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Abstract. We consider weighted linear congestion games, and investigate how social ignorance, namely
lack of information about the presence of some players, affects the inefficiency of pure Nash equilibria
(PNE) and the convergence rate of the ε-Nash dynamics. To this end, we adopt the model of graphical linear
congestion games with weighted players, where the individual cost and the strategy selection of each player
only depends on his neighboring players in the social graph. We show that such games admit a potential
function, and thus a PNE. Our main result is that the impact of social ignorance on the Price of Anarchy
(PoA) and the Price of Stability (PoS) is naturally quantified by the independence number α(G) of the social
graph G. In particular, we show that the PoA grows roughly as α(G)(α(G) + 2), which is essentially tight
as long as α(G) does not exceed half the number of players, and that the PoS lies between α(G) and 2α(G).
Moreover, we show that the ε-Nash dynamics reaches an α(G)(α(G) + 2)-approximate configuration in
time that is polynomial and does not directly depend on the social graph. For unweighted graphical linear
games with symmetric strategies, we show that the ε-Nash dynamics converges to an ε-approximate PNE in
time that is polynomial and exceeds the corresponding time for symmetric linear games by a factor at most
as large as the number of players.
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1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation in large-scale sys-
tems and have been the subject of intensive research in algorithmic game theory. In a (weighted)
congestion game, a finite set of non-cooperative players, each controlling an unsplittable (weighted)
demand, compete over a finite set of resources. All players using a resource experience a delay (or
cost) given by a non-negative and non-decreasing function of the resource’s total demand (or conges-
tion). Among a given set of resource subsets (or strategies), each player selects one selfishly trying to
minimize his individual cost, that is the sum of the delays on the resources in the chosen strategy. A
natural solution concept is that of a pure Nash equilibrium (PNE), a configuration where no player can
decrease his individual cost by unilaterally changing his strategy. Rosenthal [20] proved that the PNE
of (unweighted) congestion games correspond to the local optima of a natural potential function, and
thus every congestion game admits a PNE. A similar result was shown more recently for weighted
congestion games with linear resource delays [15].

Motivation and Previous Work. The prevailing questions in recent work on congestion games have
to do with quantifying the inefficiency due to the players’ non-cooperative and selfish behaviour (see
e.g. [19, 3, 5, 12, 11, 2, 9, 13]), and bounding the convergence time to (approximate) PNE if the players
select their strategies in a selfish and decentralized fashion (see e.g. [14, 1, 10, 21, 6]).

Inefficiency of Pure Nash Equilibria. It is well known that a PNE may not optimize the system per-
formance, usually measured by the total cost incurred by all players. The main tools for quantifying
and understanding the performance degradation due to the players’ non-cooperative and selfish be-
haviour have been the Price of Anarchy (PoA), introduced by Koutsoupias and Papadimitriou [19],
and the Price of Stability (PoS), introduced by Anshelevich et al. [3]. The (pure) PoA (resp. PoS) is
the worst-case (resp. best-case) ratio of the total cost of a PNE to the optimal total cost.

Many recent contributions have provided tight upper and lower bounds on the PoA and the PoS
for several interesting classes of congestion games, mostly congestion games with linear and poly-
nomial delays. Awerbuch et al. [5] and Christodoulou and Koutsoupias [12] proved that the PoA
of congestion games is 5/2 for linear delays and dΘ(d) for polynomial delays of degree d. Subse-
quently, Aland et al. [2] obtained exact bounds on the PoA for congestion games with polynomial
delays. For weighted congestion games with linear delays, Awerbuch et al. [5] proved that the PoA
is (3 +

√
5)/2. Christodoulou and Koutsoupias and Caragiannis et al. [11, 9] proved that the PoS for

congestion games with linear delays is 1 +
√

3/3. Recently, Christodoulou et al. [13] obtained tight
bounds on the PoA and the PoS of approximate PNE for congestion games with linear delays.

Convergence Time to Pure Nash Equilibria. The existence of a potential function implies that a PNE is
reached in a natural way when players iteratively select strategies that improve on their individual cost,
given the strategies of other players. Nevertheless, this may take an exponential number of steps, since
computing a PNE is PLS-complete even for symmetric congestion games and for asymmetric network
games with linear delays [14, 1]. In fact, the proofs of [14, 1] establish the existence of instances where
any sequence of players’ improvement moves is exponentially long.

A natural approach to circumvent the strong negative results of [14, 1] is to resort to approxi-
mate PNE, where no player can significantly improve his individual cost by unilaterally changing
his strategy. Chien and Sinclair [10] considered symmetric congestion games with a weak restriction
on the delay functions, and proved that several natural families of sequences of significant improve-
ment moves converge to an approximate PNE in polynomial time. On the other hand, Skopalik and
Vöcking [21] proved that computing an approximate PNE for asymmetric congestion games is PLS-
complete, and that even with the restriction of [10] on the delay functions, there are instances where
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any sequence of significant improvement moves leading to an approximate PNE is exponentially long.
Nevertheless, Awerbuch et al. [6] showed that for unweighted congestion games with polynomial de-
lays and for weighted games with linear delays, many natural families of sequences of significant
improvement moves reach an approximately optimal configuration in polynomial time, where the
approximation ratio is arbitrarily close to the PoA of the game.

Social Ignorance in Congestion Games. Most of the recent work on congestion games (including all
the references above) focuses on the full information setting, where each player knows the precise
weights and the actual strategies of all other players, and his strategy selection takes all this infor-
mation into account. In many typical applications of congestion games however, the players arguably
have incomplete information not only about the precise weights or the actual strategies, but also about
the mere existence of (some of) the players with whom they compete for resources5 (see e.g. [16,
18, 17, 7, 8] for similar considerations). In fact, in many applications of congestion games, it is both
natural and convenient to assume that there is a social context associated with the game, and that the
social context essentially determines the information available to the players. In particular, one may
assume that each player has complete information about the set of players in his social neighborhood,
and limited (if any) information about the other players.

