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Abstract. Congestion games ignore the stochastic nature of resource delays and
the risk-averse attitude of the players to uncertainty. To take these aspects into ac-
count, we introduce two variants of atomic congestion games, one with stochas-
tic players, where each player assigns load to her strategy independently with a
given probability, and another with stochastic edges, where the latency functions
are random. In both variants, the players are risk-averse, and their individual cost
is a player-specific quantile of their delay distribution. We focus on parallel-link
networks and investigate how the main properties of such games depend on the
risk attitude and on the participation probabilities of the players. In a nutshell,
we prove that stochastic congestion games on parallel-links admit an efficiently
computable pure Nash equilibrium if the players have either the same risk attitude
or the same participation probabilities, and also admit a potential function if the
players have the same risk attitude. On the negative side, we present examples of
stochastic games with players of different risk attitudes that do not admit a poten-
tial function. As for the inefficiency of equilibria, for parallel-link networks with
linear delays, we prove that the Price of Anarchy is Θ(n), where n is the number
of stochastic players, and may be unbounded, in case of stochastic edges.

1 Introduction

Congestion games provide an elegant and useful model of selfish resource allocation
in large-scale networks. In an (atomic) congestion game, a finite set of players, each
with an unsplittable unit of load, compete over a finite set of resources (or edges). All
players using an edge experience a latency given by a non-negative and non-decreasing
function of the edge’s load (or congestion). Each player selects a path between her
origin and destination, trying to minimize her individual cost, that is, the sum of the
latencies on the edges in the chosen path. A natural solution concept is that of a pure
Nash equilibrium (PNE), a configuration where no player can decrease her individual
cost by unilaterally changing her path.

In a seminal work, Rosenthal [18] proved that the PNE of congestion games cor-
respond to the local optima of a natural potential function, and thus every congestion
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game admits a PNE. Following [18], the properties of congestion games and several
variants of them have been extensively studied. The prevailing questions in recent work
have to do with whether congestion games and some natural generalizations of them
admit an (approximate) PNE and/or an (approximate) potential function (see e.g., [13],
[11], [12] and [5]), with bounding the convergence time to a PNE if the players act self-
ishly (see e.g., [1], [7], and [10]), and with quantifying the inefficiency of PNE due to
the players’ selfish behavior (see e.g., [4], [8], [2], and [6]). Notably, a significant part
of recent work concerns the properties of congestion games and their generalizations
on parallel-link networks (see e.g., [13], [6], and [10], and the references therein).

However, most research work on congestion games essentially ignores the stochas-
tic nature of edge delays and assumes that players have precise knowledge of the (de-
terministic) edge latencies. On the contrary, in real life situations, players cannot ac-
curately predict the actual edge delays, not only because they cannot know the exact
congestion of every edge, but also due to (a priori unknown) external events (e.g., some
construction work, a minor accident, a link failure) that may affect the edge latencies
and introduce uncertainty. It is therefore natural to assume that the players decide on
their strategies based only on estimations of their actual delay and, most importantly,
that they are fully aware of the uncertainty and of the potential inaccuracy of their es-
timations. So, to secure themselves from the event of an increased delay, players select
their paths taking uncertainty into account (e.g., people either take a safe route or plan
for a larger than usual delay when they head to an important meeting).

Such considerations give rise to congestion games with stochastic delays and risk-
averse players, where instead of the path that minimizes her expected delay, each player
selects a path that guarantees her a reasonably low actual delay with reasonably high
confidence. Here, the actual delay of each player can be modeled by a random variable.
Then, a common assumption is that players seek to minimize either a convex combina-
tion of the expectation and the variance of their delay, or a player-specific quantile of
the delay distribution (see also [19], [9] about the cost functions of risk-averse players,
and [17] about possible ways of risk quantification in optimization under uncertainty).

