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Abstract. We study a natural strategic situation arising from the selection of shared means of transportation.
Some clients (the players) are located on different nodes of a given graph and they want to be transported from
their location to a common destination point (e.g. school, airport). A fixed number of resources (also called
buses) is available and each client has to choose exactly one. Individual costs depend on the route chosen by
the buses and the distance between the nodes. We investigate the case where each bus has a static permutation
which prescribes the order by which the clients are visited. We identify the cases admitting a pure strategy
equilibrium and consider the construction of an equilibrium, via a dedicated algorithm, or a dynamics. We
also determine the price of anarchy and the price of stability for two natural social functions.

Keywords: resource allocation game, existence and computation of equilibria, price of anarchy/stability

1 Introduction

In many applications some entities compete for the use of shared resources (e.g. processors, storage).
These resources are typically rare enough to prevent the existence of an ideal situation where every
entity is fully satisfied with the resources that it holds. Allocating scarce resources to a pool of agents
is an important problem in the AGT community. An allocation can be found by a central planner who
strives to optimize a prescribed social choice function. In practice, this approach is often too rigid
as some users, who disregard the social cost and focus on their own individual cost, may not trust the
planner’s global solution. Therefore, one may prefer a more flexible mechanism, i.e. a decentralized way
for constructing an allocation with which the agents can interact and be proactive. Unfortunately such
a mechanism would fail if the agents were unable to commit in a feasible allocation of the resources,
or if every allocation that the agents build has a high social cost. As a consequence, it is necessary to
evaluate the worth of a mechanism with respect to at least two criteria: (Stability) Can the agents reach
a stable state where no one is capable to acquire more revenue? (Performance) Are these stable states
good from a social viewpoint?

We address these questions in a context where some agents, located on different places of a map,
compete for the use of some public means of transportation (e.g. buses), so as to reach a common des-
tination (e.g. an airport). Our work, motivated by services like Dial-a-Ride, Lyft or Uber, uses strategic
games to model the situation. The models are called selfish transportation games because every agent
(also called player) controls a part of the entire solution (i.e. which transportation means she decides to
take) and this agent’s choice is solely guided by her individual cost. Our study focuses on the existence
of pure strategy equilibria, together with a worst-case analysis of the performance of the best (resp.,
worst) pure Nash equilibrium compared to configurations with minimum social cost. Two natural, yet
different, notions of social cost are used. More importantly we concentrate on mechanisms where each
bus visits and picks up the clients according to a fixed order (possibly different for each bus).

1.1 The Model

Let G = (V,E) be an undirected graph with a source s and a destination t. The graph is also endowed
with a distance function d : V × V → R+ which is possibly metric, i.e., symmetric and it obeys the
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triangle inequality. The transportation game has a set N of n players, and each one is located on a
vertex of V . The goal of each player is to be transported from its location to the destination t at the
lowest cost. There is a set M of m ≥ 2 resources (also called buses). Each bus follows a path that starts
from s, visits some players at their location, and finally reaches the destination t. We suppose that each
bus j has its own algorithm Aj which, given V ′ ⊆ V , determines its route, i.e. an s − t path whose
set of intermediate nodes is V ′. Every algorithm Aj is public. It is assumed that a bus always takes
the direct link with distance d(a, b) between two consecutive clients a and b and all links between two
distinct clients are possible.

We consider a strategic game in which each player chooses by which bus it is picked. Thus, M is
the strategy space of every player in N . There are different ways to define ci(σ), the individual cost of
a player i under strategy profile σ. In this work ci(σ) is the distance travelled by σi (the bus selected by
player i) between the original location of i (when player i is picked) and the destination t.

We suppose that each Aj , for j ∈ M , is based on a permutation πj : {1, . . . , n} → N (independent
of the current strategy profile). Actually πj indicates the reverse order by which the players are picked.
This picking order is never violated, even if a bus visits a player’s location more than once. The permu-
tation is an expression of preferences, or priorities, that a resource has over the set of players (or their
locations).

Example 1. Consider an instance with 4 players and 2 buses. The permutations of the buses are (1 2 3 4)
and (1 4 2 3), respectively. Suppose player 1 chooses bus 1 whereas the others choose bus 2. Thus, bus
1 starts from s, visits 1 and goes to t. Bus 2 starts from s, visits players 3, 2, 4 and goes to t. Individual
costs are c1(σ) = d(1, t), c4(σ) = d(4, t), c2(σ) = d(2, 4) + c4(σ) and c3(σ) = d(3, 2) + c2(σ).

In a totally equivalent model, every player is at t and wants to reach her location (e.g. airport to
home). Each permutation πj indicates by which order the players are dropped. In Example 1, bus 1
transports player 1 to his home. Bus 2 starts from t, drops player 4, then player 2, then player 3.

1.2 Motivation and Related Work

Transportation problems have a prominent place in operations research and combinatorial optimization
(e.g. the Traveling Salesman Problem [2] or Vehicle Routing Problems [22]) because they present both
practical and theoretical challenges to the researchers.

Ridesharing systems (see e.g., [16, 18]) are emerging transportation models and tools where car
owners can share a ride with other persons via a dedicated application (e.g. avego, blablacar, carpool-
world, carticipate, etc.). Ridesharing systems, as public transportation systems, are valuable initiatives
for the reduction of traffic congestion, CO2 emissions and fuel expenditure.

In this article, we depart from the extensive literature dealing with centrally computed solutions
(see e.g., [20]) and focus on game theoretic approaches. Concerning transportation models, numerous
articles on vehicle-routing games deal with cooperative games (see e.g., [6, 12, 5]). However, noncoop-
erative and competitive games are more closely related to our transportation game. For example, [13]
study a competitive traveling salesmen problem in which two salespeople compete for visiting some
clients earlier than their opponent. In this model, the players make their decisions in turn like in a
game in perfect-information extensive form. A similar model, with possibly more than 2 salespersons,
is considered in [17].

