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Abstract. In the incremental versions of Facility Location akeMedian, the demand points arrive one at a

time and the algorithm must maintain a good solution by either adding each new demand to an existing cluster
or placing it in a new singleton cluster. The algorithm can also merge some of the existing clusters at any point
in time. We present the first incremental algorithm for Facility Location which achieves a constant performance
ratio and the first incremental algorithm fefMedian which achieves a constant performance ratio uSifig

medians, thus resolving an open question of [7]. The algorithm is based on a novel merge rule which ensures that
the algorithm’s configuration monotonically converges to the optimal facility locations according to a certain
notion of distance. Using this property, we reduce the general case to the special case that the optimal solution
consists of a single facility.

1 Introduction

The model of incremental algorithms for data clustering is motivated by practical applications where
the demand sequence is not known in advance and the algorithm must maintain a consistently good
clustering using a restricted set of operations which result in a solution of hierarchical structure. The
framework of incremental clustering was introduced by Charikar et al. [4]. In this paper, we consider
the incremental versions of metric Facility Location dat¥ledian. The problems of Facility Location
andk-Median find many applications in the areas of network design and data clustering and have been
the subject of intensive research over the last decade (e.g., [21] for a survey and [10] for approximation
algorithms and applications). In addition to the offline setting, there are many applications where the
demand points arrive online and the solution must be constructed incrementally using no information
about future demands (e.g., [19]).

In Incrementalk-Median[7], the demand points arrive one at a time. Each new demand must be
either added to an existing cluster or placed in a new singleton cluster upon arrival. At any point in time,
the algorithm can also merge some of the existing clusters. Each cluster is represented by its median
whose location is determined at the cluster’s creation time. When some clusters are merged with each
other, the median of the new cluster must be selected among the medians of its components. The goal is
to maintain a solution consisting of at mastlusters/medians which minimize the total assignment cost
of the demands considered so far. The assignment cost of a demand is its distance from the median of
the cluster the demand is currently included in.

The definition ofiIncremental Facility Locations similar. Demand points arrive one at a time and
must be assigned to either an existing or a new facility upon arrival. At any point in time, the algorithm
can also merge a facility with another one by closing the first facility and re-assigning all the demands
currently assigned to it to the second facility. The objective is to maintain a solution which minimizes
the sum of facility and assignment costs. As before, the assignment cost of a demand is its distance from
the facility the demand is currently assigned to.

We evaluate the performance of incremental algorithms usingehfermance ratid4]. An incre-
mental algorithm achieves a performance ratio iffor all demand sequences, the cost incurred by the
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algorithm is at most times the cost incurred by an optimal offline algorithm, which has full knowledge
of the demand sequence, on the same instance.

Comparison to Online and Streaming Algorithms. Similarly to online algorithms, incremental algo-

rithms commit themselves to irrevocable decisions made without any knowledge about future demands.
More specifically, when a new demand arrives, the algorithm may decide to add the demand to an exist-
ing cluster or merge some clusters with each other. These decisions are irrevocable because once formed,
clusters cannot be broken up. In addition, the definition of the performance ratio is essentially identical
to the definition of the competitive ratio (e.g., [3]). However, we have avoided casting Increrhental
Median as “Onlinek-Median”. The most important reason is that we are not aware of any simple and
natural notion of irrevocable cost which could be associated with the irrevocable decision that a demand
is clustered together with some other demands.

Incremental algorithms also bear a resemblance to one-pass streaming algorithms for clustering prob-
lems (e.g., see [13] for a formulation of the streaming model and [12, 6] for applicatiagaMtxian).
However, in case of streaming algorithms, the emphasis is on space and time efficient algorithms which
achieve a small approximation ratio by ideally performing a single scan over the input data. A streaming
algorithm fork-Median is not restricted in terms of the solution’s structure or the set of operations avail-
able. On the other hand, incremental algorithms must maintain a good hierarchical clustering by making
irrevocable decisions. As for time and space efficiency, we only require explicitly that incremental al-
gorithms should run in polynomial time. Nevertheless, all known incremental algorithms for clustering
problems can be either directly regarded as or easily transformed to time and space efficient one-pass
streaming algorithms (e.qg., [4,12, 7, 6]).

Previous Work. Charikar et al. [4] introduced the framework of incremental clustering and presented
incremental algorithms fok-Center (i.e., minimize the maximum cluster radius) which achieve a con-
stant performance ratio usirigclusters. Charikar and Panigrahy [7] presented an incremental algorithm
for Sumk-Radius (i.e., minimize the sum of cluster radii) which achieves a constant performance ratio
usingO(k) clusters.

The incremental version @&f-Median was first considered by Charikar and Panigrahy [7], where it is
shown that no deterministic algorithm which maintains at magtisters can achieve a performance ratio
better tharf2(k). Hence, we relax the requirement on the number of clusters allowing the algorithm to
maintainO(k) clusters. Determining whether there exists an incremental algorithktedian which
achieves a constant performance ratio u$hig) medians is suggested as an open problem in [7].

The only known incremental algorithms fbfMedian are the one-pass streaming algorithms of [12]
and [6]. More specifically, the streaming algorithms of Guha et al. [12] can be regarded as incremen-
tal algorithms under the assumption that the number of demansiknown in advance. Fat much
smaller tham:¢, their algorithms achieve a performance ratio26f/¢) usingn¢ medians and run in
O(nk poly(logn)) time andn® space. The best known streaming algorithmifdviedian is the one-pass
algorithm of Charikar et al. [6]. Under the assumption th# known in advance, this algorithm can be
easily transformed to an incremental algorithm which achieves a constant performance ratio with high
probability (whp?) usingO(klog?® n) medians and runs i®(nk log? n) time andO(k log? n) space.

The only known incremental algorithms for Facility Location are the online algorithms of [19, 8, 1].
Meyerson [19] was the first to consider the online version of Facility Location, where the demand points
arrive one at a time and must be irrevocably assigned to either an existing or a new facility upon arrival.

In [19], a randomizecD(log’ﬁ)gn)—competitive algorithm and a lower bound ©f1) are presented. In

[8], the lower bound is improved tﬁ(log’ign) and a deterministié)(lolgoﬁ)gn)-competitive algorithm is

given. In [1], itis presented a simpler determinigti2¢ log n)-competitive algorithm for-dimensional
Euclidean spaces.

! Throughout this paper, “whp.” means “with probability at least O(1/n)".
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The lower bounds of [19, 8] hold only if the decision of opening a facility at a particular location
is irrevocable. Hence, they do not apply to the incremental version of Facility Location. However, the
lower bound of [8] implies that every algorithm which maintairi# log n) facilities must incur a total
initial assignment cost af(1) times the optimal cost, where the initial assignment cost of a demand is
its distance from the first facility the demand is assigned to. Therefore, every algorithm treating merge as
a black-box operation cannot approximate the optimal assignment cost within a constant factor unless it
uses2(k log n) facilities (e.g., the algorithm of [6]). In other words, to establish a constant performance
ratio, one must prove that merge operations canddsneasehe algorithm’s assignment cost.