Previous Work. Following the research direction above, Ordóñez and Stier-Moses [15]
considered nonatomic congestion games and suggested that each path should be penal-
ized by an additive term that increases with the risk-aversion of the players and with the
maximum deviation from the expected delay of the path (however, this term does not
depend on the actual load of the edges). For each path, the additive term can be cho-
sen either as a δ-fraction of (resp. a δ-quantile of a random variable depending on) the
maximum deviation from the expected delay of the path, or simply, as the sum of the
δ-fractions of the maximum deviation from the expected delay of each edge in the path,
where δ quantifies the risk-aversion of the players. Under some general assumptions,
[15] proves that an equilibrium exists and is essentially unique in all the cases above.

Subsequently, Nikolova and Stier-Moses [14] suggested a model of stochastic self-
ish routing with risk-averse players, where each player selects a path that minimizes the
expected delay plus δ times the standard deviation of the delay, where δ quantifies the
risk-aversion of the players. They considered nonatomic and atomic congestion games,
mostly with homogeneous players, that share the same risk attitude, and distinguished
between the case where the standard deviation of a path’s delay is exogenous, i.e., it does
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not depend on the load of the edges in the path, and the case where it is endogenous, i.e.,
it is a function of the load. They proved that in the exogenous case, which is similar to
the model of [15], stochastic routing games essentially retain the nice properties of stan-
dard congestion games: they admit a potential function and, in the nonatomic setting,
a unique equilibrium, and the inefficiency of equilibria can be bounded as for standard
congestion games. In the endogenous case, they proved that nonatomic stochastic rout-
ing games admit an equilibrium, which is not necessarily unique, but may not admit
a cardinal potential. Moreover, atomic stochastic routing games may not admit a PNE
even in simple extension-parallel networks with 2 players and linear delays.

Contribution. Following this research agenda, we seek a better understanding of the
properties of congestion games with stochastic delays and risk-averse players. We focus
on atomic congestion games and introduce two variants of stochastic congestion games.
We start from the observation that the variability of edge delays comes either from the
variability of the traffic demand, and the subsequent variability of the edge loads, or
from the variability of the edge performance level. Decoupling them, we introduce two
variants, namely Congestion Games with Stochastic Players and Congestion Games
with Stochastic Edges, each capturing one of the two sources of uncertainty above.

Congestion Games with Stochastic Players aim to model the variability of the traffic
demand. Specifically, each player i participates in the game independently with proba-
bility pi. As a result, the total network load, the edge loads, and the edge and the path
latencies are all random variables. On the other hand, Congestion Games with Stochas-
tic Edges aim to model variability in the network operation. Now, each edge e may
operate either at the “standard” mode, where its latency is given by a function fe(x),
or at the “faulty” mode (e.g., after a minor accident or a link failure), where its latency
is given by ge(x), with ge(x) ≥ fe(x). Each edge e switches to the “faulty” mode in-
dependently with a given probability pe. Hence, the network load and the edge loads
are now deterministic, but the edge and the path latencies are random variables. In both
variants, players are risk-averse to the stochastic delays. Specifically, each player i has
a (possibly different) desired confidence level δi, and her cost on a path q is the δi-
quantile (a.k.a. value-at-risk) of the delay distribution of q. In words, the individual cost
of player i is the minimum delay she can achieve along q with probability at least δi.

At the conceptual level, the model of Congestion Games with Stochastic Players is
similar to the model with endogenous standard deviations of [14]. In fact, using Cher-
noff bounds, one can show that for linear latency functions, if the expected edge loads
are not too small, our δi-quantile individual cost can be approximated by the individual
cost used in [14]. However, we also consider stochastic demands, a direction suggested
in [14, Sec. 7] to enrich the model, and players that are heterogeneous with respect to
risk attitude. As for Congestion Games with Stochastic Edges, the model is conceptu-
ally similar to the model with exogenous standard deviations of [14].

