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Abstract. We study influence maximization problems over social networks, in
the presence of competition. Our focus is on diffusion processes within the family
of threshold models. Motivated by the general lack of positive results establishing
monotonicity and submodularity of the influence function for threshold models,
we introduce a general class of switching-selection threshold models where the
switching and selection functions may also depend on the node activation history.
This extension allows us to establish monotonicity and submodularity when (i)
the switching function is linear and depends on the influence by all active neigh-
bors, and (ii) the selection function is linear and depends on the influence by the
nodes activated only in the last step. This implies a (1− 1/e− ε)-approximation
for the influence maximization problem in the competitive setting. On the nega-
tive side, we present a collection of counterexamples establishing that the restric-
tions above are essentially necessary. Moreover, we show that switching-selection
threshold games with properties (i) and (ii) are valid utility games, and thus their
Price of Anarchy is at most 2.

1 Introduction

A large part of recent research on social networks concerns the design of marketing
strategies for advertising new products over a network. The focus of these efforts is on
exploiting viral effects for the spread of new ideas and technologies among networks
of friends, colleagues, relatives or other circles. The algorithmic question that naturally
arises under such diffusion processes is then the following: find a subset of “most influ-
ential” nodes to target (i.e., advertise the new product to or even give it for free), so as
to maximize the expected number of product adoptions, subject to a budget constraint.

This problem was initially formalized and studied by Domingos and Richardson [3]
and by Kempe et al. [9], who focused on two of the most popular families of stochastic
diffusion processes, namely the so-called threshold models [6, 12] and cascade models
[4]. Finding the optimal set of influential nodes under this framework is an NP-hard
problem, and the work of [9] proposed an approximation algorithm, achieving a guar-
antee of 1−1/e. The algorithm is based on the observation that the function quantifying
the total influence of a set of early adopters is a monotone and submodular function, and
thus, the classical greedy approach for maximizing such set functions applies [11].
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The models above however, do not take into account the presence of multiple com-
peting products in a market. In real networks, customers (i.e., nodes) end up choosing
a product among various alternatives. To take the simplest possible scenario, suppose
there are two firms,R andB (standing for the red and blue product respectively), trying
to promote their product over a social network. A convenient way to model the process
now is by viewing this setting as a 2-player game, with the strategy space being the
subsets of nodes that can be targeted subject to each firm’s budget constraint.

Within this game-theoretic framework, interesting research questions arise. First,
one can have a natural extension of the problem studied in [9] for a single product, as
follows: Given a strategy of firm B, find the best subset of nodes for firm R, so as to
maximize the expected number of product adoptions in her favor. In other words, find
an algorithm to compute the best response of a player to a strategy of her competitor. At
first sight, it may appear that the problem under competition may not differ significantly
from that without competition. For certain cascade models, this is indeed the case, see
e.g. [1]. Interestingly enough however, this does not hold for threshold models. In [2],
several extensions of the threshold model were presented where the best response func-
tion is nonmonotone and/or nonsubmodular and the techniques used in [9] cannot be
employed to obtain a good approximation. It is still a major open problem in the area
to understand for which diffusion models, one can compute (near) optimal strategies
efficiently. Moreover, apart from best responses, another direction is to study further
the properties of Nash equilibria of the game and quantify their performance, as was
done recently in [7, 5]. For example, one can study the Price of Anarchy of such games,
or other criteria, such as the Budget Multiplier, introduced in [5].

Our Contribution: Motivated by the lack of positive results establishing monotonicity
and submodularity of the influence function in competitive threshold models, we em-
bark on a more systematic study of this question. On the conceptual side, we introduce a
fairly general class of threshold models that belong to the family of switching-selection
models. Under these models, a node first makes a decision on whether to adopt some
product (i.e., whether to switch to being activated) and then makes a separate decision
on which product to adopt (selection process). These two steps are determined by a
switching and a selection function. Our class is essentially a threshold version of the
models studied recently in [5] and [7], generalizing at the same time some of their as-
pects. In particular, we do not restrict the switching and selection functions to depend
only on the set of currently active neighbors. Instead, we let them depend on the whole
activation history, i.e., on the sets of active nodes at every time step. This extension
allows for a careful investigation of properties that lead to a monotone and submodular
influence function, and we obtain both positive and negative results under this class.

