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Abstract. We introduce a novel computational model for single-keyword auctions in sponsored search,
which explicitly models externality effects among the advertisers, an aspect that has not been (fully) re-
flected in the existing models, and is known to be prevalent in the behavior of real advertisers. Our model
takes into account both positive and negative correlations between any pair of advertisers, and appropri-
ately reflects them in the way they perceive an outcome of a sponsored search auction. In our model, the
click-through rate of an ad depends on the set of other ads appearing in the sponsored list, on their rela-
tive order, and on their distance in the list. In contrast to previous modeling attempts, we avoid modeling
end-users’ behavior, but only resort to a reasonable assumption that their browsing focuses on any bounded
scope section of the list. We present a comprehensive collection of computational results concerning the
winner determination problem in our model with an objective to maximize the social welfare, showing both
hardness of approximation results and polynomial-time approximation algorithms. We also present an exact
polynomial-time algorithm for the practically relevant cases of our model, where the length of the spon-
sored list is at most logarithmic in the number of advertisers. This exact algorithm can be used as a truthful
mechanism by employing the VCG payments, thus showing that we can fully cope with selfish behavior of
advertisers when the mechanism is fully aware of their correlations. We finally study the performance of the
practically used Generalized Second Price auction mechanism in our model and show that, in presence of
externalities, pure Nash equilibria may not exist for conservative bidders that do not outbid their valuation.
Moreover, we exhibit instances where pure Nash equilibria do exist, but they carry an unbounded loss in
social welfare as compared to the socially optimal solution assignment of slots, even for such conservative
bidders.
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1 Introduction

Sponsored search advertising is nowadays a predominant and arguably most successful paradigm for
advertising products in a market, facilitated by the Internet. It constitutes a major source of income
for popular search engines like Google, Yahoo! or Microsoft Bing, who allocate up to 8 − 9
advertisement slots in their sites, alongside the organic results of keyword searches performed by
end users. Each time an end user makes a search for a keyword, slots are allocated to advertisers
by means of an auction performed automatically; advertisers are ranked in non-increasing order of a
score, defined as the product of their bid with a characteristic relevance quantity per advertiser. The
relevance of each advertiser is interpreted as the probability that his ad will be clicked by an end user.
The score corresponds then to the declared expected revenue of advertisers. Advertisers ranked higher
are matched to higher slots. Each advertiser is charged an amount depending on the score (hence, the
bid) of the one ranked below him, when his ad is clicked.

The described auction is used in varying flavors by search engines. Apart from the mentioned
Rank-By-Revenue rule, a plainer Rank-By-Bid rule has also been used (e.g. by Yahoo!). This auc-
tion, known as the Generalized Second Price (GSP) auction, constitutes a generalization of the well-
known strategyproof Vickrey auction [30]. The GSP auction is not strategyproof though; it encourages
strategic bidding by the advertisers instead of eliciting their valuations truthfully. This induces a strate-
gic game rich in Nash equilibria, and competitive behavior among advertisers that incurs significant
revenue to the search engines. Pure Nash Equilibria of the GSP mechanism were first studied by
Edelman, Ostrovsky, Schwartz [17] and Varian [29], under what came to be known as the separable
click-through rates model. In this model every slot is associated with a Click-Through Rate (CTR),
i.e. the probability that an ad displayed in this slot will be clicked. The joint probability that an ad is
clicked is given by the product of the slot’s CTR with the relevance of the ad. Since [17, 29], a rich
literature on keyword auctions has been published, concerning algorithmic and game theoretic issues
such as bidding strategies, social efficiency, revenue, see, e.g. [27] (chapter 28).

Recent experiments [22] show that the probability of a displayed ad being clicked (hence, the
utility of the advertiser) is affected by its relative order and distance to other ads on the list. E.g.,
two competing ads displayed nearby each other may distract a user’s attention from any of them.
However, two advertisers may also profit from being displayed nearby (e.g. a cars manufacturer and a
spare parts supplier). We introduce a model for expressing such externalities in keyword auctions. Ex-
ternalities result in complicated strategic competition among advertisers, precluding stable outcomes
and social welfare optimization. A way of alleviating these effects is by solving optimally the Winner
Determination problem [2, 1, 23]; i.e., the problem of selecting winners and their assignment to slots,
to maximize the Social Welfare (the sum of the advertisers’ utilities and the auctioneer’s revenue –
defined formally in Section 2). Such a solution, paired with payments of the Vickrey-Clarke-Groves
mechanism [14] (chapter 1), yields a truthful mechanism. On the other hand, the study of the GSP
auction’s performance in presence of externalities [20] yields insights for the current practice of spon-
sored search. In our model we analyze exact and approximation algorithms for Winner Determination,
and show how externalities can harm the GSP auction’s stability and social efficiency.

Several recent works concern theoretical and experimental study of externalities in keyword auc-
tions [1, 7, 19, 20, 23, 21, 22]. These works associate the occurrence of externalities with a model of
how end users search through the list of ads and how this affects the probability of an ad being clicked.
This search is commonly modeled by a top-down ordered scan of the list [7, 1, 23, 20]. The popular
Cascade Model [1, 23], associates a continuation probability with every ad, i.e. the likelihood of the
user continuing his ordered scan after viewing the ad. Using real data from keyword auctions, Jeziorski
and Segal [22] found that previously proposed models fail to express externalities. The Cascade Model
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is contradicted by the fact that about half of the users do not click on the ads sequentially, i.e., they
return to higher slots after clicking on lower slots. Jeziorski and Segal arrived at a structural model
of end user behavior advocating that, after scanning all the advertisements, users focus on a subset of
consecutive slots. Within this focus window, they observed externalities due to proximity and relative
order of the displayed ads. They highlight that an ad’s CTR on the list depends crucially on the ads
displayed in the other slots, above and below it. With our model we aim at quantifying rigorously
these observations, while avoiding explicit modeling of end users’ behavior.

Contribution and Techniques. Our main contribution is a novel and fairly expressive model for de-
scribing positive or negative influences between any two advertisers in keyword auctions. Our model is
built by usage of a social context graph [6] and upon the assumption of separable click-through rates,
which facilitates analytical study. (see Section 2 for precise definition). It provides for the description
of influences among the advertisers’ relevances, depending on: (i) The IDs of advertisers, (ii) Their
relative order in the list of sponsored links and (iii) The distance of their ads in the list. Motivated by
results of [22], we make the assumption that the end users’ attention may be captured by any size c
window of consecutive slots, within which externalities take effect among advertisers. Our model is
the first to express inherently the practically relevant possibility that social welfare maximization may
occur under partial allocation of slots (i.e., where some of the slots are left empty).

Under the proposed model we study the Winner Determination problem with the objective of max-
imizing the social welfare. Using reductions from the Longest Path problem and the Traveling Sales-
person Problem with distances 1 and 2 [28], we show that the problem is NP-hard and APX-hard
respectively, even for window size 1 and positive-only externalities. For positive-only externalities we
study approximation algorithms. We develop two interesting approximation-preserving reductions of
the Winner Determination problem to the Weighted m-Set Packing problem with sets of size m = 3
and m = 2c + 1 respectively. These result in a nice tradeoff between approximability and compu-
tational efficiency for the Winner Determination problem; for k slots and n advertisers, we obtain
algorithms with approximation factors: (i) 6c in time O(kn2 log n), (ii) 4c in time O(k2n4) and (iii)
2(c + 1) in polynomial time for any constant c. These results settle almost tightly the approximability
of the problem for positive-only externalities and c = O(1).

On the positive side, we build on the color coding technique [3] to obtain an exact algorithm for
Winner Determination in the full generality of our model. A derandomization of our color coding
is possible, that yields a deterministic algorithm. The algorithm has running time 2O(k)n2c+1 log2 n,
which shows that the class of practically interesting instances of the problem with c = O(1) and even
k = O(log n) is in P. This algorithm, paired with VCG payments [14] yields a truthful mechanism
when the advertisers’ valuations are private information, that optimizes the social welfare in pres-
ence of externalities. Notice that the winner determination problem can be solved easily by complete
enumeration of all

(
n
k

)
tuples of ads, in O(nk) time. For any constant size window our algorithm is

significantly faster, and even for larger than constant values of k. Thus the problem is not NP-hard
for k = O(poly(log n)), unless NP ⊆ DTIME(npoly(log n)).