In the technical part of the paper, we restrict ourselves to parallel-link networks with
symmetric player strategies, and investigate how the properties of stochastic congestion
games depend on the players’ participation probabilities and confidence levels. We first
observe that such games admit a potential function and an efficiently computable PNE,
if the players are homogeneous, namely if they have the same confidence level δ and, in
case of stochastic players, the same participation probability p (Theorems 1 and 7). We
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also show that if the players have different confidence levels (and the same participation
probability, if they are stochastic), stochastic congestion games belong to the class of
player-specific congestion games [13], and thus admit a PNE computable in polynomial
time (Corollaries 1 and 2). On the negative side, we prove that such games may not
admit a potential function (Theorems 2 and 8). For Congestion Games with Stochastic
Players that have the same confidence level and different participation probabilities, we
show that they admit a lexicographic potential (Theorem 4), and thus a PNE, which
can be computed by a simple greedy best response algorithm (Theorem 3). As for the
inefficiency of PNE, in the case of linear latency functions, we prove that the Price of
Anarchy (PoA) is Θ(n), if we have n stochastic players, and (Theorems 5 and 6), and
may be unbounded, in the case of stochastic edges (Theorem 9).
Other Related Work. There is a significant volume of work on theoretical and prac-
tical aspects of transportation networks with uncertain delays, which however focuses
on nonatomic games and adopts notions of individual cost and viewpoints quite dif-
ferent from ours (see e.g., [14]). In addition to [15,14], [3] and [16] are similar to our
work. Motivated by applications with only partial knowledge of the number of players
participating in the game, Ashlagi, Monderer, and Tennenholtz [3] considered conges-
tion games on parallel links with stochastic players. However, the players in [3] are
risk-neutral, since their individual cost is the expected delay of the chosen link. They
proved that a generalization of the fully mixed equilibrium remains a mixed Nash equi-
librium in this setting. Very recently, Piliouras, Nikolova, and Shamma [16] considered
atomic congestion games with risk-averse players and delays determined by a random-
ized scheduler of the players on each edge. They obtained tight bounds on the PoA of
such games with linear latencies under various notions of risk-averse individual cost.
Interesting, they proved that the PoA can be unbounded for the individual cost of [14].

2 Notation and Preliminaries

In this section, we introduce the notation and the basic terminology of standard con-
gestion games. For any integer n ≥ 1, we let [n] = {1, . . . , n}. For a random variable
X , we let E[X] denote the expectation and Var[X] denote the variance of X . For an
event E, we let Pr[E] denote its probability. For a vector x = (x1, . . . , xn), we let
x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x

′
i) ≡ (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

Congestion Games. A congestion game is a tuple G
(
N,E, (Σi)i∈N , (de)e∈E

)
, where

N is the set of players, E is the set of resources, Σi ⊆ 2E \ {∅} is the strategy space of
each player i, and de : N 7→ R≥0 is a non-negative and non-decreasing latency function
associated with each resource e. A congestion game is symmetric if all players share
the same strategy space. In what follows, we let n denote the number of players and m
denote the number of resources.

A configuration is a vector σ = (σ1, . . . , σn) consisting of a strategy σi ∈ Σi
for each player i. For every resource e, we let σe = |{i ∈ N : e ∈ σi}| denote the
congestion induced on e by σ. The individual cost of player i in the configuration σ
is ci(σ) =

∑
e∈σi

de(σe). A configuration σ is a pure Nash equilibrium (PNE) if no
player can improve her individual cost by unilaterally changing her strategy. Formally,
σ is a PNE if for every player i and every strategy si ∈ Σi, ci(σ) ≤ ci(σ−i, si).
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Next, we focus on symmetric congestion games on parallel-link networks, where
the strategies are singletons and there is a strategy for every resource. Thus, we use the
terms “resource” and “edge”, and “strategy” and “path” interchangeably.
Social Cost. To quantify the inefficiency of PNE, configurations are usually evaluated
using the total cost of the players. In standard congestion games, the total cost of a
configuration σ, denoted C(σ), is C(σ) =

∑
i∈N ci(σ). The optimal configuration,

usually denoted o, minimizes the total cost among all possible configurations.
Price of Anarchy. The (pure) Price of Anarchy (PoA) of a congestion game G is the
maximum ratioC(σ)/C(o) over all PNE σ of G. The PoA of a class of games is defined
as the maximum PoA among all games in the class.