On the positive side, our main technical contribution is a set of conditions on the
switching and selection functions that lead to monotonicity and submodularity and thus,
enable us to obtain an (1−1/e−ε)-approximation for the influence maximization prob-
lem in the competitive setting, for any ε > 0. Specifically, our main result (Section 3)
is that the best response of a switching-selection threshold model is monotone and sub-
modular if (i) the switching function is linear and depends on the weight of all active
neighbors of a node, and (ii) the selection function is linear and depends on the weight
of the nodes activated in the last step (i.e., the most recent buyers are the ones to influ-
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ence the actual product selection). For the proof, we first establish the equivalence of
such models with a generalization of the “live edges” approach [9], applicable to this
particular setting, and then we develop quite delicate coupling arguments for establish-
ing monotonicity and submodularity. Moreover, we conjecture that our positive results
extend to the case where the switching function is any nondecreasing concave function
of the weight of all active neighbors (see the discussion at the end of Section 3).

On the negative side, we present (Section 4) a comprehensive collection of coun-
terexamples establishing that the restrictions above are essentially necessary. Regarding
the switching process, we present examples showing that the influence function may not
be monotone and submodular if the switching function is either not monotone or not
concave, or it allows for the influence to decrease over time. For the selection process,
we have analogous counterexamples when the selection function depends on the weight
of neighbors activated in steps before the last one, or when it deviates from linearity.

Finally, we also study the performance of Nash equilibria of the underlying game,
motivated by the properties established for the models in [5, 7]. We show (Section 5)
that switching-selection threshold games with the properties identified above are valid
utility games, and thus their Price of Anarchy is at most 2.

2 The Model

In this section, we define the class of Switching-Selection Threshold Models. This is
essentially a ”threshold” version of the Switching-Selection Model introduced in [5],
generalizing at the same time some of its aspects, as we clarify later within this section.

Social Networks. We model a social network by a directed graph G(V,E), |V | = n.
Each edge (u, v) has a weight wuv ∈ [0, 1], specifying the degree of influence of node
u towards node v. For any node v, we denote by N(v) the set of in-neighbors of v,
and we require that the sum of the weights of the edges towards v is no more than 1:∑
u∈N(v) wuv ≤ 1.
We consider a 2-player game between two competing firms that try to promote their

product over the network (in fact our results generalize to games with more players, as
we state later on, but for simplicity the presentation in Section 3 is for 2 players). We
denote the two players by R and B standing for the red and blue product respectively.
Each player p ∈ {R,B} has a budget Kp ∈ N+, which they will use to target selected
nodes in the network. The decision that the firms need to make is to choose how to
disperse their budget to the n nodes, hence the strategy space for each firm p consists
of all vectors (i.e., multisets) in the form ap = (a1p, a2p, . . . , anp), where ajp ∈ N and∑n
j=1 ajp ≤ Kp.
Once the firms make a choice, the spread of the two products is modeled by a

stochastic diffusion process that takes as input the strategies of the 2 firms, aR, aB . We
describe next a family of such processes that we are interested in.

Switching-Selection Diffusion Processes. The process that determines the eventual
adoptions, takes place in discrete steps. The state sut ∈ {R(ed),B(lue),U(ncolored)},
of node u, denotes whether node u has adopted a product at step t and, if yes, which
product it adopted. As with the majority of the literature, we assume that the process
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is progressive, i.e., once a node is colored, it never changes its state afterwards. The
process evolves as follows:

– At time step t = 0, the initialization takes place. For every node u:
• A threshold θu is selected uniformly at random in [0, 1].
• Given the strategies aR, aB of the 2 firms, if (auR = 0 ∧ auB = 0) then
su0 = U .

• Otherwise su0 = R with probability auR
auR+auB

and su0 = B w.p. auB
auR+auB

– At any time step t > 0, each uncolored node u decides:
1. whether to adopt some product based on the decisions of its neighbors up until

step t− 1, on its threshold, θu, and on a switching function f , described below.
2. which product to adopt, in case that it decided to adopt some product. The

choice of product is determined by a selection function g, also described below.
Clearly, the process can last for at most n − 1 steps. We allow for fairly general
functions f and g. In particular, let Rt (respectively Bt) denote the set of red (blue)
nodes at step t and let At = Rt ∪Bt. Similarly, let Wut(R) (respectively Wut(B))
denote the total weight of the edges (v, u) such that v ∈ Rt (resp. Bt). Let also
Wut =Wut(R) +Wut(B).
1. The switching function applied at step t to node u, takes as argument the vec-

tor Cut = (Wu0,. . . , Wu,t−1), i.e., the whole history of how the cumulative
weight of active neighbors has evolved in the previous steps. Node u switches
from uncolored to colored at time t if

f(Cut) ≥ θu

2. The selection function takes as arguments the vectors Cut(R) = (Wu0(R),. . . ,
Wu(t−1)(R)), and Cut(B) = (Wu0(B), . . . ,Wu,t−1(B)), i.e., the histories
for the total weight of red and blue neighbors in the previous steps. Then with
probability

g(Cut(R),Cut(B)),

node u selects the red product and sut = R. Else sut = B.

