hypothesis)
v Jf(E0, . . . , En−1)K(u⊕ ρk+1)

(See explanation below)
= JSK(u⊕ ρk+1)

(Assumption for S)

Notice that by the definition of Trans there exist in P definitions
xj = actuals(〈E(lj)〉l∈I). In the above proof, the label is ` =
〈E0, . . . , En−1〉. Therefore, it holds:

ρ′(xj) = ûk(xj)(` : w)
v Jactuals(〈E(lj)〉l∈I)K(ûk)(` : w)
= JE(Ej)K(ûk)(w)
v JEjK(u⊕ ρk+1)

where the last step is justified by the induction hypothesis and the
fact that ρk v ρk+1.
Case S = 〈E0, . . . , En−1〉. We have:

JE(S)K(ûk+1)(w)
= JE(〈E0, . . . , En−1〉K(ûk+1)(w)

(Assumption for S)
= J〈E(E0), . . . , E(En−1)〉K(ûk+1)(w)

(Definition of E)
= 〈JE(E0)K(ûk+1)(w), JE(En−1)K(ûk+1)(w)〉

(Semantics of NVIL)
v 〈JE0K(u⊕ ρk+1), . . . , JEn−1K(u⊕ ρk+1)〉

(Structural induction hypothesis)
= J〈E0, . . . , En−1〉K(u⊕ ρk+1)

(Semantics of FOLT)
= JSK(u⊕ ρk+1)

(Assumption for S)

Case S = v # i. Straightforward.
Case S = case E of {c0 → E0; . . . ; cn → En}. Easy using the
semantics of case and the induction hypothesis.

The above result leads to the following theorem:

Theorem 2. Let P be a FOLT program, let u be the least en-
vironment satisfying the definitions in P and let û be the least
environment satisfying the definitions in the translated program
NVIL program Trans(P). Then, for every w ∈ Ctxt , we have
u(result) = û(result)(w).

Proof. A direct consequence of Theorem 1 when applied to the
body of the definition of the result variable in P .

4. The Implementation
In this section we describe an implementation of the generalized in-
tensional transformation. The key idea of the implementation is that
for every definition in the target intensional program, a correspond-
ing piece of C code is generated. In fact, the C code implements a
more efficient version of the EVAL function of Figure 3. In the rest
of this section we describe the details of the actual implementation.

Generalized Intensional Transformation 7 2012/6/3

4.1 Implementing EVAL

Every definition in the target intensional program corresponds to a
piece of C code. The runtime system uses a stack and a heap. How-
ever, in contrast to the standard implementation of user-defined data
types that are represented as heap objects, the only entities that
are stored in the stack and the heap are Lazy Activation Records
(LARs). A LAR is similar to a traditional activation record where,
among other things, a function’s parameters are stored. Some of
the fields in a LAR are not filled at the time of the function call,
when the LAR is constructed, but only when their value is actually
demanded by the implementation. This is more or less the standard
way in which non-strict languages implement call-by-need.

A LAR contains the following fields:

• index : the index ` of the call`(f) expression that generated
this LAR.
• prev : a pointer to the parent LAR, i.e., the LAR of the function

that invoked this one. Notice that the pair (index , prev) cor-
responds to the context w of the EVAL function (index is the
head of w and prev is a pointer to the tail).
• arg0, . . . , argn−1: each arg i points to the code corresponding

to the i-th formal parameter of the function call that generated
this LAR.
• val0, . . . , valn−1: each val i memoizes the value of the i-th

formal parameter of the function call that generated this LAR. It
is initially empty and will be filled on demand: if at some point
the code stored in arg i is executed and computes a value, this
value will be stored in val i for future use.
• nested : this field is required in order to efficiently compile
case expressions; its use will be further explained below.

The main difference between our approach and the standard im-
plementation of non-strict functional languages is the absence of
closures. In the traditional implementation of call-by-need, the field
arg i would contain a pointer to a thunk, i.e., a closure consisting
of: (i) a pointer to the code that will compute the i-th parameter,
and (ii) an environment, providing the values of the captured vari-
ables that this code needs to use. On the other hand, in our imple-
mentation the environment has been eliminated by the intensional
transformation and arg i is just the code pointer. All variables cor-
respond to top-level, zero-order definitions and it is the the context
contained in the pair (index , prev) that guides the computation
of these variables and produces the correct value, when the code
pointed to by arg i is executed.

