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Abstract. We propose constant approximation algorithms for generalizations of
the Flexible Flow Shop (FFS) problem which form a realistic model for non-
preemptive scheduling in MapReduce systems. Our results concern the mini-
mization of the total weighted completion time of a set of MapReduce jobs on
unrelated processors and improve substantially on the model proposed by Mose-
ley et al. (SPAA 2011) in two directions: (i) we consider jobs consisting of mul-
tiple Map and Reduce tasks, which is the key idea behind MapReduce compu-
tations, and (ii) we introduce into our model the crucial cost of the data shuffle
phase, i.e., the cost for the transmission of intermediate data from Map to Re-
duce tasks. Moreover, we experimentally evaluate our algorithms compared with
a lower bound on the optimal cost of our problem as well as with a fast algorithm,
which combines a simple online assignment of tasks to processors with a stan-
dard scheduling policy, and performs better for instances where the processing
times of Map and Reduce tasks are drawn from the same uniform distributions.

1 Introduction

The widespread use of MapReduce [7] to implement massive parallelism for data in-
tensive computing motivates the study of new challenging shop scheduling problems.
Indeed, a MapReduce job consists of a set of Map tasks and a set of Reduce tasks that
can be executed simultaneously, provided that no Reduce task of a job can start exe-
cution before all the Map tasks of this job are completed. Moreover, a significant part
of the processing cost in MapReduce applications is the communication cost due to the
transmission of intermediate data from Map tasks to Reduce tasks (a.k.a. data shuffle,
see e.g., [2, 1]). To exploit the inherent parallelism, the scheduler, which operates in
centralized manner, has to efficiently assign and schedule Map and Reduce tasks to the
available processors. In this context, standard shop scheduling problems are revisited to
capture key constraints and singularities of MapReduce systems. In fact, a few results
have been recently proposed based on simplified abstractions and resulting in known
variants of the classical Open Shop and Flow Shop scheduling problems [4, 5, 13].

In this work, we significantly generalize the Flexible Flow Shop (FFS) model for
MapReduce scheduling proposed in [13]. Recall that in the FFS problem, we are given



a set of jobs, each consisting of a number of tasks (each task corresponds to a stage), to
be scheduled on a set of parallel processors dedicated to each stage. The jobs should be
executed in the same fixed order of stages, without overlaps between different stages of
the same job. Our generalization extends substantially the model proposed in [13] by
taking into account all the important constraints of MapReduce systems: (a) each job
has multiple tasks in each stage; (b) the assignment of tasks to processors is flexible; (c)
there are dependencies between Map and Reduce tasks; (d) the processors are unrelated
to capture data locality; and (e) there is a significant communication cost for the data
shuffle. Our goal is to find a non-preemptive schedule minimizing the standard objective
of total weighted completion time for a set of MapReduce jobs.

Related Work. Known results for the FFS problem concern the two-stage case on par-
allel identical processors. For the makepsan objective a PTAS is known [14], while for
the objective of total weighted completion time, a simple 2-approximation algorithm
was proposed in [9] for the special case where each stage has to be executed on a single
processor. For the latter case, [13] recently proposed a QPTAS which becomes a PTAS
for a fixed number of task processing times.

In the MapReduce context, most of the previous work concerns the experimen-
tal evaluation of scheduling heuristics, from the viewpoint of finding good tradeoffs
between different practical criteria (see e.g., [16]). From a theoretical viewpoint, all
known results [4, 5, 13] concern the minimization of total weighted completion time.
Chang et al. [4] studied a simple model, equivalent to the well-known concurrent open
shop problem [12], where there are no dependencies between Map and Reduce tasks
and the assignment of tasks to processors is given. Chen et al. [5] generalized the last
model by considering dependencies between Map and Reduce tasks and presented an
LP-based 8-approximation algorithm. Moreover, they managed to incorporate the data
shuffle into their model and to derive a 58-approximation algorithm. Finally, Mose-
ley et al. [13] suggested the connection of MapReduce scheduling to the FFS problem
and proposed a 12-approximation algorithm, for the case of identical processors, and
a 6-approximation algorithm for the very restricted case of unrelated processors where
each job has a single Map and a single Reduce task. For both cases they also proposed
constant competitive online algorithms with constant speed augmentation.