Related Work on Facility Location and k-Median. In the offline case, where the demand set is fully
known in advance, there are constant factor approximation algorithms for Facility Location based on
Linear Programming rounding (e.g., [22, 23]), local search (e.g., [16, 5, 2]), and the primal-dual method
(e.g., [15,14]). The best known polynomial-time algorithm achieves an approximation ratio of 1.52
[17], while no polynomial-time algorithm can achieve an approximation ratio less than 1.463 unless
NP = DTIME(nC(oglogn)) [11]. For k-Median, the best known polynomial-time algorithm achieves
an approximation ratio o3 + o(1) [2], while no polynomial-time algorithm can achieve an approxi-
mation ratio less thamh + 2/e unlessNP = DTIME(nC(°glogn)) [14]. As it is also observed in [19],

our setting should not be confused with the setting of [18, 20], where the demand set is fully known in
advance and the number of facilities/medians increases online.

Contribution. We present the first incremental algorithm for metric Facility Location which achieves a
constant performance ratio. The algorithm combines a simple rule for opening new facilities with a novel
merge rule based on distance instead of cost considerations. We use a new technique to prove that a case
similar to the special case where the optimal solution consists of a single facility is the dominating case

in the analysis. This technique is also implicit in [8] and may find applications to other online problems.

To overcome the limitation imposed by the lower bound of [8], we also establish that in the dominating
case, merge operations decrease the total assignment cost.

Using the algorithm for Facility Location as a building block, we obtain the first incremental algo-
rithm for k-Median which achieves a constant performance ratio usifig medians, thus resolving the
open question of [7]. Our algorithm is deterministic, run®ifm?k) time andO(n) space, and is the first
incremental algorithm fok-Median which does not assume any advance knowledge Gobmbining
our techniques with the techniques of [6], we obtain a randomized incremental algorithm which achieves
a constant performance ratio whp. usidgk) medians and runs i® (nk? log?® n) time andO (k2 log? n)
space. This algorithm can also be regarded as an one-pass streaming algorithivteftian. Similarly
to the algorithms of [12, 6], the randomized version of our algorithm assumes that a constant factor
approximation tdog n is known in advance.

Notation. We only consider unit demands by allowing multiple demands to be located at the same point.
We always use: to denote the total number of demands. For Incremental Facility Location, we restrict
our attention to the special case of uniform facility costs, where the cost of opening a facility, denoted by
f, is the same for all points. We also use the terms facility, median and cluster interchangeably.

A metric spaceM = (M, d) is usually identified by its point se¥/. The distance functiod is
non-negative, symmetric, and satisfies the triangle inequality. For a subdpace M, D(M') =
max,, ,enm{d(u,v)} denotes the diameter dff’. For a pointu € M and a subspacé/’ C M,
d(M’';u) = min,ep{d(v,u)} denotes the distance betweenand the nearest point id/’. It is
d(0,u) = oo. For subspaces!’, M" C M, d(M', M") = minyepr{d(M’',u)} denotes the minimum
distance between a pointivf’ and a pointin\/”. For a subspacg!/’ C M, sep(M') = d(M', M\ M")
denotes the distance separating the poinf&/irfrom the points not in\/’. It is sep()) = sep(M) = occ.
For a pointu € M and a non-negative numbey Ball(u, r) denotes the ball of centerand radius-,
Ball(u,r) = {v e M : d(u,v) <r}.



Letz, B, andy be appropriately chosen constants

f

F — 0; L < @; /* Initialization */ open(’)
For each new demand F — FU{w'}; Init(w') < 0;
L— LU{u};r, < LIZU); Cw') — 0; mD(w') — 37y,

B, < Ball(u,r,) N L;

/
Pot(B,) = X yep, d(F,v); merge( — )

if Pot(B,) > 3f then F = F\{w}; C(w') — C(uw") UC(w);
Letw’ be the location ofi; updatemergeradius{n(w))
open{’); L « L\ By; m® (w) =
for eachw € F'\ {w'} do max{r : [Ball(w, ;) N (Init(w) U {u})| -7 < Bf};

if d(w,w’) < m(w)then
mergefv — w'); o _

Letw be the facility inF closest tou; initial assignment(, w)
updatemergeradiusgn(w)); Init(w) « Init(w) U {u}; C(w) < C(w) U {u};
initial_assignmenty, w);

m(w) = min{m(l)(w), m® (w)};

Fig. 1. The algorithm Incremental Facility Locationl¥L .
2 An Incremental Algorithm for Facility Location

The algorithm Incremental Facility LocationIFL (Fig. 1) maintains itdacility configurationF’, its
merge configuratioronsisting of anerge ballBall(w, m(w)) for each facilityw € F', and the seL of
unsatisfied demands

We use a simpler version of the deterministic algorithm of [8] for opening new facilities. The notion
of unsatisfied demands (the dtensures that each demand contributes to the facility cost at most once.
A demand becomes unsatisfied and is addddupon arrival. Each unsatisfied demand holgetential
which is always equal to its distance from the nearest facility. If the neighborBgaxf a new demand
u has accumulated a potential 8f, a new facility located at the same point withopens. Then, the
unsatisfied demands iB,, lose their potential, become satisfied, and are removed from

Each facilityw € F maintains the sef’(w) of the demands currently assignedwoand the set
Init(w) C C(w) of the demandénitially assignedto w. The demands ifinit(w) are assigned taw
when they arrive, while the demandsiifw) \ Init(w) have been initially assigned to a facility different
from w. Each facilityw € F' also maintains itsnerge radiusn(w) and the correspondingerge ball
Ball(w, m(w)). The algorithm ensures that is the only facility in its merge ball. Whew opens, the
merge radius ofv is initialized to a fraction of the distance betweerand the nearest existing facility.
Then, if a new facilityw’ is included inw's merge ballw is merged withw’. Namely,w is closed and
removed fromF, and every demand currently assigned:tis re-assigned ta’. The algorithm keeps
decreasingn(w) to ensure that no merge operation can dramatically increase the total assignment cost
of the demands ifnit(w). More specifically, the algorithm maintains the invariant that

[Init(w) N Ball(w, "] - m(w) < 3 f (1)

After the algorithm has updated its configuration, it initially assigns the new demand to the nearest
facility. We always distinguish between the arrival and the assignment time of a demand because the
algorithm’s configuration may have changed in between.

If the demands considered ByL occupym different locations, a crude analysis shows fidt can
be implemented it (nm|Fax|) time andO (min{n, m|Fnax|}) Space, wheréf,.x| is the maximum
number of facilities inF’ at any point in time. The remaining of this section is devoted to the proof of the
following theorem.

4(z+1)

Theorem 1. For everyz > 18, 8 > — =5,

performance ratio.

andy € [max{%A}, 5], IFL achieves a constant



Preliminaries. For an arbitrary fixed sequence of demands, we compare the algorithm’s cost with the
cost of a fixed add-optimal facility configuratitiiWe denote this solution b§* and refer to it aghe
optimal solution To avoid confusing the algorithm’s facilities with the facilitiesAif, we use the term
optimal centeyor simplycenter to refer to an optimal facility inF™* and the ternfacility to refer to an
algorithm’s facility in .

The optimal solutionF™ consists ofk centersey, co, . . ., ¢,. Each demand is assigned to the nearest
center inF*. For a demand., ¢, denotes the optimal centeris assigned to. We use the clustering
induced byF* to map the demands and the algorithm’s facilities to optimal centers. In particular, a
demandu is always mapped to,, i.e., the optimal centex is assigned to. Similarly, a facility is
mapped to the nearest optimal center denoted,byAlso, letd!, = d(c,,u) = d(F*,u) denote the
optimal assignment cost af let Fac* = k f be the optimal facility cost, and létsg* = >~ ; d; be the
optimal assignment cost.