We conclude our study with an investigation of the GSP mechanism’s behavior under externalities.
We find that pure Nash equilibria do not exist in general, for conservative bidders that do not outbid
their valuation. This is a standard assumption when studying non-truthful mechanisms [11, 26, 13],
since “overbidding” results in unboundedly low social welfare. Even when such conservative equi-
libria exist, we show that their social welfare can be arbitrarily low compared to the social optimum.
This should be contrasted with an upper bound of 1.282 shown recently by Caragiannis et al. [11] for
the social inefficiency of GSP equilibria.
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2 A Model for Externalities in Keyword Auctions

We consider a set N = [n] = {1, 2, . . . n} of n advertisers (or players/bidders) and a set K =
{1, 2, . . . , k} of k ≤ n advertisement slots. Each advertiser i ∈ N has valuation vi for each click and
is associated with a probability qi that her ad receives a click, independently of slot assignment. qi is
often termed relevance and measures the intrinsic “quality” of ad i. Each slot j is associated with a
probability λj that an ad displayed in slot j will be clicked; this is called the Click-Through Rate (CTR)
of the slot. The (overall) Click-Through Rate of an ad i ∈ N occupying slot j is λj · qi (separable
CTRs). We assume 1 ≥ λ1 ≥ . . . ≥ λk > 0, i.e. that the top slot is slot 1, the second one is slot 2 and
so on. Let S ⊆ [n], |S| ≤ k, be the set of winning ads and π : S → K their assignment to slots, i.e.
π(i) ∈ K is the slot of advertiser i ∈ S. Every advertiser i ∈ S issues to the search engine (auctioneer)
a payment pi per received click, hence receives expected utility ui(S, π) = λπ(i) · qi · (vi − pi). The
Social Welfare is then:

sw(S, π) =
∑
i∈S

λπ(i) · qi · vi =
∑
i∈S

ui(S, π) +
∑
i∈S

λπ(i) · qi · pi, (1)

where
∑

i∈S λπ(i) · qi · pi is the expected revenue of the auctioneer. Our modeling of externalities is
built on top of the separable CTRs model and induces amplified or diminished actual relevance Qi

(compared to qi) to the advertisers, depending on their relative position and distance of their ads on
the list. We use a directed social context graph [6] G(N , E+, E−), defined upon the set of advertisers
N . Each edge (i, j) ∈ E+ ∪ E− is associated with a function wij ∈ (0, 1). An edge (j, i) in E+

or in E− denotes potential positive or negative influence respectively of i by j. Namely, edges in
E+ and E− model respectively positive and negative externalities among advertisers. For any edge
(j, i) ∈ E+ ∪ E−, the potential influence of j to i is quantified by a function wji : {−k + 1,−k +
2, . . . ,−1, 1, . . . , k− 2, k− 1} 7→ [0, 1]. If dπ(j, i) = π(i)− π(j) is the distance of ad i from ad j in
the list, wji(dπ(j, i)) is the probability that a user’s interest in a displayed ad j may result in attraction
or distraction of his attention to or from an ad i respectively, depending on whether (j, i) ∈ E+ or
(j, i) ∈ E− 3. It is reasonable to assume that the closer i and j are in π, the stronger the influence of
j on i is. Formally, for every `, `′, with |`|, |`′| ≥ 1, if |`| < |`′|, then wji(`) ≥ wji(`′).

Let S ⊆ N be the set of winners and π be the permutation assigning them to the slots. Define
the subgraph GS(S, E+

S , E−
S ) of the context graph, induced by S. The probability Qi(S, π) that a

user is attracted by ad i is expressed as product Q+
i (S, π) × Q−

i (S, π). Q+
i (S, π) is the probability

that i attracts the user’s attention either by its intrinsic relevance qi or by receiving positive influence.
Q−

i (S, π) is the probability that the user’s attention is not distracted from i due to negative influence
of others. For each i ∈ S define N+

i (S) = {j ∈ S : (j, i) ∈ E+
S } and N−

i (S) = {j ∈ S :
(j, i) ∈ E−

S } to be the set of neighbors of i in GS with positive and negative influence respectively.
Let us derive Q+

i (S, π) first. A user’s attention is not attracted by the ad of i with probability (1− qi)
and – independently – if i is not positively influenced by any j ∈ N+

i (S). The latter occurs either
because j itself does not attract the user (with probability 1 − qj), or the positive influence of j to i
does not occur (with probability qj(1 − wji(dπ(j, i))). Then j does not influence i with probability
(1− qj) + qj(1− wji(dπ(j, i))) = (1− qjwji(dπ(j, i))) and:

Q+
i (S, π) = 1− (1− qi) ·

∏
j∈N+

i (S)

( 1− qjwji(dπ(j, i)) ) (2)

3 We note that if dπ(j, i) > 0, i appears below j, and if dπ(j, i) < 0, j appears below i in π.
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For Q−
i (S, π) we use similar reasoning. A user’s attention is not distracted by an ad of i due to negative

influence of j ∈ N−
i (S) if either his attention is not captured by j or, if it is, j fails to influece i

negatively. This event occurs with probability (1− qj) + qj(1− wji(dπ(j, i))) = 1−)qjwji(dπ(j, i).
Assuming independence of the events for all j ∈ N−

i (S), we have:

Q−
i (S, π) =

∏
j∈N−

i (S)

( 1− qjwji(dπ(j, i)) )

After deriving Qi(S, π) = Q+
i (S, π)×Q−

i (S, π), we can restate the social welfare as:

sw(S, π,G) =
∑
i∈S

λπ(i) ·Qi(S, π) · vi . (3)

Arguably, users’ attention and memory when they process the advertisements list have a bounded
scope. Therefore, we assume that there is an integer constant c > 0, called window size, so that each
ad j can only affect other ads at a distance at most c in π. Formally, if window size is c, for all
(j, i) ∈ E+ ∪ E− and all integers ` with |`| > c, wji(`) = 0. Then the relevance Qi only depends on
the ads in N+

i (S) ∪N−
i (S) assigned to slots at distance at most c from i.

Related Work. Edelman, Ostrovsky, Schwartz [17] and Varian [29] first modeled the game induced
by the GSP auction mechanism under the assumption of separable CTRs, i.e. that the probability
of a specific ad being clicked when displayed in a certain slot is given by the product of the slot’s
CTR and the ad’s relevance. They identified socially optimal pure Nash equilibria of the game, in
which advertisers are ranked by non-increasing score computed by their valuations. Prior to these
works, Aggarwal, Goel and Motwani [2] had already designed a truthful mechanism for non-separable
CTRs (in this case the VCG auction is also not applicable). For separable CTRs they proved revenue
equivalence of their mechanism to the VCG.

There has been a growing interest in modeling externalities in sponsored search and studying how
externalities affect the advertisers’ bidding strategies and the properties of GSP equilibria. The unpub-
lished work of Das et al.[16] is probably the closest in spirit to ours. Das et al. consider externalities
among advertisers based on their relative quality (i.e., relevance), and quantify the fact that for any
sponsored list of ads, as the relevance of an ad increases, its CTR should increase and the CTRs of the
other ads should decrease. However, the model of [16] treats advertisers as anonymous, in the sense
that externalities do not depend on their bids, but just on their relative quality. Our model makes a step
further, since in addition to the advertisers’ relative quality as measured by their relevance, we also
take into account their IDs, their dependencies in the context graph, and their relative distance in the
sponsored list. Moreover, our model quantifies how as the relevance of an ad increases, its CTR and
the CTRs of positively correlated ads appearing nearby in the list should increase, and the CTRs of
negatively correlated ads appearing nearby in the list should decrease.

