
Resolving Braess’s Paradox in Random Networks?

Dimitris Fotakis1, Alexis C. Kaporis2, Thanasis Lianeas1, and Paul G. Spirakis3,4

1 Electrical and Computer Engineering, National Technical University of Athens, Greece.
2 Information and Communication Systems Dept., University of the Aegean, Samos, Greece.

3 Department of Computer Science , University of Liverpool, UK
4 Computer Technology Institute and Press – Diophantus, Patras, Greece.

fotakis@cs.ntua.gr , kaporisa@gmail.com , tlianeas@mail.ntua.gr ,
P.Spirakis@liverpool.ac.uk , spirakis@cti.gr

Abstract. Braess’s paradox states that removing a part of a network may im-
prove the players’ latency at equilibrium. In this work, we study the approxima-
bility of the best subnetwork problem for the class of random Gn,p instances
proven prone to Braess’s paradox by (Roughgarden and Valiant, RSA 2010) and
(Chung and Young, WINE 2010). Our main contribution is a polynomial-time
approximation-preserving reduction of the best subnetwork problem for such in-
stances to the corresponding problem in a simplified network where all neighbors
of s and t are directly connected by 0 latency edges. Building on this, we obtain
an approximation scheme that for any constant ε > 0 and with high probabil-
ity, computes a subnetwork and an ε-Nash flow with maximum latency at most
(1+ε)L∗+ε, where L∗ is the equilibrium latency of the best subnetwork. Our ap-
proximation scheme runs in polynomial time if the random network has average
degree O(poly(lnn)) and the traffic rate is O(poly(ln lnn)), and in quasipoly-
nomial time for average degrees up to o(n) and traffic rates of O(poly(lnn)).

1 Introduction

An instance of a (non-atomic) selfish routing game consists of a network with a source s
and a sink t, and a traffic rate r divided among an infinite number of players. Every edge
has a non-decreasing function that determines the edge’s latency caused by its traffic.
Each player routes a negligible amount of traffic through an s − t path. Observing the
traffic caused by others, every player selects an s−t path that minimizes the sum of edge
latencies. Thus, the players reach a Nash equilibrium (a.k.a., a Wardrop equilibrium),
where all players use paths of equal minimum latency. Under some general assumptions
on the latency functions, a Nash equilibrium flow (or simply a Nash flow) exists and the
common players’ latency in a Nash flow is essentially unique (see e.g., [14]).
Previous Work. It is well known that a Nash flow may not optimize the network per-
formance, usually measured by the total latency incurred by all players. Thus, in the
? This research was supported by the project Algorithmic Game Theory, co-financed by the Eu-

ropean Union (European Social Fund - ESF) and Greek national funds, through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALES, investing in knowledge society through the
European Social Fund, by the ERC project RIMACO, and by the EU FP7/2007-13 (DG INFSO
G4-ICT for Transport) under Grant Agreement no. 288094 (Project eCompass).

2 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

l1 x x

l5 x x

l2 x

l4 x

l1 x x

l5 x x

l2 x

l4 x

l3 x

v

s

w

t s

v

w

t

Fig. 1. (a) The optimal total latency is 3/2, achieved by routing half of the flow on each of the
paths (s, v, t) and (s, w, t). In the (unique) Nash flow, all traffic goes through the path (s, v, w, t)
and has a latency of 2. (b) If we remove the edge (v, w), the Nash flow coincides with the optimal
flow. Hence the network (b) is the best subnetwork of network (a).

last decade, there has been a significant interest in quantifying and understanding the
performance degradation due to the players’ selfish behavior, and in mitigating (or even
eliminating) it using several approaches, such as introducing economic disincentives
(tolls) for the use of congested edges, or exploiting the presence of centrally coordi-
nated players (Stackelberg routing), see e.g., [14] and the references therein.

A simple way to improve the network performance at equilibrium is to exploit
Braess’s paradox [3], namely the fact that removing some edges may improve the la-
tency of the Nash flow5 (see e.g., Fig. 1 for an example). Thus, given an instance of self-
ish routing, one naturally seeks for the best subnetwork, i.e. the subnetwork minimizing
the common players’ latency at equilibrium. Compared against Stackelberg routing and
tolls, edge removal is simpler and more appealing to both the network administrator and
the players (see e.g., [6] for a discussion).

Unfortunately, Roughgarden [15] proved that it is NP-hard not only to find the best
subnetwork, but also to compute any meaningful approximation to its equilibrium la-
tency. Specifically, he proved that even for linear latencies, it is NP-hard to approximate
the equilibrium latency of the best subnetwork within a factor of 4/3−ε, for any ε > 0,
i.e., within any factor less than the worst-case Price of Anarchy for linear latencies. On
the positive side, applying Althöfer’s Sparsification Lemma [1], Fotakis, Kaporis, and
Spirakis [6] presented an algorithm that approximates the equilibrium latency of the
best subnetwork within an additive term of ε, for any constant ε > 0, in time that is
subexponential if the total number of s − t paths is polynomial, all paths are of poly-
logarithmic length, and the traffic rate is constant.

Interestingly, Braess’s paradox can be dramatically more severe in networks with
multiple sources and sinks. More specifically, Lin et al. [8] proved that for networks
with a single source-sink pair and general latency functions, the removal of at most k
edges cannot improve the equilibrium latency by a factor greater than k + 1. On the
other hand, Lin et al. [8] presented a network with two source-sink pairs where the
removal of a single edge improves the equilibrium latency by a factor of 2Ω(n). As for

5 Due to space constraints, we have restricted the discussion of related work to the most relevant
results on the existence and the elimination of Braess’s paradox. There has been a large body
of work on quantifying and mitigating the consequences of Braess’s paradox on selfish traf-
fic, especially in the areas of Transportation Science and Computer Networks. The interested
reader may see e.g., [15,12] for more references.

Resolving Braess’s Paradox in Random Networks 3

the impact of the network topology, Milchtaich [11] proved that Braess’s paradox does
not occur in series-parallel networks, which is precisely the class of networks that do
not contain the network in Fig. 1.a as a topological minor.

