
Mechanism Design with Selective Verification

DIMITRIS FOTAKIS, National Technical University of Athens

CHRISTOS TZAMOS, Massachusetts Institute of Technology

MANOLIS ZAMPETAKIS, Massachusetts Institute of Technology

We introduce a general approach based on selective verification and obtain approximate mechanisms without
money for maximizing the social welfare in the general domain of Utilitarian Voting. Having a good alloca-
tion in mind, a mechanism with verification selects few critical agents and detects, using a verification oracle,
whether they have reported truthfully. If yes, the mechanism produces the desired allocation. Otherwise, the
mechanism ignores any misreports and proceeds recursively with the remaining agents. We obtain random-
ized truthful (or almost truthful) mechanisms without money that verify only O(lnm/ε) agents, where m is
the number of outcomes, independently of the total number of agents, and are (1 − ε)-approximate for the
social welfare. We also show that any truthful mechanism with a constant approximation ratio needs to ver-
ify Ω(logm) agents. A remarkable property of our mechanisms is immunity (to agent misreports), namely
that their outcome depends only on the reports of the truthful agents.
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1. INTRODUCTION

Let us consider a simple mechanism design setting where we place a facility on the line
based on the preferred locations of n strategic agents. Each agent aims to minimize the
distance of her preferred location to the facility and may misreport her location, if she
finds it profitable. Our objective is to minimize the maximum distance of any agent to
the facility and we insist that the facility allocation should be truthful, i.e., no agent
should be able to improve her distance by misreporting her location. The optimal so-
lution is to place the facility at the average of the two extreme locations. However, if
we cannot incentivize truthfulness through monetary transfers (e.g., due to ethical or
practical reasons), the optimal solution is not truthful. E.g., the leftmost agent may
declare a location further on the left so that the facility moves closer to her preferred
location. In fact, for the infinite real line, the optimal solution leads to no equilib-
rium declarations for the two extreme agents. The fact that in this simple setting, the
optimal solution is not truthful was part of the motivation for the research agenda
of approximate mechanism design without money, introduced by Procaccia and Ten-
nenholtz [2013]. They proved that the best deterministic (resp. randomized) truthful
mechanism achieves an approximation ratio of 2 (resp. 3/2) for this problem.
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Our work is motivated by the simple observation that the optimal facility allocation
can be implemented truthfully if we inspect the declared locations of the two extreme
agents and verify that they coincide with their preferred locations (e.g., for their home
address, we may mail something there or visit them). Inspection of the two extreme
locations happens before we place the facility. If both agents are truthful, we place the
facility at their average. Otherwise, we ignore any false declarations and recurse on
the remaining agents. This simple modification of the optimal solution is truthful, be-
cause non-extreme agents do not affect the facility allocation, while the two extreme
agents cannot change the facility location in their favor, due to the verification step.
Interestingly, this also applies to the optimal solution for k facilities on the line when
we minimize the maximum agent-facility distance. Now, we need to inspect the loca-
tions of k extreme agent pairs, one for each facility. Moreover, the Greedy algorithm for
k-Facility Location (see e.g., [Williamson and Shmoys 2011, Sec. 2.2]) becomes truthful
if we verify the k agents allocated a facility and ignore any liars among them (see Sec-
tion 4). Greedy is 2-approximate for minimizing the maximum agent-facility distance,
in any metric space, while Fotakis and Tzamos [2014] show that there are no deter-
ministic truthful mechanisms (without verification) that place k ≥ 2 facilities in tree
metrics and achieve any bounded (in terms of n and k) approximation ratio.

1.1. Selective Verification: Motivation and Justification

Verifying the declarations of most (or all) agents and imposing large penalties on liars
should suffice for the truthful implementation of socially efficient solutions (see e.g.,
[Caragiannis et al. 2012]). But in our facility location examples, we truthfully imple-
ment the optimal (or an almost optimal) solution by verifying a small number of agents
(independent of n) and by using a mild and reasonable penalty. Apparently, verification
is successful in these examples because it is selective, in the sense that we verify only
the critical agents for the facility allocation and fully trust the remaining agents.

Motivated by this observation, we investigate the power of selective verification in
approximate mechanism design without money in general domains. We consider the
general setting of Utilitarian Voting with m outcomes and n strategic agents, where
each agent has a nonnegative utility for each outcome. We aim at truthful mechanisms
that verify few critical agents and guarantee high utility for the agents. We do not in-
clude the verification cost in the social objective and refer to the total agent utility as
the social welfare. The main reason is that in absence of money, it is not clear whether
(and how) the agent utility and the verification cost can be expressed in the same unit.
Instead, we analyze the verification cost as a separate efficiency criterion and require
that it should be low. Our goal is to determine the best approximation guarantee for
the social welfare achievable by truthful mechanisms with limited selective verifica-
tion, so that we obtain a better understanding of the power of selective verification in
mechanism design without money. Our main result is a smooth and essentially best
possible tradeoff between the approximation ratio and the number of agents verified
by randomized truthful (or almost truthful) mechanisms with selective verification.

Our general approach is to start from a (non-truthful) allocation rule f with a good
approximation guarantee for the social welfare and to devise a mechanism F without
money that incentivizes truthful reporting through selective verification. The mech-
anism F first selects an outcome o and an (ideally small) verification set of agents
according to f (e.g., for facility location on the line, the allocation rule f is to take the
average of the two extreme locations, the selected outcome o is the average of the two
extremes in the particular instance and the verification set consists of the two extreme
agents). Next, F detects, through the use of a verification oracle, whether the selected
agents are truthful. If yes, the mechanism outputs o. Otherwise, F excludes any mis-
reporting agents and is applied recursively to the remaining agents. We note that F



asks the verification oracle for a single bit of information about each agent verified:
whether she has reported truthfully or not. F excludes misreporting agents from the
allocation rule, so it does not need to know anything else about their true utilities.

Instead of imposing some explicit (i.e., monetary) penalty to the agents caught lying
by verification, the mechanism F just ignores their reports, a reasonable reaction to
their revealed attempt of manipulating the mechanism. We underline that liars still
get utility from the selected outcome. It just happens that their preferences are not
taken into account by the allocation rule. For these reasons, the penalty of exclusion
from the mechanism is mild and compatible with the main assumption behind mech-
anisms without money (i.e., that in absence of monetary transfers, selecting an appro-
priate outcome is the only way in which the mechanism can affect the agent utilities).

Selective verification allows for an explicit quantification of the amount of verifi-
cation and is applicable to essentially any domain. From a theoretical viewpoint, we
believe that it can lead to a deep and delicate understanding of the power of lim-
ited verification in approximate mechanism design without money. From a practical
viewpoint, the extent to which selective verification and the penalty of ignoring false
declarations are natural depends on the particular domain / application. E.g., for ap-
plications of facility location, where utility is usually determined by the home address
of each agent, public authorities have simple ways of verifying it. E.g., registration
to a public service usually requires a certificate of address. Failure to provide such a
certificate usually implies that the application is ignored, with no penalties attached.

1.2. Technical Approach and Results

A (randomized) mechanism with selective verification is truthful (in expectation) if no
matter what the other agents report and whether they are truthful, truthful reporting
maximizes the (expected) utility of each agent from the mechanism. Two nice features
of our allocation rules (and mechanisms) is that they are strongly anonymous and
scale invariant. The former means that the allocation only depends on the total agents’
utility for each outcome (and not on each agent’s contribution) and the latter means
that multiplying all valuations by a positive factor does not change the allocation.