Athey and Ellison [7] gave one of the first models for externalities, where they assumed an ordered
top-down scan of slots by end users. By assuming a certain cost incurred to the end users for clicking
on an ad, they derived the equilibria of the GSP auction for their game. Along similar lines, Aggarwal
et al. [1] and Kempe and Mahdian [23] studied Cascade Models involving Markovian end-users,
where every ad is associated with its individual CTR and a continuation probability. The latter denotes
the probability that an end-user will continue scanning the list of ads (in a top-down order) after
viewing that particular ad. The authors in these works treated the algorithmic question of winner
determination towards maximizing the social welfare. Equilibria of the GSP auction mechanism in
the cascade model were studied by Giotis and Karlin in [20]. Kuminov and Tennenholtz [25] study
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equilibria of the GSP and VCG (cf. [27, Ch. 9]) auctions in a similar model. The cascade model
was assessed experimentally by Craswell et al. [15]. Gomes, Immorlica and Markakis [21] were the
first to document empirically externalities under a version of the cascade model, using real data from
keyword auctions.

Externalities among the bidders have also been considered in other similar settings. For instance,
Ghosh and Mahdian [19] present a model for externalities in online lead generation, study the com-
plexity of the winner determination problem, and present computationally efficient incentive com-
patible mechanisms for several cases. Chen and Kempe [12] consider positive and negative social
dependencies among the bidders for single item auctions, employing an idea similar to social context
graph, and study the properties of equilibria for the first and second price auctions.

Winner Determination Problems. We denote by MSW-E the problem of Maximum Social Welfare
with Externalities, i.e. selecting a subset of winning players S and a permutation π of S that maximize
sw(S, π,G) in our model. The complexity and performance of our algorithms are parameterized by
the window size c and we write MSW-E(c). An interesting special case of MSW-E(c) occurs for
E− = ∅. We refer to this “positive-only” externalities version by MSW-PE(c). Motivated by the
Cascade Model, we also consider the case of forward-only positive-only externalities – denoted by
MSW-FPE(c) – where an ad j may only influence an ad i iff π(j) < π(i). For deriving our hardness
results we consider a simplification of the model where the probability wji that ad j affects ad i only
depends on the window size in π, and not on their ids, i.e. wji = w for all (j, i) ∈ E+ ∪ E−.

In presence of negative externalities, it may be profitable to select less than k ads and arrange
them in a broken list, namely a list with empty slots appearing between slots occupied by negatively
correlated ads. In practice however, this may not be feasible. Therefore, we restrict feasible solutions
to so-called unbroken lists, namely lists where the selected ads occupy consecutive slots in the ad list
starting from the first one4. Hence a feasible solution can select less than k adds, but it is not allowed
to use empty slots and separate negatively correlated ads (i.e. the empty slots, if any, occupy the last
k − |S| slots in π). The analysis of our algorithms assumes the case of unbroken lists. However, it is
not difficult to generalize our algorithmic results to the case of broken lists.

3 Computational Hardness and the GSP Mechanism

In this section, we restrict our attention to the simplest special case of MSW-FPE(1), where there
is a single function w, and position multipliers λj , valuations vi, and qualities qi are uniform. We
prove that even in this very restricted setting, MSW-FPE(1) is APX-hard. We note that a simple
and elegant transformation from the Longest Path problem can be used to prove NP-hardness of
MSW-FPE(1); this proof is described in the Appendix, Section A.1. Below we describe a PTAS
reduction for APX-hardness.

Theorem 1. MSW-FPE(1) is APX-hard even in the special case of uniform position multiplies,
valuations, and qualities.

Proof sketch. The proof is by a PTAS reduction from the Traveling Salesperson Problem with dis-
tances 1 and 2, aka TSP(1, 2), which is known to be APX-hard [28]. An instance of TSP(1, 2) is
defined by an undirected graph G(V,E). Each edge {u, u′} ∈ E has length 1 and each non-edge
{u, u′} 6∈ E has length 2. The goal is to find a tour that includes all vertices and has a minimum

4 A reasonable assumption that may justify the restriction above is that there exist an adequate number of “neutral” ads
(k − 1 of them suffice) that do not negatively affect any other ad.
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total length, or equivalently contains a minimum number of non-edges. TSP(1, 2) is inapproximable
within 741/740 unless P = NP [18], and approximable within 8/7 [9].

Given an undirected graph G(V,E), |V | = n, we construct an instance I of MSW-FPE(1) with
n advertisers, all of them with valuation 1 and quality q ∈ (0, 1), context graph G(V,E, ∅), a single
function w with w(1) = β ∈ (0, 1) and w(`) = 0 for all ` 6= 1, n slots available in the sponsored
list, and uniform position multipliers equal to 1. In the Appendix, Section A.2, we show that given a
(1 + ε)-approximate solution to I , we can efficiently construct a (1 + O(ε))-approximate solution to
the instance of TSP(1, 2) defined by G(V,E). ut

4 An Exact Algorithm Based on Color Coding

In this section we develop and analyze an exact algorithm for MSW-E(c). We employ color coding [3]
and dynamic programming, to prove the following result:

Theorem 2. MSW-E(c) can be solved optimally in 2O(k) n2c+1 log2 n time.

For simplicity, we assume that the optimal solution consists of k ads. We can remove this assump-
tion by running the algorithm for every sponsored list size up to k, and keep the best solution. Since
the running time is exponential in k, this does not change the asymptotics of the running time. To ap-
ply the technique of color coding, we consider a fixed coloring h : N 7→ [k] of the ads with k colors.
A list (S, π) of k ads is colorful if all ads in S are assigned different colors by h. In the following, we
formulate a dynamic programming algorithm that computes the best colorful list.

For each 2c-tuple of ads (i1, . . . , i2c) ∈ N2c, with all ads assigned different colors by h, and each
color set C ⊆ [k], |C| ≤ k − 2c, that does not include any of the colors of i1, . . . , i2c, we compute
sw(i1, . . . , i2c, C), namely the maximum social welfare if the last |C| positions in the list are colored
according to C, and on top of them, there are ads i1, . . . , i2c in this order from top to bottom. More
precisely, the solution corresponding to sw(i1, . . . , i2c, C) assigns ad ip to slot k − (|C| + 2c) + p,
p = 1, . . . , 2c, and considers the best choice of ads colored according to C for the last |C| slots.
Clearly, there are at most n2c 2k−2c different sw values to compute, and the maximum sw value for all
colorful tuples (i1, . . . , i2c, C), with |C| = k − 2c, corresponds to the best colorful list of k ads. The
proof of Theorem 2 follows:

Proof. For the basis of our dynamic programming, let C = ∅ and for all 2c-tuples (i1, . . . , i2c) ∈ N2c

with all ads assigned different colors by h, we have:

sw(i1, . . . , i2c, ∅) =
c∑

p=1

λk−2c+p ·Qip(i1, . . . , ip, . . . , ip+c) · vip

+
2c∑

p=c+1

λk−2c+p ·Qip(ip−c, . . . , ip, . . . , i2c) · vip ,

where Qip(i1, . . . , ip, . . . , ic+p) (resp. Qip(ip−c, . . . , ip, . . . , i2c)) is the CTR of ad ip given that the
(only) ads in the list at distance at most c from ip are i1, . . . , ic+p (resp. ip−c, . . . , i2c) arranged in this
order from top to bottom.
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Given the values of sw for all 2c-tuples of ads and all color sets of cardinality s < k − 2c, we
compute the values of sw for all 2c-tuples (i1, . . . , i2c) and all color sets C of cardinality s + 1:

sw(i1, . . . , i2c, C) = max
i:h(i)∈C

{sw(i2, . . . , i2c, i, C − {h(i)}) +

+ λk−(|C|+2c)+1 ·Qi1(i1, . . . , ic+1) · vi1 +

+
c∑

p=2

λk−(|C|+2c)+p · [Qip(i1, i2, . . . , ip, . . . , ip+c)−Qip(i2, . . . , ip, . . . , ip+c)] · vip +

+ λk−|C|−c+1 · [Qic+1(i1, i2, . . . , ic+1, . . . , i2c, i)−Qip(i2, . . . , ic+1, . . . , i2c, i)] · vic+1

}
In the recursion above, the second term accounts for the additional social welfare due to i1, and the
third and the fourth term account for the difference in the social welfare due to ads i2, . . . , ic+1, whose
CTRs Qi2 , . . . , Qic+1 are affected by i1. Ads ic+2, . . . , i2c, i are used to calculate the difference in the
CTRs Qi2 , . . . , Qic+1 . The CTRs of ads ic+2, . . . , i2c, i and of the ads at the bottom of the list with
colors in C − {h(i)} are not affected by i1, since their distance to i1 is greater than c.