The motivation of this work is to investigate how such social-context-related information consid-
erations affect the inefficiency of PNE and the convergence rate to approximate PNE. To come up with
a manageable setting that allows for some concrete answers, we make the simplifying assumption that
each player has complete information about the players in his social neighborhood, and no informa-
tion whatsoever about the remaining players. Therefore, since each player is not aware of the players
outside his social neighborhood, his individual cost and his strategy selection are not affected by them.
In fact, this is the model of graphical congestion games, introduced by Bilò, Fanelli, Flammini, and
Moscardelli [7], and motivated by very similar considerations. The new ingredient in the definition of
graphical congestion games is the social graph, which represents the players’ social context. The so-
cial graph is defined on the set of players and contains an edge between each pair of players that know
each other. The basic idea (and assumption) behind graphical congestion games is that the individual
cost (aka presumed cost) of each player only depends on the players in his social neighborhood, and
thus his strategy selection is only affected by them.

Bilò et al. [7] considered unweighted graphical congestion games, and proved that such games
with linear delays and undirected social graphs admit a potential function, and thus a PNE. In addi-
tion, they proved that graphical games with directed acyclic social graphs have a PNE reached by a
particular sequence of best response moves. For unweighted linear graphical games, Bilò et al. proved
that the PoS is at most n, and the PoA is at most n(degmax + 1), where n is the number of players
and degmax is the maximum degree of the social graph, and presented certain families of instances
for which these bounds are tight. To the best of our understanding, the fact that these bounds are tight
for some instances illustrates that expressing the PoA and the PoS as functions of n and degmax only
does not provide an accurate picture of the impact of the social ignorance (see also the discussion in
[7, Section 1.2]). In particular, the bound on the PoA conveys the message that the more the players
know (or learn) about other players, the worse the PoA becomes, and fails to capture that as the social
graph tends to the complete graph, the PoA should become a small constant that tends to 5/2.

Contribution. Adopting graphical linear congestion games as a model, we investigate whether there
is a natural parameter of the social graph that completely characterizes the impact of social ignorance

5 In many applications, information considerations have to do not only with what the players actually know or are able
to learn about the game, but also with how much information the players are able or willing to handle in their strategy
selection process.
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on the inefficiency of PNE and on the convergence rate of the ε-Nash dynamics. We restrict our at-
tention to graphical linear games with undirected social graphs. We consider weighted players, so
as to investigate the potential additional impact of different weights (i.e. could the PoA and the PoS
become worse, and if yes, by how much, when many “small” players ignore a few “large” ones com-
pared against the same social situation with all players of the same weight?). With a single exception,
the PoA (resp. PoS) is defined with respect to the actual total cost of the worst (resp. best) PNE,
while equilibria are defined with respect to the presumed cost (i.e. in a PNE, no player can improve
his presumed cost, which is an underestimation of his actual cost based on limited social knowledge).

We prove that the impact of social ignorance on the PoA and the PoS is naturally quantified by the
independence number α(G) of the social graph G, i.e. by the cardinality of the largest set of players
that do not know each other. In particular, we show that the PoA grows roughly as α(G)(α(G) + 2),
which is essentially tight as long as α(G) ≤ n/2, and that the PoS lies between α(G) and 2α(G).

From a technical point of view, we first show that graphical linear games with weighted players
admit a potential function, and thus a PNE (cf. Theorem 1). We remark that our potential function
nicely generalizes the potential function of [15, Theorem 3.2], where the social graph is complete,
and the potential function of [7, Theorem 1], where the players are unweighted.

To bound the PoA and the PoS from above, we show that the total actual cost in any configuration
is an α(G)-approximation of the total presumed cost of the players in the same configuration (cf.
Lemma 1). Then, we prove that the PoA of any graphical linear congestion game with weighted
players is at most α(G)(α(G) + 2 +

√
α2(G) + 4α(G))/2, which varies from (3 +

√
5)/2, when

the social graph is complete6, to roughly α(G)(α(G) + 2), when α(G) is large (cf. Theorem 2).
Furthermore, we show that the upper bound is essentially tight, even for unweighted players, in the
most interesting case where α(G) is no more than half the number of players (cf. Theorem 3). We
also prove that the PoS is at most 2nα(G)

n+α(G) (cf. Theorem 6) and at least α(G) − ε, for any ε > 0
(cf. Theorem 7). It is rather surprising that the upper bounds on the PoA and the PoS only depend
on the cardinality of the largest set of players that do not know each other, not on their weights. In
addition, the fact that all our lower bounds are proven for unweighted players implies that as long as
the worst-case PoA and PoS are concerned, considering players with different weights cannot make
things worse.

Moreover, we prove that the upper bound of α(G)(α(G) + 2 +
√
α2(G) + 4α(G))/2 holds even

if the PoA is calculated with respect to the total presumed cost of the players (cf. Theorem 4), and that
this bound is essentially tight as long as α(G) ≤

√
n/2 (cf. Theorem 5).