Recent work actually indicates that the appearance of Braess’s paradox is not an
artifact of optimization theory, and that edge removal can offer a tangible improve-
ment on the performance of real-world networks (see e.g., [7,13,14,16]). In this direc-
tion, Valiant and Roughgarden [17] initiated the study of Braess’s paradox in natural
classes of random networks, and proved that the paradox occurs with high probabil-
ity in dense random Gn,p networks, with p = ω(n−1/2), if each edge e has a linear
latency `e(x) = aex+ be, with ae, be drawn independently from some reasonable dis-
tribution. The subsequent work of Chung and Young [4] extended the result of [17] to
sparse random networks, where p = Ω(lnn/n), i.e., just greater than the connectiv-
ity threshold of Gn,p, assuming that the network has a large number of edges e with
small additive latency terms be. In fact, Chung and Young demonstrated that the crucial
property for Braess’s paradox to emerge is that the subnetwork consisting of the edges
with small additive terms is a good expander (see also [5]). Nevertheless, the proof of
[4,17] is merely existential; it provides no clue on how one can actually find (or even
approximate) the best subnetwork and its equilibrium latency.

Motivation and Contribution. The motivating question for this work is whether in
some interesting settings, where the paradox occurs, we can efficiently compute a set
of edges whose removal significantly improves the equilibrium latency. From a more
technical viewpoint, our work is motivated by the results of [4,17] about the prevalence
of the paradox in random networks, and by the knowledge that in random instances
some hard (in general) problems can actually be tractable.

Departing from [4,17], we adopt a purely algorithmic approach. We focus on the
class of so-called good selfish routing instances, namely instances with the properties
used by [4,17] to demonstrate the occurrence of Braess’s paradox in random networks
with high probability. In fact, one can easily verify that the random instances of [4,17]
are good with high probability. Rather surprisingly, we prove that, in many interesting
cases, we can efficiently approximate the best subnetwork and its equilibrium latency.
What may be even more surprising is that our approximation algorithm is based on the
expansion property of good instances, namely the very same property used by [4,17] to
establish the prevalence of the paradox in good instances! To the best of our knowledge,
our results are the first of theoretical nature which indicate that Braess’s paradox can be
efficiently eliminated in a large class of interesting instances.

Technically, we present essentially an approximation scheme. Given a good instance
and any constant ε > 0, we compute a flow g that is an ε-Nash flow for the subnetwork
consisting of the edges used by it, and has a latency of L(g) ≤ (1 + ε)L∗ + ε, where
L∗ is the equilibrium latency of the best subnetwork (Theorem 1). In fact, g has these
properties with high probability. Our approximation scheme runs in polynomial time
for the most interesting case that the network is relatively sparse and the traffic rate r
is O(poly(ln lnn)), where n is the number of vertices. Specifically, the running time
is polynomial if the good network has average degree O(poly(lnn)), i.e., if pn =
O(poly(lnn)), for random Gn,p networks, and quasipolynomial for average degrees
up to o(n). As for the traffic rate, we emphasize that most work on selfish routing

4 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

and selfish network design problems assumes that r = 1, or at least that r does not
increase with the network’s size (see e.g., [14] and the references therein). So, we can
approximate, in polynomial-time, the best subnetwork for a large class of instances that,
with high probability, include exponentially many s− t paths and s− t paths of length
Θ(n). For such instances, a direct application of [6, Theorem 3] gives an exponential-
time algorithm.

The main idea behind our approximation scheme, and our main technical contribu-
tion, is a polynomial-time approximation-preserving reduction of the best subnetwork
problem for a good network G to a corresponding best subnetwork problem for a 0-
latency simplified network G0, which is a layered network obtained from G if we keep
only s, t and their immediate neighbors, and connect all neighbors of s and t by direct
edges of 0 latency. We first show that the equilibrium latency of the best subnetwork
does not increase when we consider the 0-latency simplified network G0 (Lemma 1).
Although this may sound reasonable, we highlight that decreasing edge latencies to 0
may trigger Braess’s paradox (e.g., starting from the network in Fig. 1.a with l′3(x) = 1,
and decreasing it to l3(x) = 0 is just another way of triggering the paradox). Next, we
employ Althöfer’s Sparsification Lemma [1] (see also [9,10] and [6, Theorem 3]) and
approximate the best subnetwork problem for the 0-latency simplified network.

The final (and crucial) step of our approximation preserving reduction is to start
with the flow-solution to the best subnetwork problem for the 0-latency simplified net-
work, and extend it to a flow-solution to the best subnetwork problem for the original
(good) instance. To this end, we show how to “simulate” 0-latency edges by low latency
paths in the original good network. Intuitively, this works because due to the expansion
properties and the random latencies of the good network G, the intermediate subnet-
work of G, connecting the neighbors of s to the neighbors of t, essentially behaves
as a complete bipartite network with 0-latency edges. This is also the key step in the
approach of [4,17], showing that Braess’s paradox occurs in good networks with high
probability (see [4, Section 2] for a detailed discussion). Hence, one could say that to
some extent, the reason that Braess’s paradox exists in good networks is the very same
reason that the paradox can be efficiently resolved. Though conceptually simple, the
full construction is technically involved and requires dealing with the amount of flow
through the edges incident to s and t and their latencies. Our construction employs a
careful grouping-and-matching argument, which works for good networks with high
probability, see Lemmas 4 and 5.

We highlight that the reduction itself runs in polynomial time. The time consuming
step is the application of [6, Theorem 3] to the 0-latency simplified network. Since
such networks have only polynomially many (and very short) s − t paths, they escape
the hardness result of [15]. The approximability of the best subnetwork for 0-latency
simplified networks is an intriguing open problem arising from our work.

Our result shows that a problem, that is NP-hard to approximate, can be very closely
approximated in random (and random-like) networks. This resembles e.g., the problem
of finding a Hamiltonian path in Erdös-Rényi graphs, where again, existence and con-
struction both work just above the connectivity threshold, see e.g., [2]. However, not all
hard problems are easy when one assumes random inputs (e.g., consider factoring or
the hidden clique problem, for both of which no such results are known in full depth).

Resolving Braess’s Paradox in Random Networks 5

2 Model and Preliminaries

Notation. For an event E in a sample space, P[E] denotes the probability of E hap-
pening. We say that an event E occurs with high probability, if P[E] ≥ 1 − n−α, for
some constant α ≥ 1, where n usually denotes the number of vertices of the network G
to which E refers. We implicitly use the union bound to account for the occurrence of
more than one low probability events.