Our model of transportation differs from the aforementioned works since it is a strategic game. The
literature on strategic games for routing problems can be divided in two parts, whether the players are
non-atomic or atomic. In the mathematical models involving non-atomic players, there is traffic in a
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network and each infinitesimal portion of this traffic is associated with an autonomous agent (see e.g.
[10] for the notion of Wardrop equilibrium). In this article, we assume that the players are atomic. In
comparison, an atomic player represents a non-negligible portion of the traffic.

As resource selection games, transportation games are reminiscent of scheduling games with coor-
dination mechanisms [9]. In coordination mechanisms we have a scheduling policy, which imposes a
priority over players in each resource. The scheduling policy may be described by some simple rule,
such as shortest (resp., largest) job first, or may be more sophisticated (see e.g., [4]). Moreover, the
same or different scheduling policies can be used for the resources. The goal is to find natural coordi-
nation mechanisms that can significantly improve the resulting price of anarchy (see e.g., [4, 7, 9]) or
can ensure the existence of an equilibrium in pure strategies or the fast convergence to it (see e.g., [4]).
Thus, coordination mechanisms modify (or enrich) the individual cost structure, aiming at improved
efficiency (or equilibrium existence).

In transportation games, we employ a fixed player priority, possibly different in each bus, to simplify
the individual cost structure and to allow for an efficient best response computation. Of course, one
might think of more sophisticated player priorities and bus routes, which is somewhat reminiscent to
more complex scheduling policies in coordination mechanisms. Such priorities may naturally depend on
the set of players in the same bus and on their distances to each other and to the destination. But, if e.g.,
we pick the players in each bus according to the shortest route starting from the source, going through
all of them, and ending up to the destination, determining such a route and the corresponding individual
costs requires the solution to an NP-hard optimization problem. Keeping the player priorities fixed and
independent of their partition into buses, we simplify the individual cost structure so that transportation
games are amenable to theoretical analysis.

Transportation games also bear some resemblance to (non-cooperative versions of) hedonic games
(see e.g., [11, 8]), where the players are partitioned into coalitions and the individual cost of each player
depends on the identities of other players in the same coalition (but not on the identity of the coalition).
In transportation games, the players in each bus could be regarded as a coalition and the individual cost
of each player depends on the identities of other players in the same bus (but in a more subtle way
than in the hedonic games of e.g., [15, 14]). The special case of transportation games with the same
player permutation for all buses could be regarded as a hedonic game, since the individual cost of each
player depends on the locations of other players in the same bus (but not on the bus itself). However, to
enrich the individual cost structure of transportation games, we allow for different player permutations
in the buses, which makes the individual cost of each player also depend on the bus (in addition to
the locations of the players to be picked up after him). This is a significant departure from variants of
hedonic games studied in the literature and a source of difficulty in establishing the existence of pure
Nash equilibria.

1.3 Contribution

We conduct a theoretical analysis of the transportation game by providing answers to the following
questions. Which case admits an equilibrium? Can we compute an equilibrium in polynomial time?
Do the players naturally converge to an equilibrium? How good is the best (or worst) equilibrium in
comparison with a social optimum?

This work only deals with pure strategy profiles (each player’s choice is deterministic). A pure Nash
equilibrium (NE) is a strategy profile (also called state) σ such that no player can unilaterally change
her strategy and benefit [21]. A strong equilibrium (SE) is a refinement of the NE to group deviations. In
a SE, no group of players C can jointly deviate in such a way that every member of C benefits [3]. This
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article also deals with the dynamics of the transportation game. We say that the dynamics converges
if, starting from any strategy profile, every series of improvement moves (better response) eventually
reaches a stable state. Depending on the context (unilateral or group deviations), this stable state can be
a NE or a SE.

Our results show that if all the resources have the same permutation then a SE exists and it can be
computed in polynomial time (Theorem 1). But if the permutations are not identical, then there exists a
simple 2-resource 3-player instance without any NE (Proposition 2). If there are 2 resources and if the
distances is metric, then the dynamics converges to a NE (Theorem 2). Moreover, this equilibrium can
be computed in linear time (Theorem 3). We have considered possible extensions of this positive result
and there are metric 3-resource instances without any NE (Proposition 3).

Section 3 is devoted to a special metric case where distances can be 1 or 2. We provide an algo-
rithm that computes a NE in O(nm). In Section 4, we analyse the price of anarchy and stability of
the transportation game under two natural social cost functions namely egalitarian and Vehicle Kilo-
meters Travelled. These notions are worst case comparisons of the worst and best NE with a social
optimum, respectively. Without metric, the price of anarchy and stability of our transportation game are
unbounded, but they are bounded for metric distances. Some possible extensions and future works are
discussed in the last section. Due to the space limitation, some proofs are omitted and are put in the
Appendix.

2 Existence and Computation of an Equilibrium

At least two properties play an important role in the existence of an equilibrium: (i) whether the per-
mutations of the buses are identical or not, (ii) whether the distances are metric or not.

2.1 Instances with Not Necessarily Metric Distances

Theorem 1. If all the resources have the same permutation π, then the dynamics converges to a SE.
Moreover, a SE can be built in O(nm).

Proof. Let us suppose wlog. that π is the identity permutation. Associate with each state σ a vector
Λ(σ) of dimension n. Define coordinate i of Λ(σ) as ci(σ). Given a state σ, if a coalition C deviates
so that σ′ denotes the new state, then Λ(σ′) is lexicographically smaller than Λ(σ). Indeed, let k be the
member of C with smallest index. For i < k we have ci(σ) = ci(σ

′) (because of priority π, no player
i is affected by the strategy of a player j when i < k ≤ j) and ck(σ) > ck(σ

′) (player k has decreased
her cost). A SE σ is built as follows. Start from an empty solution and take the players in turn, from 1 to
n. The current player, say i, is placed on the resource where its cost is minimum (break ties by selecting
the resource with smallest index). The cost of i on resource j is d(i, t) if no other player is previously
assigned to j, otherwise it is d(i, i′) + ci′(σ) where i′ is, among the players assigned to j, the one with
largest index (i > i′). Since i > i′, i is picked just before i′. The assignment of i to j does not affect the
cost of i′. The resulting state is lexicographically minimal and it is built in O(nm). ⊓⊔

Theorem 1 cannot be extended to show the existence of a super strong equilibrium (SSE), even with
metric distances. A SSE is a refinement of the SE where no group of players C can jointly deviate in
such a way that no member of C is worst off, while at least one member is better off.

