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Abstract. We investigate the reasons that make symmetric partial verification
essentially useless in virtually all domains. Departing from previous work, we
consider any possible (finite or infinite) domain and general symmetric verifica-
tion. We identify a natural property, namely that the correspondence graph of a
symmetric verification M is strongly connected by finite paths along which the
preferences are consistent with the preferences at the endpoints, and prove that
this property is sufficient for the equivalence of truthfulness and M -truthfulness.
In fact, defining appropriate versions of this property, we obtain this result for
deterministic and randomized mechanisms with and without money. Moreover,
we show that a slightly relaxed version of this property is also necessary for the
equivalence of truthfulness and M -truthfulness. Our conditions provide a generic
and convenient way of checking whether truthful implementation can take advan-
tage of any symmetric verification scheme in any domain. Since the simplest case
of symmetric verification is local verification, our results imply, as a special case,
the equivalence of local truthfulness and global truthfulness in the setting without
money. To complete the picture, we consider asymmetric verification, and prove
that a social choice function is M -truthfully implementable by some asymmetric
verification M if and only if f does not admit a cycle of profitable deviations.

1 Introduction

In mechanism design, a principal seeks to implement a social choice function that maps
the private preferences of some strategic agents to a set of possible outcomes. Exploit-
ing their power over the outcome, the agents may lie about their preferences if they find
it profitable. Trying to incentivize truthfulness, the principal may offer payments to (or
collect payments from) the agents or find ways of partially verifying their statements,
thus restricting the false statements available to them. A social choice function is truth-
fully implementable (or implementable, in short) if there is a payment scheme under
which truthtelling becomes a dominant strategy of the agents. Since many social choice
functions are not implementable, a central research direction in mechanism design is
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to identify sufficient and necessary conditions under which large classes of functions
are truthfully implementable. In this direction, we seek a deeper understanding of the
power of partial verification in mechanism design, as far as truthful implementation is
concerned, a question going back to the work of Green and Laffont [9].

The Model. For the purposes of this work, it is without loss of generality to consider
mechanism design with a single agent, also known as the principal-agent setting (see
e.g., [2,3] for an explanation). In this setting, the principal wants to implement a social
choice function f : D → O, where O is the set of possible outcomes and D is the
domain of agent’s preferences. Formally, D consists of the agent’s types, where each
type x : O → R gives the utility of the agent for each outcome. The agent’s type is
private information. So, based on the agent’s declared type x, the principal computes the
outcome o = f(x). A function f is (truthfully) implementable if for each type x, with
o = f(x), and any other type y, with o′ = f(y), x(o) ≥ x(o′). Then, declaring her real
type x is a dominant strategy of the agent. Otherwise, the agent may misreport a type y
that results in a utility of x(o′) > x(o) under her true type x. This undesirable situation
is usually corrected with a payment scheme p : O → R, that compensates the agent for
telling the truth. Then, a function f is (truthfully) implementable with payments p (or,
in general, implementable with money) if for each type x, with o = f(x), and any other
type y, with o′ = f(y), x(o) + p(o) ≥ x(o′) + p(o′).

Gui, Müller, and Vohra [10] cast this setting in terms of a (possibly infinite) directed
graph G on vertex set D. For each ordered pair of types x and y, G has a directed edge
(x, y). Given the social choice function f , we obtain an edge-weighted version of G,
denoted Gf , where the weight of each edge (x, y) is x(o) − x(o′), with o = f(x) and
o′ = f(y). This corresponds to the gain of the agent if instead of misreporting y, she
reports her true type x. Then, a social choice function f is truthfully implementable if
and only if Gf does not contain any negative edges. Moreover, Rochet’s theorem [14]
implies that a function f is truthfully implementable with money if and only if Gf does
not contain any directed negative cycles (see also [17]).

There are many classical impossibility results stating that natural social choice func-
tions (or large classes of them) are not implementable, even with the use of money (see
e.g., [12]). Virtually all such proofs seem to crucially exploit that the agent can declare
any type in the domain. Hence, Nisan and Ronen [13] suggested that the class of im-
plementable functions could be enriched if we assume partial verification [9], which
restricts the types that the agent can misreport. Formally, we assume a correspondence
function (or simply, a verification ) M : D → 2D such that if the agent’s true type is x,
she can only misreport a type in M(x) ⊆ D. As before, we can cast M as a (possibly
infinite) directed correspondence graph GM on D. For each ordered pair of types x
and y, GM has a directed edge (x, y) if y ∈ M(x). Given the social choice function
f , we obtain the edge-weighted version GM,f of GM by letting the edge weights be as
in Gf . A social choice function f is M -truthfully implementable (resp. with money) if
and only if GM,f does not contain any negative edges (resp. directed negative cycles).

Previous Work. Every function f can be implemented by an appropriately strong ver-
ification scheme combined with payments (see also Section 5). So, the problem now
is to come up with a meaningful verification M , which is either inherent in or natu-
rally enforceable for some interesting domains and allows for a few non-implementable
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functions to be M -truthfully implementable. To this end, previous work has considered
two kinds of verification, namely symmetric and asymmetric verification.