Our Results and Contributions. We present constant approximation algorithms which
substantially generalize the results of [13] for MapReduce scheduling on unrelated pro-
cessors in two directions motivated by practical applications of MapReduce systems. In
fact, we deal with jobs consisting of multiple Map and Reduce tasks and also incorpo-
rate the shuffle phase into our setting. As it has been observed in [13], new ideas and
techniques are required for both these directions.

In Section 2, we present a 54-approximation algorithm for the Map-Reduce schedul-
ing problem when jobs consist of multiple Map and Reduce tasks. We first give an
interval-indexed LP-relaxation for the problem of minimizing the total weighted com-
pletion times separately for Map and Reduce tasks on unrelated processors. Our LP-
relaxation is inspired by that proposed by Hall et al. [10] for scheduling a set of single
task jobs on unrelated processors under the same objective. However, in our setting,
only the task finishing last (instead of all tasks) contributes to the objective value, which
complicates the analysis. Recently, Correa et al. [6] proposed a similar LP-relaxation
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for a more general problem, where, instead of jobs consisting of tasks, they have a set
of job orders and the completion time of each order is specified by the completion of
the job finishing last. Since scheduling multitask Map and Reduce jobs separately is
quite similar to the setting considered in [6], we can apply their approximation result to
scheduling the Map and Reduce tasks separately. Next, extending the ideas in [13] for
single task jobs, we concatenate the two schedules into a single schedule that respects
the task dependencies.

In Section 3, we incorporate the data shuffle phase into our model by introduc-
ing an additional set of Shuffle tasks, each one associated with a communication cost
(expressed as processing time). When the Shuffle tasks are scheduled on the same pro-
cessors as the corresponding Reduce tasks, we are able to keep the same approximation
ratio of 54 for the Map-Shuffle-Reduce scheduling problem. Moreover, we prove an ap-
proximation ratio of 81 when the Shuffle tasks can be executed on different processors
than their corresponding Reduce tasks. To the best of our knowledge, this is the most
general setting of the FFS problem (with a special third stage) for which a constant
approximation guarantee is known.

In Section 4, we compare experimentally the performance of our LP-based approx-
imation algorithm with a lower bound on the optimal cost of our problem as well as
with a simple and fast algorithm. The latter algorithm combines a simple assignment of
the tasks, using an online algorithm for makespan minimization on unrelated processors
with logarithmic competitive ratio [3], with the standard Weighted Shortest Processing
Time first (WSPT) scheduling policy. As we observe, for instances where the process-
ing times of Map and Reduce tasks are drawn from the same uniform distributions, the
simple algorithm performs well enough, while, for instances that capture data locality
issues, the more sophisticated LP-based algorithm achieves a better performance also in
practise. Moreover, we show that the (empirical) approximation ratio of our algorithms
is considerably smaller than the corresponding theoretical upper bound. As far as we
know, these are the first experimental results for evaluating the performance guarantee
of MapReduce scheduling on unrelated processors.

Problem Statement and Notation. In the sequel we consider a set J = {1, 2, . . . , n}
of n MapReduce jobs to be executed on a set P = {1, 2, . . . ,m} of m unrelated pro-
cessors. Each job is available at time zero, is associated with a positive weight wj and
consists of a set of Map tasks and a set of Reduce tasks. LetM and R be the set of all
Map and all Reduce tasks respectively. Each task is denoted by Tk,j ∈ M∪R, where
k ∈ N is the task index of job j ∈ J and is associated with a vector of non-negative
processing times {pi,k,j}, one for each processor i ∈ Pb, where b ∈ {M,R}. Let PM
and PR be the set of Map and the set of Reduce processors respectively. For conve-
nience, we assume that PM ∩PR = ∅, however we are able to extend our results to the
case where the two sets of processors are not necessarily disjoint (or even are identical).
Each job has at least one Map and one Reduce task and every Reduce task can start its
execution after the completion of all Map tasks of the same job.

For a given schedule we denote byCj andCk,j the completion times of each job j ∈
J and each task Tk,j ∈M∪R respectively. Note that, due to the precedence constraints
between Map and Reduce tasks, Cj = maxTk,j∈R{Ck,j}. By Cmax = maxj∈J {Cj}
we denote the makespan of the schedule, i.e., the completion time of the job which

3



finishes last. Our goal is to schedule non-preemptively all Map tasks on processors
of PM and all Reduce tasks on processors of PR, with respect to their precedence
constraints, so as to minimize the total weighted completion time of the schedule, i.e.,∑
j∈J wjCj . We refer to this problem as Map-Reduce scheduling problem.
Concerning the complexity of Map-Reduce scheduling problem, it generalizes the

FFS problem which is known to be strongly NP-hard [8], even when there is a single
Map and a single Reduce task that has to be assigned only to one Map and one Reduce
processor respectively.