As for the convergence time to approximately optimal configurations, we show that it does not
directly depend on the structure of the social graph, only the approximation ratio does. In particular,
using the techniques of Awerbuch et al. [6], we show that the largest improvement ε-Nash dynamics
reaches an approximately optimal configuration in a polynomial number of steps (cf. Theorem 8).
The approximation ratio is arbitrarily close to the PoA, so it is roughly α(G)(α(G) + 2), while the
convergence time is linear in n and in the logarithm of the initial potential value, with the only depen-
dence on the structure of the social graph hidden in the latter term. For graphical linear games with
unweighted players and symmetric strategies, we use the techniques of Chien and Sinclair [10], and
show that the largest improvement ε-Nash dynamics converges to an ε-PNE in a polynomial number
of steps (cf. Theorem 9). Compared to the bound implied by [10, Theorem 3.1] for symmetric linear

6 By a different analysis, we can show that the PoA for unweighted graphical linear games is at most 3α(G)+7
3α(G)+1

α2(G). We

omit the details, since 3α(G)+7
3α(G)+1

α2(G) is better than α(G)(α(G) + 2 +
√
α2(G) + 4α(G))/2 only for α(G) = 1, in

which case the PoA is 5
2

for unweighted players and 3+
√

5
2

for weighted players [5, 12], and for α(G) = 2, in which
case the PoA is at most 52

7
≈ 7.429 for unweighted players and at most 4 +

√
12 ≈ 7.464 for weighted players.
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games, the convergence time increases by a factor up to n due to the social ignorance. Both results
can be extended to the unrestricted ε-Nash dynamics, which proceeds in rounds of bounded length,
and the only requirement is that each player gets a chance to move in every round.

A subtle point about our results is that they refer to a static social information context, an as-
sumption questionable in many settings. This is especially true for the results on the convergence rate
of the ε-Nash dynamics, since during the convergence process, players can become aware of some
initially unknown players. However, our results convey the message that the more the social informa-
tion available, the better the situation becomes due to the fact that α(G) tends to decrease. So as the
players collect social information and increase their social neighborhood, the ε-Nash dynamics keeps
reaching better and better configurations. The entire process takes a polynomial number of steps, since
there are O(n2) acquaintances to be added to the social graph, and for each fixed social graph, the
ε-Nash dynamics reaches a configuration with the desired properties in a polynomial number of steps.

Other Related Work. To the best of our knowledge, Gairing, Monien, and Tiemann [16] were the
first to investigate the impact of incomplete social knowledge on the basic properties of weighted
congestion games. They adopted a Bayesian approach, and mostly focused on parallel-link games.

Our information model can be regarded as a simplified version of the information model con-
sidered by Koutsoupias, Panagopoulou, and Spirakis [18]. Their model is based on a directed social
graph, where each player knows the precise weights of the players in his social neighborhood, and
only a probability distribution for the weights of the rest. Koutsoupias et al. obtained upper and lower
bounds on the PoA for a very simple game with just two identical parallel links.

An alternative model for investigating the impact of social ignorance on the PoA for congestion
games was suggested by Karakostas et al. [17]. In their model, a fraction of the players are totally
ignorant to the presence of other players, and thus oblivious to the resource congestion when selecting
their strategies, while the remaining players have full knowledge. Karakostas et al. considered non-
atomic congestion games, and investigated how the PoA depends on the fraction of ignorant players.

After introducing the model of graphical congestion games in [7], Bilò et al. [8] considered the
PoA and the PoS of graphical multicast cost sharing games, and proved that a central authority can
dramatically decrease the PoA by enforcing a carefully selected social graph.

In an orthogonal approach, Ashlagi, Krysta, and Tennenholtz [4] associated the social graph not
with the information available to the players, but with their individual cost. They suggested that the
individual cost of each player is given by an aggregation function of the delays of the players in his
social neighborhood. The aggregation function is also part of the social context, since it represents the
players’ attitude towards their neighbors.

2 Model and Preliminaries

For any integer k ≥ 1, we denote [k] ≡ {1, . . . , k}. For a vector x = (x1, . . . , xn), we denote
x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x′i) ≡ (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

Weighted Congestion Games. A congestion game with weighted players is defined by a set V = [n]
of players, a positive integer7 weight wi associated with each player i, a set R of resources, a strategy
space Σi ⊆ 2R\{∅} for each player i, and a non-decreasing delay function de : IN 7→ IR≥0 associated
with each resource e. The game is (or the players are) unweighted if wi = 1 for all i ∈ [n]. A
congestion game has symmetric strategies if all players have a common strategy space. Throughout

7 Throughout this paper, we restrict our attention to players with integral weights. This is essentially without loss of
generality, since any game with fractional player weights can be turned into a game with integral player weights without
affecting the properties considered in this paper.
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this paper, we consider linear congestion games, where every resource e is associated with a linear
delay function de(x) = aex+ be, ae, be ≥ 0.

A configuration is a vector s = (s1, . . . , sn) consisting of a strategy si ∈ Σi for each player i. For
every resource e, we let se =

∑
i:e∈si wi denote the congestion induced on e by s. The (actual) cost

of player i in the configuration s is ci(s) =
∑

e∈si wi(aese + be).

Graphical Congestion Games. The new ingredient in the definition of graphical congestion games
is the social graph G(V,E), which is defined on the set of players V and contains an edge {i, j} ∈ E
between each pair of players i, j that know each other. In this work, we consider graphical congestion
games weighted players and simple undirected social graphs, although one can define (and in certain
cases, obtain similar results for) graphical games with directed social graphs.

Given a graphical congestion game with a social graph G(V,E), let α(G) be the independence
number of G, i.e. the cardinality of the largest set of players that do not know each other. For every
configuration s and every resource e, let Ve(s) = {i ∈ V : e ∈ si} be the set of players using e
in s, let Ge(s)(Ve(s), Ee(s)) be the social subgraph of G induced by Ve(s), and let ne(s) = |Ve(s)|
and me(s) = |Ee(s)|. For each player i (not necessarily belonging to Ve(s)), let Γ ie(s) = {j ∈
Ve(s) : {i, j} ∈ E} be the social neighborhood of player i among the players using e in s, and let
degie(s) = |Γ ie(s)| be the number of i’s neighbors using e in s.