Symmetric verification naturally applies to convex domains (e.g., Combinatorial
Auctions) and to domains with an inherent notion of distance (e.g., Facility Location,
Voting). The idea is that every type x can only declare some type y not far from x. A
typical example is Mε verification where each type x can declare any type y in a ball of
radius ε around x. Another typical example is M swap verification, naturally applicable
to Voting and to ordinal preference domains. In M swap verification, each type x is as a
linear order onO and can declare any type y obtained from x by swapping two adjacent
outcomes. Rather surprisingly, previous work provides strong evidence that symmetric
verification does not give any benefit to the principal, as far as truthful implementation
is concerned. In particular, the strong and elegant result of Archer and Kleinberg [2]
and its extension by Berger, Müller, and Naeemi [5] imply that Mε verification does
not help in convex domains. Formally, the results of [2,5,6] imply that for any convex
domain, truthfulness with money is equivalent withMε-truthfulness with money. Simi-
larly, Caragiannis, Elkind, Szegedy, and Yu [6] proved that M swap verification does not
help in the domain of Voting.

As far as implementation without money is concerned, the research on the power of
symmetric verification is closely related to the research about sufficient and necessary
conditions under which weaker properties are equivalent to global truthfulness. Even
though the motivation for studying weaker properties may be more general (see e.g.,
[15,2,7,16]), in the absence of money, local truthfulness is essentially a special case
of symmetric verification. In this research agenda, Sato [16] considered M swap veri-
fication (under the name of adjacent manipulation truthfulness) for ordinal preference
domains, and proved that if GMswap is strongly connected by paths satisfying the no-
restoration property, then truthful implementation and M swap-truthful implementation
are equivalent. He also proved that the universal domain, that includes all linear orders
on O, and single-peaked domains have the no-restoration property, and thus, for these
domains, truthful implementation is equivalent to M swap-truthful implementation. In-
dependently, Carroll [7] obtained similar results for convex domains, for the universal
domain, and for single-peaked and single-crossing domains, which also extend to ran-
domized mechanisms. Carroll also gave a necessary condition for the equivalence of
local and global truthfulness in a specific domain with cardinal preferences.

On the other hand, asymmetric verification is “one-sided”. Given a social choice
function f , a typical example of asymmetric verification is when the agent can only
lie either by overstating or by understating her utility. E.g., for Scheduling on related
machines, the machine can only lie by overstating its speed [4], for Combinatorial Auc-
tions, the agent can only underbid on her preferred sets [11], and for Facility Location,
the agent can only understate her distance to the nearest facility [8]. The use of asym-
metric verification has led to strong positive results about the truthful implementation
of natural social choice functions in several important domains (see e.g., [4,11,8] and
the references there in). The intuition is that the mechanism discourages one direction
of lying, while the other direction of lying is forbidden by the verification.

Motivation and Contribution. Our work is motivated by the general observation,
stated explicitly in [6], that even very strict symmetric verification schemes do not
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help in truthful implementation, while strong positive results are possible with simple
asymmetric verification. So, we seek a deeper understanding of the reasons that make
symmetric verification essentially useless in virtually all domains, and some formal
justification behind the success of asymmetric verification.

Departing from previous work, we consider any possible (finite or infinite) domain
D and very general classes of partial verification. To formalize the notions of symmetric
and asymmetric verification, we say that a verification M is symmetric if the presence
of a directed edge (x, y) in GM implies the presence of the reverse edge (y, x), and
asymmetric if GM is an acyclic tournament.

Our main result is a general and unified explanation about the weakness of sym-
metric verification. In Section 3, we identify a natural property, namely that the corre-
spondence graph GM is strongly connected by finite paths along which the preferences
are consistent with the preferences at the endpoints. In fact, we define three versions
of this property depending on whether we consider implementation by deterministic
truthful mechanisms (strict order-preserving property), by deterministic mechanisms
that use payments (strict difference-preserving property), and by randomized truthful-
in-expectation mechanisms (difference-convex property). Despite the slightly different
definitions, the essence of the property is the same, but stronger versions of it are re-
quired as the mechanisms become more powerful. We show that for any (finite or in-
finite) domain D and any symmetric verification M that satisfies the corresponding
version of the property, deterministic / randomized truthful implementation (resp. with
money) is equivalent to deterministic / randomized M -truthful implementation (resp.
with money). In all cases, the proof is simple and elegant, and only exploits an ele-
mentary combinatorial argument on the paths of GM . With this general sufficient con-
dition for the equivalence of truthfulness and M -truthfulness, we simplify, unify, and
strengthen several known results about symmetric verification and local truthfulness
without money. E.g., we obtain, as simple corollaries, the equivalence of truthful and
Mε-truthful implementation for any convex domain (even with money) and for Facility
Location, and the equivalence of truthfulness and M swap-truthfulness for Voting.