2 The Map-Reduce Scheduling Problem

In this section, we present a 54-approximation algorithm for the Map-Reduce schedul-
ing problem. Our algorithm is executed in the following two steps: (i) it computes a
27/2-approximate schedule for assigning and scheduling all Map tasks (resp. Reduce
tasks) on processors of the set PM (resp. PR) and (ii) it merges the two schedules in
one, with respect to the precedence constraints between Map and Reduce tasks of each
job. Step (ii) is performed by increasing the approximation ratio by a factor of 4.

LP(b) : minimize
∑
j∈J

wjCDj

subject to :
∑

i∈Pb,`∈L

yi,k,j,` ≥ 1, ∀Tk,j ∈ b (1)

CDj ≥ Ck,j , ∀j ∈ J , Tk,j ∈ b (2)∑
i∈Pb

∑
`∈L

(1 + δ)`−1yi,k,j,` ≤ Ck,j , ∀Tk,j ∈ b (3)

∑
Tk,j∈b

pi,k,j
∑
t≤`

yi,k,j,t ≤ (1 + δ)`, ∀i ∈ Pb, ` ∈ L (4)

pi,k,j > (1 + δ)` ⇒ yi,k,j,` = 0, ∀i ∈ Pb, Tk,j ∈ b, ` ∈ L (5)
yi,k,j,` ≥ 0, ∀i ∈ Pb, Tk,j ∈ b, ` ∈ L

Scheduling Map Tasks and Reduce Tasks. To schedule the Map and Reduce tasks
separately on the processors PM and PR, respectively, we formulate the interval-
indexed LP-relaxation above for minizing the total weighted completion time. For nota-
tional convenience, we use an argument b ∈ {M,R} to refer either to Map or to Reduce
sets of tasks. We define (0, tmax =

∑
Tk,j∈b maxi∈Pb

pi,k,j ] to be the time horizon of
potential completion times, where tmax is an upper bound on the makespan of a feasible
schedule. We discretize the time horizon into intervals [1, 1], (1, (1 + δ)], ((1 + δ), (1 +
δ)2], . . . , ((1 + δ)L−1, (1 + δ)L], where δ ∈ (0, 1) is a small constant, and L is the
smallest integer such that (1 + δ)L−1 ≥ tmax. Let I` = ((1 + δ)`−1, (1 + δ)`], for
1 ≤ ` ≤ L, and L = {1, 2, . . . , L}. Note that, interval [1, 1] implies that no job finishes
its execution before time 1; in fact, we can assume, w.l.o.g., that all processing times are
positive integers. Note also that the number of intervals is polynomial in the size of the
instance and in 1/δ. For each processor i ∈ Pb, task Tk,j ∈ b and ` ∈ L, we introduce
a variable yi,k,j,` that indicates if task Tk,j is completed on processor i within the time
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interval I`. Furthermore, for each task Tk,j ∈ T , we introduce a variable Ck,j corre-
sponding to its completion time. For every job j ∈ J , we introduce a dummy task Dj

with zero processing time processed after the completion of each task Tk,j ∈ b. Note
that, the corresponding integer program is a (1 + δ)-relaxation of the original problem.

Our objective is to minimize the sum of weighted completion times of all jobs.
Constraints (1) ensure that each task is completed on a processor of the set Pb in some
time interval. Constraints (2) assure that for each job j ∈ J , the completion of each
task Tk,j precedes the completion of task Dj . Constraints (3) impose a lower bound on
the completion time of each task. For each ` ∈ L, constraints (4) and (5) are validity
constraints which state that the total processing time of jobs executed up to an interval I`
on a processor i ∈ Pb is at most (1+δ)`, and that if processing a task Tk,j on a processor
i ∈ Pb takes more than (1 + δ)`, Tk,j should not be scheduled on i, respectively.