For mechanisms with selective verification, truthfulness is a consequence of two nat-
ural (and desirable) properties: immunity and voluntary participation. Immunity is a
remarkable property made possible by selective verification. A mechanism with verifi-
cation F is immune (to agent misreports) if F completely ignores any misreports and
the resulting probability distribution is determined by the reports of truthful agents
only. So, if F is immune, no misreporting agent can change the resulting allocation
whatsoever. We achieve immunity through obliviousness of F to the declarations of
misreporting agents not verified (see also [Fotakis and Tzamos 2013b, Sec. 5]). Specif-
ically, a randomized mechanism F is oblivious if the probability distribution of F over
the outcomes, conditional on the event that no misreporting agents are included in
the verification set, is identical to the probability distribution of F if all misreporting
agents are excluded from the mechanism. Namely, misreporting agents not verified
do not affect the allocation of F . By induction on the number of agents, we show that
obliviousness is a sufficient condition for immunity (Lemma 3.1). To the best of our
knowledge, this is the first time that immunity (or a similar) property is considered in
mechanism design. We defer the discussion about immunity to Section 11.

Immunity leaves each agent with essentially two options: either she reports truth-
fully and participates in the mechanism or she lies and is excluded from it. An alloca-
tion rule satisfies voluntary participation (or simply, participation) if each agent’s util-
ity when she is truthful is no less than her utility when she is excluded from the mech-
anism. Immunity and participation imply truthfulness (Lemma 3.2). We prove that
strongly anonymous randomized allocation rules that satisfy participation are closely



related to maximal in distributional range rules (see e.g., [Dobzinski and Dughmi
2013; Lavi and Swamy 2011]), i.e., allocation rules that maximize the expected social
welfare over a subset of probability distributions over outcomes. Specifically, we show
that maximizing the social welfare is sufficient for participation (Lemma 2.1), while
for scale invariant and continuous allocation rules, it is also necessary (Lemma 2.2).

As a proof of concept1, we apply selective verification to k-Facility Location problems
(Section 4), which have served as benchmarks in approximate mechanism design with-
out money (see e.g., [Procaccia and Tennenholtz 2013; Alon et al. 2010; Lu et al. 2010;
Fotakis and Tzamos 2013a] and the references therein). We show that the Greedy al-
location ([Williamson and Shmoys 2011, Section 2.2]) and the Proportional allocation
[Lu et al. 2010; Arthur and Vassilvitskii 2007] satisfy participation and are immune
and truthful, if we verify the k agents allocated the facilities (Theorems 4.1 and 4.2).

For the general domain of Utilitarian Voting, we aim at strongly anonymous random-
ized allocation rules that are maximal in distributional range, so that they satisfy par-
ticipation, and oblivious, so that they achieve immunity. In Section 5, we present the
Power mechanism, which selects each outcome o with probability proportional to the ℓ-
th power of the total utility for o, where ℓ ≥ 0 is a parameter. Power provides a smooth
transition from the (immune and truthful) uniform allocation, where each outcome is
selected with probability 1/m, for ℓ = 0, to the optimal solution, for ℓ → ∞. Power is
scale invariant, approximately maximizes the social welfare and approximately satis-
fies participation. Exploiting the proportional nature of its probability distribution, we
make Power oblivious and immune by verifying at most ℓ agents. Using ℓ = lnm/ε, we
obtain that for any ε > 0, Power with selective verification of lnm/ε agents, is immune,
ε-truthful and (1 − ε)-approximate for the social welfare (Theorem 5.5).

To quantify the improvement on the approximation ratio due to selective verifica-
tion, we show that without verification, in the general setting of Utilitarian Voting,
the best possible approximation ratio of any randomized truthful mechanism is 1/m.
In a more restricted setting with injective valuations [Filos-Ratsikas and Miltersen
2014], the best known randomized truthful mechanism achieves an approximation ra-
tio of Θ(m−3/4) and the best possible approximation ratio is O(m−2/3).

In Section 7, we characterize the class of scale invariant and strongly anonymous
truthful mechanisms that verify o(n) agents and achieve full allocation, i.e., result in
some outcome with probability 1. We prove that such mechanisms employ a constant
allocation rule, i.e., a probability distribution that does not depend on the agent re-
ports. Therefore, they cannot achieve nontrivial approximation guarantees. Our char-
acterization reveals an interesting connection between continuity (which is necessary
for low verification), full allocation and maximal in distributional range mechanisms.

Relaxing some of the properties in the characterization, we obtain truthful mecha-
nisms with low verification. Relaxing full allocation, we obtain the Partial Power mech-
anism (Section 8), and relaxing scale invariance, we obtain the Exponential mechanism
(Section 9). Both are immune and truthful. For any ε > 0, they verify O(lnm/ε2) agents
in the worst-case and lnm/ε agents in expectation, respectively. Partial Power is (1−ε)-
approximate, while Exponential has an additive error of εn. The amount of verification
is essentially best possible, since any truthful mechanism with constant approximation
ratio needs to verify Ω(logm) agents (Theorem 6.1). We match this lower bound, that
applies to all mechanisms, by strongly anonymous and scale invariant mechanisms.
All our mechanisms can be implemented in time polynomial in n and m.

1One may verify that the optimal solution when we place k facilities on the line and minimize the
maximum distance of any agent to the nearest facility is scale invariant, not strongly anonymous, oblivious
(and thus, immune) and satisfies participation. Immunity and participation imply truthfulness.



Power Partial Power Exponential

ε-truthful truthful truthful
full allocation partial allocation full allocation
scale invariant scale invariant not scale invariant

immune immune immune
(1− ε)-approximation (1− ε)-approximation additive error εn

verification lnm/ε verification O(lnm/ε2) expected verification lnm/ε

Fig. 1. The main properties of our mechanisms. Partial allocation means that the mechanism may result
in an artificial outcome of valuation 0 for all agents (e.g., we may refuse to allocate anything, for private
goods, or to provide the service, for public goods). We depict in bold the property whose relaxation allows the
mechanism to escape the characterization of Section 7.

The properties of our mechanisms are summarized in Fig. 1. In all cases, we achieve
a smooth tradeoff between the number of agents verified and the quality of approxi-
mation. Rather surprisingly, the verification depends on m, the number of outcomes,
but not on n, the number n of agents. Our results imply that especially for public good
allocation, where m is typically independent of n, selective verification of few agents
leads to truthful (or almost truthful) mechanisms that are almost as efficient as VCG,
but do not require any monetary transfers. As a concrete example in this direction, we
discuss, in Section 10, an application to the Combinatorial Public Project problem (see
e.g., [Schapira and Singer 2008; Papadimitriou et al. 2008]).

Due to the space limitations, some proofs and technical claims are omitted from this
extended abstract. The full version of this work is available at [Fotakis et al. 2015b].

1.3. Related Previous Work

Previous work [Archer and Kleinberg 2008; Caragiannis et al. 2012; Fotakis and Zam-
petakis 2015] shows that partial verification is essentially useless in truthful mecha-
nism design. Hence, verification should be exact, i.e., it should forbid even negligible
deviations from the truth, at least for some misreports. So, most research has focused
on the power of exact verification schemes with either limited or costly verification.

Caragiannis et al. [2012] introduced probabilistic verification as a general frame-
work. The idea is that any deviation from the truth is detectable with a probability
depending on the distance of the misreport to the true type. They proved that virtually
any allocation rule can be implemented with money and probabilistic verification if (i)
the detection probability is positive for all agents and for any deviation from the truth;
and (ii) each liar incurs a sufficiently large penalty. Instead, we use selective verifi-
cation and the reasonable penalty of ignoring misreports, and we verify only a small
subset of agents instead of almost all of them.