In Section 4, we identify necessary conditions for the equivalence of truthfulness
and M -truthfulness, for any symmetric verification M . These are relaxed versions of
the sufficient conditions, and require that the correspondence graph GM is strongly
connected by finite preference preserving paths. Otherwise, we show how to find a sep-
arator of GM , which in turn, leads to the definition of a function that is M -truthfully
implementable, but not implementable. We also observe that the necessary condition is
violated by the domain of 2-Facility Location. To conclude the discussion about sym-
metric verification, we close the small gap between the sufficient and necessary prop-
erties, and present the first known condition that is both sufficient and necessary for the
equivalence of truthful andM -truthful implementation. Overall, our conditions provide
a generic and convenient way of checking whether truthful implementation can take
advantage of any symmetric verification scheme in any domain.

Finally, in Section 5, we consider asymmetric verification, and prove that a social
choice function f is M -truthfully implementable by some asymmetric verification M
if and only if the subgraph of Gf consisting of negative edges is acyclic (Theorem 8).
This result provides strong formal evidence about the power of asymmetric verification,
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since, as we discuss in Section 5, any reasonable social choice function f should not
have a cycle in Gf that entirely consists of negative edges. Moreover, we prove that
given any function f truthfully implementable by payments p, an asymmetric verifica-
tion that truthfully implements f can be directly obtained by p (Proposition 1).

Comparison to Previous Work. The strict order-reserving property, which we employ
as a sufficient condition for deterministic truthful implementation without money, is
similar to the no-restoration property of [16]. However, the results of [16] are restricted
to finite domains with ordinal preferences and to M swap verification. Our results are
far more general, since we manage, in Theorem 1, to extend the equivalence of truthful
andM -truthful implementation, under the strict order-preserving property, to any (even
infinite) domain and to any symmetric verification. Moreover, our necessary property
generalizes and unifies the necessary conditions of both [7,16].

We also note that our results in case of deterministic implementation with money are
not directly comparable to the strong and elegant results about local truthfulness with
money in convex domains (see e.g., [2,1]). For instance, if we restrict Theorem 3 to con-
vex domains and compare it to [2, Theorem 3.8], our result is significantly weaker, since
it starts from a much stronger hypothesis (see also the discussion in Section 3.2). On
the other hand, Theorem 3 is more general, in the sense that it applies to any symmetric
strict difference-preserving verification and to arbitrary (even non-convex) domains.

2 Notation and Preliminaries

The basic model and most of the notation are introduced in Section 1. Next, we discuss
some conventions, give some definitions, and state some useful facts.

Ordinal Preferences. We always assume that each type x is a function from O to R.
However, in case of deterministic mechanisms without money, when the preferences
are ordinal, we only care about the relative order of the outcomes in each type.

Truthful Implementation. A social choice function f : D → O isM -truthfully imple-
mentable if for every type x and any y ∈ M(x), x(f(x)) ≥ x(f(y)). A social choice
function f is M -truthfully implementable with money if there is a payment scheme
p : O → R such that for every type x and any y ∈ M(x), x(f(x)) + p(f(x)) ≥
x(f(y)) + p(f(y)). If there is no verification, i.e., if for all types x, M(x) = D, we
say that f is truthfully implementable and truthfully implementable with money, respec-
tively. We say that truthfulness (resp. with money) is equivalent toM -truthfulness (resp.
with money) if for every function f , f is truthfully implementable (resp. with money)
iff it is M -truthfully implementable (resp. with money). In what follows, we use the
terms mechanism and social choice function interchangeably.

Randomized Mechanisms. A randomized mechanism f : D → ∆(O) maps each
type x to a probability distribution over O. A randomized mechanism is (resp. M -
)universally truthful if it is a probability distribution over deterministic (resp. M -)truth-
ful mechanisms (even with money). For truthfulness-in-expectation, we assume, for
simplicity, that O is finite, and let fo(x) be the probability of the outcome o if the agent
reports x. Then, a randomized mechanism f is (resp. M -)truthful-in-expectation if for
every type x and any y ∈ D (resp. y ∈ M(x)),

∑
o∈O fo(x)x(o) ≥

∑
o∈O fo(y)x(o).
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A randomized mechanism f is (resp. M -)truthful-in-expectation with money if there
are payments p : O → R such that for every x ∈ D and any y ∈ D (resp. y ∈ M(x)),∑

o∈O fo(x)(x(o) + p(o)) ≥
∑

o∈O fo(y)(x(o) + p(o)).

Correspondence Graph. A verification M can be represented by the directed corre-
spondence graph GM = (D, {(x, y) : y ∈ M(x)}). Given a social choice function f ,
we let the edge-weighted graph

GM,f = (D, {(x, y) : y ∈M(x)}, w) , where w(x, y) = x(f(x))− x(f(y))

A k-cycle (resp. k-path) in GM is a directed cycle (resp. path) consisting of k edges.
We say that an edge (x, y) of GM,f is negative if w(x, y) < 0. We say that a cycle in
GM,f is negative if the total weight of its edges is negative. We let G−M,f denote the
subgraph of GM,f that consists of all its negative edges. If there is no verification, we
refer to GD,f , G−D,f as Gf , G−f . Also, given a graph G, we let V (G) be its vertex set
and E(G) be its edge set.

