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Abstract. We investigate how and to which extent one can exploit risk-
aversion and modify the perceived cost of the players in selfish routing so
that the Price of Anarchy (PoA) is improved. We introduce small random
perturbations to the edge latencies so that the expected latency does
not change, but the perceived cost of the players increases due to risk-
aversion. We adopt the model of γ-modifiable routing games, a variant
of routing games with restricted tolls. We prove that computing the
best γ-enforceable flow is NP-hard for parallel-link networks with affine
latencies and two classes of heterogeneous risk-averse players. On the
positive side, we show that for parallel-link networks with heterogeneous
players and for series-parallel networks with homogeneous players, there
exists a nicely structured γ-enforceable flow whose PoA improves fast
as γ increases. We show that the complexity of computing such a γ-
enforceable flow is determined by the complexity of computing a Nash
flow of the original game. Moreover, we prove that the PoA of this flow is
best possible in the worst-case, in the sense that there are instances where
(i) the best γ-enforceable flow has the same PoA, and (ii) considering
more flexible modifications does not lead to any further improvement.

1 Introduction

Routing games provide an elegant and practically useful model of selfish resource
allocation in transportation and communication networks and have been exten-
sively studied (see e.g., [17]). The majority of previous work assumes that the
players select their routes based on precise knowledge of edge delays. In practical
applications however, the players cannot accurately predict the actual delays due
to their limited knowledge about the traffic conditions and due to unpredictable
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events that affect the edge delays and introduce uncertainty (see e.g., [14,12,1,13]
for examples). Hence, the players select their routes based only on delay esti-
mations and are aware of the uncertainty and the potential inaccuracy of them.
Therefore, to secure themselves from increased delays, whenever this may have
a considerable influence, the players select their routes taking uncertainty into
account (e.g., people take a safe route or plan for a longer-than-usual delay when
they head to an important meeting or to catch a long-distance flight).

Recent work (see e.g., [12,15,1,13] and the references therein) considers rout-
ing games with stochastic delays and risk-averse players, where instead of the
route that minimizes her expected delay, each player selects a route that guaran-
tees a reasonably low actual delay with a reasonably high confidence. There have
been different models of stochastic routing games, each modeling the individual
cost of risk-averse players in a slightly different way. In all cases, the actual delay
is modeled as a random variable and the perceived cost of the players is either
a combination of the expectation and the standard deviation (or the variance)
of their delay [12,13] or a player-specific quantile of the delay distribution [14,1]
(see also [18,4] about the perceived cost of risk-averse players).

No matter the precise modeling, we should expect that stochastic delays and
risk-aversion cannot improve the network performance at equilibrium. Interest-
ingly, [15,13] indicate that in certain settings, stochastic delays and risk-aversion
can actually improve the network performance at equilibrium. Motivated by
these results, we consider routing games on parallel-link and series-parallel net-
works and investigate how one can exploit risk-aversion in order to modify the
perceived cost of the (possibly heterogeneous) players so that the PoA is signif-
icantly improved.

Routing Games. To discuss our approach more precisely, we introduce the
basic notation and terminology about routing games. A (non-atomic) selfish
routing game (or instance) is a tuple G = (G(V,E), (`e)e∈E , r), where G(V,E)
is a directed network with a source s and a sink t, `e : R≥0 → R≥0 is a non-
decreasing delay (or latency) function associated with edge e and r > 0 is the
traffic rate. We let P denote the set of simple s − t paths in G. We say that G
is a parallel-link network if each s− t path is a single edge (or link).

A (feasible) flow f is a non-negative vector on P such that
∑
p∈P fp = r. We

let fe =
∑
p:e∈p fp be flow routed by f on edge e. Given a flow f , the latency of

each edge e is `e(f) = `e(fe), the latency of each path p is `p(f) =
∑
e∈p `e(f)

and the latency of f is L(f) = maxp:fp>0 `p(f).

The traffic r is divided among infinitely many players, each trying to minimize
her latency. A flow f is a Wardrop-Nash flow (or a Nash flow, for brevity), if all
traffic is routed on minimum latency paths, i.e., for any p ∈ P with fp > 0 and
for all p′ ∈ P, `p(f) ≤ `p′(f). Therefore, in a Wardrop-Nash flow f , all players
incur a minimum common latency minp `p(f) = L(f). Under weak assumptions
on delay functions, a Nash flow exists and is essentially unique (see e.g., [17]).

The efficiency of a flow f is measured by the total latency C(f) of the players,
i.e., by C(f) =

∑
e∈E fe`e(f). The optimal flow, denoted o, minimizes the total

latency among all feasible flows. The Price of Anarchy (PoA) quantifies the
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performance degradation due to selfishness. The PoA(G) of a routing game G is
the ratio C(f)/C(o), where f is the Nash flow and o is the optimal flow o of G.
The PoA of a class of routing games is the maximum PoA over all games in the
class. For routing games with latency functions in a class D, the PoA is equal to

PoA(D) = (1 − β(D))−1, where β(D) = sup`∈D,x≥y≥0
y(l(x)−l(y))

xl(x) only depends

on the class of latency functions D [17,3].