3 Congestion Games with Stochastic Players

3.1 The Model

In Congestion Games with Stochastic Players, each player i is described by a tuple
(pi, δi), where pi ∈ [0, 1] is the probability that player i participates in the game, by
assigning a unit of load to her strategy, and δi ∈

[
1
2 , 1
]

is the confidence level (or risk-
aversion) of player i. Essentially, each player i is associated with a Bernoulli random
variable Xi that is 1 with probability pi, and 0 with probability 1 − pi. Then, the load
of each edge e in a configuration σ is the random variable Ne(σ) =

∑
i:e∈σi

Xi, and
the cost of a strategy q in σ is the random variable Dq(σ) =

∑
e∈q de(Ne(σ)).

Given that player i participates in the game, the delay of player i in σ is given by
the random variable:

Di(σ) =
∑
e∈σi

de

1 +
∑

j 6=i: e∈σj

Xj

 .

We note that conditional on Xi = 1, Di(σ) = Dσi
(σ), i.e., the delay of i in σ is equal

to the cost of her strategy in σ, conditional that i participates in the game.
The (risk-averse) individual cost ci(σ) perceived by player i in σ is the δi-quantile

(or value-at-risk) of Di(σ). Formally, ci(σ) = min{t : Pr[Di(σ) ≤ t] ≥ δi}. We
note that for parallel-link networks, the (risk-averse) individual cost of the players can
be computed efficiently. PNE are defined as before, but with respect to the risk-averse
individual cost of the players.

Depending on whether players have the same participation probabilities pi and/or
the same confidence levels δi, we distinguish between four classes of Congestion Games
with Stochastic Players:

– homogeneous, where all players have the same participation probability p and con-
fidence level δ.

– p-homogeneous, where all players have the same participation probability p, but
may have different confidence levels.

– δ-homogeneous, where all players have the same confidence level δ, but may have
different participation probabilities.

– heterogeneous, where both the participation probabilities and the confidence levels
may be different.
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3.2 Stochastic Players on Parallel Links: Existence and Computation of PNE

In the following, we restrict ourselves to parallel-link networks, and investigate the
existence and the efficient computation of PNE for the four cases considered above.
Homogeneous Stochastic Players. If the players are homogeneous, stochastic conges-
tion games on parallel-links are equivalent to standard congestion games on parallel-
links (but with possibly different latencies), because the (risk-averse) individual cost
of each player in a configuration σ depends only on the link e and its congestion σe.
The proof of the following employs Rosenthal’s potential function and a Greedy Best
Response dynamics that guarantee the existence and the efficient computation of a PNE.

Theorem 1. Congestion Games with Homogeneous Stochastic Players on parallel-link
networks admit an exact potential function. Moreover, a PNE can be computed in poly-
nomial time.

p-Homogeneous Stochastic Players. In this case, a stochastic game is equivalent to a
congestion game on parallel links with player-specific costs [13], as the (risk-averse)
individual cost of each player i in a configuration σ depends only on the link e, its
congestion σe, and i’s confidence level δi. Thus, we obtain that:

Corollary 1. Congestion Games with p-Homogeneous Stochastic Players on parallel-
link networks admit a PNE. Moreover, a PNE can be computed in polynomial time.

Milchtaich [13] proved that parallel-link games with general player-specific costs
may not admit a potential function. However, in our case the players’ individual costs
are correlated, as for any edge, there is a common distribution on which they depend.
Nevertheless, we next show that parallel-link games with p-homogeneous stochastic
players and linear latencies may not admit any (even generalized) potential function.

Theorem 2. There are Congestion Games with p-Homogeneous Stochastic Players on
parallel-link networks with linear delays that do not admit any potential function.