In any configuration s, each player i is aware of a presumed congestion sie = wi+
∑

j∈Γ ie(s)wj on
each resource e, and of his presumed cost pi(s) =

∑
e∈si wi(aes

i
e+be). We observe that the presumed

cost coincides with the actual cost if the social graph is complete.
For graphical congestion games, a configuration s is a pure Nash equilibrium (PNE) if no player

can improve his presumed cost by unilaterally changing his strategy. Formally, s is a PNE if for every
player i and all strategies σi ∈ Σi, pi(s) ≤ pi(s−i, σi).

Social Cost, Price of Anarchy, and Price of Stability. In the first part of this work, we are interested
in quantifying the inefficiency of PNE for graphical linear congestion games with weighted players.
We evaluate configurations using the objective of total actual cost. The total cost C(s) of a configu-
ration s is the sum of players’ actual costs in s, i.e. C(s) =

∑n
i=1 ci(s) =

∑
e∈E(aes2

e + bese). The
optimal configuration, denoted o, minimizes the total cost among all configurations.

The (pure) Price of Anarchy (PoA) of a graphical congestion game C is the maximum ratio
C(s)/C(o) over all PNE s of C. The (pure) Price of Stability (PoS) of C is the minimum ratio
C(s)/C(o) over all PNE s of C. In other words, the PoA (resp. PoS) is equal to C(s)/C(o), where s
is C’s PNE of maximum (resp. minimum) total cost.

Other Notions of Cost. We also consider the total presumed cost P (s) of a configuration s, defined
as P (s) =

∑n
i=1 pi(s). For unweighted graphical linear games, we observe that

P (s) =
∑
e∈R

∑
i∈Ve(s)

(ae(degie + 1) + be) =
∑
e∈R

(ae(2me(s) + ne(s)) + bene(s))

For any configuration s, P (s) ≤ C(s), which holds with equality if the social graph is complete. We
let o′ denote the configuration of minimum total presumed cost. The Price of Anarchy with respect to
the total presumed cost is the maximum ratio P (s)/P (o′) over all PNE s.

Moreover, it is helpful to define the total singleton cost U(s) =
∑n

i=1

∑
e∈si wi(aewi + be). For

any configuration s, U(s) ≤ P (s), which holds with equality if the social graph is an independent set.

Potential Functions. A function Φ that assigns a non-negative number Φ(s) to every configuration
s is a potential function for a (graphical congestion) game if when a player i moves from his current
strategy si to a new strategy s′i ∈ Σi, the difference in the potential value equals the difference in the
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(presumed) cost of player i, i.e. Φ(s−i, s′i)−Φ(s) = pi(s−i, s′i)− pi(s). If a game admits a potential
function, its PNE correspond to the local minima of the potential function.
Best Responses, Improvement Moves, and Approximate Equilibria. A strategy s′i ∈ Σi is a best
response of player i to a configuration s if for all strategies σi ∈ Σi, pi(s−i, s′i) ≤ pi(s−i, σi). Given
a configuration s, we let ∆(s) =

∑n
i=1(pi(s) − pi(s−i, s′i)) denote the sum of the improvements on

the presumed cost if each player i moves from his current strategy to his best response s′i.
A strategy σi ∈ Σi is an improvement move of player i in a configuration s if pi(s−i, σi) < pi(s).

Given an ε ∈ (0, 1), a strategy σi ∈ Σi is an (improvement) ε-move of player i in a configuration s
if pi(s−i, σi) < (1 − ε)pi(s), i.e. if player i moving from his current strategy si to σi improves his
presumed cost by a factor more than ε.

For a (graphical congestion) game that admits a potential function, every improvement move
decreases the potential. Therefore, the Nash dynamics, i.e. any sequence of improvement moves,
converges to a PNE in a finite number of steps. Similarly, the ε-Nash dynamics, i.e. any sequence of
ε-moves, converges to a pure Nash ε-equilibrium (ε-PNE), i.e. a configuration where no player has
an ε-move available. Formally, a configuration s is a ε-PNE if for every player i and all strategies
σi ∈ Σi, (1− ε)ci(s) ≤ ci(s−i, σi).

In the second part of this work, we are interested in bounding the number of ε-moves so as to
reach an approximately optimal configuration with approximation ratio arbitrarily close to the PoA of
the game, and for unweighted graphical linear games with symmetric strategies, an ε-PNE.

3 Potential Function and Cost Approximation

Potential Function. We first show that graphical linear congestion games with weighted players admit
a potential function, and thus any sequence of improvement moves converges to a PNE.

Theorem 1. Every graphical linear congestion game with weighted players admits a potential func-
tion, and thus a pure Nash equilibrium.

Proof. Let s be any configuration of a graphical linear congestion game C with weighted players. We
show that

Φ(s) =
∑
e∈R

ae
 ∑
i∈Ve(s)

w2
i +

∑
{i,j}∈Ee(s)

wiwj

+ be
∑

i∈Ve(s)

wi

 =
P (s) + U(s)

2

is a potential function for C. To this end, let i be a player switching from his strategy si in s to a
strategy s′i ∈ Σi, and let s′ = (s−i, s′i) be the resulting configuration. By simple algebra,

Φ(s′)− Φ(s) =
∑

e∈s′i\si

ae
w2

i +
∑

j∈Γ ie(s′)

wiwj

+ bewi

− ∑
e∈si\s′i

ae
w2

i +
∑

j∈Γ ie(s)

wiwj

+ bewi


= wi

∑
e∈s′i\si

(aes′
i
e + be)− wi

∑
e∈si\s′i

(aesie + be)

= pi(s′)− pi(s)

Therefore, the difference in Φ due to player i switching from si to s′i equals the corresponding differ-
ence in i’s individual presumed cost. Consequently, Φ is an exact potential function for the graphical
linear congestion game C with weighted players. ut
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Approximating Actual Cost with Presumed Cost. Our upper bounds on the PoA and the PoS are
based on the fact that for any configuration s, the total actual cost C(s) is an α(G)-approximation of
the total presumed cost P (s), where α(G) is the independence number of the social graph G. Rather
surprisingly, the worst-case ratio C(s)/P (s) does not depend on the maximum weight set of players
that do not know each other, it only depends on their maximum number.