Selective verification is similar to costly verification, introduced by Townsend [1979].
However, the model of [Townsend 1979] (and other similar models) involve a single
agent and allow for monetary transfers between the agent and the mechanism. As
for mechanisms without monetary transfers, Glazer and Rubinstein [2004] consider
mechanisms that decide on a request based on some claims about an agent’s type.
The mechanism can verify few of these claims and aims to maximize the probabil-
ity that the request is accepted iff it is justified by the agent’s true type. [Ben-Porath
et al. 2014] and [Erlanson and Kleiner 2015] also consider mechanisms without money
and with costly verification, where the objective is to maximize the total agent util-
ity minus the verification cost. Ben-Porath et al. [2014] study truthful allocations of
an indivisible good without money, and Erlanson and Kleiner [2015] study Bayesian
incentive compatible mechanisms without money that choose among two outcomes.
Although their approach is conceptually similar to ours, our setting and our mech-



anisms are much more general, we resort to approximate mechanisms (rather than
exact ones) and treat the verification cost as a separate efficiency criterion (instead of
including it in the social objective). Similar to the mechanisms presented in this work
have been used by [Fotakis et al. 2015a] to extend the setting of Hartline and Rough-
garden [2008], where they aim to maximize the social welfare minus the payments
charged for truthful single-unit and multi-unit auctions.

A significant amount of previous work on mechanism design with verification either
characterizes the optimal mechanism (see e.g., [Sher and Vohra 2014]) or shows that
mechanisms with money and verification achieve better approximation guarantees
than mechanisms without verification (see e.g., [Auletta et al. 2009; Krysta and Ventre
2015]). To the best of our knowledge, our work is the first where truthful mechanisms
with selective verification (instead of “one-sided” verification applied to all agents with
positive utility, see e.g., [Fotakis et al. 2014; Fotakis and Tzamos 2013b; Pountourakis
and Schäfer 2014]) are shown to achieve best possible approximation guarantees for
the general domain of Utilitarian Voting and for Combinatorial Public Project.

From a technical viewpoint, the idea of partial allocation in approximate mechanism
design without money has been applied successfully in [Cole et al. 2013]. However, this
idea alone (i.e., without verification) cannot achieve any strong approximation guaran-
tees for the social welfare in general domains, such as Utilitarian Voting and Combi-
natorial Public Project. Moreover, our motivation for using the exponential mechanism
with selective verification came from [Nissim et al. 2012; Huang and Kannan 2012],
due their tradeoffs between the approximation guarantee and the probability of the
gap mechanism (resp. amount of payments) required for truthfulness.

2. NOTATION AND PRELIMINARIES

For any integer m ≥ 1, we let [m] ≡ {1, . . . ,m}. For an event E, Pr[E] denotes the
probability of E. For a random variable X , E[X ] is the expectation of X . For a finite
set S, ∆(S) is the unit simplex that includes all probability distributions over S. For a
vector ~x = (x1, . . . , xm) and some j ∈ [m], ~x−j is ~x without xj . For a nonempty S ⊆ [m],
~xS = (xj)j∈S is the projection of ~x to S. For vectors ~x and ~y, ~x+~y = (x1+y1, . . . , xm+ym)
denotes their coordinate-wise sum. For a vector ~x and an ℓ ≥ 0, ~xℓ = (xℓ

1, . . . , x
ℓ
m) is the

coordinate-wise power of ~x and ‖~x‖ℓ = (
∑m

j=1 |xj |ℓ)1/ℓ is the ℓ-norm of ~x. For brevity,

we let |~x| ≡ ‖~x‖1. Moreover, ‖~x‖∞ = maxj∈[m]{xj} is the infinity norm of ~x.

Agent Valuations. We consider a set N of n strategic agents with private preferences
over a set O of outcomes. We focus on combinatorial problems, assume that O is finite
and let m ≡ |O| be the number of different outcomes. The preferences of each agent i
are given by a valuation function or type ~xi : O → R≥0 that i seeks to maximize. The
set of possible valuations is the domain D = R

m
≥0. We usually regard each valuation as

a vector ~xi = (xi(j))j∈[m], where xi(j) is i’s valuation for outcome j. A valuation profile
is a tuple ~x = (~x1, . . . , ~xn) consisting of the agent valuations. Given a valuation profile
~x, ~w(~x) = ~x1 + · · · + ~xn is the vector of the total valuation, or simply, of the weight, for
each outcome. We usually write ~w, instead of ~w(~x), when ~x is clear from the context.

Allocation Rules. A (randomized) allocation rule f : Dn → ∆(O) maps each valuation
profile to a probability distribution over O. To allow for the exclusion of some agents
from f , we assume that f is well defined for any number of agents n′ ≤ n. We regard
the probability distribution of f on input ~x as a vector f(~x) = (fj(~x))j∈[m], where fj(~x)
is the probability of outcome j. Then, the expected utility of agent i from f(~x) is equal
to the dot product ~xi · f(~x). An allocation rule is constant if for all valuation profiles ~x
and ~y, f(~x) = f(~y), i.e., the allocation of f is independent of the valuation profile. E.g.,
the uniform allocation, which selects each outcome with probability 1/m, is constant.



An allocation rule f achieves full allocation if for all ~x, |f(~x)| = 1, and partial allo-
cation if |f(~x)| < 1, for some ~x. A full allocation rule always outputs an outcome o ∈ O,
while a partial allocation rule may also output an artificial (or null) outcome not in O.
We assume that all agents have valuation 0 for the null outcome.

Two desirable properties of our allocation rules are strong anonymity and scale in-
variance. An allocation rule f is scale invariant if for any valuation profile ~x and any
α ∈ R>0, f(α~x) = f(~x), i.e., scaling all valuations by α does not change the probability
distribution of f . An allocation rule f is strongly anonymous if f(~x) depends only on the
vector ~w(~x) with outcome weights. Formally, for all valuation profiles ~x and ~y (possibly
with a different number of agents) with ~w(~x) = ~w(~y), f(~x) = f(~y). Hence, a strongly
anonymous rule can be regarded as a one-agent allocation rule f : D → ∆(O). Next, all
allocation rules (and mechanisms) are strongly anonymous, unless stated otherwise.

Approximation Guarantee. The social efficiency of an allocation rule f is evaluated
by an objective function g : Dn × O → R≥0. We mostly consider the objective of social
welfare, where we seek to maximize

∑n
i=1 ~xi · f(~x). The optimal social welfare of a val-

uation profile ~x is ‖∑n
i=1 ~xi‖∞ . An allocation rule f has approximation ratio ρ ∈ (0, 1]

(resp. additive error δ > 0) if for all valuation profiles ~x,
∑n

i=1 ~xi · f(~x) ≥ ρ ‖∑n
i=1 ~xi‖∞

(resp.
∑n

i=1 ~xi · f(~x) ≥ ‖∑n
i=1 ~xi‖∞ − δ ).

Voluntary Participation and MIDR. An allocation rule f satisfies voluntary par-
ticipation (or simply, participation) if for any agent i and any valuation profile ~x,
~xi · f(~x) ≥ ~xi · f(~x−i), i.e., i’s utility does not decrease if she participates in the mech-
anism. For some small ε ∈ (0, 1], f satisfies ε-participation if for any agent i and any
valuation profile ~x, ~xi · f(~x) ≥ ε ~xi · f(~x−i).

An allocation rule f is maximal in distributional range (MIDR) if there exist a range
Z ⊆ {~z ∈ R

m
≥0 : |~z| ≤ 1} of (possibly partial) allocations and a function h : Z → R such

that for all valuation profiles ~x, f(~x) = argmax~z∈Z

∑n
i=1 ~xi · ~z+ h(~z) (see e.g., [Lavi and

Swamy 2011]). We first show that MIDR is a sufficient condition for participation. We
can also show that for scale invariant and strongly anonymous continuous allocation
rules, MIDR is a necessary condition for participation.