Therefore, for any fixed coloring h, the best colorful list of k ads can be computed in time
O(n2c+1 2k). If we select a random coloring h, the probability that the optimal solution is colorful
under h is k!/kk > e−k. If we run the algorithm for ek lnn randomly and independently chosen
colorings and keep the best solution, the probability that we fail to find the optimal solution is at
most 1/n. The approach can be derandomized using a k-perfect family of hash functions of size
2O(k) log2 n (see [3, Section 4] for the details). ut

Hence we obtain the following result for practically interesting sizes of the problem:

Corollary 1. For k = O(log n) and c = O(1), MSW-E(c) is in P.

Moreover, unless NP ⊆ DTIME(npoly(log n)), MSW-E(c) is not NP-hard for c = O(1) and
k = O(poly(log n)). In a mechanism design setting, suppose that advertisers’ click valuations are
their private information. Having an exact algorithm for MSW-E(c), we can directly use it together
with the VCG payments (see e.g. [27, Ch. 9]) to obtain a truthful mechanism for MSW-E. Compu-
tation of payments incurs an additional factor O(k) to the running time of the algorithm given by
Theorem 2.

5 O(c)-Approximation Algorithms for Positive Externalities

In this section, we show how to use polynomial-time approximation algorithms for the Weighted
m-Set Packing problem and approximate MSW-PE(c) within a factor of O(c) in polynomial time.
In Weighted m-Set Packing, we are given a collection of sets, each with at most m elements and a
positive weight, and seek a collection of disjoint sets of maximum total weight. The greedy algorithm
for Weighted m-Set Packing achieves an approximation ratio of m, the algorithm of [10] achieves
an approximation ratio of (2/3)m in time quadratic in the number of sets, and the algorithm of [8]
achieves an approximation ratio of (m + 1)/2 in polynomial time for any constant m.

Theorem 3. Given an α-approximation T (ν)-time algorithm for Weighted 3-Set Packing with ν sets,
we obtain a 2αc-approximation T (kn2)-time algorithm for MSW-PE(c) with n ads and k slots.

Proof. We transform any instance of MSW-PE(c) to an instance of Weighted 3-Set Packing with
kn2/4 sets so that any α-approximation to the optimal set packing gives a 2αc-approximation to the
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optimal social welfare for the original MSW-PE(c) instance. To simplify the presentation, we assume
that k is even. Our proof can be easily extended to the case where k is odd.

Given an instance of MSW-PE(c) with n ads and k slots, we partition the list into k/2 blocks of 2
consecutive slots each. The set packing instance consists of

(
n
2

)
3-element sets for each block. Namely,

for every block p = 1, 3, 5, . . . , k− 1 and every subset {i1, i2} of 2 ads, there is a set {i1, i2, p} in the
set packing instance5. The weight W (i1, i2, p) of each set {i1, i2, p} is the maximum social welfare if
ads i1 and i2 are assigned to slots p and p + 1, and there is no influence on i1 and i2 from any other
ad in the list. Formally,

W (i1, i2, p) = max{λpQi1(i1, i2)vi1 + λp+1Qi2(i1, i2)vi2 , λpQi2(i2, i1)vi2 + λp+1Qi1(i2, i1)vi1}

where Qi1(i1, i2) = 1−(1−qi1)(1−qi2wi2i1(1)) (resp. Qi2(i1, i2) = 1−(1−qi2)(1−qi1wi1i2(−1)))
denotes the relevance of ad i1 (resp. i2) given that the only ad in the list with an influence on i1 (resp.
i2) is i2 (resp. i1) located just above (resp. below) i1 (resp. i2) in the list.

Given an instance of MSW-PE(c) with n advertisers and k slots, the corresponding instance of
Weighted 3-Set Packing can be computed in O(kn2) time. To show that the transformation above is
approximation preserving, we prove that (i) the optimal set packing has weight at least 1/(2c) of the
maximum social welfare, and that (ii) given a set packing of weight W , we can efficiently compute a
solution for the original instance of MSW-PE(c) with a social welfare of at least W .

To prove (i), we assume (by renumbering the ads appropriately if needed) that the optimal list for
the MSW-PE(c) instance is (1, . . . , k). We let Q∗

i be the relevance of ad i in (1, . . . , k), and let W ∗ =∑k
i=1 λiQ

∗
i vi be the optimal social welfare. We construct a collection of 2c feasible set packings of

total weight at least W ∗. Thus, at least one of them has a weight of at least W ∗/(2c). The construction
is based on the following claim, which can be proven by induction on c (see Appendix A.3).

Claim 1 Let c be any positive integer. Given a list (1, . . . , k), there is a collection of 2c feasible 3-set
packings such that for each pair i1, i2 of ads in (1, . . . , k) with |i1 − i2| ≤ c, the union of these
packings contains a set {i1, i2, p} with p ≤ min{i1, i2}.

Intuitively, for each pair i1, i2 of ads located in (1, . . . , k) within a distance no more than the
window size c, and thus possibly having a positive influence on each other, the collection of set
packings constructed in the proof of Claim 1 includes a set {i1, i2, p} whose weight accounts for the
increase in i1’s and i2’s social welfare due to i2’s and i1’s positive influence, respectively. Summing
up the weights of all those sets, we account for the positive influence between all pairs of ads in
(1, . . . , k), and thus end up with a total weight of at least W ∗.

Formally, let W (j) be the total weight of the j-th set packing constructed in the proof of Claim 1,
and let i1, i2, with i1 < i2, be any pair of ads in (1, . . . , k) included in the same set {i1, i2, p} of
the j-th packing. Since each ad appears in each set packing at most once, we let Q

(j)
i1

= Qi1(i1, i2)

and Q
(j)
i2

= Qi2(i1, i2) be the relevance of i1 and i2 in the calculation of W (i1, i2, p). Since Claim 1
ensures that p ≤ i1, and since slot CTRs are non-increasing, λi1 (resp. λi2) is no greater than λp (resp.
λp+1). Therefore, W (i1, i2, p) ≥ λi1Q

(j)
i1

vi1 + λi2Q
(j)
i2

vi2 . Setting Q
(j)
i = 0 for all ads i in (1, . . . , k)

which do not appear in any set of the j-th packing, we obtain that W (j) ≥
∑k

i=1 λiQ
(j)
i vi . We show

that
2c∑

j=1

W (j) ≥
k∑

i=1

λivi

2c∑
j=1

Q
(j)
i ≥

k∑
j=1

λiQ
∗
i vi = W ∗

5 Throughout the proof, we implicitly adopt the simplifying (and easily implementable) assumption that the range of block
descriptors 1, 3, 5, . . . , k − 1 and the range of ad descriptors 1, . . . , n are disjoint.
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The first inequality follows from the discussion above and by changing the order of the summation.
To establish the second inequality, we show that for every ad i in (1, . . . , k),

∑2c
j=1 Q

(j)
i ≥ Q∗

i . To
simplify the presentation, we focus on an ad i with c < i ≤ k − c. Ads 1, . . . , c and k − c + 1, . . . , k
can be treated similarly.