Using Risk-Aversion to Modify Edge Latencies. The starting point of
our work is that in some practical applications, we may intentionally introduce
variance to edge delays so that the expected delay does not change, but the
risk-averse cost of the players increases. E.g., in a transportation network, we
can randomly increase or decrease the proportion of time allocated to the green
traffic light for short periods or we can open or close an auxiliary traffic lane.
In a communication network, we might randomly increase or decrease the link
capacity allocated to a particular type of traffic or change its priority. At the
intuitive level, we expect that the effect of such random changes to risk-averse
players is similar to that of refundable tolls (see e.g., [6,11]), albeit restricted in
magnitude due to the bounded variance in edge delays that we can afford.

E.g., let e be an edge with latency `e(x) where we can increase the latency
temporarily to (1 + α1)`e(x) and decrease it temporarily to (1− α2)`e(x). If we
implement the former change with probability p1 and the latter with probability
p2 < 1−p1, the latency function of e becomes a random variable with expectation
[p1(1+α1)+p2(1−α2)+(1−p1−p2)]`e(x). Adjusting p1 and p2 (and possibly α1

and α2) so that p1α1 = p2α2, we achieve an expected latency of `e(x). However, if
the players are (homogeneously) risk-averse and their perceived delay is given by
an (1−p1 +ε)-quantile of the delay distribution (e.g., as in [14,1]), the perceived
latency on e is (1 + α1)`e(x). Similarly, if the individual cost of the risk-averse
players are given by the expectation plus the standard deviation of the delay
distribution (e.g., as in [12]), the perceived latency is (1 +

√
p1α2

1 + p2α2
2 )`e(x).

In both cases, we can achieve a significant increase in the delay perceived by
risk-averse players, while the expected delay remains unchanged.

In most practical situations, the feasible changes in the latency functions are
bounded (and relatively small). Combined with the particular form of risk-averse
individual cost, this determines an upper bound γe on the multiplicative increase
of the delay on each edge e. Moreover, the players may evaluate risk differently
and be heterogeneous wrt. their risk-aversion factors. So, in general, the traffic
rate r is partitioned into k risk-averse classes, where each class i consists of the
players with risk-aversion factor ai and includes a traffic rate ri. If we implement
a multiplicative increase γe on the perceived latency of each edge e, the players
in class i have perceived cost (1 + aiγe)`e(f) on each e and

∑
e∈p(1 + aiγe)`e(f)

on each path1 p. If the players are homogeneous wrt. their risk-aversion, there
is a single class of players with traffic rate r and risk-aversion factor a = 1.

1 To simplify the model and make it easily applicable to general networks, we assume
that the perceived cost of the players under latency modifications is separable. This
is a reasonable simplifying assumption on the structure of risk-averse costs (see also
[15,13]) and only affects the extension of our results to series-parallel networks.
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Contribution. In this work, we assume a given upper bound γ on the maximum
increase in the latency functions and refer to the corresponding routing game as a
γ-modifiable game. We consider both homogeneous and heterogeneous risk-averse
players. We adopt this model as a simple and general abstraction of how one can
exploit risk-aversion to improve the PoA of routing games. Technically, our model
is a variant of restricted refundable tolls considered in [9,2] for homogeneous
players and in [10] for heterogeneous players. However, on the conceptual side
and to the best of our knowledge, this is the first time that risk-aversion is
proposed as a means of implementing restricted tolls, and through this, as a
potential remedy to the inefficiency of selfish routing.

A flow f is γ-enforceable if there is γe-modification on each edge e, with
0 ≤ γe ≤ γ, so that f is a Nash flow of the modified game, i.e., for each player
class i, for every path p used by class i, and for all paths p′,

∑
e∈p(1+aiγe)`e(f) ≤∑

e∈p′(1 + aiγe)`e(f). In this work, we are interested in computing either the
best γ-enforceable flow, which minimizes total latency among all γ-enforceable
flows, or a γ-enforceable flow with low PoA. We measure the PoA in terms of
the total expected latency (instead of the total perceived delay of the players).
In practical applications, the total expected latency is directly related to many
crucial performance parameters (e.g., to the expected pollution in a transporta-
tion network or to the expected throughput in a communication network) and
thus, it is the quantity that a central planner usually seeks to minimize.

In Section 3, we consider routing games on parallel links with homogeneous
players and show that for every γ > 0, there is a nicely structured γ-enforceable
flow whose PoA improves significantly as γ increases. More specifically, based
on a careful rerouting procedure, we show that given an optimal flow o, we can
find a γ-enforceable flow f (along with the corresponding γ-modification) that
“mimics” o in the sense that if fe < oe, e gets a 0-modification, while if fe > oe,
e gets a γ-modification (Lemma 1). The proof of Lemma 1 implies that given
o, we can compute such a flow f and the corresponding γ-modification in time
O(|E|TNE), where TNE is the complexity of computing a Nash flow in the orig-
inal instance. Generalizing the variational inequality approach of [3], similarly
to [2, Section 4], we prove (Theorem 1) that the PoA of the γ-enforceable flow
f constructed in Lemma 1 is at most (1 − βγ(D))−1, where D is the class of

latency functions and βγ(D) = sup`∈D,x≥y≥0
y(`(x)−`(y))−γ(x−y)`(x)

x`(x) is a natural

generalization of the quantity β(D) introduced in [3]. E.g., for affine latency
functions, the PoA of the γ-enforceable f is at most (1− (1− γ)2/4)−1 (Corol-
lary 1), which is significantly less that 4/3 even for small values of γ. We also
show that the PoA of such γ-enforceable flows is best possible in the worst-case
for γ-modifiable games with latency functions in class D (Theorem 2).