Proof. It suffices to show that there is an infinite sequence of deviations in which each
deviating player improves her cost. To this end, we adjust the example in [13, Section 5]
to our setting. We recall that since players have the same participation probability p, the
load on each edge e that player i considers is binomially distributed.

We let p = 0.75, and consider 3 parallel links, e1, e2, and e3, 3 “special” players,
that change their strategies and form a better response cycle, with δ1 = 0.75, δ2 = 0.58
and δ3 = 0.6, and n1 = 25 additional players on e1, n2 = 20 additional players
on e2 and n3 = 9 additional players on e3. The latency functions of the 3 edges are
f1(k) = 3k + 71, f2(k) = 6k + 33 and f3(k) = 15k + 1.

We proceed to describe a better response cycle that consists of 6 different configu-
rations σ1, . . . , σ6. Each configuration is represented by a vector [S1, S2, S3], where Si
is the subset of the “special” players using edge ei.

σ1 =
[
{1, 2}, {3}, ∅

]
→ σ2 =

[
{1, 2}, ∅, {3}

]
→ σ3 =

[
{2}, ∅, {1, 3}

]
→

σ4 =
[
∅, {2}, {1, 3}

]
→ σ5 =

[
∅, {2, 3}, {1}

]
→ σ6 =

[
{1}, {2, 3}, ∅

]
→ σ1
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To verify that this is indeed a better response cycle, we give the vectors of the risk-averse
individual cost of the “special” players in each configuration: c(σ1) = (137, 134, 135),
c(σ2) = (137, 134, 121), c(σ3) = (136, 131, 136), c(σ4) = (136, 129, 136), c(σ5) =
(136, 135, 135), and c(σ6) = (134, 135, 135). ut
δ-Homogeneous Stochastic Players. In this case, players have the same confidence
level δ, but their participation probabilities may be different. We next show how to
efficiently compute a PNE in parallel-link networks by the p-Decreasing Greedy Best
Response algorithm, or p-DGBR, in short, which proceeds as follows:

– Order the players in non-increasing order of their participation probabilities pi .
– Assign the current player, in the previous order, to the edge corresponding to her

best response strategy in the current configuration.
– Repeat until all players are added.

Theorem 3. The p-DGBR algorithm computes, in O(nm + n2) time, a PNE for Con-
gestion Games with δ-Homogeneous Stochastic Players on parallel-link networks with
general latency functions.

Proof. The proof is by induction on the number of players. We assume that we are at
a PNE, and player i is assigned to edge e. Since players on other edges do not deviate,
we have only to show that players on e do not deviate. Let k be any player already on e,
which implies that pk ≥ pi. It suffices to show that in the current configuration σ, with
σi = σk = e, we have that ck(σ) ≤ ci(σ). This holds because pk ≥ pi and players i
and k perceive the same cost on any other edge.

Formally, let us consider ck(σ) and ci(σ). We have that:

ck(σ) = min

{
t : Pr

[
de
(
1 +Xi +

∑
j 6=i,k:σj=e

Xj

)
≤ t
]
≥ δ
}

and

ci(σ) = min

{
t : Pr

[
de
(
1 +Xk +

∑
j 6=i,k:σj=e

Xj

)
≤ t
]
≥ δ
}
.

Since pk ≥ pi, for any r ∈ N, we have that:

Pr

[
Xk +

∑
j 6=i,k:σj=e

Xj ≤ r
]

= Pr

[ ∑
j 6=i,k:σj=e

Xj ≤ r
]
− Pr

[ ∑
j 6=i,k:σj=e

Xj = r

]
pk

≤ Pr

[ ∑
j 6=i,k:σj=e

Xj ≤ r
]
− Pr

[ ∑
j 6=i,k:σj=e

Xj = r

]
pi

= Pr

[
Xi +

∑
j 6=i,k:σj=e

Xj ≤ r
]

Thus, since the edge latency functions are non-decreasing, we obtain that:

Pr

[
de

(
1 +Xk +

∑
j 6=i,k:σj=e

Xj

)
≤ de(r + 1)

]

≤ Pr

[
de

(
1 +Xi +

∑
j 6=i,k:σj=e

Xj

)
≤ de(r + 1)

]
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Therefore, ck(σ) ≤ ci(σ), as required. The total computation time is O(nm+ n2),
as at each step i, the computations for the newly inserted player take O(m + i2) time,
and we can use memoization to avoid recalculations. ut

We next show that Congestion Games with δ-Homogeneous Stochastic Players ad-
mit a two-dimensional lexicographic potential function.

Theorem 4. Congestion Games with δ-Homogeneous Stochastic Players on parallel-
link networks admit a generalized potential function.

Proof. We define, for each edge e and each configuration σ, a two-dimensional vector
ve,σ and a total order on these vectors. Moreover, for each configuration σ, we define
a vector wσ = (ve,σ)e∈E , where the vectors ve,σ appear in increasing lexicographic
order. The crux of the proof is to show that for any improving deviation that changes
the configuration from σ to σ′, we have that wσ < wσ′ . Thus, any decreasing function
on the vectors wσ can serve as a generalized potential function.

Formally, we let ce(σ) = min{t : Pr[de(1 + Ne(σ)) ≤ t] ≥ δ} be the outside
δ-cost of each edge e under σ, i.e. the cost that any player not in e perceives when she
considers moving to e. By definition, we have that:

ce(σ) = ci(σ−i, e) ∀i : σi 6= e (1)
ce(σ) ≥ ci(σ) ∀i : σi = e (2)

We let ve,σ =
(
ce(σ), σe

)
, and consider the lexicographic order on these pairs:

– (x1, y1) < (x2, y2), if either x1 < x2 or x1 = x2 and y1 < y2.
– (x1, y1) = (x2, y2), if x1 = x2 and y1 = y2.
– (x1, y1) > (x2, y2), otherwise.

For any configuration σ, we let wσ = (ve,σ)e∈E be the vector consisting of the pairs
ve,σ in increasing lexicographic order. We next show that after any improving deviation,
the new configuration σ′ has wσ < wσ′ .

Let us assume that player i performs an improving deviation from e to e′, and let
σ = (σ−i, e) be the initial configuration and σ′ = (σ−i, e

′) be the final configuration.
Since we consider an improving deviation of player i, ci(σ) > ci(σ

′). Furthermore, by
(1), ci(σ′) = ci(σ−i, e

′) = ce′(σ), and by (2), ce(σ) ≥ ci(σ). Thus, we obtain that
ce(σ) > ce′(σ), which implies that ve′,σ < ve,σ . Hence, if we consider the coordinates
of wσ , we have that the pair ve′,σ of e′ appears before the pair ve,σ of e.

Since we consider a deviation from e to e′, the only pairs affected are ve,σ and ve′,σ .
Consequently, in order to show that wσ < wσ′ , we need to show (i) that ve′,σ < ve′,σ′ ,
and (ii) that ve′,σ < ve,σ′ . In words, we need to show that the pair of e′ increases by i’s
move from e to e′, and that the pair of e in σ′ is greater than the pair of e′ in σ.

As for inequality (i), we observe that σe′ < σ′e′ and that ce′(σ) ≤ ce′(σ′). Combin-
ing these inequalities, we conclude that ve′,σ < ve′,σ′ .

To show inequality (ii), we combine (1) with the hypothesis that player i performs
an improving deviation from e to e′, and obtain that ci(σ) > ci(σ−i, e

′) = ce′(σ).
Also, considering the outside δ-cost of e in σ′ and using that σ′i 6= e, we obtain that
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ce(σ
′) = ci(σ

′
−i, e) = ci(σ), because σ′−i and σ−i are identical. Combining these, we

conclude that ce′(σ) < ce(σ
′), which immediately implies that ve′,σ < ve,σ′ .