Proposition 1. There exists a metric instance of the transportation game with m = 2 resources having
identical permutations which does not admit any super strong equilibrium.
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distances
α β γ

t 2 100 1
α 0 0 0
β 0 0 10

states
1 2

γ⋆
σ1 β

α

σ2 β
α⋆ γ

states
1 2

α⋆
σ3 β

γ

σ4 β⋆
α γ

Fig. 1. A non-metric instance of the transportation game with m = 2 resources and n = 3 players that does not admit any
pure Nash equilibrium (see also Proposition 2).

The following result shows the importance of having identical permutations, if the distance is not metric.

Proposition 2. There exists a non-metric instance of the transportation game with m = 2 resources
and n = 3 players which does not admit any NE.

Proof. Let the resources be 1 and 2 and let the players be α, β and γ. The permutations are (α, β, γ)
for resource 1 and (γ, β, α) for resource 2. The distances are depicted in Fig. 1, on the left. Let us see
that the instance has no pure Nash equilibrium. If β is alone on a resource (or she is the last to be picked
before traveling to t) then she wants to move. In Fig. 1, on the right, the 4 remaining configurations are
depicted. The player with a star on its right has incentive to switch. Hence, this instance does not admit
any pure Nash equilibrium. ⊓⊔

We observe that every instance of the transportation game with n = 2 players and m = 2 resources
admits a SSE (actually, already in the case of NE, one player which minimizes the distance to s with
highest priority in case of ties does not wish to go elsewhere). Therefore, Proposition 2 cannot be
extended to the case of two players.

2.2 Instances with Metric Distances

Theorem 2. For the transportation game with m = 2 resources and metric distances, better response
dynamics converges to a NE.

Proof. Suppose for the sake of contradiction that there exists a cycle in the Nash dynamics. Let N0 ⊂ N
be the players who never change their strategy in the cycle, whereas N1 := N \N0 6= ∅.

Note that there is some positive integer kj , with j ∈ {1, 2}, such that the kj first players in the
permutation of resource j are in N0 and they play j. Indeed, it is a dominant strategy for the first player
in the permutation of resource j to play j, because metric distances, ie., the triangle inequality imposes
that the cost of that player cannot be lower (namely her distance to t).

For j ∈ {1, 2}, let pj denote the player of N1 coming first in the permutation of resource j. Let dj
be the player of N0 who is just before pj in the permutation of resource j. Let cdj denote the cost of dj
in the cycle which is invariant. In the cycle, if pj plays resource j then her cost is equal to d(pj , dj)+cdj ,
whatever the players of N1 \ {pj} play.

It must be p1 6= p2, otherwise we get a contradiction with p1 ∈ N1 because the cost of p1 does not
depend on the strategy adopted by N1 \ {p1}.

Since the players do unilateral deviations in the cycle, there must be a state of the cycle in which p1
and p2 play the same strategy. Suppose wlog. that at some point p2 profitably moves from resource 2 to
resource 1, where p1 is. The new cost of p2 is at least her distance to p1 plus the cost of p1.

d(p2, d2) + cd2 > d(p2, p1) + d(p1, d1) + cd1 (1)
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At some point in the cycle p1 profitably moves to resource 2 where its cost is at least its distance to d2
plus the cost of d2.

d(p1, d1) + cd1 > d(p1, d2) + cd2 (2)

Combine inequalities (1) and (2) to get that d(p2, d2) > d(p2, p1) + d(p1, d2), which is a violation of
the triangle inequality. ⊓⊔

From this proof, we know that a potential function exists. Providing an explicit potential function
for metric transportation games with two resources is an open question. Another open question asks
whether the Nash dynamics converges in polynomial time.

We next show how to efficiently compute one equilibrium with some central coordination (2 buses).

Theorem 3. For m = 2 resources and metric distances, the transportation game has a NE that can be
computed in O(n).

Proof (sketch). Let r1 and r2 be the two resources. We assign all players to r1, consider them one-
by-one, as they appear in the permutation of r2, and let them deviate to r2, if this improves their cost.
Moving players from r1 to r2 can only decrease the cost of those staying on r1. Hence, if a player does
not move to r2 in her turn, she does not move to r2 later on. Using an argument similar to that in the
proof of Theorem 2, we can show that after a player moves to r2, she never prefers to return to r1.
Hence, this procedure reaches a pure NE in n steps. A complete proof is given in the Appendix. ⊓⊔

We note that the algorithm in the proof of Theorem 3 does not build a SE. Actually, a planar instance
with 2 resources and without any SE can be designed (see Proposition 10 in the Appendix). An instance
is planar if its distances are Euclidean distances between nodes of a 2-dimensional plane (in particular,
it is metric). Moreover, the following proposition shows that the existence of a NE for m = 2 resources
(and metric distances) cannot be extended to m = 3.

Proposition 3. There exists a planar instance with m = 3 resources which does not admit any NE.

Proof (sketch). There are 8 players p0, . . . p7 whose coordinates in the plane are p0 = (4, 27), p1 =
(4, 1), p2 = (6, 24), p3 = (5, 6), p4 = (17, 13), p5 = (4, 29), p6 = (2, 3), p7 = (20, 21), and t =
(18, 6). There are 3 resources with permutations (p7 p6 p5 p4 p3 p2 p1 p0), (p0 p1 p2 p3 p4 p5 p6 p7) and
(p3 p2 p6 p7 p0 p5 p4 p1). This instance has 38 pure states. Since for the players p7, p0 and p3 selecting
bus 1, bus 2 and bus 3, respectively, is a dominant strategy, the number of pure states that are candidates
for an equilibrium is 35 = 243. An exhaustive examination of them shows that none is a pure NE. ⊓⊔

We believe that the above instance is minimal, i.e. any instance with at most 7 players contains a
NE when m = 3. However, the Nash dynamics is not guaranteed to converge as indicated below.