In addition tozx, 3, andy, let A = 3z + 2, p = (¢ + 2)(A + 2), andy = 12p be also constants.

Let alsouy,...,u, be the demand sequence consideredlly. We show that after the demand

has been consideretl, < j < n, the facility cost of[FL. does not exceed; Fac* + by Asg; and the
assignment cost df'L. does not exceedsFac® + boAsg), whereAsg; = Z{Zl dy. ,anda; = 1,

as = 231In(3v?)(5(y+4)y2+3), by = %” andby = 4((p+1)~%+2)+14x. With a more careful analysis,
we can improver, andbs to ay = 45 log(y)(12(¢) + 2) + 3) andbl, = (A + 2)(8¢ + 25). Moreover, we

can remove the assumption tHat is add-optimal by replacing the bound on the algorithm'’s assignment
cost withmax{ag, b } (Fac* + Asg?) (see also Section A.9, in the Appendix).

Every time we want to explicitly refer to the algorithm’s configuration (or some function of it) at the
moment a demand is considered/facility opens, we use the demand’s/facility’s identifier as a subscript.
Moreover, we use the convention that the algorithm first updates its configuration and then performs
the demand's initial assignment. Hence, we distinguish between the algorithm’s configuration at the de-
mand’s arrival and assignment times using plain symbols to refer to the former and primed symbols
to refer to the latter time. For example, for a demand,/F}, is the facility configuration at/s ar-
rival/assignment time. Similarly, for a facility, F.,/F}, is the facility configuration just before/after
opens. Saying that an existing facility is merged with a new facilitys’, we mean that the existing
facility w is closed and the demands currently assigned &ve re-assigned to the new facility (and
not the other way around). We proceed to establish the basic properiiek.of

Lemma 1. Letg > 4(;”71’81) Then, for every facilityy mapped ta:,, d(cy, w) < %

Proof SketchTo reach a contradiction, let us assume thas a facility such thati(c,,, w) > M.

SinceB,, C Ball(w, W), we can show that for eaeh € By, d(u, w) < -%; di andd(F,, u) <

detl) g Using Pot(B,,) > (f, we conclude that for everg > 22t r o s~ o glu,w) <
> ueB, dy, which contradicts to the add-optimality &F. The full proof can be found in the Appendix,

Section A.1. 0O

Proposition 1. For every facilityw, there will always exist a facility iBall(w, -*5 m(w)) and each
demand currently assigned towill remain assigned to a facility ifall(w, -%5 m(w)).

Proof. The proposition is true as long asremains open. liv is merged with a new facilitys’, we
inductively assume that the proposition is trueddr Then, the proposition follows from the observation
thatBall(w', %5 m(w')) is included inBall(w, ;%5 m(w)) (see also Proposition 2, Section A.1). O
Facility Cost. It is not difficult to prove that in contrast to the online algorithms for Facility Location
[19, 8, 1], IFL does not suffer from facility proliferation. We distinguish betweseipportedfacilities,

2 A facility configurationF” is add-optimalif its total cost cannot decrease by adding a new facility"td=ormally, for every

w, f+ Y dFU{w},u) > d(F,u).



whose opening cost can be charged to the optimal assignment cosfsupportedacilities. A facility

w is supportedif Asg*(By) = Y e, dy = 3% f, andunsupportedtherwise. Since each demand
contributes to the facility cost at most once, the total cost of supported facilities is at%ﬁnﬁsg*.

Next, we prove that there always exists at most one unsupported facility mapped to each optimal center.
Therefore, the algorithm’s facility cost does not exc®ad* + % Asg*.

Lemma 2. Letw be an unsupported facility mapped to an optimal centerand letw’ be a new facility
also mapped te,,. If w’ opens whilaw is still open, thenw is merged withw'.

Proof. By Lemma 1, it must bel(c,, w') < £ d(Fy,cw) < % d(cy,w), becauses’ is mapped ta,,
andw € F,, by hypothesis. We also prove that{w) > %d(cw, w) which implies the lemma because
d(w,w') < d(cw, w) + d(cw, w") < 3 d(cw, w) < m(w) andw must be merged with'.

To prove thatm™ (w) > %d(cw,w), we show that for every unsupported facility, d(c,,, w) <

% (Proposition 3). We first observe that there must be a demamd B,, such thatd* <

% d(Fy,,u), becausev is an unsupported facility. Then, the claim follows from the fact that the ra-
dius of B,, is 272 Sincem ) (w) = 3 2Fx2) | we obtain thatn() (w) > 2 d(c,,, w) (Proposition 4,
z > 16). The prove thain® (w) > 2 d(c,, w) (Proposition 5), we first observe that® (w) cannot

become smaller thad d(c,,, w) unless the number of demandsBall(w, %;Z’w)) becomes greater

than%. This contradicts to the add-optimality 6 because for every > 23—%, these demands
are closer to each other than to any optimal centérinThe details can be found in Section A.2. O
Assignment Cost.Bounding the algorithm’s assignment cost is technically involved because we have

to consider many different cases. We first distinguish betvireeer and outer demands. If the initial
assignment cost of a new demant within a constant factor from its optimal assignment etjsfouter

demand), then despite the merge operations, the assignment costibfremain within a constant

factor fromd;, (Lemma 10 and Lemma 13) . Our main concern is to bound the total assignment cost of
the remaining demands (inner demands) throughout the execution of the algorithm.

To provide some intuition, we consider the special case that the optimal solution consists of a single
centerc. In this case, we further distinguish betwegood and bad inner demands. Intuitively, inner
demands start as good ones and remain good as long as their assignment cost converges to their optimal
assignment cost. Then, they become bad and never become good again. While an inner demand remains
good, it is charged with its actual assignment cost. When it becomes bad, it is charged with an irrevocable
cost which is an upper bound on its assignment cost at any future point infiirakassignment cost

Let w be the facility which is currently the nearest one:tgin this casew coincides with the most
recent facility to open). Each new inner demand must be assignedé&rause new facilities are much
closer toc than any of the existing facilities (Lemma 1). Because of the rule for opening new facilities,
the total initial assignment cost of the inner demands considered wlisléhe nearest facility te cannot
exceedsf. Let w’ be the first new facility to open after (w’ becomes the nearest facility . If w
is merged withw’, the assignment cost of the inner demands assigneddecreases by a factor of 2
(Lemma 1). Therefore, the total assignment cost of the inner demands which have always (i.e., from their
arrival time until the present time) been assigned to the nearest facilitggimod inner demands) keeps
converging to their optimal assignment cost. Therefore, the total assignment cost of good inner demands
cannot exceed f plus thrice their optimal assignment cost (Lemma 3)v s not merged withu', w
must be a supported facility (Lemma 2) aAdg*(B,,) > %f compensates for the (final) assignment
cost of the good inner demands assigneavtat the momentv’ opens (these demands become bad).
From now on, no additional inner demands are assigned. tbherefore, the total assignment cost of
inner demands always remains within a constant factor from the total optimal cost.

We proceed to define formally the basic notions used in the analysis of the assignment cost.
Configuration Distancel-or an optimal center € F* and a facilityw € F, the configuration distance
betweer: andw, denoted by;(c, w), is g(c, w) = d(c,w) + %5 m(w). For an optimal center € F*,
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the configuration distance of, denoted byy(c), is g(¢) = mingep{g(c,w)} = ming,ep{d(c,w) +
%5 m(w)}. The configuration distanggc) is non-increasing with time (Section A.3) and there always
exists a facility within a distance @f(c) from ¢ (Proposition 1).