In order to simplify things more, our implementation treats oc-
currences of tuples in a FOLT program as a form of trivial func-
tion calls. For this reason a simple preprocessing step is performed
which transforms a tuple 〈E0, . . . , En−1〉 to a call of the form
tuplen(E0, . . . , En−1) and introduces definitions of the form

tuple(v0, . . . , vn−1) = 〈v0, . . . , vn−1〉
This is similar to constructor wrapper functions in GHC. It is trivial
to verify that this transformation preserves the semantics of the
FOLT program. In this way, we eliminate the need to explicitly
represent tuples at runtime: tuples are simply contexts and their
elements are stored in LARs.

We now describe how each individual construct of the target
intensional program is compiled:

• call`(f): The code produced in this case initially allocates an
activation record in the heap or in the stack (depending on the
result of escape analysis for function f , see Section 4.2). The
index field is set to ` and the prev field is set to point to the

LAR of the function that executed the call. The argi fields are
set to point to the code corresponding to the formals of f and
the val i fields are initially empty. The nested field is not used
in this case.
• actuals(E0, . . . , En−1): The index field of the present LAR

is used to select the appropriate expression among theEi. Eval-
uation of this expression is performed in the context pointed to
by the prev field of the present LAR.
• 〈v0, . . . , vn−1〉: This expression now appears only once, in the

body of a newly introduced tuplen function. It evaluates to a
pointer to the current LAR.
• v # i: The code produced in this case starts the evaluation of
v under the current context, which should return a pointer to
a LAR t that corresponds to a tuple. The val i field of this
LAR is examined. If it is nonempty, the corresponding value
is returned. Otherwise, argi is evaluated under the context of t
and the result is stored in val i.
• case v # 0 of {c0 → E0; . . . ; cn → En}: Let p be the

current activation record when the evaluation of the case ex-
pression starts. The code produced starts by evaluating v # 0, as
described above, and the value returned is used to select the ap-
propriate branch. Notice, however, that the evaluation of v has
returned a pointer to an activation record t that corresponds to
a tuple; this pointer is stored in the nested field of p. The idea
here is that other expressions of the form v # i that appear in the
body of the case will be evaluated directly in the context of t.
This saves us from evaluating the tuple v again and again, every
time we encounter an expression of the form v # i.
• c(E0, . . . , En−1): Constant c represents any of the usual con-

stants or operators of a functional language (such as arithmetic
constants and operators, if-then-else, and so on). In each case
the produced code depends on the particular constant and its
generation is pretty standard.

4.2 Optimizations

The implementation includes certain simple optimizations which
focus on two issues: (a) allocating LARs on the stack whenever this
is possible, and (b) making the evaluation of certain expressions
less expensive. Further optimizations are possible, such as tail call
elimination, but have not yet been implemented.

Escape Analysis. Constructing a lazy activation record when
calling a function poses the following question: should it be al-
located on the stack or on the heap? We use the following simple
escape analysis scheme:

• Functions that return a ground value (such as an integer or a
boolean) or a data type containing only nullary constructors
allocate their LARs on the stack, popping them on return.
• Functions that may return constructors with parameters push

their LARs on the heap.

Using this scheme, programs that do not make an extensive use
of user-defined data types but which mainly use functions that
manipulate and return numerical data, can benefit from the speed
ensured by stack allocation.

Usage Analysis. Let x be the i-th formal parameter of a function
f and assume that x appears only once in the body of f . Assume
that a LAR is allocated for f and that the value of x under the
current context has been computed. Then, there is no need to store
the computed value of x in the field val i of the LAR, since this
value will not be demanded again (as x only appears once in the
body of f).

Generalized Intensional Transformation 8 2012/6/3

A slightly more involved usage analysis also applies to the
arguments of tuples. Assume that a LAR has been allocated due to
the evaluation of a tuple. Assume also that we have just evaluated
the i-th argument of tuple. Then, there is no need to store the result
in val i if this particular argument is accessed at most once in case
branches that examine this tuple.

4.3 Garbage Collection

Stack-allocated LARs are discarded immediately when the active
function call terminates. On the other hand, a garbage collector
is required to discard heap-allocated LARs. We have currently
implemented a simple semi-space copying garbage collector but
we intend to investigate this further and we expect that we will
come up with a much better implementation of a garbage collector
more suitable for the nature of LARs and the way they are used;
this is one of the primary goals for our future research. The root
set is calculated by traversing stack-allocated LARs and the active
context.