Instances. A selfish routing instance is a tuple G = (G(V,E), (`e)e∈E , r), where
G(V,E) is an undirected network with a source s and a sink t, `e : R≥0 → R≥0 is
a non-decreasing latency function associated with each edge e, and r > 0 is the traffic
rate. We let P (or PG, whenever the network G is not clear from the context) denote
the (non-empty) set of simple s− t paths in G. For brevity, we usually omit the latency
functions, and refer to a selfish routing instance as (G, r).

We only consider linear latencies `e(x) = aex + be, with ae, be ≥ 0. We restrict
our attention to instances where the coefficients ae and be are randomly selected from a
pair of distributions A and B. Following [4,17], we say that A and B are reasonable if:

– A has bounded range [Amin, Amax] and B has bounded range [0, Bmax], where
Amin > 0 and Amax, Bmax are constants, i.e., they do not depend on r and |V |.

– There is a closed interval IA of positive length, such that for every non-trivial subin-
terval I ′ ⊆ IA, Pa∼A[a ∈ I ′] > 0.

– There is a closed interval IB, 0 ∈ IB, of positive length, such that for every non-
trivial subinterval I ′ ⊆ IB, Pb∼B[b ∈ I ′] > 0. Moreover, for any constant η > 0,
there exists a constant δη > 0, such that Pb∼B[b ≤ η] ≥ δη .

Subnetworks. Given a selfish routing instance (G(V,E), r), any subgraph H(V ′, E′),
V ′ ⊆ V , E′ ⊆ E, s, t ∈ V ′, obtained from G by edge and vertex removal, is a subnet-
work of G. H has the same source s and sink t as G, and the edges of H have the same
latencies as in G. Every instance (H(V ′, E′), r), where H(V ′, E′) is a subnetwork of
G(V,E), is a subinstance of (G(V,E), r).

Flows. Given an instance (G, r), a (feasible) flow f is a non-negative vector indexed by
P such that

∑
q∈P fq = r. For a flow f , let fe =

∑
q:e∈q fq be the amount of flow that

f routes on edge e. Two flows f and g are different if there is an edge e with fe 6= ge.
An edge e is used by flow f if fe > 0, and a path q is used by f if mine∈q{fe} > 0.
We often write fq > 0 to denote that a path q is used by f . Given a flow f , the latency
of each edge e is `e(fe), the latency of each path q is `q(f) =

∑
e∈q `e(fe), and the

latency of f is L(f) = maxq:fq>0 `q(f). We sometimes write LG(f) when the network
G is not clear from the context. For an instance (G(V,E), r) and a flow f , we let
Ef = {e ∈ E : fe > 0} be the set of edges used by f , and Gf (V,Ef) be the
corresponding subnetwork of G.

Nash Flow. A flow f is a Nash (equilibrium) flow, if it routes all traffic on minimum
latency paths. Formally, f is a Nash flow if for every path q with fq > 0, and every path
q′, `q(f) ≤ `q′(f). Therefore, in a Nash flow f , all players incur a common latency
L(f) = minq `q(f) = maxq:fq>0 `q(f) on their paths. A Nash flow f on a network
G(V,E) is a Nash flow on any subnetwork G′(V ′, E′) of G with Ef ⊆ E′.

6 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

Every instance (G, r) admits at least one Nash flow, and the players’ latency is the
same for all Nash flows (see e.g., [14]). Hence, we let L(G, r) be the players’ latency in
some Nash flow of (G, r), and refer to it as the equilibrium latency of (G, r). For linear
latency functions, a Nash flow can be computed efficiently, in strongly polynomial time,
while for strictly increasing latencies, the Nash flow is essentially unique (see e.g., [14]).

ε-Nash flow. The definition of a Nash flow can be naturally generalized to that of an
“almost Nash” flow. Formally, for some ε > 0, a flow f is an ε-Nash flow if for every
path q with fq > 0, and every path q′, `q(f) ≤ `q′(f) + ε.

Best Subnetwork. Braess’s paradox shows that there may be a subinstance (H, r) of
an instance (G, r) with L(H, r) < L(G, r) (see e.g., Fig. 1). The best subnetwork H∗

of (G, r) is a subnetwork of G with the minimum equilibrium latency, i.e., H∗ has
L(H∗, r) ≤ L(H, r) for any subnetwork H of G. In this work, we study the approx-
imability of the Best Subnetwork Equilibrium Latency problem, or BestSubEL in short.
In BestSubEL, we are given an instance (G, r), and seek for the best subnetwork H∗

of (G, r) and its equilibrium latency L(H∗, r).

Good Networks. We restrict our attention to undirected s − t networks G(V,E). We
let n ≡ |V | and m ≡ |E|. For any vertex v, we let Γ (v) = {u ∈ V : {u, v} ∈ E}
denote the set of v’s neighbors in G. Similarly, for any non-empty S ⊆ V , we let
Γ (S) =

⋃
v∈S Γ (v) denote the set of neighbors of the vertices in S, and letG[S] denote

the subnetwork of G induced by S. For convenience, we let Vs ≡ Γ (s), Es ≡ {{s, u} :
u ∈ Vs}, Vt ≡ Γ (t), Et ≡ {{v, t} : v ∈ Vt}, and Vm ≡ V \ ({s, t}∪Vs ∪Vt). We also
let ns = |Vs|, nt = |Vt|, n+ = max{ns, nt}, n− = min{ns, nt}, and nm = |Vm|. We
sometimes write V (G), n(G), Vs(G), ns(G), . . ., if G is not clear from the context.

It is convenient to think that the network G has a layered structure consisting of s,
the set of s’s neighbors Vs, an “intermediate” subnetwork connecting the neighbors of
s to the neighbors of t, the set of t’s neighbors Vt, and t. Then, any s − t path starts
at s, visits some u ∈ Vs, proceeds either directly or through some vertices of Vm to
some v ∈ Vt, and finally reaches t. Thus, we refer to Gm ≡ G[Vs ∪ Vm ∪ Vt] as the
intermediate subnetwork of G. Depending on the structure of Gm, we say that:

– G is a random Gn,p network if (i) ns and nt follow the binomial distribution with
parameters n and p, and (ii) if any edge {u, v}, with u ∈ Vm∪Vs and v ∈ Vm∪Vt,
exists independently with probability p. Namely, the intermediate network Gm is
an Erdös-Rényi random graph with n − 2 vertices and edge probability p, except
for the fact that there are no edges in G[Vs] and in G[Vt].