Proposition 4. There exists a metric instance with m = 3 resources and n = 7 players in which the
Nash dynamics may cycle.

3 Computing a Pure Nash Equilibrium for Distances 1 and 2

For the simplest case of metric distances i.e., corresponding to the case that all distances are either 1
or 2, a NE exists for any number of resources and can be computed in linear time by a natural greedy
algorithm. In Algorithm 1, a player is available for assignment to a resource if she is currently the first
player in the resource’s permutation. Among all available players, Greedy picks the player u that can be
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Algorithm 1 Greedy algorithm for computing a NE
Input: set N of n players, set M of m resources, permutations πj for all j ∈M (each πj ends with ⊳),

distance function d (we assume that d(u,⊳) =∞).
Output: assignment σ : N → R that is a PNE

for all j ∈M do
cost(j)← 0; pj ← t; nj ← the first player in πj ;

for all v ∈ N do
cost(v)←∞; σ(v)← ⊳;

while ∃j with nj 6= ⊳ do
k = argminj{cost(j) + d(pj , nj)}; u← nk;
in case of ties, select resource k with minimum cost(k)
if σ(u) = ⊳ then

assign u to resource k and set σ(u)← k and c(u)← cost(k) + d(pk, u);
if σ(u) 6= ⊳ and c(u) > cost(k) + d(pk, u) then

restore cost(σ(u)) and pσ(u) to their values before u’s assignment to σ(u);
nσ(u) becomes the first player v after u in πσ(u) with c(v) > cost(σ(u)) + d(pσ(u), v);
reassign u from σ(u) to k and set σ(u)← k and c(u)← cost(k) + d(pk, u);

let nk be the next player after u in πk (nk becomes ⊳ if u is the last player);
if σ(u) = k then pk ← u

return assignment σ

assigned to a resource k at a minimum cost. Ties are broken in favor of resources with minimum cost.
If player u is not assigned to any resource, she is assigned to k. Otherwise, if u prefers k to her current
resource, she is reassigned to k. In both cases, u is removed from the permutation of resource k and
Greedy continues. We next show that Greedy terminates with a pure NE assignment if the distances are
either 1 or 2.

Example 2. Consider an instance with 8 players, p0, . . . , p7, and 3 resources r1, r2 and r3. The permu-
tations are (p7 p6 p5 p4 p3 p2 p1 p0), (p0 p1 p2 p3 p4 p5 p6 p7) and (p3 p2 p6 p7 p0 p5 p4 p1) for r1, r2 and
r3, respectively. The nodes are partitioned in three sets: {t, p0, p1}, {p2, p3, p4} and {p5, p6, p7}. The
nodes in the same set are within distance 1 to each other. All other distances are 2. In Algorithm 1, at
the beginning, players p7, p0 and p3 are available for assignment to r1, r2 and r3, respectively. In the
first iteration, p0 is assigned to r2 and p1 becomes available for r2. In the subsequent iterations, p7 is
assigned to r1, p3 to r3, and p1 to r2 (this takes place last due to the tie breaking rule). At this point,
we have that n1 = p6 and n2 = n3 = p2. Next, p6 is assigned to r1, p2 to r3, p2 and p3 are considered
for and not assigned to r2, p4 is assigned to r2, and p5 is assigned to r1. From that point on, p6, p7, p0,
p5, p4 and p1 are considered for and not assigned to r3, p4, p3, p2, p1 and p0 are considered for and
not assigned to r1, and p5, p6 and p7 are not assigned to r2. The final assignment is (p7 p6 p5) to r1,
(p0 p1 p4) to r2, and (p3 p2) to r3, which is a NE.

Theorem 4. Algorithm 1 computes a NE in O(nm) time if the distances are either 1 or 2. Moreover,
each player is reassigned at most once through the execution of the algorithm.

Proof. We refer to a player u as a candidate for resource j if either nj = u or u appears in πj after nj

(so u will be considered for assignment or reassignment to j in a subsequent iteration). For convenience,
we let costmax = maxj cost(j) and costmin = minj cost(j).

We use induction on the number of iterations and show that at the end of the current iteration: (i)
no assigned player wants to deviate to any resource j, unless she is a candidate for j; (ii) costmax −
costmin ≤ 2; (iii) costmin does not decrease from one iteration to the next; and (iv) if player u is
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reassigned from resource σ(u) to resource k, her cost at σ(u) is costmax = costmin + 2 and her cost
at k is costmin + 1. At the end of the algorithm, no player is a candidate for any resource. Hence, (i)
implies that if Greedy terminates, the assignment σ is a pure NE.

Claims (i)-(iv) are true before the first iteration. We inductively assume that (i)-(iv) hold at the end
of any iteration. To establish (i)-(iv) hold at the end of the next iteration, we distinguish between three
cases: whether u is assigned for the first time to k, whether u is reassigned to k, and whether u stays with
σ(u). If u stays with σ(u), nothing changes and (i)-(iv) remain true at the end of the current iteration.

If u is assigned or reassigned to k, u does not want to deviate at the end of the current iteration,
because k minimizes u’s cost among all resources j with nj = u. If u is assigned to k, other resources
and assigned players are not affected, and claim (i) remains true. If u is reassigned to k, the cost of
resource σ(u) decreases. To maintain (i), we let nσ(u) be the first player after u in πσ(u) that wants to
be assigned to σ(u) (this may involve some backtracking in πσ(u)). Then, if an assigned player wants to
deviate to σ(u), so as to take advantage of u’s move out of σ(u), she has become a candidate for σ(u).
So, claim (i) holds at the end of the current iteration.