Lemma 1. Let C be any graphical linear congestion game with weighted players, let G(V,E) be
the social graph associated with C, and let α(G) be the independence number of G. Then for any
configuration s, C(s) ≤ α(G)P (s).

Proof. Let s be any configuration, let e be any resource, let Ge(s)(Ve(s), Ee(s)) be the subgraph
induced by the players in Ve(s), and letCe(s) = aes

2
e+bese and Pe(s) =

∑
i∈Ve(s)wi(aes

i
e+be). We

show thatCe(s) ≤ α(Ge(s))Pe(s). The lemma follows since α(Ge(s)) ≤ α(G) for any configuration
s and resource e, and since C(s) =

∑
e∈R Ce(s) and Pe(s) =

∑
e∈R Pe(s). For simplicity and

since we consider a fixed configuration s throughout this proof, we omit the dependence of the social
subgraph and its parameters on s.

To provide some intuition behind the proof, we consider a graph Ge with ne = kα(Ge) vertices,
where k is a positive integer, whose vertices can be partitioned into α(Ge) cliques of size k each. Let
se(`) be the total weight of the vertices in the `-th clique, ` = 1, . . . , α(Ge). We observe that

Pe(s) ≥
α(Ge)∑
`=1

(aes2
e(`) + bese(`)) ≥ aes2

e/α(G) + bese ≥ Ce(s)/α(G) ,

where the penultimate inequality follows from the Cauchy-Schwarz inequality. In addition, (we below
prove that) if Ge does not include any edges other than those in the cliques, then it has the minimum
number of edges that a graph with so many vertices and such a maximum independent set can have.
Intuitively, such a graph should maximize the ratio C(s)/P (s).

For a formal proof, we first show that the inequality Ce(s) ≤ α(Ge)Pe(s) is valid if all players
have unit weights, and then we reduce the weighted case to the unweighted one. In the unweighted
case, it suffices to establish a lower bound on the number of edges me, since for unweighted graphical
games, Pe(s) only depends on me, and not on which players are connected by an edge.

We now let k = ne/α(Ge) ≥ 1 be some rational number, and let r = k − bkc (resp. k − r)
be k’s fractional (resp. integral) part. We partition the vertices of Ge into a sequence of at least dke
independent sets of non-increasing cardinality as follows: We start with the entire graph G(1)

e = Ge
and ` = 1. As long as G(`)

e is non-empty, we find a maximum independent set I` of G(`)
e , obtain the

graph G(`+1)
e by removing the vertices of I` from G

(`)
e , increase ` by one, and iterate. Let q ≥ dke be

the number of independent sets obtained by this decomposition.
The crucial observation is that since I` is a maximum independent set of G(`)

e , for every j =
` + 1, . . . , q, each vertex u ∈ Ij is connected by an edge to at least one vertex in I`. Otherwise, u
could be added to I`, which results in an independent set larger than I`. Hence, for every j = 2, . . . , q,
each vertex u ∈ Ij is incident to at least j − 1 edges connecting it to vertices in the independent sets
I1, . . . , Ij−1. Therefore, the total number of edges inGe is at least

∑q
j=2(j−1)|Ij |. Since

∑q
j=2 |Ij | =

ne − α(Ge) and |Ij | ≤ α(Ge) for all j ∈ [q], the lower bound on the total number of edges is
minimized when q = dke, |Ij | = α(Ge) for all j = {1, . . . , bkc}, and |Idke| = rα(Ge). Thus we
obtain that

me ≥
(k − r)(k − r − 1)

2
α(Ge) + (k − r)rα(Ge) =

(k − r)(k + r − 1)
2

α(Ge) (1)

7



Therefore,

α(Ge)Pe(s) = α(Ge)[ae(2me + ne) + bene]
≥ ae[(k − r)(k + r − 1) + k]α2(Ge) + bekα

2(Ge)
≥ aek2α2(Ge) + bekα(Ge) = Ce(s) ,

where we use (1) for the first inequality, and that r ≥ r2, since r ∈ [0, 1), for the second inequality.
This concludes the proof of the lemma for the unweighted case.

If the players have different weights wi, i ∈ V , we create a new graph G′e by replacing each
player / vertex i ∈ Ve with a clique Qi of wi vertices / players, each of unit weight. For each edge
{i, j} ∈ Ee, we add wiwj edges to G′e that connect every vertex in the clique Qi to every vertex in
the clique Qj . Thus G′e has

∑
i∈Ve wi vertices and

∑
i∈Ve wi(wi − 1)/2 +

∑
{i,j}∈Ee wiwj edges.

We claim that (i) the transformation above does not affect Pe(s) and Ce(s), and that (ii) α(Ge) =
α(G′e). The former claim follows directly from the definitions of G′e, Ce(s), and Pe(s). The latter
claim holds because at most one vertex from each clique Qi can be included in an independent set of
G′e, and two vertices from the cliques Qi and Qj are not connected by an edge in G′e iff vertices i and
j are not connected by an edge in Ge. Therefore, there is a correspondence between independent sets
of a given size in Ge and G′e, which implies the claim.