LEMMA 2.1. Let f be any MIDR allocation rule. Then, f satisfies participation.

PROOF. Let i be any agent. Since the allocation rule f is MIDR, we obtain that
n
∑

j=1

~xj · f(~x) + h(f(~x)) ≥
n
∑

j=1

~xj · f(~x−i) + h(f(~x−i))

∑

j 6=i

~xj · f(~x−i) + h(f(~x−i)) ≥
∑

j 6=i

~xj · f(~x) + h(f(~x))

We apply the MIDR condition first to ~x and next to ~x−i. Summing up the two inequal-
ities, we obtain that ~xi · f(~x) ≥ ~xi · f(~x−i), i.e., the participation condition.

LEMMA 2.2. For any scale invariant and strongly anonymous continuous allocation
rule f that satisfies participation, there is a range Z of (possibly partial) allocations
such that f(~x) = argmax~z∈Z ~x · ~z.

3. MECHANISMS WITH SELECTIVE VERIFICATION AND BASIC PROPERTIES

A mechanism with selective verification F takes as input a reported valuation profile ~y
and has oracle access to a binary verification vector ~s ∈ {0, 1}n, with si = 1 if agent i has
reported truthfully ~yi = ~xi, and si = 0 otherwise. We assume that F verifies an agent
i through a verification oracle ver that on input i, returns ver(i) = si. So, we regard a
mechanism with verification as a function F : Dn × {0, 1}n → ∆(O). We highlight that



although the entire vector ~s appears as a parameter of F , for notational convenience,
the outcome of F actually depends on few selected coordinates of ~s. We let V (~y) ⊆ N ,
or simply V , be the verification set, i.e., the set of agents verified by F on input ~y. As
for allocation rules, we treat the probability distribution of F over outcomes as an m-
dimensional vector and assume that F is well defined for any number of agents n′ ≤ n.

We start from an allocation rule f and devise a mechanism F that motivates truthful
reporting by selective verification. We say that a mechanism F with selective verifica-
tion is recursive if there is an allocation rule f such that F operates as follows: on a
valuation profile ~y, F selects an outcome o, with probability fo(~y), and a verification set
V (~y), and computes the set L = {i ∈ V (~y) : ver(i) = 0} of misreporting agents in V (~y).
If L = ∅, F returns o. Otherwise, F recurses on ~y−L. Our mechanisms are recursive,
except for Partial Power (Section 8), which adopts a slightly different reaction to L 6= ∅.

Given an allocation rule f , we say that a mechanism with verification F is an exten-

sion of f if for all valuation profiles ~x, F (~x,~1) = f(~x). Namely, F behaves exactly as
f given that all agents report truthfully. For the converse, given a mechanism F , we
say that F induces an allocation rule f if for all ~x, f(~x) = F (~x,~1). For clarity, we refer
to mechanisms with selective verification simply as mechanisms, and denote them by
uppercase letters, and to allocation rules simply as rules or algorithms, and denote
them by lowercase letters. A mechanism F has a property of an allocation rule (e.g.,
scale invariance, partial or full allocation, participation, approximation ratio) iff the
induced rule f has this property.

A mechanism F is ε-truthful, for some ε ∈ (0, 1], if for any agent i, for all valuation
pairs ~xi and ~yi and for any reported valuation ~y−i and verification vector ~s−i ,

~xi · F ((~y−i, ~xi), (~s−i, 1)) ≥ ε ~xi · F ((~y−i, ~yi), (~s−i, 0))

A mechanism F is truthful if it is 1-truthful. Namely, no matter the reported valuations
of the other agents and whether they report truthfully or not, the expected utility of
agent i is maximized if she reports truthfully.

Immunity and Obliviousness. A remarkable property of our mechanisms is immu-
nity, namely that they ignore any misreporting agents and let their outcome depend
on the valuations of truthful agents only. Formally, a mechanism F is immune if for all
reported valuations ~y and verification vectors ~s, F (~y,~s) = F (~yT (~s), (1, . . . , 1)), with the
equality referring to the probability distribution of F , where T (~s) = {i ∈ N : si = 1} is
the set of truthful agents in ~y. Next, we simply use T , instead of T (~s).

A mechanism with selective verification F is oblivious (to the declarations of mis-
reporting agents not verified) if for all valuation profiles ~y and verification vectors ~s,
with L = N \ T (~s), and any outcome o,

Pr[F (~y,~s) = o |V (~y) ∩ L = ∅] = Pr[F (~y−L,~1) = o] (1)

I.e., if the misreporting agents are not included in the verification set, they do not affect
the probability distribution of F (see also [Fotakis and Tzamos 2013b]). By induction
on the number of agents, we show that obliviousness is sufficient for immunity.

LEMMA 3.1. Let F be any oblivious recursive mechanism with selective verification.
Then, F is immune.

PROOF. We fix a valuation profile ~y and a verification vector ~s. We show that for any
outcome o ∈ O, Pr[F (~y,~s) = o] = Pr[F (~yT ,~1) = o], where T ⊆ N is the set of truthful
agents in ~y. The proof is by induction on the number of agents N .

If N = ∅, the statement is obvious. So, we assume inductively that the statement
holds for every proper subset of N . Let L = N \ T be the set of misreporting agents in



~y and let V be the verification set of F on input ~y. Then,

Pr[F (~y,~s) = o] =
∑

L′⊆L

Pr[F (~y,~s) = o |V ∩ L = L′]Pr[V ∩ L = L′] (2)

We have that Pr[F (~y,~s) = o |V ∩L = ∅] = Pr[F (~yT ,~1) = o], by (1), since F is oblivious. If
V includes a non-empty set L′ = V ∩L, since F is recursive, it ignores their declarations
and recurses on ~y−L′. Therefore, for all ∅ 6= L′ ⊆ L,

Pr[F (~y,~s) = o |V ∩ L = L′] = Pr[F (~y−L′, ~s−L′) = o] = Pr[F (~yT ,~1) = o] ,

where the last equality follows from the induction hypothesis, because the set of agents
in ~y−L′ is a proper subset of the set of agents in ~y. Therefore, using that Pr[F (~y,~s) =

o |V ∩ L = L′] = Pr[F (~yT ,~1) = o], for all L′ ⊆ L, in (2), we obtain that Pr[F (~y,~s) = o] =

Pr[F (~yT ,~1) = o], i.e., that F is immune.

Immunity, Participation and Truthfulness. We next show that immunity and par-
ticipation imply truthfulness (note that the converse may not be true, since a truthful
mechanism with verification does not need to be immune). Then, by Lemma 2.1 and
Lemma 3.1, we can focus on MIDR allocation rules for which the outcome and the
verification set can be selected in an oblivious way.

LEMMA 3.2. For any ε ∈ (0, 1], if a mechanism with selective verification F is im-
mune and satisfies ε-participation, then F is ε-truthful.

PROOF. Since F is immune, for any agent i, for any valuation pair ~xi and ~yi and for
all reported valuations ~y−i and verification vectors ~s−i,

F ((~y−i, ~xi), (~s−i, 1)) = F (((~yT )−i, ~xi), (1, . . . , 1)) and

F ((~y−i, ~yi), (~s−i, 0)) = F ((~yT )−i, (1, . . . , 1))

We assume here that ~xi is i’s true type and ~yi 6= ~xi is a misreport. Moreover, using that
f (i.e., the rule induced by F on truthful reports) satisfies ε-participation, we get that:

~xi · F (((~yT )−i, ~xi), (1, . . . , 1)) ≥ ε ~xi · F ((~yT )−i, (1, . . . , 1))

Combining the three equations above, we conclude the proof of the lemma.