In Section 4, we switch to parallel-link games with heterogenous players. We
prove that computing the best γ-enforceable flow is NP-hard for parallel-link
games with affine latencies and only two classes of heterogeneous risk-averse
players (Theorem 3). The proof modifies the construction in [16, Section 6],
which shows that the best Stackelberg modification of parallel-link instances is
NP-hard. Our result significantly strengthens [10, Theorem 1], which establishes
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NP-hardness of best restricted tolls in general s−t networks with affine latencies.
On the positive side, we apply [10, Algorithm 1] and show (Theorem 5) that
the γ-enforceable flow f of Lemma 1 can be turned into a γ-enforceable flow for
parallel-link instances with heterogeneous players. Since only the γ-modifications
are adjusted for heterogeneous players, but the flow itself does not change, the
PoA of f is bounded as above and remains best possible in the worst case.

In Section 5, we extend our approach of finding a γ-enforceable flow that
“mimics” the optimal flow to series-parallel networks. Series-parallel networks
have received considerable attention in the literature of refundable tolls, see e.g.,
[5,7], but to the best of our knowledge, they have not been explicitly considered in
the setting of restricted tolls. Extending the rerouting procedure of Lemma 1, we
show that for routing games in series-parallel networks with homogeneous play-
ers, there is a γ-enforceable flow with PoA at most (1−βγ(D))−1 (Lemma 2 and
Theorem 6). Such a γ-enforceable flow and the corresponding γ-modifications
can be computed in time polynomially related to the time needed for computing
Nash flows in series-parallel networks (Lemma 3).

In Section 6, we consider (p, γ)-modifiable games, where the p-norm of the
edge modifications vector (γe)e∈E is at most γ. This generalization captures ap-
plications where the total variance introduced in the network should be bounded
by γ and could potentially lead to an improved PoA. We prove that the worst-
case PoA under (p, γ)-modifications is essentially identical to the worst-case PoA
under γ/ p

√
m-modifications (Theorem 8). Therefore, even for (p, γ)-modifiable

games, the PoA of the γ/ p
√
m-enforceable flow of Lemma 1 is essentially best

possible. Due to space constraints, we only sketch the main ideas behind our
results and defer the technical details to the full version of this work.

Previous Work. On the conceptual side, our work is closest to those considering
the PoA of stochastic routing games with risk-averse players [12,1,15]. Nikolova
and Stier-Moses [13] recently introduced the price of risk-aversion (PRA), which
is the worst-case ratio of the total latency of the Nash flow for risk-averse players
to the total latency of the Nash flow for risk-neutral players. Interestingly, PRA
can be smaller than 1 and as low as 1 − β(D) for stochastic routing games on
parallel-links (i.e., risk-aversion can improve the PoA to 1 for certain instances).

On the technical side, our work is closest to those investigating the properties
of restricted refundable tolls for routing games [9,2,10]. Bonifaci et al. [2] proved
that for parallel-link networks with homogeneous players, computing the best
γ-enforceable flow reduces to the solution of a convex program. Moreover, they
presented a tight bound of (1−βγ(D))−1 on the PoA of a γ-enforceable flow for
routing games with latency functions in class D. Jelinek et al. [10] considered
restricted tolls for heterogeneous players and proved that computing the best
γ-enforceable flow for s − t networks with affine latencies is NP-hard. On the
positive side, they proved that for parallel-link games with heterogeneous players,
deciding whether a given flow is γ-enforceable (and finding the corresponding γ-
modification) can be performed in polynomial time. Moreover, they showed how
to compute the best γ-enforceable flow for parallel-link games with heterogeneous
players if the maximum allowable modification on each edge is either 0 or infinite.
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2 The Model and Preliminaries

The basic model of routing games is introduced in Section 1. Next, we introduce
some more notation and the classes of γ-modifiable and (p, γ)-modifiable games.

γ-Modifiable Routing Games. A selfish routing game with heterogeneous
players in k classes is a tuple G = (G(V,E), (`e)e∈E , (a

i)i∈[k], (r
i)i∈[k]), where G

is a directed s− t network with m edges, ai is the aversion factor of the players
in class i and ri is the amount of traffic with aversion ai. We assume that a1 = 1
and a1 < a2 < . . . < ak. If the players are homogeneous, there is a single class
with risk aversion a1 = 1 and traffic rate r. Then, an instance is G = (G, `, r).

A flow f is a non-negative vector on P × {1, . . . , k}. We let fa
i

p be the flow

with aversion ai on path p and fp =
∑
i f

ai

p be the total flow on path p. Similarly,

fa
i

e =
∑
p:e∈p f

ai

p is the flow with aversion ai on edge e and fe =
∑
i f

ai

p is the

total flow on edge e. We let amin
e (f) (resp. amax

e (f)) be the smallest (resp. largest)
aversion factor in e under f . If e is not used by f , we let amin

e (f) = amax
e (f) = ak.