Our algorithm, called Algorithm TASKSCHEDULING(b), starts from an optimal frac-
tional solution (ȳi,k,j,`, C̄k,j , C̄Dj ) to LP(b) and, working similarly to [6, Section 5],
rounds it to an integral 27/2-approximate schedule of the jobs J on processors Pb. The
idea is to partition the set of tasks Tk,j into classes S(`) = {Tk,j ∈ b | (1 + δ)`−1 ≤
aC̄k,j ≤ (1 + δ)`}, where ` ∈ {1, . . . , L} and a > 1 is a parameter, according to
their (fractional) completion time in the optimal solution of LP(b), and to use [15, The-
orem 2.1] for scheduling the tasks in each class S(`) independently. In fact, Algorithm
TASKSCHEDULING(b) can be regarded as a generalization of the approximation algo-
rithm in [10, Section 4], where the objective is to minimize weighted completion time,
but each job consists of a single task (see also the discussion in [6, Section 5]).

More specifically, we first observe that by the definition of S(`) and due to con-
straints (1) and (3), for each task Tk,j ∈ S(`),

∑
i∈Pb

∑
t≤` yi,k,j,t ≥

a−1
a . Otherwise,

it would be
∑
i∈Pb

∑
t≥`+1 yi,k,j,t >

1
a , which implies aC̄k,j > (1 + δ)`. Therefore,

if we set y∗i,j,k,t = 0, for all t ≥ ` + 1, and y∗i,j,k,t = a
a−1 ȳi,k,j,t, for all t ≤ `, we

obtain a solution y∗i,k,j,t that satisfies the constraints (1), (4), and (5) of LP(b), if the
right-hand side of (4) is multiplied by a/(a− 1). Therefore, for each ` = 1, . . . , L, the
tasks in S(`) alone can be (fractionally) scheduled on processors Pb with makespan at
most a

a−1 (1 + δ)`. Now, using [15, Theorem 2.1], we obtain an integral schedule for
the tasks in S(`) alone with makespan at most ( a

a−1 + 1)(1 + δ)`. By the definition of
S(`), in this integral schedule, each task Tk,j ∈ S(`) has a completion time of at most
a( a
a−1 + 1)(1 + δ)C̄k,j . Therefore, if we take the union of these schedules, one after

another, in increasing order of ` = 1, . . . , L, the completion time of each job j is at
most a( a

a−1 + 1 + 1
δ )(1 + δ)C̄Dj

. Choosing a = 3/2 and δ = 1/2, we obtain that:

Theorem 1. [6] Algorithm TASKSCHEDULING(b) is a 27/2-approximation for schedul-
ing a set of Map tasks (resp. Reduce tasks) on a set of unrelated processors PM (resp.
PR), in order to minimize their total weighted completion time.

Merging Task Schedules. Let σM, σR be two schedules computed by TASKSCHEDUL-
ING(b), for b = M and b = R, respectively. Let also CσM

j = maxTk,j∈M{Ck,j} and
CσR
j = maxTk,j∈R{Ck,j} be the completion times of all Map and all Reduce tasks

of a job j ∈ J within these schedules, respectively. Depending on these completion
time values, we assign each job j ∈ J a width equal to ωj = max{CσM

j , CσR
j }. The

following algorithm computes a feasible schedule for Map-Reduce scheduling.
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Algorithm MR. Every time a processor i ∈ Pb becomes available, schedule: either the
Map task, assigned to i ∈ PM in σM, with the minimum width, or the available (w.r.t.
its “release time” ωj) Reduce task, assigned to i ∈ PR in σR, with the minimum width.

Theorem 2. Algorithm MR is a 54-approximation for Map-Reduce scheduling.

Proof (Sketch). By the execution of MR, it is immediate to verify the feasibility of
the final schedule. So, it suffices to prove that in such a schedule σ, all tasks of a job
j ∈ J are completed by time 2 max{CσM

j , CσR
j }. Let Cσj , be the completion time of

a job j ∈ J in σ. Note that, for each of the Map tasks of j, their completion time is
upper bounded by ωj . On the other hand, the completion time of each Reduce task is
upper bounded by a quantity equal to r+ ωj , where r is the earliest time when the task
is available to be scheduled in σ. However, r = CσM

j ≤ ωj and thus Cσj ≤ 2ωj =
2 max{CσM

j , CσR
j }. Then, the theorem follows from Theorem 1. ut

Remark. If the two sets of processors, PM,PR, are not disjoint (or even if they coincide
with each other), then setting ωj = CσM

j + CσR
j and applying a similar analysis, we

obtain the same approximation ratio as in Theorem 2.