We have thus established a correspondence between configurations σ and the vec-
tors wσ , and that for any improving deviation that changes the configuration from σ to
σ′, wσ < wσ′ . Now, let us consider any strictly decreasing function Φ from the vectors
wσ to R. Then, for any configuration σ, any edges e, e′, and any player i, we have that

ci(σ−i, e) > ci(σ−i, e
′)⇒ Φ(σ−i, e) > Φ(σ−i, e

′).

Consequently, Φ serves as generalized potential function for Congestion Games with
δ-Homogeneous Stochastic Players. ut

3.3 The Price of Anarchy for Stochastic Games with Affine Latencies

In Congestion Games with Stochastic Players, we let the total cost of a configuration σ
be C(σ) = E

[∑
i∈NXiDi(σ)

]
, which is a natural generalization of the total cost for

standard congestion games. We let o denote an optimal configuration that minimizes
the total cost. Then, as for standard congestion games, the Price of Anarchy (PoA) of a
stochastic congestion game G is the maximum ratio C(σ)/C(o) over all PNE σ of G.

Next, we first convert the total cost C(σ) to a more convenient form, and then
present upper and lower bounds on the PoA of Stochastic Congestion Games with
Stochastic Players and affine latency functions.

As observed in Section 3.1, if we condition onXi = 1, i.e., that player i participates
in the game, Di(σ) = Dσi(σ), and thus, XiDi(σ) = XiDσi(σ). Therefore,

C(σ) = E
[∑

i∈NXiDσi(σ)
]

=
∑
e E
[
Ne(σ) de(Ne(σ))

]
.

Hence, for affine latency functions de(x) = aex+ be, we have that

C(σ) =
∑
e

E
[
Ne(σ)

(
aeNe(σ) + be

)]
=
∑
e

[
ae
(
E[Ne(σ)]2 + Var[Ne(σ)]

)
+ be E[Ne(σ)]

]
Theorem 5. Congestion Games with n Stochastic Players on parallel-link networks
with affine latency functions have PoA = O(n).

Proof. Let de(x) = aex+ be denote the affine latency of each edge e. We first observe
that (i) since δ ≥ 1/2, the cost that a player i perceives on her edge e is at least as large
as her expected delay on e due to the load caused by the other players on e, formally
ci(σ) ≥ ae E[

∑
j 6=i: e=σj

Xj ] + be, and that (ii) at equilibrium, all players perceive a
cost of at most n(a+ b), where a+ b = mine{ae + be}, since otherwise, some player
would have an incentive to deviate to the edge with latency ax+ b.

In what follows, we let f be any PNE, and let o be an optimal configuration. Based
on the observations above, we next show that C(f) ≤ 3nC(o).
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For convenience, we let Fe = Ne(f) and Oe = Ne(o). We have that:

C(f) =
∑
e

(
ae
(
E[Fe]

2 + Var[Fe]
)

+ be E[Fe]

)
=
∑
e

E[Fe]

(
ae E[Fe] + be + ae

Var[Fe]

E[Fe]

)
≤
∑
e

E[Fe]

(
cmax + ae + ae

Var[Fe]

E[Fe]

)
≤ 3

∑
e

E[Fe] cmax ,

where cmax denotes the largest cost of a player in f . The inequalities follow from ob-
servation (i) above, from cmax ≥ ae for all used edges e, and from Var[Fe] ≤ E[Fe].

Using observation (ii) above, with a+ b = mine{ae + be}, we obtain that:

C(f) ≤ 3 cmax

∑
e

E[Fe] ≤ 3n(a+ b)
∑
e

E[Fe] = 3n(a+ b)
∑
i∈N

pi

= 3n(a+ b)
∑
e

E[Oe] ≤ 3n
∑
e

E[Oe](ae + be)

≤ 3n
∑
e

E[Oe]

(
ae

E[Oe]
2 + Var[Oe]

E[Oe]
+ be

)
= 3nC(o) ,

where the last inequality follows from E[Oe]
2 + Var[Oe] = E[O2

e ] ≥ E[Oe]. ut

Theorem 6. There are Congestion Games with n Homogeneous Stochastic Players on
parallel-link networks with affine latency functions that have PoA = Ω(n).