As for claims (ii)-(iv), since all distances are either 1 and 2, and due to the greedy choice of resource
k and to the tie-breaking rule, k’s cost is equal to costmin. Hence, if u is assigned for the first time to
k, u’s cost becomes at most costmin + 2. Moreover, costmin does not decrease and costmax either does
not change or becomes c(u) ≤ costmin + 2. Therefore, (ii)-(iv) hold after u’s assignment.

If u is reassigned from σ(u) to k, the cost of u at σ(u) is c(u) = costmax = costmin + 2. Further-
more, cost(k) = costmin (just before u’s reassignment) and the cost of u at k (after u’s reassignment) is
costmin+1. These follow from the facts that costmax−costmin ≤ 2 at the end of the previous iteration,
that c(u) > cost(k) + d(pk, u) and that all distances are 1 and 2. So, after u’s reassignment, cost(k) is
at most costmax and cost(σ(u)) decreases by 2 and becomes costmin. These imply that (ii)-(iv) remain
true after u’s reassignment.

Claims (iii) and (iv) imply that any player is reassigned at most once. Due to (iv), if a player
u is reassigned from resource σ(u) to resource k, cost(σ(u)) decreases from costmax to costmin =
costmax − 2 and the new cost of u at k is costmin + 1. Thus, if u is reassigned from resource k later
on, the new costmin would be costmin − 1, which contradicts (iii). Hence, Greedy terminates after n
assignments and at most n reassignments.

Each reassignment causes a backtrack of at most n players in πσ(u). But only assigned players with
cost costmin + 2 can be reassigned to σ(u) after u moves out. So, after u is reassigned to k, we need
to insert at the beginning of πσ(u) only assigned players that appear after u in πσ(u) and have cost
equal to costmin + 2. Since there are at most m such players, the additional running time due to each
reassignment is O(m). So the running time of Greedy is O(nm), i.e., linear in the size of the input. ⊓⊔

4 The Price of Anarchy and the Price of Stability

We consider two different social functions. For a strategy profile σ, D(σ) is the total distance travelled
by the buses when they transport at least one client (for each bus we neglect the distance between s
and the first client). This function reflects the environmental impact of the solution and it corresponds
to the objective Vehicle Kilometers Travelled considered in [18]. The second function is the classical
egalitarian social cost function E(σ) defined as maxi∈N ci(σ), which is also the maximum distance
travelled by a single bus if the distance between s and the first client is neglected.

For every f ∈ {D,E} and any given instance, σ∗ denotes a state for which f(σ∗) is minimum. The
(pure) price of anarchy (PoA for short) is the largest ratio f(σ)/f(σ∗), over all instances of the game,
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where σ is a pure NE [19]. The (pure) price of stability (PoS for short) is the largest ratio f(σ)/f(σ∗),
over all instances of the game, where σ is the best NE with respect to f [1]. Therefore PoA ≥ PoS.

Proposition 5. For every n ≥ 3, the PoS is unbounded for D or E if the distance is not metric, even if
all the permutations are identical.

Proof. If n ≤ 2 and m ≥ 2, PoS=PoA= 2 even in non-metric case. Suppose n > m ≥ 2. Let
ε ∈ (0, 1). Player m + 1 is at distance 1/ε from every player i ∈ [1;m]. Every other distance is ε.
In a NE σ, no two players i, i′ satisfying 1 ≤ i < i′ ≤ m are on the same bus. Thus they all have
an individual cost of ε. Whichever resource player m + 1 selects, her individual cost is 1/ε + ε so
f(σ) ≥ 1/ε for every f ∈ {D,E}. Meanwhile there exists a state such that every edge traversed by a
bus has distance ε (e.g. no player i ≤ m is on the resource selected by player m+ 1). When ε → 0 the
PoS tends to ∞.

Suppose 3 ≤ n ≤ m. Let ε ∈ (0, 1). All node distances are ε except for the cases given below:

t 1 2 3 . . . n

2 3ε ε ε ε . . . ε
3 1/ε ε 1/ε 1/ε . . . 1/ε

In a NE σ, players 1 and 2 are on the same resource. Player 3 cannot be picked right before player 1 so
her individual cost is at least 1/ε. It follows that f(σ) ≥ 1/ε for every f ∈ {D,E}. Meanwhile there
exists a state such that every edge traversed by a bus has distance ε or 3ε (players 1 and 2 are on distinct
resources). So PoS → ∞ when ε → 0. ⊓⊔

4.1 Function D with metric distances

Due to Proposition 5, from now on, we assume that the distances are metric.

Lemma 1. If d is metric, d(x, y) ≤ D(σ∗) holds for all nodes x, y ∈ N ∪ {t}.

Proof. If x and y are covered by the same bus in σ∗, then suppose wlog. that the bus visits x before
y. Therefore, D(σ∗) is at least the distance covered by the bus between x and y, while the latter is at
least d(x, y), by the triangle inequality. Hence, suppose x and y are covered by two different buses in
σ∗, and denote them by bx and by, respectively. Therefore, D(σ∗) is at least the distance covered by bx
between x and t plus the distance covered by by between y and t. The latter is at least d(x, y), by the
triangle inequality. ⊓⊔

Proposition 6. If d is metric, then D(σ) ≤ nD(σ∗) holds for every state σ.

Combining Lemma 1 with Proposition 6, we obtain the following upper bound on the PoA (and on
the PoS). Interestingly, Proposition 7 shows that this bound is tight.

Corollary 1. The PoA with respect to D of the transportation game on n players with metric distances
and m ≥ 2 resources is upper bounded by n.

Proposition 7. For any n ≥ 2, there are metric instances of the transportation game on n players and
m ≥ 2 resources where the PoS is asymptotically n, even if all the resources have the same permutation.
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Proof. Suppose 2 ≤ n ≤ m and consider an instance where d(i, t) = 1, ∀i ∈ N . Take any δ in (0, 1)
and let d(i, i′) = δ, ∀i, i′ ∈ N . The triangle inequality is satisfied. The permutation of each bus is the
identity. There is essentially one NE in this instance: every player is the single user of a resource. The
social cost is n. In an optimal state, all the players use a single resource. The optimal social cost is at
most 1 + (n− 1)δ. Thus, for δ small but positive, the PoS tends to n.