Since we have already established the lemma in the unweighted setting, Pe(s) ≤ α(G′e)Ce(s),
which implies that Pe(s) ≤ α(Ge)Ce(s) is valid even if the players have different weights. ut

4 The Price of Anarchy and the Price of Stability

An Upper Bound on the Presumed Cost. We start by establishing an upper bound on the presumed
cost P (s) of any configuration s in terms of the optimal total cost C(o) and the sum of improvements
on the presumed cost ∆(s) =

∑n
i=1(pi(s) − pi(s−i, s′i)) if each player i switches from si to his

best response s′i. This upper bound is useful both in bounding the PoA and in establishing the fast
convergence of the ε-Nash dynamics to approximately optimal configurations.

Lemma 2. Let C be a graphical linear congestion game with weighted players arranged in a social
graph G, let α(G) be the independence number of G, and let o be the optimal configuration. Then,
for any configuration s,

P (s) ≤
α(G) + 2 +

√
α2(G) + 4α(G)
2

C(o) + 2∆(s) (2)

Proof. We follow the general approach of [6, Lemma 4.1] and [5, Theorem 3.1]. The difference is
that we have to bound the total presumed cost in terms of the optimal total cost.

The presumed cost of each players i if he switches to his best response strategy s′i is at most his
presumed cost if he switches to his optimal strategy oi. Thus,

pi(s−i, s′i) ≤ pi(s−i, oi) ≤
∑
e∈oi

wi(ae(se + wi) + be) (3)

Summing up over all players, we obtain the following inequality, whose proof can be found in the
Appendix, Section A.1:

n∑
i=1

pi(s−i, s′i) ≤
√
C(o)α(G)P (s) + C(o) (4)

8



By adding ∆(s) to both sides of (4) and dividing by C(o), we obtain that :

P (s)
C(o)

≤
√
α(G)

√
P (s)
C(o)

+ 1 +
∆(s)
C(o)

(5)

Setting β = P (s)/C(o) and γ = ∆(s)/C(o), (5) becomes β2 ≤
√
α(G)β + 1 + γ. By simple

algebra, we obtain that β ≤ (
√
α(G) +

√
α(G) + 4(1 + γ))/2, which implies that

P (s)
C(o)

≤
α(G) + 2 +

√
α2(G) + 4α(G)
2

+ 2
∆(s)
C(o)

ut

The Price of Anarchy. Lemma 1 and Lemma 2 immediately imply the following upper bound on the
PoA of graphical linear congestion games with weighted players.

Theorem 2. For graphical linear congestion games with weighted players, the Price of Anarchy is at
most α(G)(α(G) + 2 +

√
α2(G) + 4α(G))/2, where α(G) denotes the independence number of the

social graph G.

Theorem 2 implies that the PoA of any graphical linear game with weighted players is less than
α(G)(α(G) + 2). Bilò et al. [7, Theorem 13] present a family of unweighted graphical games with n
players arranged in a bipartite social graph G with α(G) = n/2, for which the PoA is ω(α(G)) and
can be as large as α2(G). Next we present a different family of unweighted graphical games for which
the ratio α(G)/n can take any value in (0, 1

2 ] and the PoA is at least α(G)(α(G) + 1). Thus we show
that as long as α(G) ≤ n/2, the upper bound of Theorem 2 is essentially tight.

Theorem 3. For any integers ` ≥ 1 and n ≥ 2`, there is a graphical linear congestion game with n
unweighted players arranged in a social graph G with α(G) = `, for which the PoA is `(`+ 1).

Proof. We first show how to construct such a graphical game if k = n/` is an integer. The social graph
G is the complete k-partite graph with each independent set consisting of ` vertices. The resource set
R consists of k(`+1) resources eji , j ∈ [k], i ∈ {0}∪ [`]. All resources have delay function d(x) = x.

Each player has two strategies, the “short” one and the “long” one. For the i-th player in the j-th
independent set, the “short” strategy is {eji}, and the “long” strategy is to use all resources of the next
independent set, i.e. {e(jmod k)+1

0 , e
(jmod k)+1
1 , . . . , e

(jmod k)+1
` } (see also Fig. 1 in the Appendix).

The optimal configuration o assigns all players to their “short” strategies and achieves a total cost
of C(o) = k`. On the other hand, there is a PNE s where all players use their “long” strategies. The
presumed cost of each player in s is ` + 1, equal to his presumed cost if he switches to his “short”
strategy. The actual cost of each player in s is `(` + 1), the total cost of s is C(s) = k`2(` + 1), and
the PoA is `(`+ 1).

We can handle the case where n/` is not an integer by letting k = bn/`c and adding n − k` < `
“dummy” players. The “dummy” players are connected to all other players, and their only strategy is
a “dummy” resource e with delay de(x) = 0. ut

Lemma 1 and Lemma 2 also imply the same upper bound on the PoA of graphical linear conges-
tion games with weighted players if the PoA is calculated with respect to the total presumed cost.

Theorem 4. For a graphical congestion game with weighted players, let o′ be the configuration min-
imizing the total presumed cost, and let s be any PNE. Then,

P (s) ≤ α(G)
2

(α(G) + 2 +
√
α2(G) + 4α(G))P (o′) ,

where α(G) denotes the independence number of the social graph G.
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Moreover, we show that the bound of Theorem 4 is essentially tight for social graphs G with
α(G) ≤

√
n/2, even for unweighted players. We emphasize that such a lower bound is best possible,

since the Price of Anarchy with respect to the total presumed cost is at most n (see e.g. [7, Theorem 9],
which can be easily generalized to the weighted case).

Theorem 5. For any integers ` ≥ 1 and n ≥ 2`2, there is a graphical linear congestion game with
n unweighted players arranged in a social graph G with α(G) = `, for which the Price of Anarchy
with respect to the total presumed cost is `2.

Proof. We restrict our attention to the most interesting case where k = n/`2 is an integer. We can
easily handle the case where n/`2 is not an integer as in the proof of Theorem 3.