We recall that Q∗
i = 1 − (1 − qi)

∏i+c
j=i−c,j 6=i Pi(j), where for each ad j in the sublist (i −

c, . . . , i− 1, i + 1, . . . , i + c), Pi(j) = (1− qjwji(j − i)) ∈ [0, 1] accounts for j’s positive influence
on i’s relevance. Claim 1 ensures that for each j in (i− c, . . . , i− 1, i + 1, . . . , i + c), ads i and j are
included in the same set of some set packing. Since ad i appears in each set packing at most once, for
simplicity, we can renumber the set packings of Claim 1, and say that i and j are included in the same
set of the j-th set packing. Then, if j < i,

Q
(j)
i = 1− (1− qi)(1− qjwji(−1)) ≥ 1− (1− qi)Pi(j) ,

because wji is non-increasing with the distance of j and i in the list, and thus wji(−1) ≥ wji(j − i).
The same holds if j > i. Therefore, Q

(j)
i ≥ 1− (1− qi)Pi(j), for any j. To conclude the proof of (i),

we observe that:

i+c∑
j=i−c,j 6=i

(1− (1− qi)Pi(j)) ≥ 1− (1− qi)
i+c∏

j=i−c,j 6=i

Pi(j) = Q∗
i (4)

To establish (4), we repeatedly apply that for every x, y, z ∈ [0, 1], (1− xy) + (1− xz) ≥ 1− xyz.
We proceed to establish claim (ii), namely that given a set packing of weight W , we can efficiently

construct a sponsored list of social welfare at least W for the original instance of MSW-PE(c).
By construction, we can restrict our attention to set packings of the form {{ip, ip+1, p}}p=1,3,...,k−1,
where the weight of the packing is W =

∑
p W (ip, ip+1, p), and where ads ip and ip+1 are indexed

according to their best order, with respect to which W (ip, ip+1, p) is calculated. Since we consider
positive externalities, the sponsored list (i1, i2, . . . , ik−1, ik) has a social welfare of at least W . ut

Combining Theorem 3 with the greedy 3-approximation algorithm for Weighted 3-Set Packing and
with the algorithm of [10] we obtain respectively:

Corollary 2. For n ads and k slots, the MSW-PE(c) problem can be approximated within factor 6c
in O(kn2 log n) time and within factor 4c in O(k2n4) time.

A similar approximation preserving reduction from MSW-PE(c) to Weighted (2c + 1)-Set Packing
yields:

Theorem 4. An f(m)-approximation T (ν, m)-time algorithm for Weighted m-Set Packing with ν
sets yields a 2f(2c+1)-approximation O(ckn2c +T (kn2c, 2c+1))-time algorithm for MSW-PE(c)
with n ads and k slots.

The full proof appears in the Appendix, Section A.4; the list is partitioned into k/(2c) blocks of
2c consecutive slots each, and the set packing instance consists of

(
n
2c

)
sets of 2c + 1 elements each

for each block. Then we exhibit a pair of feasible set packings whose total weight is no less than the
optimal social welfare. Combining Theorem 4 with the approximation algorithm of [8], we obtain a
polynomial time 2(c + 1)-approximation algorithm MSW-PE(c), for any constant c.
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6 On the GSP Mechanism with Externalities

In examining the behavior of the GSP auction mechanism we make the reasonable assumption that
only a snapshot of the players’ intrinsic relevances qi, i ∈ N is available to the mechanism. In prac-
tice, estimates of the players’ relevances are deduced by software machinery of the sponsored search
platform; it is therefore conceivable that the mechanism will eventually extract information indica-
tive of externalities. By the time this occurs however, associations among advertisers may also be
updated. This justifies the mechanism’s unawareness of externalities. On the other hand, each ad-
vertiser is aware of the social context associations that may harm him or boost his relevance. Given
a social context graph G(N , E+, E−), with functions wji for every (j, i) ∈ E+ ∪ E− and win-
dow size c, we assume that every advertiser i ∈ N is aware of: E+

i = {(i′, i) ∈ E+|i′ ∈ N},
E−

i = {(i′, i) ∈ E−|i′ ∈ N} and of c and wji for every j ∈ E+
i ∪ E−

i .
In a keyword auction each advertiser i bids bi for receiving a slot in the list. The GSP mechanism

in its most common flavors uses the Rank-By-Revenue (RBR) rule to assign advertisers to slots. Under
RBR, advertisers are ranked in order of non-increasing score qi · bi and higher scores are assigned
higher CTR slots. The score of a bidder is his declared expected revenue for a click. The plainer RBB
rule is obtained by taking qi = 1 for all i ∈ N . Given a bid vector b, let φb : K → N denote the
ranking of bidders in order of non-increasing expected revenue, i.e. φb(j) is the bidder assigned to
slot j. According to the previously used definition of π, we use φ as an extension of π−1. Every slot
winning player φb(j), for j = 1, . . . , k pays per click a price equal to (qφb(j+1) · bφb(j+1))/qφb(j);
i.e., the score of the bidder occupying the next position under b, divided by the intrinsic relevance of
φb(j). Using his knowledge of externalities that influence him, player φb(j) experiences a relevance
Qφb(j)(b) and estimates his expected profit (utility) as:

uφb(j)(b) = λj ·Qφb(j)(b)×
(

vφb(j) −
qφb(j+1)

qφb(j)
· bφb(j+1)

)
(5)

We assume a complete information setting, as advertisers typically employ machine learning tech-
niques to estimate how much they should outbid a competitor. Such techniques reveal the ranking
information used by the GSP mechanism. Thus, in computing his best response under a bid vector
b−i, every advertiser i ∈ N is assumed to know only qi′ and bi′ for each i′ ∈ N \ {i}, and not the
actual relevance Qi′ perceived by i′.

In studying pure Nash equilibria of the GSP mechanism we make the standard assumption of
conservative (or ex-post individually rational) bidders. It states that in fear of receiving negative utility,
no bidder ever outbids his valuation, i.e. bi ≤ vi holds for all i ∈ N . This allows to prove meaningful
bounds for the social welfare relative to the social optimum [26, 13] since, otherwise, the worst-case
social welfare of equilibria may be arbitrarily low. For conservative bidders and under our definitions
of the mechanism’s and the bidders’ awareness of externalities we show:

Proposition 1. The strategic game induced by the Generalized Second Price Auction mechanism un-
der the RBR rule and deterministic tie-breaking does not generally have pure Nash equilibria in
presence of forward positive externalities, even for 3 conservative players and 2 slots.

Proof. Consider 3 players, and 2 slots. The tie-breaking rule picks player 3 first if he issues the same
bid with any of the other two players. Among the other 2 players ties may be resolved in any arbitrarily
chosen fixed way. All players have intrinsic relevance q and valuations v1 = v2 = V > 2−q

1−q ·v, where
v = v3. The slots have CTRs λ1 > λ2, such that γ = λ2/λ1 > V/[(2 − q) · (V − v)]. Notice that
V = (2 − q) · V − (1 − q) · V < (2 − q) · (V − v), because V > 2−q

1−q · v. Thus γ can be feasibly
chosen within a non-empty range (V/[(2− q) · (V − v)], 1].
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Set the window size to be c = 1 and consider a directed cycle {(1, 2), (2, 1)} as the context
graph. Let wji(1) = 1. When both players 1,2 are slot winners, if player i is ranked below i′ 6= i, his
relevance is amplified to Q = q(2− q). We claim that none of the orderings 〈1, 2〉 and 〈2, 1〉 has a bid
vector that is a pure Nash equilibrium. For every bid vector b that makes player 3 a looser (without
ties), we show that player φb(1) has incentive to aim for slot 2. b′ will denote the bid vector after such
a deviation of player φb(1), given b−φb(1). Then:

u(1)(b) = λ1 · q · (vφb(1) − bφb(2))

= γ−1 · λ2 · q · (vφb(1) − bφb(2))

< γ−1 · λ2 · q · V
< (2−q)·(V −v)

V λ2 · q · V
= λ2 ·Q · (V − v)
≤ λ2 ·Q · (vφb(1) − b3) = uφb(1)(b′)

When at least one of players 1, 2 bids equally to b3, at least one of 1,2 looses (i.e. does not win a
slot), because of the tie-breaking rule. Under such a configuration the loosing player has incentive
(and the capacity - because V > v ≥ b3) to outbid b3 and get a slot. This proves that for particular
deterministic tie-breaking rules, conservative pure Nash equilibria do not exist for the GSP under the
RBR rule. �

The proof of the following proposition can be found in Appendix A.5.

Proposition 2. The strategic game induced by the Generalized Second Price Auction under the RBR
rule and deterministic tie-breaking does not generally have pure Nash equilibria in presence of bidi-
rectional positive externalities, even for 3 conservative players and 3 slots.

In proving these propositions we used equal intrinsic relevance factors among players. Thus, even
the relevance-independent RBB rule cannot yield stability against the players’ perceptions about their
expected payoff. Even when pure Nash equilibria exist, externalities may cause the optimum social
welfare to be arbitrarily larger than the best welfare achievable in equilibrium, i.e. an unbounded Price
of Stability [4]:

Proposition 3. There is an infinite family of instances of the stategic game induced by the Generalized
Second Price auction mechanism with unbounded Price of Stability, even with conservative bidders.