3 The Map-Shuffle-Reduce Scheduling Problem

In practical MapReduce systems, data shuffle represents a significant cost for the key-
value pairs with the same key to be transmitted from their Map tasks to the correspond-
ing Reduce task. Motivated by [5], we model this cost by introducing a number of
Shuffle tasks for each Map task. However, in contrast to [5], where the assignment of
Shuffle tasks to processors is fixed, our model distinguishes between two variants: a)
Each Shuffle task is scheduled on the same processor as its corresponding Reduce task
and b) the Shuffle tasks are scheduled on a different set of processors. For both variants,
we present O(1)-approximation algorithms.

The number of different keys is usually significantly larger than the number of Re-
duce processors. Hence, a Reduce task receives all key-value pairs with key in a set of
different keys. Allowing the transmission time of some Shuffle tasks to be 0, we may
assume wlog. that all Reduce tasks receive key-value pairs from all Map tasks. We also
assume that only a single key-value pair can be transferred to a Reduce processor at any
time and moreover, the transmission process cannot be interrupted. Thus, since the key-
value pairs allocated to the same Reduce task cannot be transmitted in parallel, we can
assume that all key-value pairs from a Map task, assigned to the same Reduce task, can
be considered as a single Shuffle task. Hence, the number of Shuffle tasks per Map task
equals the number of Reduce tasks. The following summarizes the above discussion.
Properties: i) Each Shuffle task cannot start its execution before the completion of its
corresponding Map task.
(ii) For every Map task of a job j, there are as many Shuffle tasks as j’s Reduce tasks.
When no key-value pairs are transmitted from a Map task to a Reduce task, the trans-
mission time of the corresponding Shuffle task is equal to 0.
(iii) Each Shuffle task is executed non-preemptively.
(iv) Shuffle tasks transmitting to the same processor do not overlap.
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Before presenting our results for the Map-Shuffle-Reduce scheduling problem, we
introduce some additional notation. For each Map task Tk,j ∈ M of a job j ∈ J , we
introduce a set of Shuffle tasks Tr,k,j , 1 ≤ r ≤ τj , with τj denoting the number of
Reduce tasks of job j. We denote by H the set of Shuffle tasks; note that for each Map
task of a job, there is a bijection between its Shuffle tasks and the job’s Reduce tasks.
Each Shuffle task Tr,k,j ∈ H is associated with a transmission time tr,k,j , which is
independent of the processor assignment.

The Shuffle Tasks are Executed on the Reduce Processors. The key step here is the
integration of the Shuffle phase into the Reduce phase. In this direction, we consider a
Reduce task Tr,j of a job j and let srj = {Tr,k,j | Tk,j ∈M} be the set of Shuffle tasks
that must be completed before task Tr,j starts its execution. The tasks in srj are executed
in the same processor as Reduce task Tr,j . Thus, we obtain that:

Lemma 1. There is an optimal schedule of Shuffle tasks and Reduce tasks on proces-
sors of PR such that (i) there are no idle periods, and (ii) all the Shuffle tasks in srj are
executed together and are completed exactly before the execution of Tr,j .

Proof. (i) Let σ be a feasible schedule. There are three cases where an idle time can
occur: either between the execution of two Shuffle or two Reduce tasks or between a
Shuffle and a Reduce task. Since all Shuffle and Reduce tasks are assumed to be avail-
able from time zero and there are no precedence constraints among only Shuffle tasks
or only Reduce tasks, skipping the idle times in the first two cases can only decrease
the objective value of σ. For the third case, we observe that since the Shuffle tasks pre-
cede the corresponding Reduce tasks, skipping the idle intervals can only decrease the
completion time of the Reduce tasks. Hence, σ can be transformed into a schedule with
no idle periods without increasing the its total weighted completion time.
(ii) Let us consider a schedule σ that violates the claim and has the last Reduce task Tk,j
of a job j completed on some processor i ∈ PR. We fix the completion time of Tk,j and
shift all the Shuffle tasks in srj to execute just before Tk,j , consecutively and in arbitrary
order. Then, the completion time of j remains unchanged, while the completion time of
every task preceding Tk,j in σ may decrease. After a finite number of shifts, we obtain a
schedule that satisfies (ii) and has at most the total weighted completion time of σ. ut

Using Lemma 1, we can incorporate the execution of the Shuffle tasks of each job
into the execution of the corresponding Reduce tasks. Namely, for each Reduce task Tr,j
of a job j, 1 ≤ r ≤ τj , we increase its processing time pi,r,j , on each processor i ∈ PR,
by a quantity equal to the total transmission time of the Shuffle tasks in srj , i.e., equal to
p(srj) =

∑
Tr,k,j∈srj

tr,k,j . Let p′i,r,j = pi,r,j + p(srj) be the increased processing time
for each task Tr,j ∈ R on processor i ∈ PR, referred to as Shuffle-Reduce task and let
RH be the new set of Shuffle-Reduce tasks.