We say that an edge e (resp. path p) is used by players of type ai if fa
i

e > 0
(resp. for all e ∈ p). To simplify notation, we may write `e, instead of `e(f).

We say that a routing game G is γ-modifiable if we can select a γe ∈ [0, γ]
for each edge e and change the edge latencies perceived by the players of type
ai from `e(x) to (1 + aiγe)`e(x) using small random perturbations. Any vector
Γ = (γe)e∈E , where γe ∈ [0, γ] for each edge e, is a γ-modification of G. Given
a γ-modification Γ , we let GΓ denote the γ-modified routing game where the
perceived cost of the players is changed according to the modification Γ .

A flow f is a Nash flow of GΓ , if for any path p and any type ai with fa
i

p > 0

and for all paths p′,
∑
e∈p(1 + aiγe)`e(f) ≤

∑
e∈p′(1 + aiγe′)`e′(f). Given a

routing game G, we say that a flow f is γ-enforceable, or simply enforceable, if
there exists a γ-modification Γ of G such that f is a Nash flow of GΓ .

Our assumption is that γ-modifications do not change the expected latency.
Therefore, the total latency of f in both GΓ and G is C(f) =

∑
e∈E fe`e(f).

Hence, the optimal flow o of G is also an optimal flow of GΓ . A flow f is the best
γ-enforceable flow of G if for any other γ-enforceable flow f ′ of G, C(f) ≤ C(f ′).
The Price of Anarchy PoA(GΓ ) of the modified game GΓ is equal to C(f)/C(o),
where f is the Nash flow of GΓ . For a γ-modifiable game G, the PoA of G under γ-
modifications, denoted PoAγ(G), is C(f)/C(o), where f is the best γ-enforceable
flow of G. For routing games with latency functions in class D, PoAγ(D) denotes
the maximum PoAγ(G) over all γ-modifiable games G with latencies in D.

(p, γ)-Modifiable Routing Games. Generalizing γ-modifiable games, we se-

lect a modification γe ≥ 0 for each edge e so that ‖(γe)e∈E‖p = p

√∑
e∈E γ

p
e ≤

γ, for some given integer p ≥ 1, and change the perceived edge latencies as
above. We refer to such games as (p, γ)-modifiable. All the notation above
naturally generalizes to (p, γ)-modifiable games. The PoA of a game G under
(p, γ)-modifications, denoted PoAp

γ(G), is C(f)/C(o), where f is the best (p, γ)-
enforceable flow of G. Similarly, PoAp

γ(D) is the maximum PoA of all (p, γ)-
modifiable games with latency functions in class D.
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Series-Parallel Networks. A directed s− t network G(V,E) is series-parallel
if it either consists of a single edge (s, t) or can be obtained from two series-
parallel networks with terminals (s1, t1) and (s2, t2) composed either in series
or in parallel. In a series composition, t1 is identified with s2, s1 becomes s,
and t2 becomes t. In a parallel composition, s1 is identified with s2 and becomes
s, and t1 is identified with t2 and becomes t (see also [19] for computing the
decomposition of a series-parallel network in linear time).

3 Modifying Routing Games in Parallel-Link Networks

In this section, we study γ-modifiable games on parallel-link networks with ho-
mogeneous risk-averse players. The following is a corollary of [2, Theorem 1] (see
also the main result of [6,11]) and characterizes γ-enforceable optimal flows.

Proposition 1. Let G be a γ-modifiable game on parallel links and let o be the
optimal flow of G. Then, o is γ-enforceable in G if and only if for any link e with
oe > 0 and all links e′ ∈ E, `e(o) ≤ (1 + γ)`e′(o).

Next, we show that for any instance G, there exist a flow f mimicking o and
a γ-modification enforcing f as the Nash flow of the modified instance.

Lemma 1. Let G = (G, `, r) be a γ-modifiable instance on parallel-links with
homogeneous risk-averse players and let o be the optimal flow of G. There is a
feasible flow f and a γ-modification Γ of G such that

(i) f is a Nash flow of the modified instance GΓ .
(ii) for any link e, if fe < oe, then γe = 0, and if fe > oe, then γe = γ.

Moreover, given o, we can compute f and Γ in time O(mTNE), where TNE is
the complexity of computing the Nash flow of any given γ-modification of G.

Proof sketch. The interesting case is where o is not γ-enforceable. Then, we use
induction on the number of links. The base case is obvious. For the inductive step,
let m be a used link with maximum latency in o. Removing m and decreasing
the total traffic rate by om > 0, we obtain an instance G−m = (G−m, `, r − om)
with one link less than G. By induction hypothesis, there are a flow f ′ and a
γ-modification Γ ′ = (γ′e)e∈E−m so that properties (i) and (ii) hold for G−m.

Now we restore link m and the traffic rate to r. The lemma follows directly
from the hypothesis if there is a modification γm so that (1 +γm)`m(o) = L(f ′).