Quantifying Verification. Focusing on truthful mechanisms with verification, where
the agents do not have any incentive to misreport, we bound the amount of verification
when the agents are truthful (similarly to the definition of the approximation ratio of F
as the approximation ratio of the induced allocation rule f ). For a truthful mechanism
F , this is exactly the amount of verification required so that F motivates truthfulness.

Given a mechanism with selective verification F , its worst-case verification is
Ver(F ) ≡ max~x∈Dn |V (~x)|, i.e., the maximum number of agents verified by F in any
truthful valuation profile. If F is randomized, its expected verification is E[Ver(F )] ≡
max~x∈Dn E[|V (~x)|], where expectation is over all coin tosses of the mechanism.

4. FACILITY LOCATION MECHANISMS WITH SELECTIVE VERIFICATION

As a proof of concept, we apply mechanisms with verification to k-Facility Location. In
Facility Location problems, we are given some metric space (M,d), where M is a finite
set of points and d is a metric distance function. The possible outcomes are all subsets
of k locations in M . Each agent i has a preferred location ti ∈ M and her “valuation”
for outcome C is ~xi(C) = −d(ti, C), i.e., minus the distance of her preferred location to
the nearest facility in C. So, each agent i aims at minimizing d(ti, C). The mechanism
F takes a profile ~z = (z1, . . . , zn) of reported locations as an input. Using access to a
verification oracle, F maps ~z to a set C of k facility locations.



MECHANISM 1: The Power Mechanism Powℓ(~x,~s)

let N be the set of the remaining agents and let L← ∅

pick an outcome j ∈ O and a tuple ~t ∈ Nℓ with probability proportional to

the value of the term xt1(j)xt2(j) · · ·xtℓ(j)

for each agent i ∈ ~t do
if ver(i) 6= 1 then L← L ∪ {i}

end

if L 6= ∅ then return Powℓ(~x−L, ~s−L)
else return outcome j

Maximum Cost. To minimize maxi∈N{d(ti, F (~t,~1))}, i.e, the maximum distance of any
agent to the nearest facility, we use the 2-approximate Greedy algorithm for k-Center
(see e.g., [Williamson and Shmoys 2011, Sec. 2.2]). On input ~z, Greedy first allocates
a facility to an arbitrary agent. As long as |C| < k, the next facility is allocated to the
agent i maximizing d(zi, C). Verification inspects the reported location zi of each agent
i allocated a facility. If all these agents are truthful, we place the k facilities at their
locations. Otherwise, we exclude any liars among them and recurse on the remain-
ing agents. The following theorem summarizes the properties of Greedy with selective
verification. Recall that there are no deterministic truthful mechanisms (without ver-
ification) that place k ≥ 2 facilities in tree metrics and achieve a bounded (in terms of
n and k) approximation ratio (see [Fotakis and Tzamos 2014]).

THEOREM 4.1. The Greedy mechanism with verification for k-Facility Location is
truthful and immune, is 2-approximate for the maximum cost and verifies k agents.

Social Cost. To minimize
∑n

i=1 d(ti, F (~t,~1)), i.e, the total cost of the agents, we use the
Proportional mechanism [Lu et al. 2010], which is Θ(ln k)-approximate [Arthur and
Vassilvitskii 2007]. Proportional first allocates a facility to an agent chosen uniformly
at random. As long as |C| < k, agent i is allocated the next facility with probability
proportional to d(zi, C). Verifying the reported location of every agent that is allocated
a facility, we obtain that:

THEOREM 4.2. Proportional with verification for k-Facility Location is truthful and
immune, is Θ(ln k)-approximate for the social cost and verifies k agents.

5. THE POWER MECHANISM WITH SELECTIVE VERIFICATION

In this section, we present the Power mechanism, a recursive mechanism with verifica-
tion that approximates the social welfare in the general domain of Utilitarian Voting.

Power with parameter ℓ ≥ 0 (or Powℓ, in short, see also Mechanism 1) is based
on a strongly anonymous and scale invariant allocation rule that assigns probability
proportional to the weight of each outcome raised to ℓ. Hence, for each valuation profile
~x, the outcome of Powℓ is determined by the weight vector ~w =

∑n
i=1 ~xi. Assuming that

all agents are truthful, Powℓ results in outcome j with probability wℓ
j/
∑m

q=1 w
ℓ
q, i.e.,

proportional to wℓ
j (note that for ℓ = 0, we get the uniform allocation, while for ℓ = ∞,

the outcome of maximum weight gets probability 1). To implement this allocation rule
with low verification, we observe that each term wℓ

j can be expanded in nℓ terms:

wℓ
j =

(

∑

i∈N

xi(j)

)ℓ

=
∑

~t∈Nℓ

xt1(j)xt2 (j) · · ·xtℓ(j) (3)



Hence, choosing an outcome j and a tuple ~t ∈ N ℓ with probability proportional to
xt1(j)xt2(j) · · ·xtℓ(j), we end up with outcome j with probability proportional to wℓ

j .

Example 5.1. Let n = 3, ℓ = 2 and wj = x1+x2+x3 (in this example, we omit j from
x’s, for clarity). In (3), we expand w2

j in 32 = 9 terms as follows w2
j = (x1 + x2 + x3)

2 =

x1x1+x1x2+x1x3+x2x1+x2x2+x2x3+x3x1+x3x2+x3x3. Hence, ~t ∈ {1, 2, 3}×{1, 2, 3}.
Given that outcome j is chosen, each of these terms (and the corresponding tuple ~t) is
selected with probability proportional to its value. E.g., x1x2 and ~t = (1, 2) are selected
with probability x1x2/w

2
j and x3x3 and ~t = (3, 3) are selected with probability x2

3/w
2
j .

In Mechanism 1, to select an outcome j and a tuple ~t ∈ N ℓ efficiently, we sample from
(3) in O(m + nℓ) steps. Specifically, we first select outcome j with probability wℓ

j/|~wℓ|.
Then, conditional on j, we select an agent i in each position of ~t independently with
probability xi(j)/wj . Each tuple ~t is picked with probability xt1(j) · · ·xtℓ(j)/|~wℓ|.

The verification set of Powℓ consists of the agents in ~t, i.e., of at most ℓ agents. More-
over, due to its proportional nature, Powℓ is oblivious to the declarations of any misre-
porting agents not verified, and thus, immune. The following formalizes this intuition.

LEMMA 5.2. For any ℓ ≥ 0, Powℓ is immune and verifies at most ℓ agents.

PROOF. If all agents are truthful, Powℓ picks an outcome j and a tuple ~t ∈ N ℓ and
returns j after verifying all agents in ~t. Since there are at most ℓ different agent indices
in ~t, the verification of Powℓ is at most ℓ.

We next show that Powℓ is oblivious to the declarations of any misreporting agents
not verified. Specifically, we show that for all valuation profiles ~x and verification vec-
tors ~s, with L = N \ T (~s), and all outcomes j,

Pr[Powℓ(~x,~s) = j |V (~x) ∩ L = ∅] = Pr[Powℓ(~x−L,~1) = j] (4)

To prove (4), we observe that for any outcome j, the condition V (~x) ∩ L = ∅ implies

that Powℓ(~x,~s) selects only terms xt1(j)xt2 (j) · · ·xtℓ(j) with truthful agents in T (~s).
Every term with some valuation xt′(j) of a misreporting agent t′ ∈ L is excluded, since

V (~x)∩L = ∅ implies that ~t ∈ T (~s)ℓ. Therefore, for any outcome j, Powℓ(~x,~s), conditional

on V (~x) ∩ L = ∅, and Powℓ(~x−L,~1) have exactly the same set of “allowable” terms
from which they select xt1(j)xt2(j) · · ·xtℓ(j) and ~t. In both, every such term is selected
with probability proportional to its value, i.e., with identical probability. Taking all
outcomes into account, we obtain that the distribution of Powℓ(~x,~s), conditional on

V (~x) ∩ L = ∅, and the distribution of Powℓ(~x−L,~1) are identical.