– G is internally bipartite if the intermediate network Gm is a bipartite graph with
independent sets Vs and Vt. G is internally complete bipartite if every neighbor of
s is directly connected by an edge to every neighbor of t.

– G is 0-latency simplified if it is internally complete bipartite and every edge e con-
necting a neighbor of s to a neighbor of t has latency function `e(x) = 0.

The 0-latency simplification G0 of a given network G is a 0-latency simplified net-
work obtained from G by replacing G[Vm] with a set of 0-latency edges directly con-
necting every neighbor of s to every neighbor of t. Moreover, we say that a 0-latency
simplified network G is balanced, if |ns − nt| ≤ 2n− .

Resolving Braess’s Paradox in Random Networks 7

Algorithm 1: Approximation Scheme for BestSubEL in Good Networks
Input: Good network G(V,E), rate r > 0, approximation guarantee ε > 0
Output: Subnetwork H of G and ε-Nash flow g in H with L(g) ≤ (1 + ε)L(H∗, r) + ε

1 if L(G, r) < ε, return G and a Nash flow of (G, r) ;
2 create the 0-latency simplification G0 of G ;
3 if r ≥ (Bmaxn+)/(εAmin), then let H0 = G0 and let f be a Nash flow of (G0, r) ;
4 else, let H0 be the subnetwork and f the ε/6-Nash flow of Thm. 2 applied with error ε/6 ;
5 let H be the subnetwork and let g be the ε-Nash flow of Lemma 5 starting from H0 and f ;
6 return the subnetwork H and the ε-Nash flow g ;

We say that a network G(V,E) is (n, p, k)-good, for some integer n ≤ |V |, some
probability p ∈ (0, 1), with pn = o(n), and some constant k ≥ 1, if G satisfies that:

1. The maximum degree of G is at most 3np/2, i.e., for any v ∈ V , |Γ (v)| ≤ 3np/2.
2. G is an expander graph, namely, for any set S ⊆ V , |Γ (S)| ≥ min{np|S|, n}/2.
3. The edges of G have random reasonable latency functions distributed according to
A× B, and for any constant η > 0, Pb∼B[b ≤ η/ lnn] = ω(1/np).

4. If k > 1, we can compute in polynomial time a partitioning of Vm into k sets
V 1
m, . . . , V

k
m, each of cardinality |Vm|/k, such that all the induced subnetworks

G[{s, t} ∪ Vs ∪ V im ∪ Vt] are (n/k, p, 1)-good, with a possible violation of the
maximum degree bound by s and t.

IfG is a random Gn,p network, with n sufficiently large and p ≥ ck lnn/n, for some
large enough constant c > 1, then G is an (n, p, k)-good network with high probability
(see e.g., [2]), provided that the latency functions satisfy condition (3) above. As for
condition (4), a random partitioning of Vm into k sets of cardinality |Vm|/k satisfies
(4) with high probability. Similarly, the random instances considered in [4] are good
with high probability. Also note that the 0-latency simplification of a good network is
balanced, due to (1) and (2).

3 The Approximation Scheme and Outline of the Analysis

In this section, we describe the main steps of the approximation scheme (see also Al-
gorithm 1), and give an outline of its analysis. We let ε > 0 be the approximation
guarantee, and assume that L(G, r) ≥ ε. Otherwise, any Nash flow of (G, r) suffices.

Algorithm 1 is based on an approximation-preserving reduction of BestSubEL for
a good networkG to BestSubEL for the 0-latency simplificationG0 ofG. The first step
of our approximation-preserving reduction is to show that the equilibrium latency of the
best subnetwork does not increase when we consider the 0-latency simplification G0 of
a network G instead of G itself. Since decreasing the edge latencies (e.g., decreasing
l′3(x) = 1 to l3(x) = 0 in Fig. 1.a) may trigger Braess’s paradox, we need Lemma 1,
in Section 4, and its careful proof to make sure that zeroing out the latency of the
intermediate subnetwork does not cause an abrupt increase in the equilibrium latency.

Next, we focus on the 0-latency simplification G0 of G (step 2 in Alg. 1). We
show that if the traffic rate is large enough, i.e., if r = Ω(n+/ε), the paradox has

8 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

a marginal influence on the equilibrium latency. Thus, any Nash flow of (G0, r) is a
(1 + ε)-approximation of BestSubEL (see Lemma 2 and step 4). If r = O(n+/ε), we
use [6, Theorem 3] and obtain an ε/6-approximation of BestSubEL for (G0, r) (see
Theorem 2 and step 4).

We now have a subnetwork H0 and an ε/6-Nash flow f that comprise a good ap-
proximate solution to BestSubEL for the simplified instance (G0, r). The next step of
our approximation-preserving reduction is to extend f to an approximate solution to
BestSubEL for the original instance (G, r). The intuition is that due to the expansion
and the reasonable latencies of G, any collection of 0-latency edges of H0 used by f to
route flow from Vs to Vt can be “simulated” by an appropriate collection of low-latency
paths of the intermediate subnetwork Gm of G. In fact, this observation was the key
step in the approach of [4,17] showing that Braess’s paradox occurs in good networks
with high probability. We first prove this claim for a small part of H0 consisting only
of neighbors of s and neighbors of t with approximately the same latency under f (see
Lemma 4, the proof draws on ideas from [4, Lemma 5]). Then, using a careful latency-
based grouping of the neighbors of s and of the neighbors of t in H0, we extend this
claim to the entire H0 (see Lemma 5). Thus, we obtain a subnetwork H of G and an
ε-Nash flow g in H such that L(g) ≤ (1 + ε)L(H∗, r) + ε (step 5).

We summarize our main result. The proof follows by combining Lemma 1, Theo-
rem 2, and Lemma 5 in the way indicated by Algorithm 1 and the discussion above.

Theorem 1. Let G(V,E) be an (n, p, k)-good network, where k ≥ 1 is a large enough
constant, let r > 0 be any traffic rate, and let H∗ be the best subnetwork of (G, r).

Then, for any ε > 0, Algorithm 1 computes in time nO(r2A2
max ln(n+)/ε2)

+ poly(|V |), a
flow g and a subnetworkH ofG such that with high probability, wrt. the random choice
of the latency functions, g is an ε-Nash flow of (H, r) and hasL(g) ≤ (1+ε)L(H∗)+ε.