5. Performance Evaluation
In order to evaluate the performance of our implementation, we
benchmarked it against four other well-known Haskell compilers:1

• The Glasgow Haskell Compiler (GHC) which is the definitive
compiler for Haskell.
• The Utrecht Haskell Compiler (UHC) which is implemented

using attribute grammars and supports most features of Haskell
98 and Haskell 2010.
• The nhc98, which is a small, portable and standards compliant

compiler for Haskell 98.
• The jhc, an experimental and fast compiler for Haskell, which

has been implemented in order to test various optimizations for
the language.

The comparison is based on a set of 13 benchmark programs, most
of them standard benchmarks for lazy functional languages. Some
of the programs perform purely numerical computations (such as
the programs ack, fib, primes and queens-num), pure list pro-
cessing (such as naive-reverse and fast-reverse), numer-
ical computations combined with list-processing and/or higher-
order functions (such as church, ntak, collatz, digits of e1,
quick-sort), and other user-defined data types (such as queens
and tree-sort).

The benchmarks were performed on a machine with four quad-
core Intel Xeon E7340 2.40GHz processors and 16 GB memory,
running Debian 6.0.5. The versions of the compilers tested were
GHC 7.4.1 and GHC 6.12.1, UHC/ehc-1.1.4, nhc98 1.22, and jhc
0.8.0. Our own compiler is shown in the benchmarks table as
GIC (the Generalized Intensional Compiler). All benchmarks were
executed five times and the median (elapsed) execution time was
recorded. For all compilers the effects of garbage collection were
minimized by setting a large size for the heap — in practice all
programs either did no garbage collection at all or only a few.
Finally, we (tried to) disable strictness analysis from all compilers,
so as to focus on the performance of genuine lazy implementations.

The performance results are depicted in Figure 8. The columns
of this table correspond to the following:

• GIC: The generalized intensional compiler whose C output is
compiled with gcc.

1 The code of our implementation and the benchmark programs that we used
are available from http://www.softlab.ntua.gr/~gfour/dftoic/.

• GIC-llvm: The generalized intensional compiler whose C out-
put is compiled using llvm-gcc, the front-end of gcc to the
LLVM compiler.
• GHC6: The Glasgow Haskell Compiler, version 6.12.1, with full

optimizations on.
• GHC6-no-rewrite: The Glasgow Haskell Compiler, version

6.12.1, invoked with flags -fno-enable-rewrite-rules and
-fno-spec-constr. All other optimizations are enabled.
• GHC7: The Glasgow Haskell Compiler, version 7.4.1, with full

optimizations on.
• GHC7-no-rewrite: The Glasgow Haskell Compiler, version

7.4.1, invoked with flags -fno-enable-rewrite-rules and
-fno-spec-constr. All other optimizations are enabled.
• NHC: The nhc98 Haskell compiler, version 1.22, with full opti-

mizations on.
• UHC: The uhc/ehc Haskell compiler, version 1.1.4, with full

optimizations on.
• JHC: The jhc Haskell compiler, version 0.8.0, with full opti-

mizations on.

The benchmarks appear to suggest the following conclusions:

• Compiling the target C code of the generalized intensional
compiler with llvm-gcc appears to be quite more efficient than
with standard gcc. In the following remarks, when we refer to
the intensional compiler, we will mean the GIC-llvm one.
• The intensional implementation is on the average 2-3 times

slower than the fully optimized implementations GHC6 and
GHC7. Notably, for collatz, primes, and queens-num, the
intensional system performs better than GHC6 and GHC7. Since
the intensional compiler does not currently support any sophis-
ticated optimizations, we believe that there is room for much
improvement in our implementation.
• The intensional implementation runs generally faster than

the GHC6-no-rewrite and the GHC7-no-rewrite. The in-
tensional approach performs much better in the programs
collatz, primes, and queens-num; however, it has a poorer
performance in naive-reverse and tree-sort, a fact which
deserves further investigation. The flags -fno-spec-constr
and -fno-enable-rewrite-rules disable two quite aggres-
sive optimizations of ghc, the latter seemingly related to de-
forestation. It is conceivable that such optimizations can poten-
tially lead to analogous performance benefits for the intensional
transformation.
• In certain programs (e.g., ack and church) GHC6 performs