Otherwise, we have that `m(o) > L(f ′). Then, we carefully reroute flow from
link m to the remaining links while maintaining properties (i) and (ii) in G−m.
We do so until the latency of m becomes equal to the cost of the equilibrium flow
that we maintain (under rerouting) in G−m . In order to maintain property (ii),
we pay attention to links e where the flow f ′e reaches oe for the first time and to
links e′ where γ′e′ reaches γ for the first time. For the former, we stop increasing
flow and start increasing γ′e, so that the equilibrium property is maintained. For
the latter, we stop increasing γ′e′ and start increasing the flow again.

More formally, we partition the links in E−m in three classes, according to
property (ii) and to the current equilibrium flow f ′ and modification Γ ′. We let



8 D. Fotakis, D. Kalimeris and T. Lianeas

E1 = {e ∈ E−m : f ′e < oe and γ′e = 0}, E2 = {e ∈ E−m : f ′e = oe and γ′e < γ}
and E3 = {e ∈ E−m : f ′e ≥ oe and γ′e = γ}. We let L = (1 + γ′e)`e(f

′), where e
is any link with f ′e > 0, be the cost of the current equilibrium flow f ′ in G−m .
Moreover, we let L1 = mine∈E1 `e(o) be the minimum cost of an equilibrium flow
in G−m that causes some links of E1 to move to E2, let L2 = mine∈E2

(1+γ)`e(o)
be the minimum cost of an equilibrium flow in G−m that causes some links of
E2 to move to E3, and let L′ = min{L1, L2} ≥ L.

We reroute flow from link m to the links in E1 ∪ E3 and increase γ′e’s for
the links in E2 so that we obtain an equilibrium flow in E−m with cost L′. To
this end, we let xe be such that L′ = (1 + γ′e)`e(f

′
e + xe), for all e ∈ E1 ∪ E3.

Namely, xe is the amount of flow we need to reroute to a link e ∈ E1 ∪ E3 so
that its cost becomes L′. For each link e ∈ E2, we let xe = 0 and increase its
modification factor so that L′ = (1 + γ′e)`e(o). So the total amount of flow that
we need to reroute from E−m is x =

∑
e∈E−m xe. Next, we distinguish between

different cases depending on the flow and the latency in link m after rerouting.

If x < om and `m(om−x) ≥ L′, we update the flow on link m to om−x, the
flow on each link e ∈ E−m to f ′e + xe, and the modification factors of all links
in E2 and apply the rerouting procedure again (in fact, if `m(om − x) = L′, the
procedure terminates). By the definition of L′, every time we apply the rerouting
procedure, either some links e move from E1 to E2 (because after the update
f ′e = oe) or some links e′ move from E2 to E3 (because after the update γ′e = γ).
Since links in E3 cannot move to a different class, this rerouting procedure can
be applied at most 2m times (in total, for all induction steps).

If x < om and `m(om − x) < L′, by continuity (see also [8, Section 3]), there
is some L′′ ∈ (L,L′) such that updating the flow and the modification factors
with target equilibrium cost L′′ (instead of L′) reroutes flow x′ ≤ x < om from
link m to the links in E−m so that `m(om − x′) = L′′ and L′′ is the cost of
any used link in E−m. Hence, we obtain the desired γ-enforceable flow f and
the corresponding modification Γ . Such a value L′′ can be found by computing
the (unique) equilibrium flow f for the links in E1 ∪E3 ∪ {m} with total traffic
rate om +

∑
e∈E1∪E3

f ′e and modifications γe = 0 for all links e ∈ E1 ∪ {m} and
γe = γ for all links e ∈ E3. Moreover, for all links e ∈ E2, we let fe = oe and set
γe so that L′′ = (1 + γe)`e(oe), where γe ≤ γ, because L′′ ≤ L′.

If x = om and `m(0) < L′, the target equilibrium cost L′′ lies between L and
L′ and we apply the same procedure as above. If x = om and `m(0) ≥ L′, we
let γm = 0 and fm = 0. Then, we apply rerouting as above and set fe = f ′e and
γe = γ′e for the remaining links e ∈ E−m.

If x > om and `m(0) ≥ L′, the target equilibrium cost L′′ lies between L and
L′ and link m is not used at equilibrium. So, we let γm = 0 and fm = 0, compute
the equilibrium flow f for the links in E1∪E3 with traffic rate r−

∑
e∈E2

oe and
modifications γe = 0 for all e ∈ E1 and γe = γ for all e ∈ E3. If L′′ ∈ (L,L′) is
the cost of this equilibrium flow, for all links e ∈ E2, we let fe = oe and set γe so
that L′′ = (1 + γe)`e(oe). If x > om and `m(0) < L′, the target equilibrium cost
L′′ again lies between L and L′, but now link m may be used at equilibrium.
Hence, we apply the same procedure but with link m now included in E1. ut
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Price of Anarchy Analysis. We next prove an upper bound on the PoA of
the γ-enforceable flow f of Lemma 1. This also serves as an upper bound on the
PoAγ of the best γ-enforceable flow. The approach is conceptually similar to that
of [3] and exploits the properties (i) and (ii) of Lemma 1. The results are similar
to the results in [2, Section 4], although our approach and the γ-modification
that we consider here are different.