Coalitions.A set of optimal centeré&l C F* with representativex € K forms acoalition as long as
g(ck) > pD(K). A coalition K becomedrokenas soon ag(cx) < pD(K). A coalition K is isolated

if g(ckx) < %sep(K) andnon-isolatedotherwise. Intuitively, as long a&’s diameter is much smaller
thang(ck) (K is a coalition), the algorithm behaves agifwas a single optimal center. If the algorithm
is bound to have a facility which is closer f6 than any optimal center not iR (K is isolated), then as
far asK is concerned, the algorithm behaves as if there were no optimal centers dxitside

A hierarchical decompositiofC of F* is a complete laminar set systéwn F*. Every hierarchical
decomposition of™* contains at mos? | F*| — 1 distinct sets. Given a hierarchical decompositioof
F*, we can fix an arbitrary representativg for eachK € K and regardC as a system of coalitions
which hierarchically coverg™. Formally, given a hierarchical decomposititihof F* and the current
algorithm’s configuration, a sek € K is an active coalitionif K is still a coalition (i.e.,g(cx) >
pD(K)), while every superset ok in K has become broken (i.e., for evely € K, K C K/, it
is g(cx’) < pD(K')). The current algorithm’s configuration induces a collection of active coalitions
which form a partitioning off™*. Sinceg(cx ) is non-increasing, no coalition which has become broken
(isolated) can become active (resp. non-isolated) again.

Let Dy(K) = max{D(K), é sep(K)}. By definition, K becomes either isolated or broken as soon
asg(cx) < pDn(K). Using [8, Lemma 1], we show that there is a hierarchical decompositidti of
such that no coalitiod becomes active beforgcx) < (p + 1)7?Dy(K) (Lemma 7, Section A.4). In
the following, we assume that the set of active coalitions is given by a fixed hierarchical decomposition
K of F* such that for every non-isolated active coalitisn pDy (K) < g(cx) < (p + 1)v*Dy(K).

We use the notions of isolated and non-isolated active coalitions to establish a constant performance
ratio for the general case that the optimal solution consistsoainters. More specifically, we prove that
(i) isolated active coalitions can be analyzed similarly to the special case that the optimal solution consists
of a single facility, and (ii) non-isolated active coalitions, where merge operations do not decrease the
assignment cost, can only increase the performance ratio by a constant additive term.

A new demand: makes a coalitiorX’ broken/isolated ifK' has been active/non-isolated befare
and becomes broken/isolated aftetfEach new demand is mapped to the unique active coalitiéf,
containinge,, whenu arrives. If K, is isolated (non-isolated) whenarrives, we say that is a demand
of the isolated (resp. non-isolated) active coalitiip. Each new facilityw is mapped to the unique
active coalition containing,, just beforew opens. For an isolated active coalitidf, we usewy to
denote thenearest facilityto K'’s representativey at any given point in time. In other words, is a
function always mapping the isolated active coalitiorio the facility in F' which is currently the nearest
facility to cx. Lemma 1 and Proposition 1 imply that as longfass an isolated active coalitionyx is
much closer ta@x than any other facility and convergesdg.

Inner and Outer Demand#\ demandu mapped to a non-isolated active coalitinis inner if d;, <

Dy (K), andouterotherwise. Leiny (K) denote the set of inner demands and (/') denote the set
of outer demands mapped f6 as long ag¥ is a non-isolated active coalition. A demananapped to

an isolated active coalitiof isinnerif d;, < + max{d(cx, w} ), \D(K)}, andouterotherwise. In this
definition, w’, denotes the nearest facility tg at u’s assignment time. Thereby, the characterization
of a demand: as inner or outer is determined according to the updated algorithm’s configuratin at
assignment time, in contrast to the active coalitiois mapped to, which is determined according to the
algorithm’s configuration at’s arrival time. Letin;(K) denote the set of inner demands and;(K)
denote the set of outer demands mappeA tas long ads is an isolated active coalition.

3 A set system idaminar if it contains no intersecting pair of sets. The s&fsk’ form anintersecting pairif neither of
K\ K',K'\ K andK N K’ are empty. A laminar set system it is completdf it contains F'* and every singleton set
{c},ce F~.



Good and Bad Inner Demand$he set ofgood demandsf an isolatedactive coalitionk’, denoted
by G, consists of the inner demands &f which havealways(i.e., from their assignment time until
the present time) been assignedutg (i.e., the nearest facility tex). Gx is empty as long a is
either not active or non-isolated. We chhd every inner demand oK which is not good. Each new
inner demand mapped to an isolated active coalitiors initially assigned to the nearest facility @,
because this facility is much closerdg than any other facility. Hence, each new inner demand mapped
to K becomes good and is addedd@:. An inner demand remains good until eitiiérbecomes broken
or the location ofwx changes and the facility at the former locatiog is not merged with the facility
at the new locationv,.. Then, the demand becomes bad and can never become good againvgince
converges tak, the actual assignment cost of good inner demands should converge to their optimal
assignment assignment cost.
Final Assignment CostlLet u be a demand currently assigned to a facilitywith merge radius
m(w). The final assignment cosif u, denoted byd,,, is equal tomin{d(u, w) + -£5 m(w), (1 +
1) max{d(cx,w), \D(K)} +d;;} if uis mapped to an isolated active coalitifnandw is currently the
nearest facility tacx, and equal tel(u, w) + ;%5 m(w) otherwise. If a demand is currently assigned
to a facility w, thenu will remain assigned to a facility ifall(w, -*5 m(w)) (Proposition 1). We can
also prove that ifs is mapped to an isolated active coalitishand is currently assigned toy, thenu's
assignment cost can never excéed 1) max{d(cx, wi), \D(K)} +d;, (Proposition 19, Section A.6).
Therefore, the final assignment costwofccording to the current algorithm’s configuration is an upper
bound on its actual assignment cost at any future point in time.

With the exception of good demands, each demarigleégocablycharged with its final assignment
cost at its assignment time. Then, we do not have to worry about the demand’s actual assignment cost
anymore. On the other hand, we keep track of the actual assignment cost of good demands until they
become bad. This is possible because the good demands of an isolated active ciaditieralways
assigned to the nearest facilitydg . Good demands are irrevocably charged with their final assignment
cost at the moment they become bad. Fig. 3 in the Appendix summarizes the potential function argument
used in the analysis of the assignment cost.

Isolated Coalitions.Let K be an isolated active coalition with representatixe In the Appendix, we
show that (i) every facility spending some time as the nearest facility ts mapped ta< and can be
merged only with a new facility mapped f6 (Proposition 18), (ii) each new facility mappedAoeither
makesK broken or is at least 2.5 times closerdg than the current location abx (Proposition 20,
see also Lemma 1), (i) an unsupported facility mappe#t'ts merged with the next facility mapped to
K (Proposition 8, see also Lemma 2), (iv) a new demand/facility not mappEddannot change either
the location ofwy or the value ofy(cx) (Lemma 8), (v) each inner demand &fwhich does not make
K broken is initially assigned to the nearest facilitycp (Lemma 9), and (vi) for every outer demand
u which is mapped td< and does not mak& broken,d, < 4(\ + 2)d (Lemma 10). The properties
()-(v) imply that the assignment cost of the inner demand&ofan be analyzed independently from
other active coalitions and similarly to the special case that there is a single optimal center.