A social choice function f isM -truthfully implementable iffGM,f does not contain
any negative edges. Furthermore, Rochet [14] proved that a social choice function f is
M -truthfully implementable with money if and only if the correspondence graph GM,f

does not have any finite negative cycles.

Symmetric and Asymmetric Verification. We say that a verification M is symmetric
ifGM is symmetric, i.e., for each directed edge (x, y) ∈ E(GM ), (y, x) ∈ E(GM ). We
say that a verification M is asymmetric if GM is an acyclic tournament.

Weak Monotonicity and Cycle Monotonicity. A social choice function f satisfiesM -
weak-monotonicity if for every x ∈ D and any y ∈ M(x), x(f(x)) + y(f(y)) ≥
x(f(y)) + y(f(x)). Equivalently, f is M -weakly-monotone iff GM,f does not contain
any negative 2-cycles. A function f satisfiesM -cycle-monotonicity if for all k ≥ 1, and
all x1, . . . , xk ∈ D, such that xi+1 ∈ M(xi),

∑k
i=1 xi(f(xi)) ≥

∑k
i=1 xi−1(f(xi)),

where the subscripts are modulo k. Equivalently, f is M -cyclic-monotone iff GM,f

does not contain any finite negative cycles. If there is no verification, we simply say
that f is weakly-monotone and cyclic-monotone, respectively.

Convex Domains. A domain D is convex if for every x, y ∈ D and any λ ∈ [0, 1], the
function z : O → R, with z(a) = λx(a) + (1− λ)y(a), for each a ∈ O, is also in D.

Strategic Voting. We have k candidates and select one of them based on the preferences
of n agents. Hence, O = {o1, . . . , ok} is the set of candidates, V = {v1, . . . , vn} is the
set of voters, and the type of each voter is a linear order over O.

k-Facility Location. In k-Facility Location, we place k ≥ 1 facilities on the real
line based on the preferences of n agents. The type of each agent i is determined by
xi ∈ R, and the set of outcomes is O = Rk. The utility of agent i from an outcome
(y1, . . . , yk) ∈ O is −minj |xi − yj |. If k = 1, we simply refer to Facility Location.

Mε andM swap Verification. In case of a convex domain or Facility Location, given an
ε > 0, we let Mε(x) = {y ∈ D : ||x− y|| ≤ ε}, for all x, where || · || is the l2 distance
in RO for convex domains and |x − y| for Facility Location. If we have a domain D
where the agent’s types are linear orders on O, for any type x ∈ D, M swap(x) is the set
of all linear orders on O obtained from x by swapping two adjacent outcomes in x.
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3 Sufficient Conditions for Truthful Implementation

Without any assumptions on the domain, symmetric verification is not sufficient for the
equivalence of truthfulness and M -truthfulness. Next, we assume that the correspon-
dence graph GM is symmetric and strongly connected by finite paths along which the
preferences are consistent with the preferences at the endpoints. We prove that this suf-
fices for the equivalence of truthfulness and M -truthfulness, even for infinite domains.

3.1 Deterministic Mechanisms

We start with a sufficient condition for a symmetric verification M (and its correspon-
dence graph) under which any deterministic M -truthful mechanism is also truthful.

Definition 1 (Order-Preserving Path). Given a verificationM , an x−y path p inGM

is order-preserving if for all outcomes a, b ∈ O, with x(a) > x(b) and y(a) ≥ y(b), and
for any intermediate type w in p, w(a) > w(b). A x − y path p in GM is strict order-
preserving if for every type w in p, the subpath of p from x to w is order-preserving.

Intuitively, if the endpoints x and y of an order-preserving path p agree that outcome
a is preferable to outcome b, any intermediate type w in p should also agree on this.
Following Definition 1, we say that a verification M is symmetric (resp. strict ) order-
preserving if M is symmetric and for any types x, y ∈ D, there is a finite (resp. strict)
order-preserving x− y path in the correspondence graph GM . Next, we show that:

Theorem 1. Let M be a symmetric strict order-preserving verification. Then, truthful-
ness is equivalent to M -truthfulness.

Proof. If a social function is truthfully implementable, it is also M -truthfully imple-
mentable. For the converse, we use induction on the length of the strict order-preserving
paths in GM . Technically, for sake of contradiction, we assume that there is a function
f that is M -truthfully implementable, but not implementable. Therefore, all edges in
GM,f are non-negative, but there is a negative edge (x, z) ∈ E(Gf ).

SinceM is symmetric strict order-preserving, there is a finite strict order-preserving
x− z path p in GM,f . In particular, we let p = (x = v0, v1, v2, . . . , vk = z), and let i,
2 ≤ i ≤ k, be the smallest index such that the edge (x, vi) ∈ E(Gf ) is negative. For
convenience, we let y = vi and w = vi−1. We note that by the definition of i, the edge
(x,w) ∈ E(Gf ) is non-negative, and also since f is M -truthfully implementable, the
edges (w, y), (y, w) ∈ E(GM,f ) are non-negative (see also Fig. 1.i).