Note that the model can be easily extended to the case of k > 2 players.
Comparisons with related models: The model encompasses some families that have
already been described before. For example, for linear f and g, and with f(Cut) :=

f(Wu,t−1), and g(Cut(R), Cut(B)) := g(
Wu,t−1(R)
Wu,t−1

), we have the Weight-Proportional
Competitive Linear Threshold Model studied in [2].

Our model can be viewed as a threshold version of the models studied in [7, 5]. We
allow more general switching and selection functions, in the sense that these functions
can depend on how the total weight evolves over time. In [7, 5], these functions depend
only on the active nodes at step t−1, when applied for step t. Finally, another technical
difference is that we do not have any update schedule determining the order of updates.
Instead, we consider that at each step any node that can switch to a colored state will do
so by taking into account what has happened up until time t− 1.
Best Response Computation. As with other competitive diffusion models, such as
[1, 2], our primary focus is on the problem of computing the best strategy for a firm,
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given its opponent’s strategy. Suppose we take the viewpoint of the Red firm. Given
strategies aR, aB , we let σ(aR, aB) denote the expected number of red nodes at the end
of the diffusion process. The expectation here is over both the tie-breaking rule in the
initialization phase and over the probabilistic choice of thresholds. We take this as the
utility function of the red firm under this game.The problem we are interested then is:
The Influence Maximization Problem: Given a diffusion process, specifying the func-
tions f and g, and given the strategy of the blue firm, aB , find a strategy aR for the red
firm so as to maximize σ(aR, aB).

3 Dependence of Selection Function only on New Influencers

In this section, we will focus on the case where

– The switching function f depends only on the aggregate weight of all the colored
neighbors, up until the previous step. Hence, to check if a node u becomes colored
at step t, we check if f(Wu,t−1) ≥ θu.

– The selection function depends on the set of nodes that became active exactly at
the previous step of the process. In particular, at step t, the function g depends
on the aggregate weights of colored nodes at the previous 2 steps, in the form
g := g(

Wu,t−1(R)−Wu,t−2(R)
Wu,t−1−Wu,t−2

), and we also require that g is a linear function.

To see the motivation behind these types of switching and selection functions, one
can think of the competition between two smartphones. The choice of the switching
function is quite natural, and follows the recent works in the literature. E.g., the decision
on whether to buy a smartphone or not, is affected by the set of all neighbors who have
already bought one, regardless of which of the two products they have chosen. As for
the selection function, the rationale is that a node may be more heavily influenced by the
most recent buyers, i.e., the nodes that became active at the previous step in our model.
If in the recent past more people made a choice towards one of the two products, then
the node will have a higher probability to select the same product as well.

As we will see in Section 4, significant deviations from these assumptions make the
algorithmic considerations that we are interested in more challenging.

Linear Switching Functions.
Our positive results concern the case where f is a linear function. In fact, we can

assume WLOG that f and g are the identity function. We will refer to this as the LSM-
STM model (Linear Switching-Marginal Selection Threshold Model). We conclude this
section with a discussion regarding non-linear switching functions.

From now on, fix a strategy of the blue firm, say aB = (a1B , a2B , . . . , anB). We
want to find a strategy aR = (a1R, a2R, . . . , anR) so as to maximize σ(aR, aB). We
will provide an approximation algorithm to this problem by using the standard tools of
optimizing monotone and submodular functions.

Definition 1. Consider a function h : Zn → R. Let x, y ∈ Zn be two vectors with
xj ≤ yj for every j = 1, ..., n. Let also ej ∈ Rn be the unit vector with ej(j) = 1 and
ej(k) = 0, for k 6= j. We will say that h is
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– monotone, if h(x) ≤ h(y),
– submodular, if h(x+ ej)− h(x) ≥ h(y + ej)− h(y) for j = 1, ..., n.