By the definition of reasonable latencies, Amax is a constant. Also, by Lemma 2, r
affects the running time only if r = O(n+/ε). In fact, previous work on selfish network
design assumes that r = O(1), see e.g., [14]. Thus, if r = O(1) (or more generally, if
r = O(poly(ln lnn))) and pn = O(poly(lnn)), in which case n+ = O(poly(lnn)),
Theorem 1 gives a randomized polynomial-time approximation scheme for BestSubEL
in good networks. Moreover, the running time is quasipolynomial for traffic rates up to
O(poly(lnn)) and average degrees up to o(n), i.e., for the entire range of p in [4,17].
The next sections are devoted to the proofs of Lemmas 1 and 5, and of Theorem 2.

4 Network Simplification

We first show that the equilibrium latency of the best subnetwork does not increase
when we consider the 0-latency simplification G0 of a network G instead of G itself.
We highlight that the following lemma holds not only for good networks, but also for
any network with linear latencies and with the layered structure described in Section 2.

Lemma 1. Let G be any network, let r > 0 be any traffic rate, and let H be the best
subnetwork of (G, r). Then, there is a subnetwork H ′ of the 0-latency simplification of
H (and thus, a subnetwork of G0) with L(H ′, r) ≤ L(H, r).

Resolving Braess’s Paradox in Random Networks 9

Proof sketch. We assume that all the edges of H are used by the equilibrium flow f of
(H, r) (otherwise, we can remove all unused edges from H). The proof is constructive,
and at the conceptual level, proceeds in two steps. For the first step, given the equilib-
rium flow f of the best subnetwork H of G, we construct a simplification H1 of H that
is internally bipartite and has constant latency edges connecting Γ (s) to Γ (t). H1 also
admits f as an equilibrium flow, and thus L(H1, r) = L(H, r). We can also show how
to further simplify H1 so that its intermediate bipartite subnetwork becomes acyclic.

The second part of the proof is to show that we can either remove some of the
intermediate edges of H1 or zero their latencies, and obtain a subnetwork H ′ of the
0-latency simplification of H with L(H ′, r) ≤ L(H, r). To this end, we describe a
procedure where in each step, we either remove some intermediate edge of H1 or zero
its latency, without increasing the latency of the equilibrium flow.

Let us focus on an edge ekl = {uk, vl} connecting a neighbor uk of s to a neighbor
vl of t. By the first part of the proof, the latency function of ekl is a constant bkl > 0.
Next, we attempt to set the latency of ekl to b′kl = 0. We have also to change the
equilibrium flow f to a new flow f ′ that is an equilibrium flow of latency at most L in
the modified network with b′kl = 0. We should be careful when changing f to f ′, since
increasing the flow through {s, uk} and {vl, t} affects the latency of all s − t paths
going through uk and vl and may destroy the equilibrium property (or even increase the
equilibrium latency). In what follows, we let rq be the amount of flow moving from an
s− t path q = (s, ui, vj , t) to the path qkl = (s, uk, vl, t) when we change f to f ′. We
note that rq may be negative, in which case, |rq| units of flow actually move from qkl to
q. Thus, rq’s define a rerouting of f to a new flow f ′, with f ′q = fq − rq , for any s− t
path q other than qkl, and f ′kl = fkl +

∑
q rq .

We next show how to compute rq’s so that f ′ is an equilibrium flow of cost at most
L in the modified network (where we attempt to set b′kl = 0). We let P = PH1

\ {qkl}
denote the set of all s− t paths in H1 other than qkl. We let F be the |P| × |P| matrix,
indexed by the paths q ∈ P , where F [q1, q2] =

∑
e∈q1∩q2 ae −

∑
e∈q1∩qkl

ae, and let
r be the vector of rq’s. Then, the q-th component of Fr is equal to `q(f) − `q(f ′). In
the following, we consider two cases depending on whether F is singular or not.

If matrix F is non-singular, the linear system Fr = ε1 has a unique solution rε, for
any ε > 0. Moreover, due to linearity, for any α ≥ 0, the unique solution of the system
Fr = α ε1 is α rε. Therefore, for an appropriately small ε > 0, the linear system
Qε = {Fr = ε1, fq−rq ≥ 0 ∀q ∈ P, fkl+

∑
q rq ≥ 0, `qkl

(f ′) ≤ L+bkl−ε} admits
a unique solution r. We keep increasing ε until one of the inequalities of Qε becomes
tight. If it first becomes rq = fq for some path q = (s, ui, vj , t) ∈ P , we remove the
edge {ui, vj} from H1 and adjust the constant latency of ekl so that `qkl

(f ′) = L − ε.
Then, the flow f ′ is an equilibrium flow of cost L− ε for the resulting network, which
has one edge less than the original network H1. If

∑
q rq < 0 and it first becomes∑

q rq = −fkl, we remove the edge ekl from H1. Then, f ′ is an equilibrium flow
of cost L − ε for the resulting network, which again has one edge less than H1. If∑
q rq > 0 and it first becomes `qkl

(f ′) = L + bkl − ε, we set the constant latency
of the edge ekl to b′kl = 0. In this case, f ′ is an equilibrium flow of cost L − ε for
the resulting network that has one edge of 0 latency more than the initial network H1.
Moreover, we can show that if qkl is disjoint from the paths q ∈ P , the fact that the

10 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

intermediate network H1 is acyclic implies that the matrix F is positive definite, and
thus non-singular. Therefore, if qkl is disjoint from the paths in P ,the procedure above
leads to a decrease in the equilibrium latency, and eventually to setting b′kl = 0.

If F is singular, we can compute rq’s so that f ′ is an equilibrium flow of cost L in
a modified network that includes one edge less than the original network H1. If F is
singular, the homogeneous linear system Fr = 0 admits a nontrivial solution r 6= 0.
Moreover, due to linearity, for any α ∈ R, α r is also a solution to Fr = 0. Therefore,
the linear system Q0 = {Fr = 0, fq − rq ≥ 0 ∀q ∈ P, fkl +

∑
q rq ≥ 0} admits a

solution r 6= 0 that makes at least one of the inequalities tight. We recall that the q-th
component of Fr is equal to `q(f) − `q(f ′). Therefore, for the flow f ′ obtained from
the particular solution r of Q0, the latency of any path q ∈ P is equal to L. If r is such
that rq = fq for some path q = (s, ui, vj , t) ∈ P , we remove the edge {ui, vj} from
H1 and adjust the constant latency of ekl so that `qkl

(f ′) = L. Then, the flow f ′ is an
equilibrium flow of cost L for the resulting network, which has one edge less than the
original network H1. If r is such that

∑
q rq = −fkl, we remove the edge ekl from H1.