For any integer k ≥ 2, we construct a graphical game with k`2 unit weight players and PoA with
respect to the total presumed cost equal to `2. The social graph G consists of k groups Gi, i ∈ [k],
where each group Gi consists of ` disjoint independent sets Iji , j ∈ [`], with ` vertices each. The
vertices within each group Gi are also partitioned into ` cliques of cardinality `, with each clique
including one vertex from each independent set Iji , j ∈ [`]. The edges between the vertices in the
same clique are the only edges between vertices in the same group. Furthermore, all pairs of vertices
from different groups are connected to each other by an edge (see also Fig. 2 in the Appendix). The
resource set R consists of k` resources eji , i ∈ [k], j ∈ [`], one for each independent set Iji . All
resources have delay function d(x) = x.

Each player has two strategies, the “short” one and the “long” one. For each player in the inde-
pendent set Iji , the “short” strategy is {eji}, and the “long” strategy is {e1

(imod k)+1, . . . , e
`
(imod k)+1}

(see also Fig. 3 in the Appendix).
The configuration o′ that minimizes the total presumed cost assigns each player to his “short”

strategy. Hence each player has presumed cost 1, and the total presumed cost is P (o′) = k`2. On
the other hand, there is a PNE s where all players use their “long” strategies. The presumed cost of
each player in s is `2, since all players from the same clique in their group are assigned to the same
resources. If a player switches to his “short” strategy, his presumed cost is greater than `2, because
all `2 players from the previous independent set are assigned to the corresponding resource. Hence s
is indeed a PNE with total presumed cost P (s) = k`4. Therefore, the PoA with respect to the total
presumed cost is P (s)/P (o′) = `2. ut

The Price of Stability. An upper bound on the PoS follows easily by the potential function of Theo-
rem 1 and the bound of Lemma 2.

Theorem 6. For graphical linear congestion games with weighted players, the Price of Stability is
at most 2nα(G)

n+α(G) , where n denotes the number of players and α(G) denotes the cardinality of the
maximum independent set of the social graph G.

Proof. Let C be a graphical linear congestion game with n weighted players and social graph G, let
o be the optimal configuration, and let s be the configuration that minimizes the potential function Φ.
Since s is a PNE of C, it suffices to show that C(s)/C(o) ≤ 2nα(G)

n+α(G) . To this end, we observe that:

P (s)/2 + U(s)/2 = Φ(s) ≤ Φ(o) ≤ C(o) ,

where the first inequality follows from the fact that s is a minimizer of Φ.
By Lemma 1, P (s) ≥ C(s)/α(G). In addition,

U(s) =
∑
e∈R

(
ae
∑

i∈Ve(s)w
2
i + bese

)
≥
∑
e∈R

(aes2
e/n+ bese) ≥ C(s)/n ,
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where we use the Cauchy-Schwarz inequality. Therefore, C(s)( 1
2α(G) + 1

2n) ≤ C(o). ut

The following theorem presents a family of unweighted graphical linear games for which the PoS
is almost as large as the independence number of the social graph, thus showing that the upper bound
of Theorem 6 is essentially tight. Its proof can be found in the Appendix, Section A.2.

Theorem 7. For any positive integers ` and n ≥ `, and any ε > 0, there is a graphical linear
congestion game with n unweighted players arranged in a social graph G with α(G) = `, for which
the Price of Stability is `− ε.

5 Convergence Rate of the ε-Nash Dynamics

Convergence to Near Optimal Configurations. Employing the techniques of Awerbuch et al. [6], we
show that the largest improvement ε-Nash dynamics reaches an approximately optimal configuration
in a polynomial number of steps, where the approximation ratio is arbitrarily close to the PoA of
the graphical congestion game. In each step of the largest improvement ε-Nash dynamics, among
all players with an ε-move available, the player with the largest improvement on his presumed cost
moves. The proof of the following theorem can be found in the Appendix, Section A.3.

Theorem 8. Let C be a graphical linear congestion game with n weighted players arranged in a so-
cial graph G(V,E), let s∗ be a minimizer of the potential function Φ, and let 1

8 ≥ δ ≥ ε > 0. Starting
from an initial configuration s0, the largest improvement ε-Nash dynamics reaches a configuration s
with C(s) ≤ α(G)

2 (α(G) + 2 +
√
α2(G) + 4α(G))(1 + 8δ)C(o) in O(nδ log Φ(s0)

Φ(s∗)) steps.

Furthermore, following the approach of [6, Theorem 3.3], we can establish a similar convergence
time for the unrestricted ε-Nash dynamics, which proceeds in rounds of bounded length, and the only
requirement is that each player gets a chance to move in every round. Due to lack of space, we defer
the technical details to the full version of the paper.

Convergence to Approximate Equilibria. For graphical linear games with unweighted players and
symmetric strategies, we employ the techniques of Chien and Sinclair [10] and show the stronger
result that the largest improvement ε-Nash dynamics converges an ε-PNE in a polynomial number of
steps. Compared to the bound implied by [10, Theorem 3.1] for symmetric linear congestion games,
the convergence time increases by a factor up to n due to the players having different social neighbor-
hoods. The proof of the following theorem can be found in the Appendix, Section A.4.

Theorem 9. Let C be a graphical linear congestion game with symmetric strategies and n unweighted
players, let s∗ be a minimizer of the potential function Φ, and let ε ∈ (1, 0). Starting from an initial
configuration s0, the largest improvement ε-Nash dynamics converges in O(n

2

ε log Φ(s0)
Φ(s∗)) steps.

Moreover, following the approach of [10, Theorem 4.1], we can establish a similar convergence
time to an ε-PNE for the unrestricted ε-Nash dynamics, where the only requirement is that each player
gets a chance to move in every round. Due to lack of space, we defer the technical details to the full
version of the paper.
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Fig. 1. The players’ strategy space, the optimal configuration o, and the PNE configuration s in the proof of Theorem 3. The
grey dotted arrows represent the assignment of each player in o, while the black solid arrows represent the assignment of
each player in s.