Note that this is a generalization of the standard definition of submodularity, to the
case of functions defined over multisets rather than sets, as defined also in [8].

We are interested in the expected number of red nodes at the end of the diffusion
process as a function of the red firm’s strategy, i.e., σ(aR, aB) viewed as a function of
aR only. Our main result is the following:

Theorem 1. Under the LSMSTM model, and for any given strategy aB of the blue firm,
the function σ(aR, aB) is monotone and submodular.

In order to use the machinery of [11] or [8] (for multisets), we also need to be able
to compute the expectation σ(aR, aB), for any strategies aR, aB . We can use sampling
methods to approximate this value within any accuracy and as explained in [9], this
suffices for the greedy algorithm of [11]. This implies the following corollary:

Corollary 1. Under the LSMSTM model, and for any ε > 0, there is a (1 − 1/e − ε)-
approximation algorithm for computing the best response of any player against her
competitor.

To prove Theorem 1, we will begin by showing that LSMSTM is equivalent to
another model, which we will refer to as Single Incoming Edge Analog (SIEA). This is
in a similar spirit as the approach via ”live edges” in [9].

Definition 2. (SIEA) Under this stochastic process, given aR, aB , the initialization
phase is exactly the same as in LSMSTM. Then, for each node u we preserve at most
one incoming edge. Node u selects the edge e = (v, u) with probability wv,u and no
edge w.p. 1 −

∑
v∈N(u) wv,u. We refer to the selected edges as live edges. Afterwards

the contagion process works deterministically. At step t = 1, any node that has an in-
coming live edge from a colored neighbor, obtains the color of its neighbor. Continuing
in this manner, at step t, any node that has an incoming edge from a colored node,
becomes colored with the color of that node.

A crucial observation is the following:

Lemma 1. Given a pair of strategies aR, aB , the distributions over red-colored sets
and blue-colored sets derived from running LSMSTM are the same as the distributions
produced by SIEA.

The proof of Lemma 1 is based on similar techniques as the proof of Claim 2.6 in [9].
From now on and till the end of the proof of Theorem 1, we will work only with the
SIEA model. We first prove monotonicity4.

Lemma 2. Let aR, a′R ∈ Zn such that aR ≤ a′R. Under SIEA, and for any aB ,
σ(aR, aB) ≤ σ(a′R, aB).

4 Note that in the case of a single product, monotonicity is trivial. This is not always the case in
threshold models with at least two competing products. See e.g. [2] for some examples.
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Proof. Consider 2 SIEA processes, π1 and π2 with aπ1

R = aR, aπ2

R = a′R, and aπ1

B =
aπ2

B = aB . We will prove that the expected number of red nodes at π2 is at least as high
as that in π1.

We define a coupling between π1 and π2, and prove the lemma using induction
on the number of steps. We consider the following coupled processes, which by slight
abuse of notation, we will keep denoting by π1 and π2: We first pick randomly the set
of live edges, as described in the SIEA model, which we take to be the same for both
processes. At step t = 0, for every node u, where aπ1

uR + auB > 0, we pick a number
uniformly at random in [0, 1] and we decide on the color of u at each process, based on
the following 3 intervals of [0, 1].

– with probability auB
a
π2
uR+auB

, we color u blue in both processes.
– with probability auB

a
π1
uR+auB

− auB
a
π2
uR+auB

, we color u blue in π1 and red in π2.
– with probability 1− auB

a
π1
uR+auB

, we color u red in both processes.

Any other node can be colored with no ambiguity in π1 and π2 or remain uncolored in
one or both of the processes (e.g., if aπ2

uR = auB = 0). The next steps in both processes
continue as in the original SIEA processes (but note that both processes will use the
same set of live edges).

It is quite straightforward to see that this is a valid coupling, since it produces the
same distribution of blue and red nodes at each step t, as if we run the original processes.
Indeed, at step t = 0, the probability that in π1 a node u is colored blue is the probability
that the result of the coin flip falls in one of the first two cases and hence equal to:

auB
aπ2

uR + auB
+ (

auB
aπ1

uR + auB
− auB
aπ2

uR + auB
) =

auB
aπ1

uR + auB

This is precisely the same for the original π1 process without coupling. The same is
true for the process π2 and by induction we can then prove that the distributions of red
and blue nodes is the same as in the uncoupled processes.