Suppose 2 ≤ m ≤ n and consider the following instance in which k is an integer:

– N = L ∪ R where L = {ℓi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ m} and R = {ri,j : 1 ≤ i ≤ k, 1 ≤ j ≤ m}.
Hence, there are n = 2km players and m ≥ 2 buses.

– d(u, v) = 1 if u, v ∈ L or u, v ∈ R, d(v, t) = a for some positive integer a when v ∈ R,
d(v, t) = a2 when v ∈ L, and finally d(u, v) = a(1 + a) if u ∈ L and v ∈ R.

– Now, let us decompose L and R into k levels (L1, . . . , Lk) and (R1, . . . , Rk) respectively, where
Li = {ℓi,j : j = 1, . . . ,m} and Ri = {ri,j : j = 1, . . . ,m}.

– All the buses have the same priority π defined by π(v) < π(u) if one of the following cases occurs:
1. v ∈ Li ∪Ri and u ∈ Li′ ∪Ri′ with i < i′;
2. v ∈ Li and u ∈ Ri;
3. v = ℓi,j , u = ℓi,j′ (resp., v = ri,j , u = ri,j′) with j < j′.

This instance is clearly metric. We claim that a state σ is a NE iff each bus contains exactly one
player of each level of L and one player of each level of R.

Obviously, the condition is sufficient because for such a state, no unilateral deviation is profitable.
Conversely, by contradiction, suppose there exists a NE σ which does not satisfy the condition and let
q ≥ 1 be the first level where the condition is violated. Namely, each bus in state σ contains exactly one
player of each level L1, . . . , Lq−1, R1, . . . , Rq−1. Consider the two possibilities:

– One bus, say p, does not pick any player of Lq and another one, say p′, picks at least two players,
say ℓq,j and ℓq,j′ where j < j′. By construction, cℓq,j′ (σ) ≥ cℓq,j (σ) + d(ℓq,j , ℓq,j′) = cℓq,j (σ) + 1.
Now, if player ℓq,j′ moves from bus p′ to bus p, then its cost is at most cℓq,j (σ), which contradicts
the stability of σ.

– The condition holds for Lq but not for Rq. As previously, one bus, say p, has not picked any player
of Rq while another bus, say p′, has picked at least two players, say rq,j and rq,j′ where j < j′.
Hence, crq,j′ (σ) ≥ crq,j (σ) + 1 > crq,j′ (σ−rq,j′ , p).

In both cases we get a contradiction, so the property holds. We deduce that D(σ) = m(2k − 1)a+
2kma2 = na2 + a(n − m) iff σ is a NE. On the other hand, σ∗ uses only two buses: one containing
all the players of L and another containing all the players of R. We have D(σ∗) = a2 + a + (n − 2).
When a → ∞, D(σ)/D(σ∗) tends to n. Finally, the result follows from Corollary 1. ⊓⊔

The second instance in the proof of Proposition 7, with a = 1, applies to the special case where the
distances are 1 or 2 (which always admits a NE by Theorem 4). So, we get an asymptotic lower bound
of 2 on the PoS. An upper bound of 2 on the PoA is directly obtained from the fact that for every state
σ, D(σ) consists of |N | terms which are either 1 or 2.

4.2 Function E without metric

Lemma 2. d(x, y) ≤ 2E(σ∗) holds for every pair of nodes (x, y) ∈ N , and d(x, t) ≤ E(σ∗) holds for
every node x ∈ N .
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Lemma 3. In any pure Nash equilibrium, the cost of a player is at most (2⌈ n
m⌉ − 1)E(σ∗).

Proof. By contradiction, suppose there is a pure NE σ and a player i such that ci(σ) > (2⌈ n
m⌉ −

1)E(σ∗). Let k denote the number of players that the bus selected by i picks between i and t (this
includes i). Using Lemma 2 we have ci(σ) ≤ (2k − 1)E(σ∗). These bounds on ci(σ) give k > ⌈ n

m⌉.
But if more than ⌈ n

m⌉ players use the same bus, then there must be another bus, say b, selected by less
than n

m players. Even if player i appears last in the permutation of b, her cost if she moves to b would
be less than (2 n

m − 1)E(σ∗) (Lemma 2). We get a contradiction with the fact that σ is a NE. ⊓⊔

Corollary 2. The PoS with respect to E of the transportation game is O( n
m).

Proof. For n > m, the upper bound comes from Lemma 3. The lower bound comes from the second
instance in the proof of Proposition 7 in which the worst individual cost in a pure Nash equilibrium is
(2k− 1)a(1 + a) + a2. There is a state in which the worst individual cost is at most 2k+ a2 − 1. For a
large, the PoS tends to 2k = n/m. ⊓⊔

Proposition 8. For the transportation game, PoA= 2⌈ n
m⌉ − 1 if n > m and PoA= 1 if n ≤ m.

Proof. If n ≤ m then every player can be alone on her bus. By Lemma 2 (second part), the PoA is 1.
Now suppose n > m. The upper bound comes from Lemma 3. Let us describe the lower bound.

Suppose n and m are even, especially m = 2p and n = q2p, where q is even. Decompose N in m
sets of size q as follows: Nj = {1j , 2j , . . . , qj}, with j = 1 . . . 2p. For every player pair u, v such that
u ∈ Nj , v ∈ Nj′ and j 6= j′ we have d(u, v) = 2. If u and v belong to the same set Nj then d(u, v) = 0.
For every u ∈ N , d(u, t) = 1. Thus the triangle inequality holds. If j ∈ [1, 2p] is odd then the first
players of the permutation of resource j are (1j , 1j+1, 3j , 3j+1, . . . , q − 1j , q − 1j+1) followed by the
rest of the players in an arbitrary order. If j ∈ [1, 2p] is even then the first players of the permutation of
resource j is (2j , 2j−1, 4j , 4j−1, . . . , qj , qj−1) followed by the rest of the players in an arbitrary order.