Proof. Consider first an instance with 2 slots of equal CTRs, λ1 = λ2 = 1, and 5 players. Take
q1 = q2 = q5 = δ, v1 = v2 = v5 = 1, and q3 = q4 = 1, v3 = v4 = δ′ such that δ′ is always very
much smaller than δ. Let the social context graph have edge set E+ = {(3, 1), (4, 2)} and E− = ∅.
Set the window size to c = 1 and let w(1) = 1. The bid vector b where bi = vi is a pure Nash
equilibrium: under any tie-breaking rule, two players out of 1, 2, 5 receive a slot and have zero utility.
Then, sw(b) = 2δ. For the social optimum, assign the two slots to any of the pairs {3, 1} or {4, 2}.
The optimum social welfare is then OPT = 1 + δ′, in any of these pairs one player has his relevance
amplified to 1, due to positive influence by the other. OPT/sw(b) = (1 + δ′)/(2δ), which becomes
arbitrarily large as δ → 0. Notice that, because players are conservative, any bid configuration in
which a player i ∈ {3, 4} receives a slot, cannot be an equilibrium. This is because at least two of
players 1,2,5 would not receive a slot and any of them can deviate by outbidding i. Thus all equilibria
of the game have equal social welfare. One can straightforwardly generalize this instance for any
number of slots k, using 2k + 1 players. ut
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This result demonstrates how externalities may harm the performance of the GSP mechanism arbi-
trarily, in contrast to the recent upper bound of 1.282 shown recently [11] on the mechanism’s Price
of Anarchy [24] (the ratio of the optimum welfare over the worst equilibrium welfare), without exter-
nalities. Giotis and Karlin showed in [20] a lower bound of k in the Cascade Model of externalities
with conservative bidders.

7 Conclusion and Further Directions

We presented a comprehensive list of computational results for alleviating the impact of externalities
in sponsored search, under a novel fairly expressive model. We gave an exact algorithm for optimiz-
ing the social welfare under positive and/or negative externalities, which can be paired with VCG
payments, to yield a truthful polynomial time mechanism for practically relevant input sizes. We
settled APX-completeness of the associated Winner Determinaton problem with positive-only exter-
nalities and constant-size window of their scope, by proving hardness and designing constant factor
approximation algorithms. These algorithms do not yield truthful mechanisms in dominant strategies,
because they are not monotone 6. The dependence of the advertisers’ CTRs depend on the CTRs of
others caused even simple approximation algorithms that we tried not to be monotone. On the other
hand we showed that the non-truthful GSP mechanism may not have pure Nash equilibria in presence
of externalities; when it does, these may have unboundedly low social welfare. As our negative results
rely on the generality of our model, many directions emerge regarding the design and performance
analysis of mechanisms (including the GSP), for special practically relevant cases; these include e.g.
simple cases of social context graphs and bounded influence among advertisers.
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thank Moshe Tennenholtz for many interesting discussions and suggestions concerning this project.
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27. N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani. Algorithmic Game Theory. Cambridge University Press, 2007.
28. C.H. Papadimitriou and M. Yannakakis. The Travelling Salesman Problem with Distances One and Two. Mathematics

of Operations Research, 18(1):1–11, 1993.
29. H. R. Varian. Position auctions. International Journal of Industrial Organization, 25(6):1163–1178, 2007.
30. W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance, pages 8–37, 1961.

13



A Appendix

A.1 NP-hardness of MSW-FPE(1)

Proposition 4. MSW-FPE(1) is NP-hard even in the special case of uniform position multipliers,
valuations, and qualities.

Proof. We use transformation from the Longest Path problem. Given a directed graph G(V,E) and
an integer k ≥ 2, we construct an instance I of MSW-FPE(1). In I , there are |V | advertisers, all of
them with valuation 1 and quality 1/2, there are k slots in the sponsored list, all position multipliers
are equal 1, the advertisers’ context graph is G(V,E, ∅), and there is a single externality function with
w(1) = 1/2 and w(`) = 0 for all ` 6= 1. The ad at slot 1 contributes 1/2 to the social welfare. The ad
at each slot `, ` ∈ {2, . . . , k}, contributes 5/8 to the social welfare if the ad on slot `− 1 is correlated
to it, and 1/2 otherwise. It is immediate that G has a simple path of length k−1 iff I admits a solution
of social welfare at least (5k − 1)/8. ut

A.2 The Proof of Theorem 1

We show that for any constant ε > 0, an (1 + ε)-approximation algorithm for MSW-FPE(1) implies
a (1 + O(ε))-approximation algorithm for TSP(1, 2).

Given an instance G(V,E), |V | = n, of TSP(1, 2), we construct an instance I of MSW-FPE(1).
In I , there are n advertisers, all of them with valuation 1 and quality q ∈ (0, 1), the context graph
is G(V,E, ∅), there is a single function w with w(1) = β ∈ (0, 1) and w(`) = 0 for all ` 6= 1, the
number of slots is n (i.e. all ads fit in the sponsored list), and all position multipliers are equal to 1.

A solution to I is a permutation π of the n advertisers corresponding to the vertices of G. The
ad at slot 1 contributes q to the social welfare. The ad at each slot `, ` ∈ {2, . . . , n}, contributes
q(1 + β(1 − q)) to the social welfare if the ad at slot ` − 1 is correlated to it (i.e. there is an edge in
G between π−1(` − 1) and π−1(`)), and q otherwise. To simplify the notation, we let ζ = β(1 − q).
Therefore any solution to I that contains µ non-edges of G, i.e. assigns µ pairs of ads not connected
by an edge in G to consecutive slots on the ad list, has a social welfare of q(n(1 + ζ)− (µ + 1)ζ).

Let t∗ = (u1, . . . , un) be an optimal tour for the TSP(1, 2) instance, and let α be the number of
non-edges in t∗, and n+α be t∗’s total length. For simplicity, we assume that if α > 0, {un, u1} 6∈ E.
The solution to I that arranges the ads in the same order as in t∗, namely (u1, . . . , un), has a social
welfare of at least q(n(1 + ζ)− ζ) if α = 0, and q(n(1 + ζ)− αζ) otherwise.

For any constant ε > 0, we consider a (1 + ε)-approximate solution π to I . Let π contain α′

non-edges. If α > 0, the social welfare of π is:

q(n(1 + ζ)− (α′ + 1)ζ) ≥ q(n(1 + ζ)− αζ)
1 + ε

,

which implies that
α′ + 1 ≤ ε

1+ε
ζ+1

ζ n + 1
1+ε α

If α = 0, we work similarly and obtain that

α′ + 1 ≤ ε
1+ε

ζ+1
ζ n + 1

1+ε

Arranging the vertices of G according to π gives a tour with at most α′+1 non-edges and a length
no greater than n + α′ + 1. If α > 0, we obtain that

n + α′ + 1 ≤ (n + α)
(
1 + ε ζ+1

ζ

)
14



If α = 0, we obtain that

n + α′ + 1 ≤ n
(
1 + ε

1+ε
ζ+1

ζ + 1
n(1+ε)

)
≤ n

(
1 + ε

ζ + 1
ζ

)
,

where the last inequality holds for all n ≥ ζ
ε2(1+ζ)

.
Therefore, for any constant ε > 0, any (1 + ε)-approximate solution to MSW-FPE(1) instance

I can be translated into a (1 + ε ζ+1
ζ )-approximate solution to the original instance of TSP(1, 2). We

recall that ζ = β(1 − q). Thus ζ+1
ζ can be arbitrarily close to 2 if q is selected sufficiently close to 0

and β is selected sufficiently close to 1. ut

A.3 The Proof of Claim 1 in Theorem 3

The proof is by induction on c. For c = 1, the first set packing is {{p, p + 1, p}}p=1,3,5,...,k−1 and the
second set packing is {{p + 1, p + 2, p}}p=1,3,5,...,k−3

7. It is straightforward to verify that for each
ad i in (1, . . . , k − 1), there is a set {i, i + 1, p} with p = i− 1 if i is even, and with p = i if i is odd
(see also the pair of rows corresponding to c = 1 in Fig. 1).