Then, f ′ is an equilibrium flow of cost L for the resulting network, which again has one
edge less than H1.

Each time we apply the procedure above either we decrease the number of edges of
the intermediate network by one or we increase the number of 0-latency edges of the
intermediate network by one, without increasing the latency of the equilibrium flow. So,
by repeatedly applying these steps, we end up with a subnetwork H ′ of the 0-latency
simplification of H with L(H ′, r) ≤ L(H, r). ut

5 Approximating the Best Subnetwork of Simplified Networks

We proceed to show how to approximate the BestSubEL problem in a balanced 0-
latency simplified network G0 with reasonable latencies. We may always regard G0 as
the 0-latency simplification of a good networkG. We first state two useful lemmas about
the maximum traffic rate r up to which BestSubEL remains interesting, and about the
maximum amount of flow routed on any edge / path in the best subnetwork.

Lemma 2. LetG0 be any 0-latency simplified network, let r > 0, and letH∗0 be the best
subnetwork of (G0, r). For any ε > 0, if r > Bmaxn+

Aminε
, thenL(G0, r) ≤ (1+ε)L(H∗0 , r).

Proof. We assume that r > Bmaxn+

Aminε
, let f be a Nash flow of (G0, r), and consider how

f allocates r units of flow to the edges ofEs ≡ Es(G0) and to the edges Et ≡ Et(G0).
For simplicity, we let L ≡ L(G0, r) denote the equilibrium latency of G0, and let
As =

∑
e∈Es

1/ae and At =
∑
e∈Et

1/ae.
Since G0 is a 0-latency simplified network and f is a Nash flow of (G0, r), there

are L1, L2 > 0, with L1 + L2 = L, such that all used edges incident to s (resp. to t)
have latency L1 (resp. L2) in the Nash flow f . Since r > Bmaxn+

Amin
, L1, L2 > Bmax

and all edges in Es ∪ Et are used by f . Moreover, by an averaging argument, we have
that there is an edge e ∈ Es with aefe ≤ r/As, and that there is an edge e ∈ Et with
aefe ≤ r/At. Therefore, L1 ≤ (r/As) + Bmax and L2 ≤ (r/At) + Bmax, and thus,
L ≤ r

As
+ r

At
+ 2Bmax.

Resolving Braess’s Paradox in Random Networks 11

On the other hand, if we ignore the additive terms be of the latency functions, the
optimal average latency of the players is r/As + r/At, which implies that L(H∗0 , r) ≥
r/As + r/At. Therefore, L ≤ L(H∗0 , r) + 2Bmax. Moreover, since r > Bmaxn+

Aminε
,

As ≤ ns/Amin, and At ≤ nt/Amin, we have that:

L(H∗0 , r) ≥
r

As
+

r

At
≥ Bmaxns

Aminε

Amin

ns
+
Bmaxnt
Aminε

Amin

nt
≥ 2Bmax/ε

Therefore, 2Bmax ≤ εL(H∗0 , r), and L ≤ (1 + ε)L(H∗0 , r). ut

Lemma 3. Let G0 be a balanced 0-latency simplified network with reasonable laten-
cies, let r > 0, and let f be a Nash flow of the best subnetwork of (G0, r). For any ε > 0,
if Pb∼B[b ≤ ε/4] ≥ δ, for some constant δ > 0, there exists a constant ρ = 24AmaxBmax

δεA2
min

such that with probability at least 1− e−δn−/8, fe ≤ ρ, for all edges e.

Approximating the Best Subnetwork of Simplified Networks. We proceed to derive
an approximation scheme for the best subnetwork of any simplified instance (G0, r).

Theorem 2. Let G0 be a balanced 0-latency simplified network with reasonable laten-
cies, let r > 0, and let H∗0 be the best subnetwork of (G0, r). Then, for any ε > 0,

we can compute, in time nO(A2
maxr

2 ln(n+)/ε2)
+ , a flow f and a subnetwork H0 consist-

ing of the edges used by f , such that (i) f is an ε-Nash flow of (H0, r), (ii) L(f) ≤
L(H∗0 , r) + ε/2, and (iii) there exists a constant ρ > 0, such that fe ≤ ρ+ ε, for all e.

Theorem 2 is a corollary of [6, Theorem 3], since in our case the number of different
s − t paths is at most n2+ and each path consists of 3 edges. So, in [6, Theorem 3], we
have d1 = 2, d2 = 0, α = Amax, and the error is ε/r. Moreover, we know that
any Nash flow g of (H∗0 , r) routes ge ≤ ρ units of flow on any edge e, and that in the
exhaustive search step, in the proof of [6, Theorem 3], one of the acceptable flows f has
|ge−fe| ≤ ε, for all edges e (see also [6, Lemma 3]). Thus, there is an acceptable flow f
with fe ≤ ρ+ε, for all edges e. In fact, if among all acceptable flows enumerated in the
proof of [6, Theorem 3], we keep the acceptable flow f that minimizes the maximum
amount flow routed on any edge, we have that fe ≤ ρ+ ε, for all edges e.

6 Extending the Solution to the Good Network

Given a good instance (G, r), we create the 0-latency simplification G0 ofG, and using
Theorem 2, we compute a subnetwork H0 and an ε/6-Nash flow f that comprise an
approximate solution to BestSubEL for (G0, r). Next, we show how to extend f to an
approximate solution to BestSubEL for the original instance (G, r). The intuition is
that the 0-latency edges of H0 used by f to route flow from Vs to Vt can be “simulated”
by low-latency paths of Gm. We first formalize this intuition for the subnetwork of G
induced by the neighbors of s with (almost) the same latency Bs and the neighbors of
t with (almost) the same latency Bt, for some Bs, Bt with Bs + Bt ≈ L(f). We may
think of the networks G and H0 in the lemma below as some small parts of the original
network G and of the actual subnetwork H0 of G0. Thus, we obtain the following
lemma, which serves as a building block in the proof of Lemma 5.