Theorem 1. For γ-modifiable instances on parallel-links with latency functions
in class D, PoAγ(D) ≤ (1− βγ(D))−1, where

βγ(D) = sup
`∈D,x≥y≥0

y(`(x)− `(y))− γ(x− y)`(x)

x`(x)

Proof sketch. Let G = (G, `, r) be an instance on parallel-links with latency
functions in class D and let o be the optimal solution of G. We consider the γ-
enforceable flow f and the corresponding modification Γ = (γe)e∈E of Lemma 1.
By definition, PoAγ(G) ≤ PoA(GΓ ). We next show an upper bound on PoA(GΓ ).

Similarly to the proof of Lemma 1, we partition the links used by f into sets
E1 = {e ∈ E : 0 < fe < oe}, E2 = {e ∈ E : fe = oe > 0} and E3 = {e ∈ E :
fe > oe}. Using the fact that f is a Nash flow of GΓ , we obtain that∑

e∈E
fe`e(f) ≤

∑
e∈E

oe`e(o) +
∑
e∈E3

(
oe(`e(f)− `e(o))− γ(fe − oe)`e(f)

)
(1)

Using the definition of βγ(D), we obtain that:∑
e∈E

fe`e(f) ≤
∑
e∈E

oe`e(o) + βγ(D)
∑
e∈E3

fe`e(f)

Therefore, PoA(GΓ ) ≤ (1− βγ(D))−1. ut

Next we give upper bounds on the PoAγ(D) for γ-modifiable instances with
polynomial latency functions. These bounds apply to the γ-enforceable flow f
of Lemma 1 and to the best γ-enforceable flow.

Corollary 1. For γ-modifiable instances on parallel links with polynomial la-
tency functions of degree d, we have that PoAγ(d) = 1, for all γ ≥ d, and

PoAγ(d) ≤
(

1− d(γ+1
d+1 )

d+1
d + γ

)−1
, for all γ ∈ [0, d) .

For affine latency functions, in particular, PoAγ(1) = 1, for all γ ≥ 1, and

PoAγ(1) ≤
(
1− (1− γ)2/4

)−1
, for all γ ∈ [0, 1) .

Furthermore, we can show that bounds on the PoAγ of Theorem 1 and Corol-
lary 1 are best possible in the worst-case.

Theorem 2. For any class of latency functions D and for any ε > 0, there is
a γ-modifiable instance G on parallel links with homogeneous risk-averse players
and latencies in class D so that PoAγ(G) ≥ (1− βγ(D))−1 − ε.
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4 Parallel-Link Games with Heterogeneous Players

In contrast to the case of homogeneous players, computing the best γ-enforceable
flow for heterogeneous risk-averse players is NP-hard, even for affine latencies.

Theorem 3. Given an instance G on parallel links with affine latencies and two
classes of risk-averse players, a γ > 0 and a target cost C > 0, it is NP-hard to
determine whether there is a γ-enforceable flow with total latency at most C.

Proof sketch. The proof is a modification of the construction in [16, Section 6],
which shows that the best Stackelberg modification for parallel links with affine
latencies is NP-hard. Intuitively, the players with low aversion factor a1 (resp.
high aversion factor a2) correspond to selfish (resp. coordinated) players in [16].

Specifically, we reduce (1/3, 2/3)-Partition to the best γ-enforceable flow.
An instance of (1/3, 2/3)-Partition consists of n positive integers s1, s2, . . . , sn,
so that S =

∑n
i=1 si is a multiple of 3. The goal is to determine whether there

exists a subset X so that
∑
i∈X si = 2S/3.

Given an instance I of (1/3, 2/3)-Partition, we create a routing game G
with n + 1 parallel links and latencies `i(x) = (x/si) + 4, 1 ≤ i ≤ n, and
`n+1(x) = 3x/S. The traffic rate is r = 2S, partitioned into two classes with
traffic r1 = 3S/2 and r2 = S/2. We set γ = 2/17. Working similarly to [16,
Section 6], we show that if a1 = 0 and a2 = 1, I admits a (1/3, 2/3)-partition if
and only if the routing game G admits a γ-enforceable flow f of total latency at
most 35S/4. We show that this holds if a1 is small enough, e.g., if a1 = O(1/S3).
So, we can extend the NP-hardness proof to the case where 1 = a1 < a2. ut

γ-Enforceable Flows with Good Price of Anarchy. Since the best en-
forceable flow is NP-hard, we next establish the existence of an enforceable flow
that “mimics” the optimal flow o, as described by the properties (i) and (ii)
in Lemma 1 and achieves a PoA as low as that in Theorem 1. In the fol-
lowing, we assume that the links are indexed in increasing order of `i(f), i.e.
i < j ⇒ `i(f) ≤ `j(f), with ties broken in favor of links with fe > 0. We start
with a necessary and sufficient condition for a flow f to be γ-enforceable. [10,
Algorithm 1] shows how to efficiently compute a γ-modification for any flow f
that satisfies the following.