better that GHC7! In almost all programs GHC6-no-rewrite
performs much better than GHC7-no-rewrite! This has been
reported (ticket #5888 in the GHC bug tracking system) and
seems to be related to a GHC optimization for unboxing inte-
ger values, which seems to have deteriorated in GHC 7. It is
expected to be fixed in release 7.6.1.
• In most cases, the intensional implementation is slower than
JHC, which is indeed a very fast system. It is possible that
certain techniques that have been used in the development of
jhc can be used to enhance the performance of the intensional
approach, a fact that we would like to further investigate.
• In 9 out of the 13 benchmarks the intensional approach is faster

than NHC, a mature and fully featured Haskell compiler.
• In general, the intensional implementation is much faster than
UHC, a compiler which however does not target performance but
is used for research on Haskell compilation.

Generalized Intensional Transformation 9 2012/6/3

Program GIC GIC-llvm GHC7 GHC7-no-rewrite GHC6 GHC6-no-rewrite NHC UHC JHC
ack 2.47 1.25 0.62 2.87 0.48 0.85 6.18 40.03 0.05
church 3.55 2.09 0.61 5.77 0.55 0.88 11.58 68.37 0.17
collatz 0.69 0.41 1.07 3.43 2.66 2.87 84.28 46.90 0.16
digits of e1 2.30 2.09 0.77 6.19 1.74 1.62 60.71 75.29 –1

fast-reverse 3.03 1.95 1.74 1.83 1.82 1.80 1.35 9.41 –2

fib 1.35 1.12 0.50 4.42 0.51 0.73 10.43 55.55 0.17
naive-reverse 3.02 2.87 0.49 0.49 0.42 0.42 0.79 3.56 0.75
ntak 8.62 5.87 2.91 8.80 3.65 3.64 154.74 91.95 7.18
primes 2.55 1.58 2.19 18.32 2.30 2.40 172.45 173.81 0.73
queens-num 0.33 0.23 0.31 1.02 0.33 0.35 21.16 12.43 0.14
queens 3.92 3.24 0.44 5.44 0.48 0.77 27.17 123.98 0.82
quick-sort 3.18 2.77 1.92 2.08 1.90 1.90 1.51 5.42 8.58
tree-sort 2.19 1.97 0.39 0.48 0.33 0.38 0.91 6.58 0.72

1 jhc compilation error, 2 jhc runtime error.

Figure 8. Runtime comparison for 13 benchmarks. Execution times are in seconds.

In general, we feel that the performance results are quite promising
for the intensional approach, especially if we take into consider-
ation the fact that our implementation mainly aimed at simplicity
and not performance at this point.

6. Related Work
The work described in this paper, has its roots in the area of
dataflow programming, which flourished more than three decades
ago. It is also connected to the area of intensional and multidimen-
sional programming [2] which was later developed as an extension
of dataflow programming. The proposed technique has its origins
in the key ideas that have been developed in order to implement
dataflow and intensional languages.

Implementation Techniques for Dataflow Languages. In the
dataflow model of computation, data are processed while they are
flowing through a network of interconnected nodes (or dataflow
network). A dataflow network is a system of processing units
(or nodes) which are connected with communication channels (or
arcs). Nodes can have multiple input and output arcs. There have
been developed two main models of dataflow, the pipelined and the
tagged token. In pipeline dataflow data arrive in nodes in a FIFO
manner. Therefore, a node can not execute unless all the corre-
sponding data-items arrive in the correct order. On the other hand,
in tagged-token dataflow, the data-items are labeled with tags (or
contexts) which provide a conceptual ordering of data items. A
node can fire if it receives in its input arcs data-items that have the
same tags. The tagged-token approach is more advanced since it
obviates the need of data-items to arrive in a strictly pipelined way.

The majority of languages that were being used to program
dataflow computers, were functional in flavor. Therefore, there ex-
isted an obvious need to compile recursive functions in a way com-
patible with the tagged-token model. Many such implementations
were developed (see for example [1, 8]). The key idea of such im-
plementations was to use tags in order to distinguish data items
that belong to different function invocations. This tag-based imple-
mentation of recursive functions was known in the dataflow cir-
cles as coloring. Under the coloring scheme, higher-order func-
tions were implemented by introducing special apply nodes in the
dataflow graph that used a closure representation to do function
dispatch [10, 17].