Lemma 3. Let K be an isolated active coalition. The total actual and the total final assignment cost of
the good demands @ can be bounded a$7 ¢, d(u, wx) < 26f+33cq, diand 3 cq, du <

4508f + 7> uecy du

Proof SketchWe sketch the proof of the first inequality. The second inequality can be derived from the

first one using the definition of the final assignment cost. The full proof can be found in Section A.6.
The proofis by induction over a sequence of merge operations where the former nearest fagility to

is merged with the new nearest facilitydg . Letw be the nearest facility tok, i.e.,wx = w. By (i) and

(iv), the location ofwx cannot change until a new facility mappedioopens. Letw’ be the next facility

mapped tak and letG x be the set of good demands just befefeopens. Wlog. we can assume that

does not make< broken, sinceG ;. becomes empty otherwise. Then, by (icx, w') < %d(cK,w),

8



and the location of the nearest facility ¢@ must change fromwx = w to vy = w’ as soon as’
opens. We inductively assume that the inequality holds just befoopens, and we show that it remains
valid until either the location of the nearest facilitydg changes again d£ becomes broken.

If w is not merged withy', the set of good demands becomes empty. Thg.,. d(u, w') = 0 just
afterw’ opens. Ifw is merged withw’, (i) implies that for everyu € G, d(u, w') < $d(u, w) + 3d3.

Just afterw has been merged with', the set of good demands remaifig, but eachu € G is now
assigned tav’. Hence )", d(u,w’) < Bf +3 3 ,ca, di- As long asw’ remains the nearest facility
to cx and K remains an isolated active coalition, each new inner demad isfinitially assigned to
w' (cf. (v) above) and becomes a good demand.&gt(w’) be the set of good inner demands /6f
whose initial assignment takes place whileis the nearest facility tox . We prove that the total initial
assignment cost of the demand<ii (w') is at most3f.

More specifically, ifd(cx,w’) > AD(K), we observe that the demandsGix (w’) remain unsatis-
fied and hold a potential equal to their initial assignment cost (i.e., their distance/foamtil either a
new facility mapped td< opens orK becomes broken. This is true because every facility which makes
some of them satisfied or decrease their potential must be mappé@siee also (ii) above). In addition,
sinced(cx,w') > AD(K), for each new inner demandwhich is added t@ (w'), & < $d(ck, w')
andd(ck,c,) < D(K) < d(ck,w'). Therefore,u’s neighborhoodB, = Ball(v, W) N L in-
cludes every demand i6i x (v'), becausefZet) — d(wT/’”) > 3d(ck,w') (recall thath = 3z + 2)
and for everyu € Gk (w'), d(u,v) < $d(ck,w’). Consequently, the potential accumulatedy (w’)
is at most3f (Lemma 11). On the other hand,dfcx,w’) < AD(K), we observe that as long &S
remains active, it must bew(w’) > (A + 2)D(K) (p = (¢ + 2)(\ + 2), Proposition 12). Hence,
Gx(w") C Init(w’) N Ball(w’, mg;”/) ), and we can use Ineq. (1) (Lemma 12). 0

Using a potential function argument based on Lemma 3 and the claims (i) - (vi) above, we can bound
the assignment cost of the demands mappédd (gee also Section A.8). Whdk becomes an isolated
active coalition, it receives a credit @3 f, which is not used untiK' becomes broken. Let be a new
demand mapped to the isolated active coalitionif « makesk broken,K’s credit is charged with's
final assignment cost, which cannot exceeipl f (Proposition 14). It is an outer demand and does not
makeK broken, its final assignment cost cannot excéed+ 2)d;; by (vi). If w is an inner demand and
does not maké< broken, it is initially assigned to the nearest facilitycio (cf. (v) above) and becomes
a good demand. As long asremains a good demand, its actual assignment cost is equékto k).

By Lemma 3, the actual assignment cost of the demandsiimever exceed83 f plus 3 times their
optimal assignment cost. As long ASremains active, its credit can absorb the additional cogtgt

The good inner demands &f are charged with their final assignment cost as soon as they become
bad andGx becomes empty. By Lemma 3, the total final assignment cost of the dema@ds adoes
not exceed.54 f plus 7 times their optimal assignment cosiGlf becomes empty becaugebecomes
broken, the additional cost df55f is charged taK’s credit. OtherwiseG becomes empty because
the location of the nearest facility tg¢ has changed and the facility at the previous locatiom g
is not merged with the new facility’ at the new locationv.. By (i), bothw andw’ are mapped to
K. Then, by (iii), the facilityw must be a supported facility. Hence, the additional cost.8f f can
be charged to the optimal assignment cost of the demands contributing to the openingueosinot
3x Asg*(By,) > B f. We also prove that each supported facility is charged with the final assignment cost
of some good demands which become bad at most once (Proposition 21, see also Section A.8).

Since we consider at mo8t F*| — 1 different coalitions and each of them can become isolated at
most once, the total assignment cost of the demands i | < iny (K) Uout;(K) (i.e., the demands
mapped to isolated active coalitions) is at mbst Fac* + 4(\ + 2)Asg*(Cr) + 14z Asg™.

Non-isolated Coalitions.The demands mapped to non-isolated active coalitions are irrevocably charged
with their final assignment cost at their assignment time. The analysis of the assignment cost is based on
the notion of unsatisfied inner demands. The sairefatisfied inner demandasd a non-isolated active



coalition K, denoted byN g, consists of the inner demands @fwhich are currently unsatisfietlx is
equal toiny (K) N L as long ads is a non-isolated active coalition, and empty otherwise.

Lemma 4. For every non-isolated active coalitioli, [N x| - g(cx) never exceed) + 4)y23f.

Proof SketchSinceg(ck ) is non-increasing, the produd x| - g(cx ) can only increase if a new demand
is added to the set of unsatisfied inner dema¥igs= iny (K) N L. We recall that for each € iny (K),
d¥ < Dn(K) andd(ck,c,) < Dy(K). Letwv be the last demand addedo .

If d(Fy,cx) > ADn(K), thenB, = Ball(v, @) N L includes every demand iNx because
@ > 3Dn(K) (A =3z +2) andd(u,v) < 3Dy (K) for everyu € iny(K). In addition, it must be
Pot(B,) < Bf because remains unsatisfied. Since for everg iny (K), d(F,,u) > (A —2)Dy(K)
andNg C B,, we conclude thafN g |(A — 2)Dy(K) < Bf. Then, the lemma follows from(cx) <
(p+ 1)¥2Dy(K), because is active whenv arrives.

On the other hand, #(F,, cx) < ADn(K), letw be the nearest facility tox whenv arrives. By
hypothesisd(cx,w) < ADy(K). We observe that as long &Sremains a non-isolated active coalition,
it must bem(w) > (A +2)Dn(K) (p = (¢ +2)(A+2), Proposition 12). Since for evetye iny (K),
d(w,u) < (A+2)Dy(K), we obtain thalN ;- C Ball(w, %). At the momentv opened, it must have
beend(Fy,, w) > z(A+2)Dy(K), because otherwise; would have madé either isolated or broken.
Hence, the set of the unsatisfied inner demand& dfecame empty whew opened. In addition, for
each new facilityw” which opens whilev is still open, eitherl(cx, w') < 2(A+2)Dy(K) or w’ makes
K either isolated or broken. Therefore, as longsasemains a non-isolated active coalitianjs much
closer tock than any other facility. Hence, every demand which iNig at the moment arrives, it
must have been initially assignedido ConsequentlyN x C Init(w) N Ball(w, %). Then, the lemma
follows from Ineq. (1). The full proof can be found in Section A.7. O

In addition to Lemma 4, we use the following properties: (i) for every non-isolated active codiition
g(cx) € [pDn(K), (p+1)y?Dy(K) ) (Lemma 7), and (i) for each new facility’, if B, Niny (K) #

0, theng'(cx) < % g(ck) (Proposition 22).