Theorem 4. ([10, Theorem 5]) Let G be a γ-modifiable instance on parallel links
with heterogeneous players, let f be a feasible flow and let µ be the maximum
index of a link used by f . Then, f is γ-enforceable if and only if (i) for any used

link i, γ`i(f) ≥
∑µ−1
l=i

`l+1(f)−`l(f)
amin
l+1

and (ii) for all links i and j, if `i(f) < `j(f),

then amax
i (f) ≤ amin

j (f) (more risk-averse players use links of higher latency).

To obtain a γ-enforceable flow f for an instance with heterogeneous players,
we combine Lemma 1 with Theorem 4 and apply [10, Algorithm 1]. Specifically,
we first ignore player heterogeneity and compute, using Lemma 1, a γ-enforceable
flow f and the corresponding modification Γ so that f is a Nash flow of the
modified game GΓ when all players have the minimum risk-aversion factor a1 =
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1. Assuming that the links are indexed in increasing order of their latencies
in f , since f is γ-enforceable with risk-aversion factor a1 = 1 for all players,
Theorem 4 implies that for any used link i, (1 + γ)`i(f) ≥ `µ(f).

Next, we greedily allocate the heterogeneous risk-averse players to f , taking
their risk-averse factors into account, so that each link i receives flow fi and
property (ii) in Theorem 4 is satisfied. Finally, we use [10, Algorithm 1] and
compute a γ-modification that turns f into an equilibrium flow for the modified
instance with heterogeneous players. This is possible because, by construction, f
satisfies condition (i) of Theorem 4. Moreover, since f satisfies the properties of
(i) and (ii) in Lemma 1, the PoA of f can be bounded as in Theorem 1 and (in
Corollary 1, for polynomial and affine latencies). Hence, we obtain the following.

Theorem 5. Let G be a γ-modifiable instance on parallel-links with heteroge-
neous risk-averse players. Given the optimal flow of G, we can compute a fea-
sible flow f and a γ-modification Γ of G in time O(mTNE), where TNE is the
complexity of computing the Nash flow of any given γ-modification of G with
homogeneous risk-averse players. Moreover, the PoAγ , under γ-modifications,
achieved by f is upper bounded as in Theorem 1 and Corollary 1.

5 Modifying Routing Games in Series-Parallel Networks

In this section, we consider γ-modifiable instances on series-parallel networks
with homogeneous players and generalize the results of Section 3. We start with
a sufficient and necessary condition for the optimal flow o to be γ-enforceable.
The following generalizes Proposition 1 and is a corollary of [2, Theorem 1].

Proposition 2. Let G be a γ-modifiable instance on a series-parallel network
and let o be the optimal flow of G. Then, o is γ-enforceable if and only if for any
pair of internally vertex-disjoint paths p and q with common endpoints (possibly
different from s and t) and with oe > 0 for all edges e ∈ p, `p(o) ≤ (1 + γ)`q(o).

We proceed to generalized Lemma 1 to series-parallel networks. The proof is
based on an extension of the rerouting procedure in Lemma 1 combined with a
continuity property of γ-enforceable flows in series-parallel networks.

Lemma 2. Let G = (G, `, r) be a γ-modifiable instance with homogeneous risk-
averse players on a series-parallel network G and let o be the optimal flow of G.
There is a feasible flow f and a γ-modification Γ of G such that

(i) f is a Nash flow of the modified instance GΓ .
(ii) for any edge e, if fe < oe, then γe = 0, and if fe > oe, then γe = γ.

Proof sketch. The proof is by induction on the series-parallel structure of G. For
the base case of a single edge e, the lemma holds without any modifications.

The induction step follows directly from the induction hypothesis if G is
obtained as a series composition of two series-parallel networks. The interesting
case is where G is the result of a parallel composition of series-parallel networks
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G1 and G2. By induction hypothesis, for i ∈ {1, 2}, we let fi be a γ-enforceable
flow of rate ri, with r1 + r2 = r, and Γ i be a γ-modification of Gi such that fi is
the Nash flow of GΓ ii . In the following, we let Li = L(fi) be the equilibrium cost
of flow fi through network Gi with latency functions modified according to Γ i.

If L1 = L2, the claim follows directly from the induction hypothesis. Other-
wise, we assume wlog. that L1 > L2. In this case, we generalize the rerouting
procedure of Lemma 1. Starting with f1 and f2, we reroute flow from used paths
of GΓ 1

1 to GΓ 2
2 , maintaining the equilibrium property on both GΓ 1

1 and GΓ 2
2 and

trying to equalize their equilibrium cost. As in Lemma 1, we have also to main-
tain property (ii), by paying attention to edges e where fe reaches oe for the first
time and to edges e′ where γe′ reaches γ for the first time. For the former, we
stop increasing the flow through any paths including e and start increasing γe,
so that the equilibrium property is maintained. For the latter, we stop increasing
γe′ and start increasing again the flow through paths that include e′.

The idea of the proof is similar to the induction step in Lemma 1. However,
since G1 and G2 are general series-parallel networks connected in parallel, we
need a continuity property, shown in [8, Section 3], about the changes in the
equilibrium flow when the traffic rate slightly increases or decreases. ut

Using the properties (i) and (ii), we show that the upper bound on the PoA
in Theorem 1 extends to the γ-enforceable flow f of Lemma 2 and to the PoAγ of
the best γ-enforceable flow in series-parallel networks with homogeneous players.