For convenience, we let a = f(x), b = f(w), c = f(y) denote the outcome of f
at x, y, and w, respectively. Since the edge (x, y) is negative, a 6= c. Moreover, by the
definition of i (and of y), b 6= c. By the discussion above, we have that x(c) > x(a) ≥
x(b) and y(c) ≥ y(b). Therefore, since the x − z path is strict order-preserving, and
thus its x− y subpath is order-preserving, we obtain that w(c) > w(b), a contradiction
to the hypothesis that the edge (w, y) ∈ E(GM,f ) is non-negative. Therefore there is
no negative edge in Gf , which implies that f is truthfully implementable. ut

IfD is finite, we can show that for a symmetric verification, the strict order-preserv-
ing property is equivalent to the order-preserving property. Thus, we obtain that:
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y | c

w | b z | dL

(ii)

x | a

w | b y | c

Fig. 1. (i) The part of Gf considered in the proof of Theorem 1. (ii) The part of Gf considered in
the proof of Theorem 3. The label of each node consists of the type and the outcome of f .

Theorem 2. Let M be a symmetric order-preserving verification in a finite domain D.
Then, truthfulness is equivalent to M -truthfulness.

Applications. Theorems 1 and 2 provide a generic and convenient way of checking
whether truthful implementation can take any advantage of symmetric verification.
E.g., one can verify that for any convex domain D, Mε verification is strict order-
preserving, and that for Strategic Voting, M swap verification is order-preserving. Thus,
we obtain alternative (and very simple) proofs of [6, Theorems 3.1 and 3.3]. Moreover,
our corollary about M swap verification implies the main result of [16]. Similarly, we
can show that for the Facility Location domain, which is non-convex, Mε verification
is strict order-preserving. Thus, for Facility Location, a mechanism is truthful iff it is
Mε-truthful.

3.2 Deterministic Mechanisms with Money

Next, we extend the notion of order-preserving paths to mechanisms with money. Since
utilities are not ordinal anymore, we use the notion of difference-preserving paths,
which takes into account the difference between the utility of different outcomes. For-
mally, given a verification M , an x− y path p in GM is difference-preserving if for any
intermediate type w in p and for all outcomes a, b ∈ O, if x(a)− x(b) 6= y(a)− y(b),

– w(a)−w(b) ∈ (min{x(a)− x(b), y(a)− y(b)},max{x(a)− x(b), y(a)− y(b)})
– w(a)− w(b) = x(a)− x(b), if x(a)− x(b) = y(a)− y(b).

As for order-preserving paths, if both endpoints x and y of a difference-preserving
path p prefer a to b, any type w in p should also prefer a to b. Moreover, the strength
of w’s reference for a, i.e., w(a) − w(b), should lie between the strength of x’s and
of y’s preference for a. In fact, the difference-preserving property is a stronger version
of the increasing difference property in [5, Definition 5]. Similarly, an x − y path p in
GM is strict difference-preserving if for every type w in p, the subpath of p from x to w
is also difference-preserving. A verification M is symmetric (resp. strict ) difference-
preserving if M is symmetric and for any x, y ∈ D, there is a finite (resp. strict)
difference-preserving x− y path in GM .

We proceed to show that the symmetric strict difference-preserving property is suf-
ficient for the equivalence of M -truthfulness with money and truthfulness with money.
The proof is based on the equivalence of cycle monotonicity and truthful implementa-
tion with money. As a first step, we employ a proof similar to that of Theorem 1, and
show that under the symmetric strict difference-preserving property, for any function f ,
GM,f does not have any negative 2-cycles iff Gf does not have any negative 2-cycles.
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Lemma 1. LetM be a symmetric strict difference-preserving verification. Then for any
social choice function f , f is M -weakly monotone if and only if f is weakly-monotone.

Using Lemma 1, we next show that under the symmetric strict difference-preserving
property, M -cycle monotonicity is equivalent to cycle monotonicity.

Theorem 3. Let M be a symmetric strict difference-preserving verification. Then for
any social choice function f , f is M -truthfully implementable with money if and only
if f is truthfully implementable with money.

Proof. If f is truthfully implementable with money, it is also M -truthfully imple-
mentable with money. For the converse, we show that if GM,f does not have any neg-
ative cycles, then Gf does not have any negative cycles as well. In what follows, we
assume that Gf does not have any negative 2-cycles, since otherwise, by Lemma 1, f
is not M -weakly monotone, and thus, not truthfully implementable with money.

For sake of contradiction, we assume that Gf includes some negative cycle with
more than 2 (and a finite number of) edges. In particular, we let C = (x, y, z, . . . , x)
be any such cycle. The existence of such a cycle C is guaranteed by Rochet’s theorem.
Moreover, C contains at least one edge (x, y) ∈ E(Gf ) \ E(GM,f ), because C is not
present inGM,f . SinceM is a symmetric strict difference-preserving verification, there
is a finite strict difference-preserving x − y path p = (v0 = x, v1, . . . , vk = y). For
convenience, we let w = vk−1 be the last node before y in p, let a = f(x), b = f(w),
c = f(y), and d = f(z) be the outcome of f at x, w, y, and z, respectively, and let L
be the total length of the z − x path used by C (see also Fig. 1.ii).