Now, running Algorithm TASKSCHEDULING(b), for b ∈ {M,RH}, we obtain two
27/2-approximate schedules, one for the Map tasks and one for the Shuffle-Reduce
tasks. Moreover, by considering the same precedence constraints as for the Map and
Reduce tasks, we can merge the above schedules by applying Algorithm MR. Despite
satisfying Property (i), these dependencies are more general than the precedence con-
straints among Map and Shuffle tasks of each job, because in order to start the execution
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of a Shuffle task, we have to wait for all the Map tasks of a job to finish. However, since
the completion time of a job j in the optimal schedule is lower bounded by the comple-
tion time in optimal schedules of either the Map or the Shuffle-Reduce tasks, regardless
of their precedences, we have that:

Theorem 3. Algorithm MR is a 54-approximation for Map-Shuffle-Reduce scheduling.

The Shuffle Tasks are Executed on Different Processors. To deal with this case, we
assume that for any processor i ∈ PR, there exists an “input” processor which receives
data from the Map processors. Therefore, the input processor executes the Shuffle tasks
that correspond to the Reduce tasks which have been assigned to processor i. We refer
to the set of input processors as PS .

Lemma 2. Consider two optimal schedules σ and σ′ of Shuffle and Reduce tasks on
processors in PR ∪ PS and PR, respectively. Let also Cσk,j , C

σ′

k,j be the completion
times of any Reduce task Tk,j in σ and σ′, respectively. Then, Cσ

′

k,j ≤ 2Cσk,j .

Proof. We start with an optimal schedule σ on the set PR ∪PS of processors. We fix a
Reduce processor ir, the corresponding input processor is and a Reduce task Tk,j ∈ R
of a job j. We build the schedule σ′ on ir by executing the Reduce tasks in the same
order as in σ and just before each Reduce task, we execute the corresponding Shuffle
task. Let B(k) be the set of Reduce tasks executed on processor ir, before Tk,j and let
Sh(k) the set of the shuffle tasks that correspond to the Reduce tasks in B(k)∪{Tk,j}.
Then, we have that

Cσ
′

k,j =
∑

Tl,j∈B(k)

pir,l,j +
∑

Tq,l,j∈Sh(k)

tq,l,j ,

which holds because there are no idle intervals in σ′, by Lemma 1. Moreover, since
both B(k) and Sh(k) have to complete before Tk,j in σ, we have that

Cσk,j ≥ max

 ∑
Tl,j∈B(k)

pir,l,j ,
∑

Tq,l,j∈Sh(k)

tq,l,j

 ,

and therefore Cσ
′

k,j ≤ 2Cσk,j . ut

Combining Lemma 2 and Theorem 1, we obtain a 27-approximation for scheduling
the Shuffle-Reduce tasks. Then, running Algorithm MR, we get the following corollary.
Here, the Shuffle tasks form a special third stage in the FFS problem.

Corollary 1. Algorithm MR is a 81-approximation for Map-Shuffle-Reduce schedul-
ing, in the general case where the Shuffle tasks run on a separate set of processors.

4 Experimental Evaluation

In this section we experimentally evaluate the performance of Algorithm MR. To deal
with data shuffle in our model, in Section 3, we apply Algorithm MR to instances of the
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Map-Reduce scheduling problem with increased processing times for the Reduce tasks
that take the data transmission time of the Shuffle tasks into account. Thus, to sim-
plify the experimental evaluation, we restrict our attention to instances of Map-Reduce
scheduling. We compare the solutions of Algorithm MR, for two different families of
random instances, with a lower bound on the optimal cost of Map-Reduce scheduling
and with the solutions of a simple and fast scheduling algorithm, called Fast-MR, that
we propose below.