Theorem 6. For γ-modifiable instances on series-parallel networks with homo-
geneous players and latency functions in class D, PoAγ(D) ≤ (1− βγ(D))−1.

Given the optimal flow of an instance G on a series-parallel network, we
show how to compute a γ-enforceable flow f and the corresponding modification
so that we achieve a PoA at most (1 − βγ(D))−1. Given o, the running time is
determined by the time required to compute a Nash flow of the original instance.

We first determine whether the optimal flow o is γ-enforceable. To this end,
we remove from G all edges unused by o and check the feasibility of the following:

0 ≤ γe ≤ γ ∀ used edges e∑
e∈p(1 + γe)`e(o) = maxp:op>0 `p(o) ∀ used paths p

(Oγ)

If the linear system (Oγ) is not feasible, then o is not γ-enforceable, by Proposi-
tion 2. Otherwise, using the solution of (Oγ) as γe’s for the edges of G used by
o and setting γe = 0 for the unused edges e, we enforce o as a Nash flow of the
modified game GΓ .

If (Oγ) is not feasible and o is not γ-enforceable, we exploit the constructive
nature of the proof of Lemma 2 and find a γ-enforceable flow in time dominated
by the time required to compute a Nash flow in series-parallel networks.

Lemma 3. Let G be a γ-modifiable instance on a series-parallel network with
homogeneous players. Given the optimal flow of G and any ε > 0, we can compute
a feasible flow f and a γ-modification Γ of G with the properties (i) and (ii) of
Lemma 2 in time O(m2TNE log(r/ε)), where TNE is the complexity of computing
the Nash flow of any given γ-modification of G and ε is an accuracy parameter.
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6 Parallel-Link Games with Relaxed Restrictions

In this section, we consider (p, γ)-modifiable games on parallel links with hetero-
geneous risk-averse players. Observing that any γ/ p

√
m-modification is a (p, γ)-

modification for a (p, γ)-modifiable game, we next show an upper bound on the
PoA under such modifications.

Theorem 7. For any (p, γ)-modifiable instance G on m parallel links with het-
erogeneous risk-averse players and latency functions in class D, we have that
PoAp

γ(G) ≤ PoAγ0(G) ≤ (1− βγ0(D))−1, where γ0 = γ/ p
√
m.

The above bound is tight under weak assumptions on the class D of latency
functions. More specifically, we say that a class of latency functions D is of the
form D0 if (a) ` is continuous and twice differentiable in (0,+∞), (b) `′(x) >
0, ∀x ∈ (0,+∞) or ` is constant, (c) ` is semi-convex, i.e. x`(x) is convex in
[0,+∞) and (d) if ` ∈ D, then (`+ c) ∈ D, for all constants c ∈ R such that for
all x ∈ R≥0, `(x) + c ≥ 0 2. Then we obtain the following.

Theorem 8. For any class D of the form D0 and any ε > 0, there is an instance
G on m parallel links with homogeneous players and latency functions in class
D, so that PoAp

γ(G) ≥ (1− βγ0(D))−1 − ε, where γ0 = γ/ p
√
m.

Proof sketch. We consider an instance Im, with m parallel links, where the first
m − 1 links have the same latency function ` ∈ D (to be fixed later) and link
m has constant latency (1 + γ1)`( r

m−1 ), where γ1 = γ/ p
√
m− 1. The instance

has homogeneous risk-averse players with risk-aversion a1 = 1. Also we let γ0 =
γ/ p
√
m. The proof is an immediate consequence of the following three claims:

Claim 1. For every m ≥ 2 and any latency function ` ∈ D with `(0) = 0,
PoAp

γ(Im) = PoAγ1(Im). I.e., Claim 1 states that the best (p, γ)-modification
for the instance Im is the modification that splits γ evenly among the first m−1
edges. The proof follows from an application of KKT optimality conditions.

Claim 2. For every m ≥ 2 and any ε > 0, there is a latency function `ε,m with
`ε,m(0) = 0 such that setting ` = `ε,m in the instance Im results in PoAγ1(Im) ≥
(1−βγ1(D))−1− ε/2. The proof of Claim 2 is similar to the proof of Theorem 2.

Since `ε,m(0) = 0, we can combine claims 1 and 2 and obtain that for any
m ≥ 2 and any ε > 0, PoAp

γ(Im) ≥ (1− βγ1(D))−1 − ε/2, if we use the latency
function `ε,m.

Claim 3. For every class of latency functions D, any ε > 0 and any γ, there
exists an mε ≥ 2 such that (1− βγ1(D))−1 ≥ (1− βγ0(D))−1 − ε/2.

The proof is based on the fact that γ1 tends to γ0 as the number of parallel
links m grows. Therefore, for any ε > 0, there are an mε and a latency function
`ε,mε such that PoAp

γ(Imε) ≥ (1− βγ0(D))−1 − ε. ut

2 Property (d) requires that D should be closed under addition of constants, as long
as the resulting function remains nonnegative.
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