Coupling helps us in establishing the following claim, which trivially then implies
monotonicity:

Claim. For the coupled processes π1 and π2, for every step t and for every node u, it
holds that if sπ1

ut = R, then sπ2
ut = R.

Proof. We proceed by induction on the number of steps.
Induction basis: This is trivial by the construction of the coupling.
Induction step: Suppose that the claim holds until step t− 1. We will show that it holds
for step t. For an arbitrary node u, suppose sπ1

u,t = R. If it is the case that the node was
colored in previous steps, then we would also have sπ1

u,t−1 = R. But by the induction
hypothesis, then sπ2

u,t−1 = R, and hence, sπ2
u,t = R. Now consider the case where node

u becomes red in π1 exactly at step t. This means that there is a live edge from a node
v, and also sπ1

v,t−1 = R. But then by the induction hypothesis, sπ2
v,t−1 = R. Recall now

that the coupled processes use the same set of live edges, and also that there can be at
most one incoming live edge to a node u. Hence, node u cannot have possibly been
colored in π2 by some other live edge before step t. Thus u is uncolored in π2 at step
t− 1, and it will become red in π2 as well, at step t. ut
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We established that for any random selection of live edges, the number of red nodes
at the end of π2 is at least as high as those in π1. Hence the expected number of red
nodes will also have the same property, i.e., the SIEA model satisfies monotonicity. ut

We now proceed to prove submodularity for our model.

Lemma 3. Let aR, a′R ∈ Zn such that aR ≤ a′R. Under SIEA, and for any aB , and any
j ∈ {1, ..., n}, σ(aR + ej , aB)− σ(aR, aB) ≥ σ(a′R + ej , aB)− σ(a′R, aB).

Proof. The proof is based on more involved coupling arguments than the case of mono-
tonicity.

Consider 4 processes, π1,π2, π3 and π4 with the following features:

– aπ1

B = aπ2

B = aπ3

B = aπ4

B = aB ,
– aπ1

R = aR, and aπ2

R = a′R,
– aπ3

R = aπ1

R + ej , and aπ4

R = aπ2

R + ej .

Let pi =
a
πi
uR

a
πi
uR+auB

be the probability that node i is colored red at the initialization

phase of process πi, i ∈ {1, 2, 3, 4}. We consider now the following coupling between
these processes: We pick at random a set of live edges as described under the SIEA
model, which will be the same for all the processes. Then at step t = 0, for a node u
with aπ1

uR + auB > 0, we pick uniformly at random a number in [0, 1] and we decide
on the color of u at each of the coupled processes, based on whether the number falls
in one of 5 subintervals of [0, 1], with lengths as defined below. In particular,

– With probability p1, we paint node u red in all processes.
– With probability (p2 + p3)− (p1 + p4) : s

π2
u0 = sπ3

u0 = sπ4
u0 = R ∧ sπ1

u0 = B.
– With probability p4 − p3 : sπ2

u0 = sπ4
u0 = R ∧ sπ1

u0 = sπ2
u0 = B.

– With probability p4 − p2 : sπ3
u0 = sπ4

u0 = R ∧ sπ1
u0 = sπ3

u0 = B.
– With probability 1− p4: we color u blue in all processes.

We can easily see that the probabilities above sum up to 1. It is also easy to check
that this is indeed a valid coupling that produces the same distribution of blue and red
nodes at each step t as if we run the original processes. For example, at step t = 0, the
probability that in π4 a node u is colored red is the probability that the result of the coin
flip falls in one of the first four cases above and hence equal to:

p1 + (p2 + p3)− (p1 + p4) + (p4 − p3) + (p4 − p2)

The above is equal to p4, as desired. The same holds for the other processes as well. For
nodes where, aπ1

uR+auB = 0, we need to have an analogous (but simpler) construction,
and the same holds for the case where aπ2

uR+auB = 0. We omit the details for handling
these simpler cases from this version.

The claim that we need in order to conclude our proof is the following:

Claim. For the coupled processes, for every step t and for every node u, it holds:

– (sπ4
ut = R)⇒ (sπ2

ut = R) ∨ (sπ3
ut = R).