Therefore, Powℓ is oblivious. Since it is also recursive, Lemma 3.1 implies that Powℓ

is immune.

We next establish the approximation ratio of Powℓ for the objective of social welfare.
The intuition is that as ℓ increases from 0 to ∞, the probability distribution of Powℓ

sharpens from the uniform allocation, where each outcome is selected with probability
1/m, to the optimal allocation. The rate of this transition determines the approxima-
tion ratio and is quantified in the following lemma.

LEMMA 5.3. For any ℓ ≥ 0, Powℓ is m−1/(ℓ+1)-approximate for the social welfare.

PROOF. Let us fix any valuation profile ~x and let ~w ≡ ~w(~x) be the outcome weights
in ~x. For the approximation ratio, we can assume that all agents are truthful. So, we
let Powℓ(~w) ≡ Powℓ(~x,~1), for convenience.



The optimal social welfare is ‖~w‖∞. The expected social welfare of the mechanism is

~w · Powℓ(~w) = |~wℓ+1|/|~wℓ|. So the approximation ratio of Powℓ is equal to:

|~wℓ+1|
|~wℓ| ‖~w‖∞

=
(‖~w‖ℓ+1)

ℓ+1

(‖~w‖ℓ)ℓ ‖~w‖∞
=

(‖~w‖ℓ+1

‖~w‖ℓ

)ℓ ‖~w‖ℓ+1

‖~w‖∞
Using that ‖~w‖∞ ≤ ‖~w‖ℓ+1 and that ‖~w‖ℓ ≤ m( 1

ℓ
− 1

ℓ+1 )‖~w‖ℓ+1 = m1/ℓ(ℓ+1)‖~w‖ℓ+1, we

obtain that the approximation ratio of Powℓ is at least m−1/(ℓ+1).

Unfortunately, Power does not satisfy participation. For a simple example, we con-
sider m = 2 outcomes and n = 2 agents with valuations ~x1 = (1, 0) and ~x2 = (3/4, 1/4).
Then, agent 2 prefers outcome 1, but her participation decreases its probability from
1, when agent 1 is alone, to something less than 1, when both agents participate.

However, Power satisfies participation approximately. This follows from the fact that
the Partial Power allocation is MIDR, by definition, and essentially a smoothed version
of Power. Using that the probabilities that each outcome is selected in Partial Power
and in Power are close to each other and the fact that Partial Power satisfies partici-
pation, we obtain the following.

LEMMA 5.4. For any ℓ ≥ 0, Powℓ satisfies m−1/(ℓ+1)-participation.

Since Powℓ is immune and satisfies m−1/(ℓ+1)-participation, Lemma 3.2 implies that
Powℓ is m−1/(ℓ+1)-truthful. Using ℓ = lnm/ε in the three lemmas above, we obtain that:

THEOREM 5.5. For any ε > 0, Powℓ with ℓ = lnm/ε is immune and (1− ε)-truthful,
has worst-case verification lnm/ε, and achieves an approximation ratio of (1−ε) for the
objective of social welfare.

6. LOGARITHMIC VERIFICATION IS BEST POSSIBLE

In this section, we describe a random family of instances where truthfulness requires
a logarithmic expected verification. Thus, we show that the verification bound of The-
orem 5.5 is essentially best possible.

THEOREM 6.1. Let F be randomized truthful mechanism that achieves a constant
approximation ratio for any number of agents n and any number of outcomes m. Then,
F needs expected verification Ω(logm).

PROOF SKETCH. We consider m outcomes and m disjoint groups of agents. Each
group has a large number ν of agents. An agent in group j has valuation either 1 or δ
for outcome j, where δ > 0 is tiny, and valuation 0 for any other outcome. In each group
j, the probability that k agents, 0 ≤ k ≤ ν, have valuation 1 for outcome j is 2−(k+1).
The expected maximum social welfare of such instances is Θ(logm).

We next focus on a group j of agents and fix ~x−j , i.e., the agent declarations in all
other groups. We can show that it is wlog. to assume that the probability of outcome j
depends only on the number of agents in group j that declare 1 for j. Thus, the mech-
anism induces a sequence of probabilities p0, p1, . . . , pk, · · · , where pk is the probability
of outcome j, given that the number of agents that declare 1 for j is k. By truthfulness,
if k agents declare 1 for outcome j, we need to verify each of them with probability at
least pk − pk−1. Otherwise, an agent with valuation δ can declare 1 and improve her
expected utility. Therefore, for any fixed ~x−j , when k agents declare 1 for outcome j,
we need an expected verification of at least k(pk − pk−1) for agents in group j.

Assuming truthful reporting and taking the expectation over the number of agents
in group j with valuation 1, we find that the expected verification for agents in group
j is at least half the mechanism’s expected welfare from group j, conditional on ~x−j ,



minus half the probability of outcome j, conditional on ~x−j . Removing the conditioning
on ~x−j and summing up over all groups j, we conclude that the expected verification
is at least half the mechanism’s expected welfare minus 1/2. Since the mechanism is
O(1)-approximate, there are instances where the expected verification is Ω(logm).

7. CHARACTERIZATION OF STRONGLY ANONYMOUS MECHANISMS

Next, we characterize the class of scale invariant and strongly anonymous truthful
mechanisms that verify o(n) agents. The characterization is technically involved and
consists of four main steps. We first prove that these rules are continuous.

LEMMA 7.1. Let f be any scale invariant and strongly anonymous allocation rule.
If f is discontinuous, every truthful extension F of f needs to verify Ω(n) agents in
expectation, for arbitrarily large n.

PROOF SKETCH. First, we prove that if f has a discontinuity, there are Ω(n) agents
that have a very small valuation δ > 0 and can change the allocation by a constant
factor, independent of n and δ. Next, we focus on any truthful extension F of f and
show that for every agent i that has the ability to change the allocation by a constant
factor, the probability that F verifies i should be at least a constant, say ζ, due to
truthfulness. Therefore, the expected verification of F is at least ζ × Ω(n) = Ω(n).

Therefore, if a truthful mechanism F verifies o(n) agents and induces a scale invari-
ant and strongly anonymous allocation rule f , then f needs to be continuous. We can
prove that such an allocation f satisfies participation. Then, by Lemma 2.2, we obtain
that such an allocation rule f is MIDR. Moreover, we can show that any full allocation
and MIDR rule f is either constant, i.e., its probability distribution does not depend
on the input ~x, or has a discontinuity at ~1. Thus, we obtain the following:

THEOREM 7.2. Let F be any truthful mechanism that verifies o(n) agents, is scale
invariant and strongly anonymous and achieves full allocation. Then, F induces a con-
stant allocation rule.

8. THE PARTIAL POWER MECHANISM WITH SELECTIVE VERIFICATION

The Power mechanism, in Section 5, escapes the characterization of Theorem 7.2 by
relaxing participation (and thus, truthfulness). Next, we present Partial Power which
escapes the characterization by relaxing full allocation. Thus, Partial Power results in
some outcome in O with probability less than 1, and with the remaining probability, it
results in an artificial null outcome for which all agents have valuation 0.