The similarity of coloring with the approach proposed in this
paper, should be apparent by now. Tags correspond to the contexts
(i.e., lists) in our technique. In particular, a list in our technique is

used in order to uniquely identify a particular function call in the
recursion tree of a program. One can say that the proposed approach
transfers the key ideas of dataflow implementations to mainstream
lazy functional languages. The novel aspects of our approach are
the extension of the coloring technique to a language with user-
defined data-types, the formalization and proof of correctness of
the corresponding transformation and finally the implementation
on stock hardware.

Intensional Languages and their Implementation. The develop-
ment of dataflow languages was continued during the nineties with
the invention of an extension of dataflow programming, namely in-
tensional programming [2]. The first intensional/dataflow language
was Lucid [18]; the implementation of Lucid was based on the orig-
inal intensional transformation which was formalized through the
use of intensional logic in A. Yaghi’s Ph.D. dissertation [19]. The
correctness of the original intensional transformation was estab-
lished in [14]. The novel aspect of the current approach with re-
spect to the original intensional transformation, is the support of
user-defined data-types and pattern matching.

A recent extension of Lucid is the language TransLucid [11].
The problem of implementing higher-order functions in the context
of TransLucid has been considered and the solution that has been
proposed is through an explicit representation for closures using ex-
tra dimensions (which amount to multiple contexts). To our knowl-
edge, the technique for implementing TransLucid has not been ap-
plied to more mainstream functional languages.

Finally, we should note that (to our knowledge) all implemen-
tations of intensional languages rely on a runtime structure known
as the warehouse. The warehouse is a hash-table in which inter-
mediate results are stored in order to be reused when demanded
again. Despite the fact that our technique shares the same underly-
ing demand-driven execution model with the intensional languages
(since they all rely on the original intensional transformation), our
runtime structures and implementation decisions are completely
different.

Implementations of Functional Languages. In general, the in-
tensional approach to implementing functional languages appears
to differ in philosophy with respect to the graph-reduction-based
implementations. The work that appears to be closest to our ap-
proach is Boquist’s GRIN compiler [3], which is also based on a de-
functionalized representation. While GRIN uses a variety of “tags”
to characterize different constructs of a lazy language (constructors,
function applications, and partial applications), we use a tuple rep-
resentation treating all constructs of these three types in a uniform

Generalized Intensional Transformation 10 2012/6/3

way. GRIN was based on a strict first-order language, in contrast
to our source language, FOL, which is non-strict. Moreover, GRIN
directly compiled its language for graph reduction using custom
optimizations such as a unique interprocedural register allocation
algorithm; we transform it to a zero-order intensional language and
compile the intensional representation into C code, using a runtime
that is based on lazy activation records.

The generalized intensional transformation has some concep-
tual similarities with environment-based abstract machines, like the
work of Friedman and Wise [6], Henderson and Morris [7], and
Krivine [9], or the environment-based STG machines of De La
Encina and Peña [5]. One important distinction of the intensional
approach with respect to the above, is that our technique is based
on a first-order source language. However, one could say that the
contexts of our technique play in some sense the role of the envi-
ronment, since they guide the execution mechanism to perform the
correct substitution in the body of a function. We feel that a fur-
ther investigation of the connections between the two approaches,
is quite worthwhile.

7. Conclusions and Future Work
We have introduced the generalized intensional transformation, an
extension of the original intensional transformation that can be
used to implement lazy functional languages with user-defined data
types. We have demonstrated the correctness of the proposed tech-
nique, described the runtime system of an actual implementation
and presented a performance comparison with existing implemen-
tations of Haskell. There are certain aspects of the technique that
appear to require a more extensive investigation:

• The present implementation currently compiles only a fragment
of Haskell. It is our intention to extend the implementation to
cover the full language. The main missing parts are: (i) poly-
morphism and polymorphic data types, (ii) type classes, and
(iii) various non essential omissions, e.g. where clauses and a
greater variety of primitive data types. We do not expect any of
these to be a significant problem. Especially type classes and
polymorphic records can be added using the polymorphic de-
functionalization of Pottier and Gauthier for System F [12]; in
this case, we should add support for guarded existential types.
• At present, the compiler only supports a minimal set of op-

timizations and the runtime system was implemented having
simplicity as the driving criterion rather than efficiency. We are
currently investigating optimizations at the intensional level and
we plan to fine-tune the runtime in order to achieve a better per-
formance. We also intend to investigate the possibility of using
LLVM (instead of C) as the compiler’s target language.
• We have implemented a simple-minded garbage collection

scheme for LARs, which is currently non-portable and not
mature enough to be discussed in this paper. We expect the
implementation of an efficient garbage collector to be one of
the major efforts of our future research, in conjunction with a
possible re-implementation of the runtime system.