– (sπ1
ut = R)⇒ (sπ2

ut = R) ∧ (sπ3
ut = R).
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Proof. Induction basis: The properties hold by the construction of the coupling.
Inductive step: Suppose the claim holds for step t− 1. To see the first part of the claim,
consider a node u with sπ4

u,t = R. If it is the case that the node was colored in previous
steps, then we would also have sπ4

u,t−1 = R. But by the induction hypothesis, then either
sπ2
u,t−1 = R, and hence, sπ2

u,t = R or sπ3
u,t−1 = R, and hence, sπ3

u,t = R. Now consider
the case where node u becomes red in π4 exactly at step t. This means that there is a
live edge from a node v, and also sπ4

v,t−1 = R. But then by the induction hypothesis,
sπ2
v,t−1 = R, or sπ3

v,t−1 = R. Recall now that the coupled processes use the same set of
live edges, and also that there can be at most one incoming live edge to a node u. This
means that node u cannot have possibly been colored in both π2 and π3 by some other
live edge up until step t− 1. Hence u will become red in π2 or π3 at t. This establishes
the first part of the claim. The second part is established in a very similar way. ut

It is easy to see that the claim implies submodularity of σ(aR, aB). Hence this
completes the proof. ut

Remark 1. We can generalize the above results (the equivalence to SIEA as well as
monotonicity and submodularity) for the case of k > 2 players. The selection function
would still retain the same form, taking into account in the denominator the weight of
all neighbors that were colored in the last step. To prove the same results say for player
1, we only need to consider that there is one Blue opponent with budget for node u
equal to the sum of all other players’ budgets for i = 2, . . . , k. The intuition behind this
is that for each player, the identity of her opponents does not make a difference. Hence,
it is as if playing versus one Blue player that is the union of all other players.

Discussion about non-linear switching functions In the absence of competition, when
the switching function is concave (and there is no selection function), monotonicity and
submodularity hold [10]. This gives some indication that with such a switching function
and with a linear selection function that is implemented just on the new adopters, the
same properties may also hold. However, in the competitive setting, concave switching
functions make the problem more challenging.

Firstly, the live-edge technique cannot be used in the case of a concave switching
function. The reason for this is that the model ceases to be equivalent to SIEA. The acti-
vation time is more crucial now, and the unconditional probability of a node influencing
a neighbor, depends on the order with which it will become active. The later it becomes
active, the smaller the influence it will exert.

Secondly, the technique used by Mossel and Roch in [10] for the single product case
cannot apply here. Their proof relies on the so called antisense coupling technique. A
crucial point for the technique to apply is that the ordering with which the neighbors
will get colored does not affect the outcome. This is not the case in the competitive
setting as the nodes might get painted with different colors and the ordering affects the
probability of a node getting colored with a particular color.

Despite the technical difficulty of dealing with this case, we conjecture that mono-
tonicity and submodularity hold in the case of concave switching functions along with
a linear selection function depending solely on new adopters. This would provide an
interesting generalization of [10] in the concave setting with competition.



10

Fig. 1. Using this social network, we show that the utility function may not be submodular if the
edge weights decrease in the diffusion process.

4 Necessity of Assumptions

Next, we justify the assumptions behind LSMSTM, by demonstrating that they are es-
sentially necessary for the monotonicity and the submodularity of the influence func-
tions. Specifically, we present examples showing that any significant deviation from
LSMSTM yields a utility function that is nonmonotone or nonsubmodular (or both).

Monotonicity and Concavity of the Switching Function. Clearly, if the switching
function is nonmonotone, the utility function need not be monotone. We also show here
that the submodularity of the utility function requires that the switching function should
be concave. For simplicity, we focus on the monopoly case with one product. Let the
social network consist of 3 nodes s1, s2 and t and of two directed edges (s1, t) and
(s2, t) with weights w1 and w2. Then, if the switching function f is strictly convex at
some point, i.e., if there are w1 and w2 such that f(w1 + w2) < f(w1) + f(w2), then
the utility of the firm is not subadditive, and thus not submodular in such an instance.

Influence from the Neighbors in the Switching Function. Next, we show that if the
edge weights decrease by an additive term of ε in the k-th step after their infection, the
utility function is nonsubmodular. Thus, we demonstrate that submodularity requires
that the edge weights, as taken into account by the switching function, should not de-
crease over time. Since we focus on models that do not depend on the node identities,
we assume that this decrease takes place in any edge in the k-th step after its infection.