As long asK is a non-isolated active coalition, it holds a creditf) +4)~2 + 2.5)(1n(p19)(;f(<}<) )+

1)5f. In addition, the functiorJrT%V) = —5|Ng| - g(ck) accounts for the final assignment cost of the
demands iflNx which has not charged t&’s credit yet (see also Section A.8). By Lemma“IZ‘é,,ﬁV) is
always bounded b§(vy) + 4)723f.

If the new demand: either makedx isolated or broken or opens a new facility such thatB,,, N
iny(K) # 0, the final assignment cost afis bounded by.55f and is charged td’s credit. In this

case, the functioprT(IéV) may increase because some demands may be removed(froidowever, the
increase in—T%V) cannot exceed(y + 4)y23f. If K becomes isolated or brokef,’s credit become
0. Hence, it decreases by at le&sty + 4)72 + 2.5)3f. If u opens a new facilitys’ such thatB,, N
iny(K) # 0, theng(ck) decreases by a factor of 3 (see also (ii) above) Arglcredit decreases by

(5(xp + 4)7* + 2.5)3f. In both cases, the decreasefrs credit compensates for the final assignment

cost ofu and the increase inT%V). Otherwise, ifu is an outer demand, thely < 4[(p + 1)72 + 2] d*
(Lemma 13) and its final assignment cost is charged to its optimal assignment coss & inner
demand, thed,, < 5 ¢/,(cx) (Lemma 14). In this case,is added to the set of unsatisfied inner demands
Ng and the functiorﬁrT%V) = —5|Ng|-g(ck) decreases and compensates for the final assignment cost
of u.

Consequently, the total assignment cost of the demand$;in= |y i iny (K) Uouty (K) (i.e.,
the demands mapped to non-isolated active coalitions) is at2dsty + 4)y2 + 2.5][In((1 + %)’ﬂ) +
1] Fac* +4[(p + 1)72 + 2] Asg*(C). By partitioning the interval pD (K), (p + 1)v>Dn (K) ) into
disjoint sub-interval$2‘p Dy (K), 2"t pDn(K) ) and considering different phases according to the sub-
interval g(cx ) belongs to, we can improve the previous bound@dog(vy)(12(¢) + 2) + 2.5)Fac* +
8(p+ 1)Asg"(Cw).
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3 An Incremental Algorithm for k-Median

To obtain an incremental algorithm férMedian, we are based on the following standard lemma which
is proven in the Appendix, Section A.9. We recall that a-, b1, and by, denote the constants in the
performance ratio ofFL.

Lemma 5. Let Asg™ be the cost of a feasible solution for an instancé-dfledian, letA be an estimation

of Asg®, and letd = 32. ThenIFL with facility costf = ﬁ maintains a solution of cost no greater than
(a2 + b)) Asg® + be A which consists of no more thdn; + @%%) k medians.

The algorithmIM (k) (Fig. 4 in the Appendix) operates in phases usiR@ as a building block.
Phase is characterized by an upper boufigon the optimal assignment cost of the demands considered
in the current phaséM (k) invokesIFL with facility cost f; = g‘—k wheres = 2. Lemma 5 implies that
as long as\; is a valid upper boundFL maintains a solution consisting of no more thanmedians
and costing at mostA;, wherev, i, are appropriately chosen constants. Therefore, as soon as either
the number of medians exceedk or the cost exceedsA;, we can be sure that the optimal cost has
also exceeded;. Then,IM (k) merges the medians produced by the current phase with the medians
produced by the previous phases, increases the upper bound by a constant factor, and proceeds with the
next phase. The algorithid (k) is deterministic and runs i0(n2k) time andO(n) space. The proof of
the following theorem follows from Lemma 5. The details can be found in the Appendix, Section A.10.

Theorem 2. The algorithmIM (k) achieves a constant performance ratio using:) medians.

The randomized algorithnRIM (k) (Fig. 5 in the Appendix) use8FL and Gather as building
blocks. The algorithnGather (Fig. 6 in the Appendix), which is actually a modification of the algo-
rithm PARA_CLUSTER[6], is made up 0O (logn) independent invocations of Meyerson’s randomized
algorithm [19] with facility costfi = m The algorithmRIM (k) usesGather to generate a mod-
ified instance which can be represented in a space efficient manner. The modified instance contains the
same number of different unit demands, which now occupy @rflylog? n) different locations. Then,
RIM(k) usesIFL with facility cost f; = g‘—k to cluster the modified instance.

For an incremental implementation, each new demand is first moved to a gathering pGitthay.

Then, a new demand located at the corresponding gathering point is giVEh tavhich assigns it to

a median. Both actions are completed before the next demand is considered. The current phase ends if
either the number of gathering points, the gathering cost, the number of medians, or the assignment cost
on the modified instance become too large.

We should emphasize thifL treats the demands moved to the same gathering poitiabjier
asdifferent demandand may put them in different clustérdn other words, the output dfather is
regarded as a sample taken from the points of the metric space and not as a first-level clustering. This
sample is only used to improve the time and space efficiendy'bf On the other hand, the solution
produced byFL on the modified instance can be directly translated into a hierarchical clustering of the
original instance.

Since the demands consideredIB{. occupy onlyO(klog? n) different locationsRIM (k) can be
implemented inO(nk? log? n) time andO(k?log®n) space. Similarly to the analysis of [6], we can
prove that the gathering step increases the performance ratio by no more than a constant factor whp. In
contrast tdM (%) which does not require any advance knowledge,dIM (%) needs to know a constant
factor approximation tdog n in advance. The details can be found in Section A.11.

Theorem 3. The algorithmRIM(k) runs inO(nk? log® n) time andO (k2 log® n) space and achieves a
constant performance ratio whp. usify k) medians.