For some integer c ≥ 2, we inductively assume that the claim holds for a window size up to
c − 1, and we show that the claim holds for a window size of c. Thus, by inductive hypothesis, we
already have a collection of 2(c − 1) feasible set packings such that for each pair i1, i2 of ads with
|i1 − i2| ≤ c− 1, the union of these packings contains a set {i1, i2, p} with p ≤ min{i1, i2} (see e.g.
the eight rows corresponding to c = 1, 2, 3, 4 in Fig. 1). To complete the construction, we add two
new set packings such that for each ad i ≤ k − c, they include a set {i, i + c, p}, with p ≤ i.

If c is odd, the first new set packing is {{p, p + c, p}}p=1,3,5,...,k−c and the second new set packing
is {{p + 1, p + c + 1, p}}p=1,3,5,...,k−c−2 (see the pair of rows corresponding to c = 5 in Fig. 1).
Both set packings are feasible. In particular, none of them contains the same ad twice, since each set
contains an even and an odd ad, and the ad ids increase by 2 from each set to the next. Moreover, for
each ad i ≤ k − c, there is a set {i, i + c, p} with p = i if i is odd, and with p = i− 1 if i is even.

If c is even, we use a more complicated periodic construction, which is required for the feasibility
of the two set packings. The first new set packing is:

{{2c` + p, 2c` + p + c, 2c` + p}}p=1,3,5,...,c−1,`=0,1,...,d(k−3c)/(2c)e
⋃

{{2c` + p + c + 1, 2c` + p + 2c + 1, 2c` + p + c}}p=1,3,5,...,c−1,`=0,1,...,d(k−3c)/(2c)e

The second new set packing is:

{{2c` + p + 1, 2c` + p + c + 1, 2c` + p}}p=1,3,5,...,c−1,`=0,1,...,d(k−3c)/(2c)e
⋃

{{2c` + p + c, 2c` + p + 2c, 2c` + p + c}}p=1,3,5,...,c−1,`=0,1,...,d(k−3c)/(2c)e

with the understanding that we exclude any sets with an ad of id greater than k (see the pair of rows
corresponding to c = 6 in Fig. 1). In the first (resp. the second) set packing, the sets in the first group
include each ad with odd (resp. even) id once, and the sets in the second group include each ad with
even (resp. odd) id at most once. Thus we ensure that both set packings are feasible. In both cases, the

7 We recall that the third element of each set is the so-called block descriptor, and refers to the list positions according
to which the weight of the set is calculated in the proof of Theorem 3. Even though we conveniently identify both ads
and block descriptors with positive integers, we highlight that ads and block descriptors are different entities. Thus, e.g.
{p, p + 1, p} should be regarded as a set with three different elements, and {p, p + 1, p− 1} and {p + 2, p + 3, p + 1}
should be regarded as disjoint sets, because the contain different ads and have different block descriptors.
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p = 1 p = 3 p = 5 p = 7 p = 9 p = 11 p = 13 p = 15 p = 17 p = 19 p = 21 p = 23  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  c = 1 

1 3 4 6 5 7 8 10 9 11 12 14 13 15 16 18 17 19 20 22 21 23 
2 4 3 5 6 8 7 9 10 12 11 13 14 16 15 17 18 20 19 21 22 24 c = 2 

1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 
2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23  c = 3 

1 5 3 7 6 10 8 12 9 13 11 15 14 18 16 20 17 21 19 23 
2 6 4 8 5 9 7 11 10 14 12 16 13 17 15 19 18 22 20 24 c = 4 

1 6 3 8 5 10 7 12 9 14 11 16 13 18 15 20 17 22 19 24 
2 7 4 9 6 11 8 13 10 15 12 17 14 19 16 21 18 23  c = 5 

1 7 3 9 5 11 8 14 10 16 12 18 13 19 15 21 17 23 
2 8 4 10 6 12 7 13 9 15 11 17 14 20 16 22 18 24 c = 6 

 
Fig. 1. The set packings constructed in the proof of Claim 1 for k = 24 and c = 1, . . . , 6. For each value of c, we have two
rows, one for each of the additional set packings in the inductive step. Each cell containing two integers i1, i2 corresponds
to a set with ads i1 and i2. The block descriptor of each set is given by the value of p in the corresponding column. Cells /
sets in the same row belong to the same set packing, and thus each add appears in each row at most once, while cells /set in
the same column have the same block descriptor. For even values of c, we mark, by switching from grey to white color, the
groups of sets obtained for each different value of `.

ads are paired so that the ids of two ads in the same set differ by c. Moreover, the first group of the first
(resp. second) packing and the second group of the second (resp. first) packing are complimentary,
in the sense their union includes all sets {i1, i2, p} where i1 and i2 are odd (resp. even) and have
|i1 − i2| = c. Therefore, for each ad i ≤ k − c, there is a set {i, i + c, p} with p = i if i is odd, and
with p = i− 1 if i is even.

Hence, for every window size c and any list (1, . . . , k), we can construct a collection of 2c feasible
3-set packings such that for each pair i1, i2 of ads with |i1 − i2| ≤ c, there is a set {i1, i2, `} with
` ≤ min{i1, i2}. ut

A.4 The Proof of Theorem 4

We transform any instance of MSW-PE(c) to an instance of Weighted (2c + 1)-Set Packing with at
most kn2c sets so that any α-approximation to the optimal set packing gives a 2α-approximation to
the optimal solution of the MSW-PE(c) instance. To simplify the presentation, we assume that the
optimal solution to the original instance consists of exactly k ads, and that k is a multiple of 2c. Our
proof can be easily extended to handle the remaining cases as well.

Given an instance of MSW-PE(c) with n advertisers and k slots, we partition the list into k/(2c)
blocks of 2c consecutive slots each. The set packing instance consists of

(
n
2c

)
sets of 2c + 1 elements

each for each block. Namely, for every p = 1, 2c+1, 4c+1, . . . , k−2c+1, and every set {i1, . . . , i2c}
of 2c ads, there is a set {i1, . . . , i2c, p} in the set packing instance8. Thus, we create at most kn2c sets.

To compute the weight of each set {i1, . . . , i2c, p}, we consider all possible permutations π of
ads i1, . . . , i2c. For each permutation π, let W ({i1, . . . , i2c, p}, π) denote the social welfare if ads

8 As in the proof of Theorem 3, we implicitly adopt the simplifying assumption that the range of block descriptors 1, 2c +
1, 4c + 1, . . . , k − 2c + 1 and the range of ad descriptors 1, . . . , n are disjoint.
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i1, . . . , i2c alone are assigned to the slots p, p + 1, . . . , p + 2c− 1 according to π. Formally,

W ({i1, . . . , i2c, p}, π) =
c∑

j=1

λp+j−1 ·Qπ−1(j)(π
−1(1), . . . , π−1(j), . . . , π−1(j + c)) · vπ−1(j) +

+
2c∑

j=c+1

λp+j−1 ·Qπ−1(j)(π
−1(j − c), . . . , π−1(j), . . . , π−1(2c)) · vπ−1(j) (6)

where π−1(j) is the ad assigned to slot p+j−1 by π, and Qπ−1(j)(π−1(1), . . . , π−1(j), . . . , π−1(j+
c)) (resp. Qπ−1(j)(π−1(j − c), . . . , π−1(j), . . . , π−1(2c))) denotes the relevance of ad π−1(j) given
that the only ads in the list at distance at most c from π−1(j) are π−1(1), . . . , π−1(j), . . . , π−1(j + c)
(resp. π−1(j − c), . . . , π−1(j), . . . , π−1(2c)) arranged in this order from top to bottom.

The weight W ({i1, . . . , i2c, p}) of each set {i1, . . . , i2c, p} is the maximum weight for all permu-
tations π of i1, . . . , i2c. Since the weight of each set can be calculated in O((2c)!c2) time, the Weighted
(2c + 1)-Set Packing instance can be computed in O(ckn2c) time. To show that the transformation
above is approximation preserving, we prove that (i) the optimal set packing has weight at least half of
the maximum social welfare, and that (ii) given a set packing of weight W , we can efficiently compute
a solution to the instance of MSW-PE(c) of social welfare at least W .