Let us consider the network in Fig. 1 where the blue firm selects nodes s1 and s2
and the red firm selects nodes s3 and s4. We assume that k = 2, i.e., the weight of each
edge decreases by an additive term of ε in the second step after the edge’s infection,
that f satisfies f(2x) < f(2x + ε), and that the selection function g is linear. Then, if
t has not become blue by step 2 of the process, its threshold is larger than f(2x). Then,
in the third step, the weight of (s1, t) decreases by ε and the total switching influence
on t is 2x + ε, if both s3 and s4 are selected by the red firm from the beginning, and
at most 2x, otherwise. Therefore, the probability that t becomes red is positive iff the
red firm selects both s3 and s4 from the beginning. Thus, the utility function of the
red firm is nonsubmodular in this case. Connecting s2 to a2 by a (k − 1)-chain of unit
weight edges and connecting s3 to a3 and s4 to a4 by a k-chain of unit weight edges, we
can generalize this example to the case where the edge weights decrease in the k-th step
after their infection, for any k ≥ 2. In fact, using similar in spirit (but more complicated)
constructions, we can generalize this example to the case where the weight of each edge
can decrease by a time dependent quantity in each step after the edge’s infection.
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Dependence of Selection Function on Previously Colored Nodes. Since we do not
differentiate the nodes based on their identities, we can only differentiate them based
on activation time. If the selection function considers not only the nodes colored in the
last step, but also the nodes colored in previous steps, we can adjust the example in [2,
Section 2] and show that the utility function may be nonmonotone and nonsubmodular.
(Almost) Linearity of the Selection Function. Finally, we observe that if the selection
function g is highly convex at some point, i.e., if there exist some x1, x2, x3 such that

g
(

x1

x1+x3

)
f(x1+x3)+g

(
x2

x2+x3

)
f(x2+x3) < g

(
x1+x2

x1+x2+x3

)
f(x1+x2+x3) , (1)

then the utility function may not be submodular. This follows directly from (1) applied
to a simple network with 4 nodes t, s1, s2, and s3, and 3 directed edges (s1, t), (s2, t),
and (s3, t), with weights x1, x2, and x3, respectively, where the blue firm selects s3.
The same argument shows that the selection function (of the red firm) g(x) should not
be highly concave, since otherwise, the selection function 1 − g(x) of the blue firm
would be highly convex. Therefore, the selection function should be almost linear.

5 Performance of Equilibria

We conclude our work with a different and orthogonal question, namely studying the
performance of Nash equilibria of the underlying game. We will present the analysis
directly for an arbitrary number of competing firms, say k of them. For ease of presen-
tation, we consider the case where the players choose a set rather than a multiset as their
strategy to seed nodes.

Viewing the process as a game, we take as the utility of player i the expected
number of nodes adopting product i at the end of the process. For a strategy profile
S = (S1, ..., Sn), we denote the payoff of i by σi(S). Note that the nature of our
switching function is such that the number of colored nodes at the end (independently
of what color they chose), when starting from a strategy profile S = (S1, ..., Sn) only
depends on the set S = ∪Si. Hence our social utility function can be defined simply
over subsets of seeded nodes S ⊆ V , i.e., as γ(S) = γ(S) =

∑
i σi(S) where S can

be any strategy profile that results in seeding S at step t = 0.
To quantify the Price of Anarchy of this game, we need to compare the values of

γ(·) at the optimal seeding set against that at an equilibrium. For this we will use the
approach of Vetta regarding utility games [13], also used by [1, 7]. We start with the
definition of a utility game.

Definition 3. Consider a game with k players, and a ground set V , so that the strategy
space of each player are the subsets of V . Let γ(S) be a social welfare function. A game
is defined to be a utility game if it satisfies the following three properties:

1. The social utility function γ(·) is submodular.
2. Given a profile S resulting in a seeding set S, the total value for all the players is

less than or equal to the total social value:
∑
σi(S) ≤ γ(S).

3. The value for a player i is at least her added value for the society: σi(S) ≥ γ(S)−
γ(S−i)
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Theorem 2. The LSMSTM model induces a utility game.

The proof of this theorem is by establishing the three properties listed above. Note that
Property 2 in Definition 3 is trivial. In fact, in our case it holds with equality. Hence,
the main part of the proof is to ensure the first and the third property as well. For this
we use the equivalence with the SIEA model, which facilitates the analysis (note that
according to Remark 1, this equivalence holds for an arbitrary number of players). We
omit further details from this version.

From the above theorem, using [13], we have:

Corollary 2. The Price of Anarchy even for coarse correlated equilibria is at most 2.

A modification of the tight example in [7] shows that our upper bound is tight as well.
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