“ This actually increases the algorithm’s time and space complexity by an additional fagtor of
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4

Open Problems

An interesting open problem is to determine whether there exists a time and space efficient incremental
algorithm fork-Median which does not assume any advance knowledgeaotl achieves a constant per-
formance ratio usin@ (k) medians. Another interesting research direction is to improve the constants
involved in the performance ratio @f'L. For isolated coalitions, the performance ratio can be signifi-
cantly improved by a careful analysis. On the other hand, the analysis of non-isolated coalitions increases
the performance ratio by a large constant additive term. In addition to a really careful analysis, some new
ideas concerning the analysis of non-isolated coalitions are required for establishing a performance ratio
of practical interest.
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A Appendix

A.1 Basic Properties

The Proof of Lemma 1.We assume that there exists a facilitysuch thati(c,,, w) > % and we

show that this assumption contradicts to the add-optimalityofi.e., if there exists such a facility,

then
f + ZueBw d(uv ’LU) < ZueBw (%d(FUM u) + d(ua w)) < ZuEBw ;i (2)

where the first inequality follows fromRot(B,,) = 3 ,cp, d(Fw,u) > Sf. In other words, we could
decrease the total cost 67 by opening a new facility ab. For everyu € B,,, we bound?}, from below
in terms ofd(u, w) andd(F,,w). We recall thatB,, = Ball(w, d(%”w)) N L is the set of unsatisfied
demands contributing to the opening costwofThus, for everyu € B,,,

d(u,w) < Wd < dewrd 4 dwcel < dd(cy, w) 3)
where the last inequality follows from the assumption #at, ¢,,) > w In addition, for every
u € By,

dy = d(cu,u) > d(cy,w) — d(u, w) > d(cy,w) — Ld(cy,w) = “H1d(ey, w) @

where the second inequality follows from Ineq. (3) and the fact #h& mapped ta:,, instead ofc,,.
Using Ineq. (3) and Ineq. (4) , we obtain the following lower boundipim terms ofd(u, w).

d(u, w) < 2d(cy,w) < 2L df = L. df (5)

We also obtain the following lower bound @fj in terms ofd(F,,, u).

d(Fyyu) < d(Fy, cp) + d(cw, w) + d(u,w) < L d(e,,w) < Ly (6)
where the second inequality follows from the Ineg. (3) and the hypothesig(thatw) > M , and
the third inequality from Ineq. (4). Using inequalities (5) and (6) and assumm%ﬁi{é‘# + = 4 <1,
we obtain Ineq. (2), which contradicts to the add-optimality6f a

The Proof of Proposition 1.To show thaBall(w’, -Z5m(w")) is included inBall(w
apply the following proposition fop = w.

, ez m(w)), we

Proposition 2. Let w be a facility merged with a new facility’. Then, for every poinp, d(w’,p) +
Lz m(w') < d(w,p) + 5 m(w).
Proof. Sincew is merged withw’, d(w, w’) < m(w). Therefore,

d(w',p) + 55 m(w') < d(w,p) + d(w, w') + 25 2 d(w, w')

T—3 x

= d(w,p) + (1 + ;23) d(w,w') < d(w,p) + ;5m(w),
where the first inequality follows from (w') < m®(w') < 2 d(w,w’), sincew € Fyy. O

A.2 Facility Cost
Proposition 3. For every unsupported facility mapped ta:,, d(c,, w) < ﬁ d(Fy, cw).
Proof. Sincew is an unsupported facility anEuGB dy, < 52 Lgf< 390 weB,, A(Fw,u), there must be

at least one demand € B,, such thadl}, < -- d(F,, u). Letc, be the optimal center the demands
mapped to. Then; = d(c,,u) < 311 1 d(Fw,cu). We first establish that bott(c,,, w) andd(c,, w)

are bounded byL d(Fy, cy).

d(cy,w) < d(w,u) + d(cy,u) < d(Fw,w) +d(cy,u) < A(Fw,cu) + d(cw,w) + A Fwcu)

T T T 3x—1
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Therefore,d(cy, w) < d(cy,w) < %d(ﬂmcu), where the first inequality holds because

is mapped ta:,, instead ofc,. Since bothd(c,,,w) andd(c,,w) are small fractions ofl( F,, c,,), the
distancesi(F,,, ¢,,) andd(Fy, ¢,,) cannot differ by two much. In particular,

d(Fy,cy) < d(Fy, cy) + d(cw, w) + d(cy, w) < d(Fy, ¢y) + 2 % d(Fy,cy) -

Therefored(c,, w) < ﬁd(ﬂv,cw) < ﬁ d(Fy, cw)- O

Proposition 4. Letz > 16. For every unsupported facility mapped ta:,,, m™® (w) > %d(cw,w).
Proof. We first bound-,,, i.e., the radius oB,,, from below:

rp = W) > L(G(Fy,e) — d(cw,w)) > LA~ 1)d(ey, w)

where the last inequality follows from Proposition 3. Sine€’) (w) is equal to3 r,,, we conclude that
mM (w) > 22=48 q(c,,, w) > 3d(cw, w), where the last inequality holds for every> 16. O

Proposition 5. Lett > 557 For every facilityw, m® (w) > 3 d(c, w).

Proof. The proof is similar to the proof of Lemma 1. To reach a contradiction, we assume th4t)
is less thard d(c,, w). Let B = Ball(w, 242y 0 it (w). Since we have assumed thaf?) (w) <

2
3 d(cw, w), it must be| B2)| . 3eww) . g¢ py the definition ofin® (w) (see also Fig. 1). Using this
inequality, we will establish that
f+ Yuepe d(u,w) <3 pe (g5d(cw, w) + d(u,w)) < Zyepe d; (7)

which contradicts to the add-optimality 6t*. We first observe that

d;, = d(cy,u) > d(cy,w) — d(u,w) > d(cy, w) — d(u,w) .
Since for everyu € B®), d(u,w) < %;Z’w), we obtain thatd(c,,w) < 57%zd; andd(u, w) <
Qf—_:,)dz. Using the inequalities above and assuming %@% + w%g <1, we obtain Ineq. (7). O

A.3 The Configuration Distance is Non-Increasing

Proposition 6. For every poinp, the quantityy(p) = minyer{d(w, p) + 755 m(w)} is non-increasing
with time.

Proof. Let w be a facility in . As long asw remains open, the quantiti{w, p) + —*5 m(w) cannot
increase because the algorithm keeps decreasing to maintain Ineq. (1). liv is merged with a new
facility «', it must bed(w', p) + ;%5 m(w’) < d(w, p) + %5 m(w) by Proposition 2. 0

A.4 No Coalition Becomes Active beforgy(ci) < (p + 1)v2Dn(K)

A hierarchical decompositiofl of F* can be represented by tldecomposition tred, where the
nodes of the tree correspond to the set&iand there are edges connecting each set with its maximal
subsets. The root df. corresponds td™*, and there is a leaf for each singleton §e}, ¢ € F*. For
every componenk’ € K different from the root of the decomposition trég, we usep, to denote the
immediate ancestor/parent &f in Tx.. Throughout this section, we use the hierarchical decomposition
KC and its tree representatidiy interchangeably.

Next, we prove that there is a hierarchical decompositioaf £* such that for any non-isolated
active coalitionk € K, pDy(K) < g(ck) < (p + 1)v*Dn(K) (Lemma 7). The proof of Lemma 7
follows from the fact that any metric space has a hierarchical decomposition such that each component
either is relatively well-separated or has a relatively large diameter (see also [8]). For completeness, we
give a proof of this claim before we establish Lemma 7.
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Lemma 6. For any metric spacé/ and anyy > 16, there is a hierarchical decompositidt of M such

that for any setk” € K different fromM, either D(K') > % or sep(K) > %f).

Proof. Let M be any metric space, and |&t = D(M). For any integei > 0, we first show that\/
can be partitioned intteveli groupsGy, . . ., Gy, such that (i) for anyj, # ja, d(G%, G,) > W, and
(i) for any IeveIi group Gy, if D(GY) > % thenG’; does not contain any subsetC G such that
bothD(G) < Z+1 andd(G, Gz \G) >
sep(GZ) 7

We mductlvely prove that a simple greedy procedure which introduces new groups at the next level
as long as condition (ii) is violated results in a partitioning with the desired properties. £ab, M
is the only level 0 group. Given theth level, the next level is constructed as follows: For eéI;h

of D(G¥) > % (Fig. 2, large diameter groups), we s&f — G%. While G violates (ii) for the
(i + 1)-th level (i.e., whileD(G}) > —B+ and there exists & C G such thatD(G) < -B5 and
d(G,Gi\G) > W%), we create a new levék 1 group forG, removeG from G2 (G «+ G\ G), and
iterate. We also create a new leve}- 1 group consisting of the points remaining@ after the loop.
The leveli + 1 groups created fror6; form a partitioning of it and aré’’’s children. If D(G") < 21 ,

G’ has a single child at levéH- 1 which is identical to it (Fig. 2, small diameter groups).