Lemma 2.2 implies that social welfare maximization is essentially necessary for par-
ticipation. The proof of Theorem 7.2 implies that maximizing the social welfare over
∆(O) results in discontinuous mechanisms that need Ω(n) verification (e.g., let m = 2
and consider welfare maximization for weight vectors (1, 1 + ǫ) and (1, 1 − ǫ)). Hence,
for Partial Power, we optimize over a smooth surface that is close to ∆(O), but slightly
curved towards the corners, so that the resulting welfare maximizers are continuous.

More formally, aiming at a strongly anonymous allocation rule f that satisfies
f(~w) = argmax~z∈Z ~w · ~z, for all weight vectors ~w ∈ R

m
≥0, we consider welfare maxi-

mization over the family of sets

Zℓ,r =
{

~z ∈ R
m
≥0 : ‖~z‖1+1/ℓ ≤ (1− 1/r)m−1/(ℓ+1)

}

, for all integers ℓ, r ≥ 1 .

Using the fact that the range Zℓ,r is smooth and strictly convex, we can show that

for any ℓ, r ≥ 1, the allocation rule f (ℓ,r)(~w) obtained as the solution to the optimization
problem max~z∈Zℓ,r

~w · ~z is:



MECHANISM 2: The Partial Power Mechanism PartPowℓ,r(~x,~s)

1 pick r tuples ~t(1), ...,~t(r) ∈ Nℓ+1 with probability proportional to

2 the value of the term
∑

j∈O
xt1(j)xt2(j) · · ·xtℓ+1

(j)

3 for each k ∈ {1, ..., r} and agent i ∈ ~t(k) do
4 if ver(i) 6= 1 then return ⊥
5 end

6 with probability 1−
∑

j
f
(ℓ,r)
j (~w) return null

7 pick an outcome j ∈ O and a tuple ~t ∈ Nℓ with probability proportional to

8 the value of the term xt1(j)xt2(j) · · ·xtℓ(j)

9 for each agent i ∈ ~t do
10 if ver(i) 6= 1 then return ⊥
11 end
12 return outcome j

f (ℓ,r)(~w) =
(1− 1/r)

m1/(ℓ+1)
· ~wℓ

‖~wℓ‖1+1/ℓ

Essentially by definition, f (ℓ,r)(~w) is a continuous allocation, MIDR and satisfies
participation. Moreover, we can show that for any ℓ ≥ 1, the partial allocation f (ℓ,r)

has approximation ratio (1− 1/r)m−1/(ℓ+1) for the social welfare.

We next show that there exists an immune extension PartPowℓ,r of the allocation rule
f (ℓ,r) that uses reasonable verification. Thus, we establish that PartPowℓ,r is truthful.
To this end, we introduce Mechanism 2. Since f (ℓ,r) is strongly anonymous, we consider
below the weight vector ~w ≡ ~w(~x) instead of the valuation profile ~x. If all agents are

truthful, PartPowℓ,r samples exactly from f (ℓ,r)(~w). In particular, assuming truthful re-
porting, steps 1-5 never result in ⊥, step 6 outputs null with probability 1− |f (ℓ,r)(~w)|,
and steps 7-12 work identically to Powℓ, since given that the null outcome is not se-
lected, each outcome j is chosen with probability proportional to wℓ

j .
The most interesting case is when some agents misreport their valuations. To

achieve immunity, we need to ensure that the probability distribution is identical
to the case where all misreporting agents are excluded from the mechanism. Simi-
larly to Powℓ, misreporting agents cannot affect the relative probabilities of each out-
come. In PartPowℓ,r however, they may affect the probability of the null outcome. Thus,
PartPowℓ,r is not oblivious and we cannot establish immunity through Lemma 3.1.

Immunity of PartPowℓ,r is obtained through the special action ⊥, triggered when
verification reveals some misreporting agents. Then, PartPowℓ,r needs to allocate ap-
propriate probabilities to each outcome j and to the null outcome so that the uncondi-
tional probability distribution of PartPowℓ,r is identical to f (ℓ,r)(~wT ), where T is the set

of truthful agents. Hence, when PartPowℓ,r returns ⊥, we verify all agents, compute the
weight vector ~wT for the truthful agents, and return each outcome j with probability:

pj =
f
(ℓ,r)
j (~wT )− Pr[PartPowℓ,r(~x,~s) = j |PartPowℓ,r(~x,~s) 6= ⊥]Pr[PartPowℓ,r(~x,~s) 6= ⊥]

Pr[PartPowℓ,r(~x,~s) = ⊥]

The null outcome is returned with probability 1 −∑j pj. We highlight that these

probabilities are chosen so that we cancel the effect of misreporting agents in the un-
conditional probability distribution of PartPowℓ,r and achieve exactly the probability



distribution f (ℓ,r)(~wT ). Moreover, if the mechanism returns ⊥, we verify all agents. So,
it is always possible to compute there probabilities correctly.

The crucial step is to show that pj ’s are always non-negative and their sum is at most
1. We employ steps 1-5 for this reason. These steps implement additional verification
and ensure that Pr[PartPowℓ,r(~x,~s) = ⊥] is large enough for this property to hold.

THEOREM 8.1. For every ε > 0, there exist integers ℓ, r ≥ 1, such that Partial Power
is truthful, immune, (1 − ε)-approximate for the objective of social welfare and verifies
at most O(lnm/ε2) agents in the worst case.

9. THE EXPONENTIAL MECHANISM WITH SELECTIVE VERIFICATION

Next, we consider the Exponential mechanism (or Expo, for brevity) and show that
it escapes the characterization of Section 7 by relaxing scale invariance. Expo is
strongly anonymous and assigns a probability proportional to the exponential of the
weight of each outcome. Specifically, for any profile ~x, the outcome of Expo depends
on ~w ≡ ∑n

i=1 ~xi. If all agents are truthful, Expoα(~w) results in outcome j with proba-

bility ewj/α/
∑m

q=1 e
wq/α, i.e., proportional to ewj/α, where α > 0 is a parameter. As in

Section 5, we expand every term ewj/α and verify only the agents in the tuple ~t corre-
sponding to each term in the expansion (the sampling is implemented as in Section 5):

ewj/α =

∞
∑

ℓ=0

(wj/α)
ℓ

ℓ!
=

∞
∑

ℓ=0

α−ℓ

ℓ!

∑

~t∈Nℓ

xt1(j)xt2 (j) · · ·xtℓ(j) (5)

The detailed description of Expoα is similar to Mechanism 1, with the only difference
that, in the second step, we pick an outcome j ∈ O, an integer ℓ ≥ 0 and a tuple ~t ∈ N ℓ

with probability proportional to the value of the term xt1(j)xt2 (j) · · ·xtℓ(j)/(α
ℓℓ!). The

following summarizes the properties of Expo.

THEOREM 9.1. For any α > 0, Expoα(~w) is immune and truthful, achieves an ad-
ditive error of α lnm for the social welfare and has expected verification ‖~w‖∞/α.

PROOF SKETCH. Similarly to the proof of Lemma 5.2, we can show that Expoα is
oblivious (note that the allocation of Powℓ is obtained from the allocation of Expoα if
we condition on a particular exponent ℓ). Then, immunity follows from Lemma 3.1, be-
cause Expoα is a recursive mechanism. As for participation, the Exponential allocation
is known to be MIDR with range Z = ∆(O) and function h(~z) = −α

∑

j zj ln zj (see e.g.,

[Huang and Kannan 2012]). Therefore, by Lemma 2.1, Expoα satisfies participation.
Since it is also immune, Lemma 3.2 implies that Expoα is truthful.

For the verification, (5) implies that when all agents are truthful, the number of
agents verified, given that the selected outcome is j, follows a Poisson distribution with
parameter wj/α ≤ ‖~w‖∞/α. Therefore, the expected verification is at most ‖~w‖∞/α.