To compute a lower bound on the optimal solution of Map-Reduce scheduling, we
include in the LP-relaxation LP(b) all the Map and Reduce tasks and also the precedence
constraints among them. These dependencies can be captured by the following set of
constraints in LP(b):

Ck,j ≥ Ck,j′ +
∑
i∈PR

∑
`∈L

pi,k,jyi,k,j,` ∀j ∈ J , Tk,j ∈ R, Tk,j′ ∈M.

Our Fast-MR algorithm consists of two steps: First it finds a online assignment of
tasks to processors and then schedules them using a variant of the well known Weighted
Shortest Processing Time first (WSPT) policy.

Fast-MR. Step A: Apply the online algorithm ASSIGNU, presented in [3] for makespan
minimization on unrelated processors: For an arbitrary order of jobs, arriving one-by-
one in an arbitrary order, assign each task Tk,j of the current job j to the processor
k = arg mini∈Pb

{λLi+pi,k,j − λLi}, where Li is the current load of processor i and
λ > 1 an appropriately chosen constant. The tasks of each job are considered one-by-
one in an arbitrary order.
Step B: Order the tasks assigned to each processor, in Step A, by applying the following
version of the WSPT policy:

For each pair of jobs j, j′ ∈ J , if (wj/
∑
Tk,j∈j pk,j) > (wj′/

∑
Tk,j′∈j′

pk,j′),
then job j precedes j′ in the schedule.

When a processor becomes available, schedule the task that is not yet executed, while
respecting the precedences among Map and Reduce tasks.

4.1 Computational Experiments and Results

We performed the experiments on a machine with 4 packages (Intel(R) Xeon(R) E5-
4620 @ 2.20GHz) of 8 cores each (16 threads with hyperthreading) and a total memory
of 256 GB. The operating system was a Debian GNU/Linux 6.0. We used Python 2.7
for scripting. The solver used for the linear programs waw Gurobi Optimizer 6.0.

An instance of the problem consists of a n × |{Tk,j ∈ M ∪ R}| ×m matrix that
describes the processing times of the tasks, a vector of size n that describes the job
weights, and a precedence graph for the tasks of the same job. We use two disjoint
sets of processors, each consisting of 40 Map and 40 Reduce processors. We consider
instances from 5 to 50 jobs; each job has 30 map tasks and 10 reduce tasks. Moreover,
we fix δ = 0.5 and a = 1.5, for the parameters of Algorithm MR. For each of the n
jobs, its weight is uniformly distributed in [1, n].
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The quality of the solutions in our experiments depend on whether there is any
correlation between jobs and processors. Based on [11], in order to experiment with
two representative cases, we generate the task processing times in each processor in two
different ways, uncorrelated and processor-job correlated, and test experimentally both
Algorithm MR and Fast-MR by running 10 different trials for each possible number
of jobs. The instances and the code used in our experiments are available at http:
//www.corelab.ntua.gr/˜opapadig/mrexperiments/.
Uncorrelated Input. The processing times {pi,k,j}i∈PM of the Map tasks Tk,j ∈ M of
each job j are selected uniformly at random (u.a.r.) from [1, 100]. Similarly to [4], we
set the processing times {pi,k,j}i∈PR of the Reduce tasks Tk,j ∈ R to thrice a value
selected u.a.r. from [1, 100] plus some “noise” selected u.a.r. from [1, 10].
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Fig. 1: (i)-(ii): The objective values of the solutions found by algorithms Fast-MR and
MR and a lower bound on the optimal. (iii)-(iv): The observed approximation ratios
of Fast-MR and MR for instances with uncorrelated processing times.

In Fig. 1.(i)-(ii), we observe that Fast-MR performs better than MR in general when
the processing times are uncorrelated. For a small number of jobs, Fast-MR gives up to
21% (on average) better solutions. However, as the number of jobs increases, the gap
between Fast-MR and MR decreases, e.g., for n = 45 and n = 50 Fast-MR gives 6%
and 5% (on average) better solutions, respectively. In fact, since the processing times
are selected u.a.r. from identical uniform distributions, the processors tend to behave as
essentially identical, rather than unrelated, which gives a significant practical advantage
to Fast-MR, especially for small instances. This holds for both the assignment and the
scheduling phase of Fast-MR, since WSPT is also known to perform quite well on iden-
tical processors. As for the performance guarantees, as we can see, in Fig. 1.(iii)-(iv),