Consider the state σ where each resource j ∈ [1, 2p] is selected by the first 2q players in its permu-
tation. This state is a pure Nash equilibrium because every player has cost at most 4q− 1 and deviating
induces a cost of 4q + 1. In an optimal state the players of Nj are on resource j; the maximum cost is
1. Therefore the PoA is at least 4q − 1 = 2n/m− 1. ⊓⊔

We can also bound the PoA according to the parameters dmin = minx6=y d(x, y) and dmax =
max d(x, y). As an immediate corollary, we obtain that PoS = PoA = 2 for distances 1 and 2.

Proposition 9. PoS = PoA = dmax/dmin for the transportation game.

5 Future Directions

In this work we supposed that the route of the buses are prescribed by a permutation that is independent
of the current state. There is an interesting challenge of proposing different ways to define the route
of the buses. This modification would induce a different structure of the individual costs and possibly
provide better PoA and PoS, under the constraint that a pure equilibrium exists. This challenge is similar
to the search of coordination mechanisms in scheduling games.

In transportation problems, it is important to predict the situation so it would be interesting to
identify the cases where the equilibrium is unique. In the future, the model of transportation can be
extended in several natural aspects. Each bus may have a capacity, its own speed and dedicated roads.
The players may have different sizes (e.g. a player is a group of persons).
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stability for network design with fair cost allocation. In 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 295–304. IEEE Computer Society, 2004.

2. David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The Traveling Salesman Problem: A Com-
putational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton, NJ, USA, 2007.

3. Robert J. Aumann. Acceptable points in general cooperative n-person games. In Albert W. Tucker and Robert D. Luce,
editors, Contribution to the Theory of Games, volume IV of Annals of Mathematics Studies, 40, pages 287–324. Princeton
Univ. Press, 1959.

4. Yossi Azar, Kamal Jain, and Vahab S. Mirrokni. (almost) optimal coordination mechanisms for unrelated machine
scheduling. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 323–332. SIAM, 2008.

5. Filippo Bistaffa, Alessandro Farinelli, and Sarvapali D. Ramchurn. Sharing rides with friends: A coalition formation
algorithm for ridesharing. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 608–614. AAAI Press, 2015.

6. Peter Borm, Herbert Hamers, and Ruud Hendrickx. Operations research games: A survey. Top, 9(2):139–199, 2001.
7. I. Caragiannis. Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica, 66(3):512–540,

2013.
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Fig. 2. The instance used in the proof of Proposition 1

A Appendix

Proposition 1. There exists a metric instance of the transportation game with m = 2 resources having
identical permutations which does not admit any super strong equilibrium.

Proof. Consider the instance depicted in Fig. 2 with m = 2 resources available. We have d(1, t) =
d(2, t), d(3, 1) = d(3, 2), d(4, 1) = d(5, 2) and d(3, t) > 0. The permutation of each resource is the
identity. In order to break ties, resource 1 is always chosen if the two resources induce the same cost. A
super strong equilibrium σ must be a Nash equilibrium so we can suppose that σ1 = 1 and σ2 = 2. Now
it suffices to consider all possible strategies for players 3, 4 and 5. Actually, for every profile, there exists
within {3, 4, 5} a non-empty coalition of players who can deviate so that the cost of every member of
the coalition does not increase and the individual cost of at least one player strictly decreases. E.g.,
consider the state σ = (1, 2, 2, 1, 1). We have c3(σ) = d(3, 2) + d(2, t), c4(σ) = d(4, 1) + d(1, t)
and c5(σ) = d(5, 4) + d(4, 1) + d(1, t). If players 3 and 5 switch, then σ′ = (1, 2, 1, 1, 2). We have
c3(σ

′) = d(3, 1) + d(1, t) = c3(σ) and c5(σ
′) = d(5, 2) + d(2, t) < c5(σ). ⊓⊔

Theorem 3. For m = 2 resources and metric distances, the transportation game has a NE that can be
computed in O(n).

Proof. Let r1 and r2 be the two resources. We let wlog. the permutation of r1 be the identity permutation
and let π2 be the permutation of r2. We assign all players to r1, consider them one-by-one, as they
appear in π2, and let them deviate to r2 if this improves their cost. More formally, for i = 1, . . . n,
player j = π2(i) computes her cost cj(r1) in r1 and cj(r2) in r2, in the current configuration. Player j
stays in r1, if cj(r1) ≤ cj(r2), and she moves to r2, otherwise.

Moving players from r1 to r2 can only decrease the completion time of those staying on r1. Hence,
if a player does not move to r2 in her turn, she does not move to r2 later on. We next show that after a
player moves to r2, she never prefers to return to r1. Therefore, the procedure above reaches a pure NE
in n steps.

For sake of contradiction, let j be a player on r2 that can improve her cost by returning to r1 and let
k be the first player whose move from r1 to r2 makes j prefer r1 to r2. For convenience, we let cj(r1)
and cj(r2) (resp. c′j(r1) and c′j(r2)) be j’s cost on r1 and r2 before (resp. just after) k moves from r1 to
r2. We also use similar notation for k. By hypothesis, c′j(r1) < c′j(r2) and ck(r1) > ck(r2). Since the
players move to r2 in the order they appear in π2, k’s move to r2 does not increase j’s completion time
on r2, i.e., c′j(r2) = cj(r2). Moreover, by the triangle inequality,

ck(r2) ≥ d(k, j) + cj(r2) = d(k, j) + c′j(r2) (3)

since r2 has to move from k to j and then from j to t. Since j prefers r1 to r2 after k’s move, k is picked
after j in r1. Let ℓ < k be the node picked immediately after k in r1 in the configuration just before k’s
move from r1 to r2. Then, the triangle inequality implies that

ck(r1) ≤ d(k, j) + d(j, ℓ) + cℓ(r1) ≤ d(k, j) + c′j(r1) (4)
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Fig. 3. On the left, an illustration of the instance used in the proof of Proposition 10. On the right, an illustration of the instance
used in the proof of Proposition 3.