12 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

Lemma 4. We assume that G(V,E) is an (n, p, 1)-good network, with a possible vio-
lation of the maximum degree bound by s and t, but with |Vs|, |Vt| ≤ 3knp/2, for some
constant k > 0. Also the latencies of the edges in Es ∪ Et are not random, but there
exist constants Bs, Bt ≥ 0, such that for all e ∈ Es, `e(x) = Bs, and for all e ∈ Et,
`e(x) = Bt. We let r > 0 be any traffic rate, let H0 be any subnetwork of the 0-latency
simplification G0 of G, and let f be any flow of (H0, r). We assume that there exists
a constant ρ′ > 0, such that for all e ∈ E(H0), 0 < fe ≤ ρ′. Then, for any ε1 > 0,
with high probability, wrt. the random choice of the latency functions ofG, we can com-
pute in poly(|V |) time a subnetwork G′ of G, with Es(G′) = Es(H0) and Et(G′) =
Et(H0), and a flow g of (G′, r) such that (i) ge = fe for all e ∈ Es(G′) ∪ Et(G′), (ii)
g is a 7ε1-Nash flow in G′, and (iii) LG′(g) ≤ Bs +Bt + 7ε1.

Proof sketch. For convenience and wlog., we assume that Es(G) = Es(H0) and that
Et(G) = Et(H0), so that we simply write Vs, Vt, Es, and Et from now on. For each
e ∈ Es ∪ Et, we let ge = fe. So, the flow g satisfies (i), by construction.

We compute the extension of g through Gm as an “almost” Nash flow in a modified
version of G, where each edge e ∈ Es ∪ Et has a capacity ge = fe and a constant
latency `e(x) = Bs, if e ∈ Es, and `e(x) = Bt, if e ∈ Et. All other edges e of G have
an infinite capacity and a (randomly chosen) reasonable latency function `e(x).

We let g be the flow of rate r that respects the capacities of the edges inEs∪Et, and
minimizes Pot(g) =

∑
e∈E

∫ ge
0
`e(x)dx. Such a flow g can be computed in strongly

polynomial time (see e.g., [18]). The subnetwork G′ of G is simply Gg , namely, the
subnetwork that includes only the edges used by g. It could have been that g is not a
Nash flow of (G, r), due to the capacity constraints on the edges of Es ∪Et. However,
since g is a minimizer of Pot(g), for any u ∈ Vs and v ∈ Vt, and any pair of s− t paths
q, q′ going through u and v, if gq > 0, then `q(g) ≤ `q′(g). Thus, g can be regarded as
a Nash flow for any pair u ∈ Vs and v ∈ Vt connected by g-used paths.

To conclude the proof, we adjust the proof of [4, Lemma 5], and show that for any
s− t path q used by g, `q(g) ≤ Bs+Bt+7ε1. To prove this, we let q = (s, u, . . . , v, t)
be the s − t path used by g that maximizes `q(g). We show the existence of a path
q′ = (s, u, . . . , v, t) in G of latency `q′(g) ≤ Bs + Bt + 7ε1. Therefore, since g is a
minimizer of Pot(g), the latency of the maximum latency g-used path q, and thus the
latency of any other g-used s − t path, is at most Bs + Bt + 7ε1, i.e., g satisfies (iii).
Moreover, since for any s− t path q, `q(g) ≥ Bs+Bt, g is an 7ε1-Nash flow inG′. ut

Grouping the Neighbors of s and t. Let us now consider the entire network G and
the entire subnetwork H0 of G0. Lemma 4 can be applied only to subsets of edges in
Es(H0) and in Et(H0) that have (almost) the same latency under f . Since H0 does not
need to be internally complete bipartite, there may be neighbors of s (resp. t) connected
to disjoint subsets of Vt (resp. of Vs) inH0, and thus have quite different latency. Hence,
to apply Lemma 4, we partition the neighbors of s and the neighbors of t into classes
V is and V jt according to their latency. For convenience, we let ε2 = ε/6, i.e., f is an ε2-
Nash flow, and L ≡ LH0

(f). By Theorem 2, applied with error ε2 = ε/6, there exists a
ρ such that for all e ∈ E(H0), 0 < fe ≤ ρ+ε2. Therefore, L ≤ 2Amax(ρ+ε2)+2Bmax

is bounded by a constant.
We partition the interval [0, L] into κ = dL/ε2e subintervals, where the i-th subin-

terval is Ii = (iε2, (i+1)ε2], i = 0, . . . , κ− 1. We partition the vertices of Vs (resp. of

Resolving Braess’s Paradox in Random Networks 13

Vt) that receive positive flow by f into κ classes V is (resp. V it), i = 0, . . . , κ − 1. Pre-
cisely, a vertex x ∈ Vs (resp. x ∈ Vt), connected to s (resp. to t) by the edge ex = {s, x}
(resp. ex = {x, t}), is in the class V is (resp. in the class V it), if `ex(fex) ∈ Ii. If a vertex
x ∈ Vs (resp. x ∈ Vt) does not receive any flow from f , x is removed from G and does
not belong to any class. Hence, from now on, we assume that all neighbors of s and t
receive positive flow from f , and that V 0

s , . . . V
κ−1
s (resp. V 0

t , . . . , V
κ−1
t) is a partition-

ing of Vs (resp. Vt). In exactly the same way, we partition the edges of Es (resp. of Et)
used by f into k classes Eis (resp. Eit), i = 0, . . . , κ− 1.

To find out which parts of H0 will be connected through the intermediate subnet-
work of G, using the construction of Lemma 4, we further classify the vertices of V is
and V jt based on the neighbors of t and on the neighbors of s, respectively, to which
they are connected by f -used edges in the subnetworkH0. In particular, a vertex u ∈ V is
belongs to the classes V (i,j)

s , for all j, 0 ≤ j ≤ κ−1, such that there is a vertex v ∈ V jt
with f{u,v} > 0. Similarly, a vertex v ∈ V jt belongs to the classes V (i,j)

t , for all i,
0 ≤ i ≤ κ − 1, such that there is a vertex u ∈ V is with f{u,v} > 0. A vertex u ∈ V is
(resp. v ∈ V jt) may belong to many different classes V (i,j)

s (resp. to V (i,j)
t), and that the

class V (i,j)
s is non-empty iff the class V (i,j)

t is non-empty. We let k ≤ κ2 be the number
of pairs (i, j) for which V (i,j)

s and V (i,j)
t are non-empty. We note that k is a constant,

i.e., does not depend on |V | and r. We let E(i,j)
s be the set of edges connecting s to the

vertices in V (i,j)
s and E(i,j)

t be the set of edges connecting t to the vertices in V (i,j)
t .