As for the approximation guarantee, the optimal social welfare ‖~w‖∞ and the objec-
tive maximized by Expoα differ by α times the entropy of the allocation, which is at
most α lnm.

In many settings, we know (or can obtain in a truthful way, e.g., by random sampling)
an estimation E of ‖~w‖∞ with E ≥ ‖~w‖∞ ≥ ρE, for some ρ ∈ (0, 1). Then, we can choose
α = ερE/ lnm and obtain an approximation ratio of 1 − ε with expected verification
lnm/(ρε), for any ε > 0. E.g., if for all agents i, |~xi| = 1, n ≥ ‖~w‖∞ ≥ n/m. Then,
using α = nε/ lnm, we have an additive error of εn with verification lnm/ε. Moreover,
with α = nε/(m lnm), we have approximation ratio 1 − ε with verification m lnm/ε.
Finally, note that, since the number of agents verified follows a Poisson distribution,
by Chernoff bounds, the verification bounds also hold with high probability.



10. AN APPLICATION TO COMBINATORIAL PUBLIC PROJECT

The Combinatorial Public Project Problem (CPPP) was introduced in [Schapira and
Singer 2008; Papadimitriou et al. 2008] and has received considerable attention since
then. An instance consists of a set R with r resources, a parameter k, 1 ≤ k ≤ r, and
n agents. Each agent i has a function ~xi : 2

R → R≥0 that assigns a non-negative valu-
ation ~xi(S) to each resource subset S ⊆ R. We want to compute a set C of k resources
that maximizes

∑

i ~xi(C), i.e., the social welfare from C. We assume that all valuations
~xi are normalized, i.e., ~xi(∅) = 0, and monotone, i.e., ~xi(S1) ≤ ~xi(S2) for all S1 ⊆ S2.

The valuation functions ~xi are implicitly represented through a value oracle that
returns ~xi(S), for any resource subset S, in O(1) time. CPPP is NP-hard and prac-
tically inapproximable in polynomial time, under standard computational complexity
assumptions [Schapira and Singer 2008]. If the valuation functions ~xi are submodu-
lar, i.e., each ~xi satisfies ~xi(S1 ∪ S2) + ~xi(S1 ∩ S2) ≤ ~xi(S1) + ~xi(S2), for all S1, S2 ⊆ R,
CPPP can be approximated in polynomial time within a factor of 1 − 1/e. If the val-
uations ~xi are subadditive, i.e., each ~xi satisfies ~xi(S1 ∪ S2) ≤ ~xi(S1) + ~xi(S2), for all
S1, S2 ⊆ R, CPPP can be approximated in polynomial time within a factor of r−1/2,
while approximating it within any factor better than r−1/4+ε, for any constant ε > 0,
requires exponential communication. Papadimitriou et al. [2008] proved that CPPP
with submodular valuations cannot be approximated in polynomial time (or with poly-
nomial communication) by deterministic truthful mechanisms (with money) within
r−1/2+ε, for any constant ε > 0. Dobzinski [2011] proved a similar communication com-
plexity lower bound for randomized truthful in expectation mechanisms with money.

CPPP can be naturally cast to our Utilitarian Voting framework. The outcome set O
consists of all resource subsets S with |S| = k (hence, m ≤ rk). So, CPPP with general
valuations can be approximated as follows by mechanisms with selective verification:

— For any ε > 0, Power allocates a set of k resources, is immune, ε-truthful, achieves an
approximation ratio of 1− ε and verifies at most k log r/ε agents.

— For any ε > 0, Partial Power allocates a set of k resources with probability 1−O(ε), is
immune, truthful, achieves an approximation ratio of 1 − ε and verifies O(k log r/ε2)
agents. In this case, the empty set corresponds to the null outcome.

— For Exponential, we need to assume that for any agent i, maxS⊆R,|S|≤k ~xi(S) ≤ 1.
Then, for any ε > 0, Exponential allocates a set of k resources, is immune, truth-
ful, and achieves an additive error of εn with verification of O(k log r/ε) agents, or
achieves an approximation ratio of 1− ε with verification of O(krk log r/ε) agents.

These guarantees are very strong and rather surprising, especially if the number of
agents n is significantly larger than k log r, which is true in many practical settings.
We almost reach the optimal social welfare using truthful mechanisms without money
that verify a small number of agents independent of n.

The mechanisms above run in time polynomial in rk and n. So, if valuations are
represented by value oracles, they are not computationally efficient. However, we still
need to resort to approximate solutions, because, in absence of money, the optimal so-
lution is not truthful. We should highlight that computational inefficiency is unavoid-
able, since our approximation ratio of 1 − ε, for any constant ε > 0, is dramatically
better than known lower bounds on the polynomial time approximability of CPPP.

If we seek computationally efficient mechanisms without money for CPPP, we can
combine our mechanisms with existing Maximal-in-Range mechanisms. E.g., for CPPP
with subadditive valuation functions, we can use the maximal-in-range mechanism of
[Schapira and Singer 2008, Sec. 3.2] and obtain randomized polynomial-time truthful
mechanisms without money that achieve an approximation ratio of O(min{k,√r}) for
the social welfare with selective verification of O(k log r) agents.



11. CONCLUSIONS AND DISCUSSION

In this work, we introduce a general approach to approximate mechanism design with-
out money and with selective verification, and apply it to the general domain of Util-
itarian Voting, to Combinatorial Public Project and to k-Facility Location. We present
(mostly) randomized mechanisms that are truthful (or almost truthful) and achieve
essentially best possible approximation guarantees by verifying only few agents.

A remarkable property of our mechanisms is immunity to agent misreports. To the
best of our knowledge, this is the first time that immunity (or a similar) property is
considered in mechanism design. Immunity is a strong property that is possible due
to selective verification. Actually, with the exception of constant mechanisms, whose
probability distribution over outcomes is independent of the agent declarations, a
mechanism can be immune only if it uses exact verification. For a comparison against
truthfulness, immunity means that provided that an agent misreports, her lie cannot
change the final allocation whatsoever, while truthfulness means that a liar cannot
change the allocation in her favor. Hence, truthfulness assumes a utility function that
the agents maximize by truthful reporting. Immunity, on the other hand, does not re-
fer to the agent utilities or incentives. It just ensures that the allocation depends only
on the declarations admitted as truthful ones by the verification oracle.

We believe that immunity can be very useful when the agents do not explicitly de-
clare their utility functions to the mechanism, but instead have (and declare) some
observable types (e.g., address, age, income), and the mechanism translates them into
utility functions. Translating observable types to utility functions may introduce some
error (with respect to the actual agent utilities), which could affect several properties
of the mechanism. E.g., inaccuracy in the utility functions may affect the approxima-
tion ratio, which should be computed with respect to the actual utilities, not those as-
sumed by the mechanism. But assuming reasonable error bounds, the asymptotics of
the approximation ratio should not change (i.e., a constant approximation ratio should
remain constant, but its value may increase). On the other hand, the validity of bi-
nary properties, such as participation and truthfulness, crucially depends on the accu-
racy of utility functions. Interestingly, immunity, also a binary property, is not affected
by what the mechanism assumes about agent utilities, because it is only related to
the verification of the agent declarations. E.g., in Facility Location, the agents declare
their preferred locations to the mechanism. Then, the mechanism assumes that each
agent wants a facility close to her declared location and that her cost increases linearly
with the distance (see also [Fotakis and Tzamos 2013a]). Approximation ratio, partici-
pation and truthfulness depend crucially on this assumption. Immunity however only
depends on whether each agent declares her true location (e.g., her true home address)
to the mechanism, not on how agent costs depend on the distance.
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