The second inequality holds because j is picked before k, and thus before ℓ, in r1. Hence, if j moves
back to r1, r1 has to move from j to ℓ (possibly passing through other nodes) and then from ℓ to t.
Hence, c′j(r1) ≥ d(j, ℓ) + cℓ(r1).

Combining (3) and (4) with ck(r1) > ck(r2), since k moves from r1 to r2, we obtain that

d(k, j) + c′j(r2) ≤ ck(r2) < ck(r1) ≤ d(k, j) + c′j(r1)

Therefore, c′j(r1) > c′j(r2), after k moves from r1 to r2, which contradicts the hypothesis that j wants
to return to r1. ⊓⊔

Proposition 10. For m = 2 resources, there exists a planar instance without any strong equilibrium.

Proof. Consider the planar instance depicted in Fig. 3. There are 5 players a, b, c, d and e. The permu-
tations on resources 1 and 2 are (b, d, e, c, a) and (a, e, c, d, b), respectively. This instance admits two
pure Nash equilibria which are not strong equilibria.

– In the first Nash equilibrium b, d and c are on resource 1 whereas a and e are on resource 2.
Therefore d and e can simultaneously switch their strategies and benefit.

– In the second Nash equilibrium b, d are on resource 1 whereas a, e and c are on resource 2. Therefore
d, e and c can simultaneously switch their strategies and benefit. ⊓⊔

Proposition 3. There exists a planar instance with m = 3 resources which does not admit any NE.

Proof. There are 8 players denoted by p0, . . . p7. Their coordinates in the plane are given in the next
table.

p0 p1 p2 p3 p4 p5
(4, 27) (4, 1) (6, 24) (5, 6) (17, 13) (4, 29)

p6 p7 t

(2, 3) (20, 21) (18, 6)

There are 3 resources with the following permutations.

high priority→ low priority

bus 1 p7 p6 p5 p4 p3 p2 p1 p0
bus 2 p0 p1 p2 p3 p4 p5 p6 p7
bus 3 p3 p2 p6 p7 p0 p5 p4 p1

14
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This instance has 38 pure states. Since for the players p7, p0 and p3 selecting bus 1, bus 2 and bus 3,
respectively, is a dominant strategy, the number of pure states that are candidates for an equilibrium is
35 = 243. An exhaustive examination of them shows that none is a pure NE (see also Fig. 3, on the
right, for an illustration of the instance). ⊓⊔

Proposition 4. There exists a metric instance with m = 3 resources and n = 7 players in which the
Nash dynamics may cycle.

Proof. The metric space and the permutation of each resource are depicted on Figure 4. The priority is
given from bottom to top, i.e. β is visited last on resource 1. The cycle consists of 10 states which are
given in Table 1. In state σ1, player a can profitably deviate and play resource 1, resulting in state σ2.
The next state is σ3 where a star indicates which player moves, and so on. Finally, we can move from
σ10 back to σ1. ⊓⊔

•

•

•••

•

•

••β

c

s

dbδ

a

γ

t

b d a
a a b
d c d
c b c
β γ δ

1 2 3

Fig. 4. The metric instance (on the left) and the permutation of each resource (on the right) used in the proof of Proposition 4

1 2 3

a⋆
σ1 b c d

b⋆
σ2 a c d

c⋆
σ3 a b d

d⋆
σ4 a b c

1 2 3

a
σ5 d b c⋆

a
σ6 d

c b⋆

a⋆
σ7 d

c b

1 2 3

d⋆
σ8 c a b

b
σ9 c⋆ a d

a b⋆
σ10 c d

Table 1. The 10 states of a cycle. For each state we suppose that β plays 1, γ plays 2 and δ plays 3. The star indicates which
player profitably deviates.
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Proposition 6. if d satisfies the triangle inequality, then D(σ) ≤ nD(σ∗) holds for every pure strategy
profile σ.

Proof. For j ∈ M and a strategy profile σ, let {j1, . . . , jnj} be the players picked in this order by bus
j. Thus, D(σ) =

∑
j≤m

∑nj

i=1 d(ji, ji+1) where jnj+1 = t for all bus. D(σ) consists of n terms and
each one is at most D(σ∗) by Lemma 1. ⊓⊔

Lemma 2. d(x, y) ≤ 2E(σ∗) holds for every pair of nodes (x, y) ∈ N , and d(x, t) ≤ E(σ∗) holds for
every node x ∈ N .

Proof. For the first point if x and y are covered by the same bus in σ∗ then suppose wlog. that the bus
visits x before y. Therefore 2E(σ∗) ≥ E(σ∗) ≥ cy(σ

∗) + d(x, y) ≥ d(x, y). If x and y are covered by
two different buses in σ∗ then d(x, y) ≤ d(x, t)+ d(y, t) ≤ cx(σ

∗)+ cy(σ
∗) ≤ 2E(σ∗). For the second

point we have E(σ∗) ≥ cx(σ
∗) ≥ d(x, t). ⊓⊔

Proposition 9. PoS = PoA = dmax/dmin for the transportation game.

Proof. Let σ and σ∗ be a pure Nash equilibrium and a socially optimal state, respectively. Let ℓ∗ denote
the maximum number of players on the same resource in σ∗. Thus E(σ∗) ≥ ℓ∗dmin. By contradiction,
suppose E(σ) > dmaxE(σ

∗) ≥ dmaxℓ
∗. Any player, say i, who has an individual cost of E(σ) in σ

shares her bus with at least ℓ∗ other players. There must be a bus b, such that σi 6= b, selected by at
most ℓ∗ − 1 players in σ, otherwise there are strictly more players in σ than in σ∗. If player i moves to
bus b then her individual cost is at most dmaxℓ

∗. It contradicts the fact that σ is a Nash equilibrium, so
dminE(σ) ≤ dmaxE(σ

∗).
The second instance given in the proof of Proposition 7 provides a lower bound of (4k − 1)/2k for

the price of stability for dmax = 2dmin. ⊓⊔
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