To prove (i), we let (1, . . . , k) be the optimal list for the MSW-PE(c) instance, let Q∗
i be the

relevance of ad i in (1, . . . , k), and let W ∗ =
∑k

i=1 λiQ
∗
i vi be the optimal social welfare. Next, we

construct a pair of feasible packings of total weight at least W ∗.
For the first set packing, we partition (1, . . . , k) into k/(2c) sets each containing 2c ads in con-

secutive slots and the corresponding block descriptor. In particular, the first set packing contains a set
s
(1)
p = {p, p+1, . . . , p+2c−1, p} for each block descriptor p = 1, 2c+1, 4c+1, . . . , k−2c+1. Let

π
(1)
p be the permutation that assigns the ads in s

(1)
p to their slots in (1, . . . , k), and for each i ∈ s

(1)
p ,

let Q
(1)
i be the relevance with which ad i contributes to W (s(1)

p , π
(1)
p ) in (6). Since W (s(1)

p ) is the
maximum weight of s

(1)
p over all permutations of its ads, the total weight of the first packing is

W (1) ≥
∑j=k

j=1 λj ·Q(1)
i · vi .

For the second packing, we partition (c + 1, . . . , k, 1, . . . , c) into k/(2c) sets similarly. In partic-
ular, there is a set s

(2)
p with the ads in slots p, p + 1 . . . , p− 2c + 1 in (c + 1, . . . , k, 1, . . . , c) for each

block descriptor p = 1, 2c + 1, 4c + 1, . . . , k − 2c + 1. As before, we let π
(2)
p be the permutation that

assigns the ads in s
(2)
p to their slots in (c+1, . . . , k, 1, . . . , c), and for each i ∈ s

(2)
p , we let Q

(2)
i be the

relevance with which ad i contributes to W (s(2)
p , π

(2)
p ) in (6). Since W (s(2)

p ) is the maximum weight
of s

(2)
p over all permutations, and since slot CTRs are non-increasing, the total weight of the second

packing is W (2) ≥
∑j=k

j=c+1 λj ·Q(2)
i · vi .

We claim that:

W (1) + W (2) ≥
j=c∑
j=1

λj ·Q(1)
ij

· vij +
j=k∑

j=c+1

λj · (Q(1)
ij

· vij + Q
(2)
ij

) ≥ W ∗

The first inequality follows from the discussion above. To establish the second inequality, we first
observe that for all i = 1, . . . , c, Q∗

i = Q
(1)
i , since all ads that affect the relevance of i in (1, . . . , k)

are included in s
(1)
1 , and thus are taken into account in the calculation of Q

(1)
i .

For the remaining ads i = c + 1, . . . , k, we work as in the proof of Theorem 3 and show that
Q

(1)
i + Q

(2)
i ≥ Q∗

i . We first consider an ad i assigned to the first c slots of block s
(1)
p by π

(1)
p , for
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some p = 2c + 1, 4c + 1, . . . , k − 2c + 1. Then ad i is assigned to the last c slots of block s
(2)
p−2c by

π
(2)
p−2c. Therefore, Q(1)

i takes into account externalities due to ads i+1, . . . , i+c after i and Q
(2)
i takes

into account externalities due to ads i− c, . . . , i− 1 before i in (1, . . . , k). Since we consider positive
externalities, Q(1)

i ≥ Qi(i, i+1, . . . , i+c) and Q
(2)
i ≥ Qi(i−c, . . . , i−1, i). By the definition of ads’

relevance for positive externalities, there are P+, P− ∈ [0, 1], which correspond to the contribution
of ads i + 1, . . . , i + c and i− c, . . . , i− 1 to the product in (2), such that:

– Qi(i, i + 1, . . . , i + c) = 1− (1− qi)P+,
– Qi(i− c, . . . , i− 1, i) = 1− (1− qi)P−, and
– Q∗

i = Qi(i− c, . . . , ij , . . . , i + c) = 1− (1− qi)P+P−.

As in the proof of Theorem 3,

1− (1− qi)P+ + 1− (1− qi)P− ≥ 1− (1− qi)P+P− + (1− qi)(1− P+)(1− P−)
≥ 1− (1− qi)P+P− ,

which implies that Q
(1)
i + Q

(2)
i ≥ Q∗

i , for all ads i = c + 1, . . . , k.
The case where i is assigned to the last c slots of some block s

(1)
p by π

(1)
p is symmetric, and can

be handled similarly, with the roles of Q
(1)
i and Q

(2)
i switched. This concludes the proof of claim (i).

We proceed to establish that given a set packing of weight W , we can efficiently construct a
sponsored list of social welfare at least W for the original instance. Let s1, . . . , sk/(2c) be a packing
of total weight W = W (s1) + · · ·+ W (sk/(2c)), and for each p = 1, 2c + 1, 4c + 1, . . . , k − 2c + 1,
let πp be the best permutation of ads in sp. Since the union of s1, . . . , sk/(2c) contains k ads, since
W (sp, πp) = W (sp), and since we consider positive externalities, the sponsored list where each ad i
in set sp is assigned to slot p + πp(i)− 1 of the sponsored list has a social welfare of at least W . ut

A.5 Proof of Proposition 2

Take 3 players with v1 = v2 = V , v3 = v with equal intrinsic relevances q < 1 and choose V , v so that
V >

√
2−q√

2−q−1
· v. We consider the social context graph with E+ = {(3, 1), (3, 2)}, E− = ∅, window

size c = 1, and w31(1) = w32 = 1. The CTRs of slots are such that γ2 = λ2/λ1 > V
(2−q)(V −v) ,

γ2 < 1 − v
V and γ3 = λ3/λ2 < 1 − v

V . Notice that γ2 can be feasibly chosen within a non-empty

range ( V
(2−q)(V −v) , 1−

v
V ), because V >

√
2−q√

2−q−1
·v. Also, observe that, influence to any of players 1,

2 by player 3, boosts their relevance to Q = q(2−q). By conditioning on the slot assignment of player
3, we show that one of the other advertisers has incentive to deviate. We will first assume distinct bids
that produce the corresponding assignments and comment on failure of a deterministic tie-breaking
rule afterwards.

CASE I. In any assignment where φ−1
b (3) = 3, should player φb(1) aim for slot 2, his utility would

become:

λ2 ·Q · (vφb(1) − b3) ≥ λ2 ·Q · (V − v) {because b3 ≤ v}
= q(2−q)·(V −v)

V · λ2 · V {because Q = q(2− q)}
> γ−1

2 · λ2 · q · (V − bφb(2)) {because γ2 > V
(2−q)(V −v)}

= λ1 · q · (vφb(1) − bφb(2)) = uφb(1)(b) {because γ2 = λ2/λ1}
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CASE II. In any assignment with φ−1
b (3) = 2, should player φb(3) aim for slot 2, his utility would

become:

λ2 ·Q · (vφb(3) − b3) ≥ λ2 ·Q · (V − v) {because b3 ≤ v}
=

(
1− v

V

)
· λ2 ·Q · V

> γ3 · λ2 ·Q · V {because γ3 < 1− v
V }

= λ3 ·Q · vφb(3) = uφb(3)(b) {because γ3 = λ3/λ2}

CASE III. In any assignment with φ−1
b (3) = 1, should player φb(2) aim for slot 1, his utility would

become:

λ1 ·Q · (vφb(2) − b3) ≥ λ1 ·Q · (V − v) {because b3 ≤ v}
=

(
1− v

V

)
· λ1 ·Q · V

> γ2 · λ1 ·Q · (V − bφb(3)) {because γ2 < 1− v
V }

= λ2 ·Q · (vφb(2) − bφb(3)) = uφb(2)(b) {because γ2 = λ2/λ1}

Having examined all possible assignments, we turn our attention to the possibility of ties. We consider
a deterministic tie-breaking rule that ranks player 3 higher than players 1 and 2 in case that he ties
with them. An arbitrary deterministic rule is chosen for resolving a tie among 1 and 2. Then it is easy
to see that any possible tie leads to one of the cases I., II., III. above. ut
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