Since the cycleC is negative, x(a)−x(c)+y(c)−y(d)+L < 0. Moreover, sinceGf

does not contain any negative 2-cycles, x(c)− x(b) ≤ y(c)− y(b). Otherwise, since w
belongs to a difference-preserving x−y path, we would have that y(c)−y(b) < w(c)−
w(b), which implies that the 2-cycle (w, y, w) is negative. Hence, since w belongs to a
difference-preserving x− y path, x(c)− x(b) ≤ w(c)− w(b). Therefore,

x(a)− x(b) +w(b)−w(c) + y(c)− y(d) +L ≤ x(a)− x(c) + y(c)− y(d) +L < 0

So, we have that the cycle C1 = (x,w = vk−1, y, . . . , z) is also negative.
Since p is strict difference-preserving, the path p′ = (x = v0, v1, . . . , vk−1 = w)

is also difference-preserving. Therefore, using the same argument, we can prove that
the cycle C2 = (x, vk−2, vk−1, y, . . . , z) is also negative. Repeating the same process
k − 1 times, we obtain that the cycle Ck−1 = (x = v0, v1, . . . , vk−1, y, . . . , z) is also
negative. However, all the edges (vi, vi+1), i = 0, . . . , k − 1, of the strict difference-
preserving x− y path p belong to GM . Hence, the edge (x, y) ∈ E(Gf ) \E(GM,f ) in
C is replaced by k edges of E(GM,f ) in Ck−1. Therefore, the negative cycle Ck−1 has
one edge not in E(GM,f ) less than the original negative cycle C. Repeating the same
process for every edge of C not in E(GM,f ), we obtain a negative cycle C ′ with all
edges in E(GM,f ). This is a contradiction, since it implies that f is not M -truthfully
implementable with money. ut

Since Mε verification is symmetric and strict difference-preserving for any convex
domain, Theorem 3 implies that for convex domains, Mε-truthful implementation with
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money is equivalent to truthful implementation with money. This result is also a corol-
lary of [2, Theorem 3.8], but here we obtain it through a completely different approach.
In particular, Archer and Kleinberg [2] proved that if there is no “local” negative cycle
C in Gf , where “local” means that C can fit in a small area of the convex domain D,
then Gf does not contain any negative cycles, and thus, f is truthfully implementable
with money. On the other hand, we prove here that if Gf does not contain any negative
cycles consisting of “local” edges, then Gf does not contain any negative cycles. So,
in our case, the hypothesis is much stronger, since it excludes the existence of negative
cycles that consist of “local” edges, but may cover an arbitrarily large area of the con-
vex domain D. In this sense, if we restrict Theorem 3 to convex domains, our result is
different in nature and weaker than [2, Theorem 3.8]. Nevertheless, Theorem 3 is quite
more general, in the sense that it applies to any symmetric strict difference-preserving
verification and to arbitrary (even non-convex) domains.

3.3 Randomized Truthful-in-Expectation Mechanisms

A general condition is sufficient and/or necessary for the equivalence between universal
truthfulness and M -universal truthfulness in randomized mechanisms, iff it is sufficient
and/or necessary for the equivalence between truthfulness and M -truthfulness in deter-
ministic mechanisms. Hence, all the results of Sections 3.1, 3.2, and 4 directly apply to
randomized universally-truthful mechanisms (also with money).

A similar, but more interesting, correspondence holds for the case of randomized
truthful-in-expectation mechanisms. For simplicity, we assume here that the set of out-
comes O = {o1, . . . , om} is finite. With each type x : O 7→ R, we associate a new type
X : ∆(O) 7→ R, such that for each probability distribution q over outcomes, the utility
X(q) is the expected utility of x wrt. q. Formally, X(q) =

∑m
i=1 qix(oi). We let D′ be

the set of these new types. By definition, there is an one-to-one correspondence between
types inD and types inD′. Hence, a social choice function f : D → ∆(O) corresponds
to a (deterministic) social choice function f ′ : D′ → ∆(O). Moreover, (resp. given a
verification M ) f is (resp. M -)truthful-in-expectation iff f ′ is (resp. M -)truthful.

As before, we seek a general condition under which truthfulness-in-expectation is
equivalent to M -truthfulness-in-expectation. For each type X ∈ D′, corresponding
to type x ∈ D, we define M ′(X) = {Y ∈ D′ : y ∈ M(x)}. Now, the results of
Sections 3.1, 3.2, and 4 directly apply to the new domain D′ with verification M ′. We
note that if M is symmetric, then M ′ is symmetric as well. Hence, for a result that
directly applies to the original verification M and domain D, we need a property of the
paths in GM that guarantees that the corresponding paths in GM ′ are order-preserving.