10



that the (empirical) approximation ratio of MR ranges from 1.65 to 2.57 (on average),
while the approximation ratio of Fast-MR ranges from 1.41 to 2.41 (on average). These
values are far from MR’s worst-case approximation guarantee of 54.
Processor-Job Correlated Input. To better capture issues of data locality in our unrelated
processors setting, we next focus on instances which use processor and job correlations.
In this direction, the processing times {pi,k,j}i∈PM of the Map tasks Tk,j ∈M of each
job j are uniformly distributed in [αiβj , αiβj + 10], where αi, βj are selected u.a.r.
from [1, 20], for each processor i ∈ M and each job j ∈ J respectively. As before,
the processing time of each Reduce task is set to three times a value selected u.a.r. from
[αiβj , αiβj + 10] plus some “noise” selected u.a.r. from [1, 10].
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Fig. 2: (i)-(ii): The objective values of the solutions found by algorithms Fast-MR and
MR and a lower bound on the optimal. (iii)-(iv): The observed approximation ratios
of Fast-MR and MR for instances with correlated processing times.

In Fig. 2.(i)-(ii), we observe that Algorithm MR outperforms Fast-MR for any num-
ber of jobs. Specifically, MR leads to 11% − 34% (on average) smaller total weighted
completion times than Fast-MR. Due to the processor-job correlation in task process-
ing times, the environment now resembles better that of MapReduce scheduling with
unrelated processors and data locality. Then, the more sophisticated assignment and the
scheduling procedures of Algorithm MR have a significant advantage over the simple
online assignment and WSPT-based scheduling of Fast-MR. In fact, even for a small
number of jobs, n = 5, Algorithm MR results in up to 11% (on average) better solu-
tions. The (empirical) approximation ratio of MR, in Fig. 2.(iii)-(iv), ranges from 2.42
to 3.49 (on average), while, for Fast-MR, the approximation ratio ranges from 3.48 to
4.73 (on average). Again, both algorithms are far from MR’s worst-case approximation
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guarantee of 54. Furthermore, we observe that the empirical approximation ratio of MR
(and also its advantage over Fast-MR) seem to improve as the number of jobs increases
and the assignment and scheduling problem becomes more demanding.

References

1. F.N. Afrati, A. Das Sarma, S. Salihoglu, and J.D. Ullman. Upper and Lower Bounds on the
Cost of a MapReduce Computation. Proceedings of VLDB, 6(4):277–288, 2013.

2. F.N. Afrati and J.D. Ullman. Optimizing multiway joins in a map-reduce environment. IEEE
Transactions on Knowledge and Data Engineering, 23(9):1282–1298, 2011.

3. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line Routing of Virtual Cir-
cuits with Applications to Load Balancing and Machine Scheduling. Journal of the ACM,
44(3):486–504, 1997.

4. H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee, and S. Mukherjee.
Scheduling in mapreduce-like systems for fast completion time. In IEEE Proceedings of the
30th International Conference on Computer Communications, pages 3074–3082, 2011.

5. F. Chen, M. S. Kodialam, and T. V. Lakshman. Joint scheduling of processing and shuffle
phases in mapreduce systems. In IEEE Proceedings of the 31st International Conference on
Computer Communications, pages 1143–1151, 2012.

6. J. R. Correa, M. Skutella, J. Verschae. The power of preemption on unrelated machines
and applications to scheduling orders. Mathematics of Operations Research, 37(2):379–398,
2012.

7. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
Proceedings of the 6th Symposium on Operating System Design and Implementation, pages
137–150, 2004.

8. M. R. Garey, D.S. Johnson, and R. Sethi. The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research, 1(2):117–129, 1976.

9. T. Gonzalez and S. Sahni. Flowshop and jobshop schedules: complexity and approximation.
Operations research, 26(1):36–52, 1978.

10. L. A. Hall, A.S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average com-
pletion time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research, 22:513–544, 1997.

11. A. M. Hariri, and C. N. Potts. Heuristics for scheduling unrelated parallel machines. Com-
puters and Operations Research, 18(3):323–331, 1991.

12. M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimizing the
sum of weighted completion times in a concurrent open shop. Operations Research Letters,
38(5):390–395, 2010.

13. B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós. On scheduling in map-reduce and flow-
shops. In Proc. of the 23rd ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 289–298, 2011.

14. P. Schuurman and G. J. Woeginger. A polynomial time approximation scheme for the two-
stage multiprocessor flow shop problem. Theoretical Computer Science, 237(1):105–122,
2000.
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