We feel that the simplicity of the technique and the promising
performance results suggest that the intensional approach is worth
further consideration as an alternative technique for implementing
functional languages.

References
[1] Arvind and R. S. Nikhil. Executing a program on the MIT tagged-

token dataflow architecture. IEEE Trans. Comput., 39:300–318,
March 1990. ISSN 0018-9340. doi: 10.1109/12.48862.

[2] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge.
Multidimensional Programming. Oxford University Press, 1995.

[3] U. Boquist and T. Johnsson. The GRIN project: A highly optimising
back end for lazy functional languages. In W. Kluge, editor, Imple-
mentation of Functional Languages, volume 1268 of Lecture Notes in
Computer Science, pages 58–84. Springer Berlin / Heidelberg, 1997.
doi: 10.1007/3-540-63237-9\ 19.

[4] A. Charalambidis, A. Grivas, N. S. Papaspyrou, and P. Rondogiannis.
Efficient intensional implementation for lazy functional languages.
Mathematics in Computer Science, 2(1):123–141, 2008. doi: 10.1007/
s11786-008-0047-5.

[5] A. De La Encina and R. Peña. From natural semantics to C: A formal
derivation of two STG machines. Journal of Functional Programming,
19(01):47–94, 2009. doi: 10.1017/S0956796808006746.

[6] D. P. Friedman and D. S. Wise. CONS should not evaluate its argu-
ments. In ICALP, pages 257–284, 1976.

[7] P. Henderson and J. H. Morris, Jr. A lazy evaluator. In Proceedings
of the 3rd ACM SIGACT-SIGPLAN symposium on Principles on pro-
gramming languages, POPL ’76, pages 95–103, New York, NY, USA,
1976. ACM. doi: 10.1145/800168.811543.

[8] C. Kirkham, J. Gurd, and I. Watson. The manchester prototype
dataflow computer. CACM, pages 34–52, 1985.

[9] J.-L. Krivine. Un interpréteur du lambda-calcul. URL
http://www.pps.univ-paris-diderot.fr/~krivine/
articles/interprt.pdf.

[10] K. Pingali. Lazy evaluation and the logic variable. In Proceedings of
the 2nd international conference on Supercomputing, ICS ’88, pages
560–572, New York, NY, USA, 1988. ACM. ISBN 0-89791-272-1.
doi: 10.1145/55364.55419.

[11] J. Plaice and B. Mancilla. The practical uses of translucid. In
Proceedings of the first international workshop on Context-aware
software technology and applications, CASTA ’09, pages 13–16, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-707-3. doi: 10.1145/
1595768.1595774.

[12] F. Pottier and N. Gauthier. Polymorphic typed defunctionalization and
concretization. Higher-Order and Symbolic Computation, 19:125–
162, 2006. ISSN 1388-3690. doi: 10.1007/s10990-006-8611-7.

[13] J. C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Reprinted from the proceedings of the 25th ACM
National Conference, pages 717–740. ACM, 1972.

[14] P. Rondogiannis and W. W. Wadge. First-order functional languages
and intensional logic. J. Funct. Program., 7:73–101, January 1997.
ISSN 0956-7968. doi: 10.1017/S0956796897002633.

[15] P. Rondogiannis and W. W. Wadge. Higher-order functional languages
and intensional logic. Journal of Functional Programming, 9(5):527–
564, 1999.

[16] R. D. Tennent. Semantics of Programming Languages. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[17] K. R. Traub. A compiler for the MIT tagged-token dataflow architec-
ture. Technical report, Cambridge, MA, USA, 1986.

[18] W. Wadge and E. A. Aschroft. Lucid, the Dataflow Programming
Language. Academic Press, 1985.

[19] A. A. Yaghi. The Intensional Implementation Technique for Func-
tional Languages. PhD thesis, Department of Computer Science, Uni-
versity of Warwick, Coventry, UK, 1984.

Generalized Intensional Transformation 11 2012/6/3