Proof sketch. We consider a game with n stochastic players on k + 1 parallel edges.
Edge e1 has latency d1(x) = x, and every other edge ej has latency dj(x) = (n− k)x,
j = 2, . . . , k + 1. The players have participation probability p and confidence level
δ = 1. The configuration where n−k players use e1 and each of the remaining k players
uses a different edge ej , j = 2, . . . , k + 1, is a PNE. In the optimal configuration, all n
players are assigned to e1. Calculating the total cost of these configurations, and using
k = n/2 and p = 1/n, we obtain that the PoA is roughly n/8. ut

4 Congestion Games with Stochastic Edges

The Model. In Congestion Games with Stochastic Edges, players are deterministic,
i.e., they always participate in the game. As before, each player i has a confidence level
δi ∈ [ 12 , 1]. On the other hand, edges have a stochastic behavior, in the sense that the
latency function of each edge e is an independent random variable:

de(x) =

{
fe(x) with probability 1− pe
ge(x) with probability pe.

The delay of edge e under congestion k is given by the random variableXe(k), which is
equal to fe(k), with probability 1−pe, and to ge(k), with probability pe, and the delay of
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a player i in a configuration σ is given by the random variableDi(σ) =
∑
e∈σi

Xe(σe).
The risk-averse individual cost of player i in σ is ci(σ) = min{t : Pr[Di(σ) ≤ t] ≥ δi},
and the total cost of σ is C(σ) = E

[∑
i∈N Di(σ)

]
.

For congestion Games with Stochastic Edges, we distinguish between the case of
homogeneous players, where all players have the same confidence level δ, and the case
of heterogeneous players, where each player i may have a different confidence level δi.

4.1 Stochastic Edges on Parallel Links: Existence and Computation of PNE

Next, we restrict ourselves to Congestion Games with Stochastic Edges on parallel-link
networks, and investigate the existence and the efficient computation of PNE.
Homogeneous Players. If the players are homogeneous, any Congestion Game on
stochastic parallel links can be transformed into a standard congestion game on parallel
links, but possibly with different latency functions. This holds because the risk-averse
individual cost of each player in a configuration σ depends only on the link e and its
congestion σe. Based on this observation, we can show that:

Theorem 7. Stochastic Congestion Games with Stochastic Edges and Homogeneous
Players on parallel-link networks admit an exact potential function. Moreover, a PNE
can be computed in O(nm) time.

Heterogeneous Players. In this case, a Congestion Game on stochastic parallel links is
a congestion game on parallel links with player-specific costs [13]. This holds because
the risk-averse individual cost of each player i in a configuration σ depends only on the
link e, its congestion σe, and i’s confidence level δi. Thus, we obtain that:

Corollary 2. Congestion Games with Stochastic Edges and Heterogenous Players on
parallel-link networks admit a PNE computable in polynomial time.

Milchtaich [13] proved that parallel-link games with general player-specific costs
may not admit a potential function. But here, as in Section 3.2, the players’ individual
costs on each edge are correlated with each other. Nevertheless, the following shows that
Congestion Games with Stochastic Edges do not admit any (even generalized) potential
function.

Theorem 8. There are Congestion Games with Stochastic Edges and Heterogeneous
Players on parallel-link networks with affine latency functions that do not admit any
potential function.

4.2 Price of Anarchy

The following shows that selfish risk-averse players on stochastic parallel links may
cause an unbounded degradation in the network performance at equilibrium.

Theorem 9. There are Congestion Games with Stochastic Edges and Homogeneous
Players on parallel-link networks with affine latencies that have an unbounded PoA.

Acknowledgements. We wish to thank Christos Tzamos for his help in the lexico-
graphic ordering argument, used in the proof of Theorem 4.
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