A Appendix

A.1 The Proof of (4)

Summing up (3) over all players, we obtain that:
n∑
i=1

pi(s−i, s′i) ≤
n∑
i=1

∑
e∈oi

(aesewi + aew
2
i + bewi)

≤
∑
e∈R

aeseoe +
∑
e∈R

(aeo2
e + beoe)

≤
√∑
e∈R

(aeo2
e + beoe)

∑
e∈R

(aes2
e + bese) + C(o)

=
√
C(o)C(s) + C(o)

≤
√
C(o)α(G)P (s) + C(o)

For the second inequality, we rearrange the sums and use that
∑

i:e∈oi wi = oe and that
∑

i:e∈oi w
2
i ≤

o2
e. The third inequality follows from the Cauchy-Schwarz inequality (see also [5, Lemma 3.1]). The

last inequality follows from Lemma 1. ut

A.2 The Proof of Theorem 7

We restrict our attention to the case where k = n/` is an integer. We can easily handle the case where
n/` is not an integer as in the proof of Theorem 3.
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Fig. 2. The social graph in the proof of Theorem 5.

For any integer k ≥ 1, we construct a graphical game with k` unit weight players and symmetric
strategies. The social graph G is the complete k-partite graph whose independent sets consist of `
vertices each. The resource set R consists of k` resources ej , j ∈ [k`], and the strategy space of each
player consists of all singleton subsets of R (i.e. the strategy space is determined by k` parallel links).
Let δ1, . . . , δk` be appropriately small positive numbers such that 0 < δ1 < · · · < δk` (e.g. it suffices
to set δj = j/nβ with β ≥ 3), and let δ =

∑k`
j=1 δj . The delays are dej (x) = x+ δj , for j ∈ [k`].

The optimal configuration o assigns one player to each resource and achieves a total cost of
C(o) = k`+ δ. In any PNE s, players from different independent sets use different resources, and all
players in the same independent set use one of the first k resources. Therefore, the total cost of any
PNE s is C(s) ≥ k`2, and the PoS is at least `− ε, provided that δi’s are selected so that δ < ε/k. ut

A.3 The Proof of Theorem 8

For simplicity of notation, we let ρ = (α(G) + 2 +
√
α2(G) + 4α(G))/2 denote the multiplier of

C(o) in (2). We show that as long as the current configuration s has P (s) > ρ(1 + 8δ)C(o), there is
a player with an ε-move that decreases the potential function by at least δ

nΦ(s). Since the potential
function decreases by a factor of 1− δ

n in each step, after O(nδ log Φ(s0)
Φ(s∗)) steps a configuration s with

P (s) ≤ ρ(1 + 4δ)C(o) is reached. Then Lemma 1 implies that C(s) ≤ α(G)ρ(1 + 8δ)C(o).
More precisely, if the current configuration s has P (s) > ρ(1 + 8δ)C(o), it is not and ε-PNE.

Otherwise, ∆(s) ≤ εP (s), and (2) implies that P (s) < ρ(1 + 8δ)C(o), since δ ∈ [1
8 , ε]. Thus we let

U 6= ∅ be the set of players with an ε-move available in s, and let∆U (s) =
∑

i∈U (pi(s)−pi(s−i, s′i)),
where s′i denotes the best response of player i to s. Then ∆U (s) > δP (s), since otherwise ∆(s) ≤
(ε+ δ)P (s), and (2) implies that P (s) < ρ(1 + 8δ)C(o). Therefore, there is a player i ∈ U for whom
moving from his current strategy si to his best response s′i is an ε-move, and pi(s) − pi(si−1, s

′
i) >

δ
nΦ(s), i.e. i moving from si to s′i decreases the potential function by a factor greater than 1− δ

n . ut

A.4 The Proof of Theorem 9

We show that as long as the current configuration s is not an ε-PNE, there is a player i with an ε-move
that decreases the potential function by at least εΦ(s)/n2. Since the potential function decreases by a
factor of 1− ε

n2 in each step, after O(n
2

ε log Φ(s0)
Φ(s∗)) steps an ε-PNE is reached.
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Fig. 3. The players’ strategy space, the configuration o′ of minimum total presumed cost, and the PNE configuration s in
the proof of Theorem 5. The grey dotted arrows represent the assignment of each player in o′, while the black solid arrows
represent the assignment of each player in the s.

More precisely, let i be the next player to move from his strategy si in the current configuration
s to his best response s′i, and let j be the player with the largest presumed cost in s. We observe that
pj(s) ≥ Φ(s)/n.

If player j has also an ε-move in s, the decrease in his presumed cost is at least εpj(s). Since
player i is the one who moves, the decrease in i’s presumed cost (and in the potential function) is at
least εpj(s) ≥ εΦ(s)/n.

If player j does not have an ε-move in s, we show that pi(s) > pj(s)/n. This is sufficient, since
the decrease in i’s presumed cost (and in the potential function) when player i moves from si to s′i is
at least εΦ(s)/n2. To prove that pi(s) > pj(s)/n, we observe that, since all players have a common
set of strategies, player j can move to i’s best response s′i and have a presumed cost:

pj(s−j , s′i) ≤
∑
e∈s′i

(ae(sje + 1) + be) ≤ n
∑
e∈s′i

(ae + be) ≤ npi(s−i, s′i)

Since player i has an ε-move in s but player j does not,

(1− ε)pi(s) > pi(s−i, s′i) ≥ pj(s−j , s′i)/n ≥ (1− ε)pj(s)/n

Therefore, pi(s) > pj(s)/n, which concludes the proof. ut
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