An x − y path p in GM is difference-convex if for any type w in p, there is a λ ∈
(0, 1), such that for all a, b ∈ O, w(a)−w(b) = λ(x(a)−x(b))+(1−λ)(y(a)−y(b)) .
Similarly, an x− y path p in GM is strict difference-convex if for every type w in p, the
subpath of p from x tow is also difference-convex. A verificationM is called symmetric
(resp. strict ) difference-convex if M is symmetric and for any x, y ∈ D, there is a
finite (resp. strict) difference-convex x−y path inGM . For truthfulness-in-expectation,
we quantify the utility of each type x for each outcome. Hence, the difference-convex
property is a stronger version of the difference-preserving property, which in turn, is a
stronger version of the order-preserving property.
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Lemma 2. If an x− y path p in GM is (resp. strict) difference-convex, then the corre-
sponding X − Y path p′ in GM ′ is (resp. strict) difference-preserving, and thus, (resp.
strict) order-preserving.

Although the difference-convex property seems quite strong, a slight deviation from
it results in paths inGM ′ that are not difference-preserving. In this sense, the difference-
convex property and Lemma 2 are tight.

By the discussion above, Lemma 2, Theorem 1, and Theorem 3 imply that:

Theorem 4. LetM be a symmetric strict difference-convex verification. Then, truthful-
ness-in-expectation (resp. with money) is equivalent to M -truthfulness-in-expectation
(resp. with money).

4 Necessary Conditions for Truthful Implementation

Next, we study relaxed versions of the sufficient conditions in Section 3, and show that
they are necessary conditions for the equivalence of truthfulness and M -truthfulness.

Deterministic Mechanisms. Given an outcome a ∈ O, we say that an x − y path p
in GM is a-preserving if for all outcomes b ∈ O, with x(a) > x(b) and y(a) ≥ y(b),
and for any intermediate type w in p, w(a) > w(b). Namely, if the endpoints x and y
of p agree that a is preferable to b, any intermediate type w in p should also prefer a
to b. A verification M is called symmetric outcome-preserving if M is symmetric and
for all types x, y ∈ D and all outcomes a ∈ O, there is a finite a-preserving x − y
path p in GM . Though quite close to each other, the order-preserving property implies
the outcome-preserving property, but not vice versa. Specifically, an a-preserving path
pmay not be order-preserving, because the relative preference order of some outcomes,
other than a, may change in the intermediate nodes of p.

Theorem 5. Let M be a symmetric verification that is not outcome-preserving. Then,
there exists a function g which is M -truthfully implementable, but not implementable.

Proof. Since M is not outcome-preserving, there exists a pair of types x, y ∈ D and
an outcome a ∈ O, such that any finite x − y path in GM violates the a-preserving
property. Thus, all x−y paths inGM consist of at least 2 edges (a single edge is trivially
order-preserving). Then, we construct a certificate that M is not outcome-preserving,
which is a separator of x and y in GM , and based on this, we define a function g that is
M -truthfully implementable, but not truthfully implementable.

For every finite x − y path p in GM , we let tp denote the first intermediate type in
p and op denote an outcome, such that x(a) > x(op)∧ y(a) ≥ y(op)∧ tp(op) ≥ tp(a).
Namely, for every finite x−y path p, tp and op provide a certificate that p violates the a-
preserving property. We let Oxy = {op ∈ O : p is a finite x− y path} be the set of out-
comes in these certificates, and let Cxy = {z ∈ D \ {y} : ∃b ∈ Oxy with z(b) ≥ z(a)}
be a set of types that can be used as certificates along with the outcomes in Oxy . For
convenience, we simply use C instead of Cxy . The crucial observation is that for every
finite x− y path p in GM , tp ∈ C, and thus, C is a separator of x and y in GM .
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Let A be the set of types in the connected component1 that contains x, obtained
from GM after we remove C, and let B = D \ (A ∪ C). Since y 6∈ C, by definition,
and for every finite x− y path p, tp ∈ C, y is in B. We consider the following function:

g(z) =

{
argmaxb∈Oxy

{z(b)} z ∈ A ∪ C
a z ∈ B

By the definition of C, every type in A ∪ B prefers a to any outcome in Oxy .
However, by the definition of A and B, no type z ∈ A has a neighbor in B, since
otherwise, we could find a finite path from x to Gy

M . Therefore, for any z ∈ A, all z’s
neighborsGM are inA∪C, and thus g(z) is z’s best outcome in itsGM neighborhood.
Similarly, every type z ∈ C prefers any type inOxy to a, and every type z ∈ B prefers a
to any outcome inOxy , by the definition of C. Hence, g isM -truthfully implementable.
On the other hand, g is not truthfully implementable, because x prefers a to any outcome
in Oxy , and thus has an incentive to misreport y, if we do not have any verification. ut

Theorem 5 provides a convenient way of checking whether truthful implementation
cannot take any advantage of symmetric verification. E.g., we can show that for the
domain of 2-Facility Location, Mε verification is not outcome-preserving, and thus,
there are such social choice functions that become truthful with Mε verification.
Deterministic Mechanisms with Money. We obtain here a necessary condition for the
equivalence of weak and M -weak monotonicity. Given a verification M and a, b ∈ O,
an x− y path p in GM , with x(a)− x(b) 6= y(a)− y(b), is difference (a, b)-preserving
if for any type w in p, w(a) − w(b) ∈ (min{x(a) − x(b), y(a) − y(b)},max{x(a) −
x(b), y(a)−y(b)}). A verification M is symmetric difference outcome-preserving if M
is symmetric and for any types x, y ∈ D and all outcomes a, b ∈ O, there is a finite
difference (a, b)-preserving x − y path p in GM . As before, the difference-preserving
property implies the difference outcome-preserving property, but not vice versa. By a
proof similar to that of Theorem 5, we can show that:

Theorem 6. Let M be a symmetric verification which is not difference outcome-pre-
serving. Then, there is a social choice function g which is M -weakly monotone, but not
weakly monotone.