Building the Intermediate Subnetworks ofG. The last step is to replace the 0-latency
simplified parts connecting the vertices of each pair of classes V (i,j)

s and V (i,j)
t in H0

with a subnetwork of Gm. We partition, as in condition (4) in the definition of good
networks, the set Vm of intermediate vertices of G into k subsets, each of cardinality
|Vm|/k, and associate a different such subset V (i,j)

m with any pair of non-empty classes
V

(i,j)
s and V (i,j)

t . For each pair (i, j) for which the classes V (i,j)
s and V (i,j)

t are non-
empty, we consider the induced subnetworkG(i,j) ≡ G[{s, t}∪V (i,j)

s ∪V (i,j)
m ∪V (i,j)

t],
which is an (n/k, p, 1)-good network, since G is an (n, p, k)-good network. Therefore,
we can apply Lemma 4 to G(i,j), with H(i,j)

0 ≡ H0[{s, t} ∪ V (i,j)
s ∪ V (i,j)

t] in the
role of H0, the restriction f (i,j) of f to H

(i,j)
0 in the role of the flow f , and ρ′ =

ρ+ ε2. Moreover, we let B(i,j)
s = max

e∈E(i,j)
s

`e(fe) and B(i,j)
t = max

e∈E(i,j)
t

`e(fe)

correspond to Bs and Bt, and introduce constant latencies `′e(x) = B
(i,j)
s for all e ∈

E
(i,j)
s and `′e(x) = B

(i,j)
t for all e ∈ E(i,j)

t , as required by Lemma 4. Thus, we obtain,
with high probability, a subnetworkH(i,j) ofG(i,j) and a flow g(i,j) that routes as much
flow as f (i,j) on all edges of E(i,j)

s ∪ E(i,j)
t , and satisfies the conclusion of Lemma 4,

if we keep in H(i,j) the constant latencies `′e(x) for all e ∈ E(i,j)
s ∪ E(i,j)

t .
The final outcome is the union of the subnetworks H(i,j), denoted H (H has the

latency functions of the original instance G), and the union of the flows g(i,j), denoted
g, where the union is taken over all k pairs (i, j) for which the classes V (i,j)

s and V (i,j)
t

are non-empty. By construction, all edges of H are used by g. Using the properties of
the construction above, we can show that if ε1 = ε/42 and ε2 = ε/6, the flow g is an
ε-Nash flow of (H, r), and satisfies LH(g) ≤ LH0

(f) + ε/2. Thus, we obtain:

14 D. Fotakis, A.C. Kaporis, T. Lianeas, and P.G. Spirakis

Lemma 5. Let any ε > 0, let k = d12(Amax(ρ+ ε) +Bmax)/εe2, let G(V,E) be an
(n, p, k)-good network, let r > 0, let H0 be any subnetwork of the 0-latency simplifica-
tion of G, and let f be an (ε/6)-Nash flow of (H0, r) for which there exists a constant
ρ′ > 0, such that for all e ∈ E(H0), 0 < fe ≤ ρ′. Then, with high probability, wrt.
the random choice of the latency functions of G, we can compute in poly(|V |) time a
subnetwork H of G and an ε-Nash flow g of (H, r) with LH(g) ≤ LH0

(f) + ε/2.

References

1. I. Althöfer. On Sparse Approximations to Randomized Strategies and Convex Combinations.
Linear Algebra and Applications, 99:339-355, 1994.

2. B. Bollobás. Random Graphs, 2nd Edition Cambridge Studies in Advanced Mathematics,
No. 73. Cambridge University Press, 2001.

3. D. Braess. Über ein paradox aus der Verkehrsplanung. Unternehmensforschung, 12:258-268,
1968.

4. F. Chung and S.J. Young. Braess’s paradox in large sparse graphs. In Proc. of the 6th
Workshop on Internet and Network Economics (WINE ’10), LNCS 6484, pp. 194-208, 2010.

5. F. Chung, S.J. Young, and W. Zhao. Braess’s paradox in expanders. Random Structures and
Algorithms, 41(4):451-468, 2012.

6. D. Fotakis, A. C. Kaporis, and P.G. Spirakis. Efficient methods for selfish network design.
Theoretical Computer Science, 448:9-20, 2012.

7. F. Kelly. The mathematics of traffic in networks. In The Princeton Companion to Mathemat-
ics (Editors: T. Gowers, J. Green and I. Leader). Princeton University Press, 2008.

8. H.C. Lin, T. Roughgarden, É. Tardos, and A. Walkover. Stronger bounds on Braess’s para-
dox and the maximum latency of selfish routing. SIAM Journal on Discrete Mathematics,
25(4):1667-1686, 2011.

9. R.J. Lipton, E. Markakis, and A. Mehta. Playing Large Games Using Simple Strategies. In
Proc. of the 4th ACM Conference on Electronic Commerce (EC ’03), pp. 36-41, 2003.

10. R.J. Lipton and N.E. Young. Simple Strategies for Large Zero-Sum Games with Applica-
tions to Complexity Theory. In Proc. of the 26th ACM Symposium on Theory of Computing
(STOC ’94), pp. 734-740, 1994.

11. I. Milchtaich. Network Topology and the Efficiency of Equilibrium. Games and Economic
Behavior, 57:321346, 2006.

12. A. Nagurney and D. Boyce. Preface to “On a Paradox of Traffic Planning”. Transportation
Science, 39(4):443-445, 2005.

13. E.I. Pas and S.L. Principio. Braess’s paradox: Some new insights. Transportation Research
Part B, 31(3):265-276, 1997.

14. T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT press, 2005.
15. T. Roughgarden. On the Severity of Braess’s Paradox: Designing Networks for Selfish Users

is Hard. Journal of Computer and System Sciences, 72(5):922-953, 2006.
16. R. Steinberg and W. I. Zangwill. The prevalence of Braess’ paradox. Transportation Science,

17(3):301-318, 1983.
17. G. Valiant and T. Roughgarden. Braess’s paradox in large random graphs. Random Structures

and Algorithms, 37(4):495-515, 2010.
18. L.A. Végh. Strongly polynomial algorithm for a class of minimum-cost flow problems with

separable convex objectives. In Proc. of the 44th ACM Symposium on Theory of Computing
(STOC ’12), pp. 27-40, 2012.

	Resolving Braess's Paradox in Random Networks