Sufficient and Necessary Condition. Closing the small gap between the order-preserv-
ing and outcome-preserving properties, we present a condition that is both sufficient and
necessary for the equivalence of truthful and M -truthful implementation. Given a so-
cial choice function f , a x − y path p = (x = v0, v1, . . . , vk, vk+1 = y) in GM is
f -preserving if for any type vi, 1 ≤ i ≤ k + 1 in p, and for all outcomes a ∈ O, with
x(f(vi)) > x(a) and vi(f(vi)) ≥ vi(a), vi−1(f(vi)) > vi−1(a). A verification M
is symmetric function-preserving if M is symmetric and for any M -truthfully imple-
mentable function f and all types x, y ∈ D, there is a finite f -preserving x− y path in
GM . Using the techniques in the proofs of Theorems 1 and 5, we can show that:

Theorem 7. LetM be a symmetric verification. Then, truthful implementation is equiv-
alent to M -truthful implementation if and only if M is function-preserving.

1 If D is finite, we use the standard graph-theoretic definition of connected components. If D is
infinite, A includes x and all types w ∈ D reachable from x through a finite path.
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5 On the Power of Asymmetric Verification

Intuitively, one should expect that asymmetric verification is powerful due to require-
ment that the correspondence graph should be acyclic. In fact, if we consider any asym-
metric verification M , since GM does not have any negative cycles, Rochet’s theorem
implies that any social choice function f is M -truthfully implementable with money.
We next show a natural characterization of the social choice functions that can be M -
truthfully implemented (without money), for some asymmetric verification M .

Theorem 8. Let f be any social choice function. There is an asymmetric verification
M such that f is M -truthfully implementable iff G−f is a directed acyclic graph.

Proof. Let M be an asymmetric verification that truthfully implements f . Hence, GM

is an acyclic tournament and GM,f does not contain any any edges of G−f . Therefore, if
we arrange the vertices ofGf on the line according to the (unique) topological ordering
ofGM,f , all edges ofGf not included inGM,f are directed from right to left. Therefore,
the edges of G−f cannot form a cycle. For the converse, let f be a social choice function
with an acyclic G−f . We consider a topological ordering of G−f and remove any edge
of Gf directed from left to right. This removes all edges of G−f and leaves an acyclic
subgraph G′f , since all its edges are directed from right to left. Moreover, for every pair
of types x, y, we remove one of the edges (x, y) and (y, x). Hence, G′f is an acyclic
tournament without any negative edges. Therefore, f is M -truthfully implementable
for the asymmetric verification M corresponding to G′f . ut

Reasonable social choice functions should have an acyclic G−f . This is true for all
functions maximizing the social welfare and all functions truthfully implementable with
money. Although one may construct examples of functions f whereG−f contains cycles,
such functions (and such cycles) are hardly natural. For instance, a 2-cycle (x, y, x) in
G−f indicates that type x prefers outcome f(y) to f(x), while type y prefers outcome
f(x) to f(y). But then, one may change f to f ′, with f ′(x) = f(y), f ′(y) = f(x),
and f ′(z) = f(z) for any other type z. Thus, one eliminates the cycle (x, y, x) and the
social welfare is strictly greater using f ′ allocation.

We can extend the construction in the proof of Theorem 8 to a universal asym-
metric verification, which can truthfully implement any social choice function with
acyclic G−f . Applying this, we can show that in the Facility Location domain, the func-
tion Fmax(x) = (minx + maxx)/2, that minimizes the maximum distance of the
agents to the facility, can be truthfully implemented with verification Mmax(xi) = {y :
|y − Fmax(x−i)| ≤ |xi − Fmax(x−i)|}. Similarly, we can show that in the domain of
Strategic Voting, Plurality can be truthfully implemented by an asymmetric verification
where the voters are not allowed to misreport a higher preference for the winner of
the election. Moreover, we can show that Borda Count can be truthfully implemented
by an asymmetric verification where the voters are not allowed to misreport either a
higher preference for the winner of the election or a lower preference for some of the
remaining candidates.
Asymmetric Verification and Payments. The absence of negative cycles inGf implies
the absence of cycles inG−f . Thus, Theorem 8, combined with Rochet’s theorem, shows
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that for any function f truthfully implementable with money, there is an asymmetric
verification M that truthfully implements f . Extending the proof of Theorem 8, can
can show that such an asymmetric verification M can be directly obtained from any
payment scheme that implements f .

Proposition 1. Let f be a social choice function truthfully implementable by payments
p : D 7→ R. Then, removing all edges (x, y) ∈ E(Gf ) with p(f(x)) > p(f(y)) results
in an asymmetric verification M that truthfully implements f (without money).
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