It is straight-forward that the above procedure results in levell groups which fulfill condition
(ii). Moreover, since for any; # ja, (G;I,Géé) 4 -, any child ofGZ must be at distance greater
tha 4[7’ 47’% from any child ofG;-Q. As for the distance between dlfferent chlldren(w, WheNn‘ a
subset’ is removed, any point ids is at distance greater thqg%—l from the points remaining ;.
For anyG’ removed beforé, it must bed(G’, G) > 47%, because the distance betweg&randG was

considered whe”’ was removed. Since the quanti#yis decreasing with, we eventually reach a level
v such that all the level groups consist of a single point.

Level i groups are further partitioned intevel i components<?, ..., K¢, such that for anyj, (i)
D(Kl) < 2 and (ii) ertherD(Kl) ,ﬁl or Sep(K’) D To ensure the hierarchical structure,
we proceed inductively in a bottom -up fashion. Each Iexnaroup consists of a single point. Hence,
we create a single level component for each level group. We inductively assume the collection
ICj‘Jrl = {Ky,..., K} consisting of all the level + 1 components the children «ﬂ;. are partitioned

in. K™ is a partitioning of G and, for each’ € K, D(K) < ~i#r, becauseX is a leveli + 1
component.

If D(Gg'-) < 72 we create a single leveélcomponent for the level group G;'- (Fig. 2, (a) and
(b)). We recall thatep(G%) > (G > 72 we show tha7; can be partitioned into level
components of diameter (-2 YT 7] which are obtained by merging the level 1 components o;TCiJr1
Intuitively, this is true becaus@} does not contain any subsgt C G;ﬁ such that bothD(G) < %
andd(G,G%\ G) > D .G’ does not contain any small-diameter subsets which are well-separated,
Fig. 2, (c)). In other words, for eachi € IC§+1, there exists &’ IC}*1 such thatl(K, K') < ped

To merge the level + 1 components ole.“, we maintain two disjoint collectiong; and Z,. Z;
contains components of diameter no greater %ﬂ while Z, contains components of diameter greater
than% obtained by merging some of the componenthnInitially Zy = IC?Jrl

While there existKy, Ky € Z; such thatd(K, K3) < 4 o Kl and K5 are removed fron¥; and
merged into a new componeht, K = K; U Ks. If D(K) < ZH, K is putin Z;, otherwise K is put

in Z,. Due to the choice ok, and K, for any K € Z,, D(K) < %(i + %)
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Q Well-separated components Small diameter groups

Q Large diameter components T 2 Large diameter groups

Fig. 2. The hierarchical decomposition of Lemma 6.

The merge procedure above cannot terminate with an empty collectioi Z, were empty,Z;
would contain more than one component, becda(séi) > Q and, foranyK € Z;, D(K) < 31

In addition, for anyK, Ky € 7y, d(K;, K2) > 4 -, otherwrse the merge procedure would not have
terminated Henceﬁ}i would contain a subséf C Gé such that bottD (K) < z+1 andd(K, G’\K)

which is a contradiction.
Therefore, the merge procedure always terminates with a non-empty collégtidh Z; is non-
empty, everyK € Z; is associated with a componeRt € Z, such thatd(K, K’) < 4D

K € Zl, such aK’ € Z, must exist, because otherwise, it would be bbtf¥) < L+1 andd(K, G§. \

K) > 4 -, which is a contradiction.
Then each component i, is merged with the components @f associated with it. The resulting

components have diameter greater tlay%}, because all of them include a single componenfgfin
. - D D1, 2 D D _ D(3_, 4

addition, their diameter cannot excee;& + 2+ ?(Z + ;> Tt = 4 (4 + 7), because

the diameter of any component iy is at most ST the diameter of the component ify is at most

% (% + ;), and any component df; has been associated with a componerfpht distance no greater

4,yz ’

5 (% + %) is no greater thark.

By eliminating multiple occurrences of the same component at different levels (Fig. 2, (d)), we obtain
a hierarchical decomposition/complete laminar set syste/oiVe conclude the proof by establishing
that this decomposition has the desired properties.A’ebe any component different from the root
(K’ # M) and leti + 1,7 > 0, be the first level (i.e., the level with the smallest index) at which
appears before the elimination of multiple occurrences. Skicappears at level + 1, but it does not
appear at level, there must be a levélcomponents such thatX’ ¢ K. Then,K” is a child of K in the
hierarchical decomposition.

We claim thatD( ) € (721 , Qi] To prove the claim, we consider the levgroupGx containing

K.If D(Gg) > 7 , G is partrtroned into levei components of diameter in-2, 7} and the claim
follows. Otherwrse,GK = K, since we create a single levecomponent for each levelgroup of
diameter at most2. In addition, if D(K) = D(Gg) were at mostw%, Gk would also exist as a
leveli 4 1 group, andK would exist as a level+ 1 component. This contradicts to the hypothesis that
K’, which is a proper subset df, appears as a levél+ 1 component. Sincéd(K) € (-2, 2]

,\/H»l? ,\/z
and K’ is a leveli + 1 component, we conclude that (D(K’) < 71% < D(K), and (ii) either
D(K D(K
D(K') > sz > ,S/Q ) orsep(K') > 4711_7“ > %_ -

Lemma 6 states that every metric space has a hierarchical decomposition such that each component
either is well-separated or has a large diameter. Well-separated components become isolated coalitions
soon after they have become active, while large diameter components stop being active coalitions (be-
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come broken) soon after they have become active. Therefore, no coalition can become active long before
it becomes either isolated or broken.

Lemma 7. For everyy > 12p, there is a hierarchical decompositidG of F* such that for any non-
isolated active coalitior € K, pDy(K) < g(ck) < (p+ 1)v?Dn(K).

Proof. We recall thatDy (K) = max{D(K), é sep(K)}. For the lower bound, we observe that the
coalition i becomes either isolated or broken as soop(ag) < pDx(K). For the upper bound, we
first observe that the root @i, which is F'*, is an isolated coalition as long as it remains active. Hence,
we can restrict our attention to the coalitionslip which are different from the root.
A coalition K different from the root cannot become active before its parent-coaptiphecomes
broken. Therefore, at the momeht becomes active, it must bf{cx) < d(ck,cp.) + 9(cp) <
(p + 1)D(px), where the first inequality follows from the definition of the configuration distance.
Let K be the hierarchical decomposition®f implied by Lemma 6. Next, we show that for ahy ¢
K different from the root#™, 7> Dy (K) = v* max{D(K), 55 sep(K)} > D(pk). If D(K) > %,

theny?Dy(K) > v2D(K) > D(pk). Otherwise, by Lemma 6, it must bep(K) > %f). Hence,

v’Dn(K) > g—Zsep(K) > % %WK) > D(px), where the last inequality holds for any> 12p. 0
A.5 Preliminaries

In this section, we prove several propositions which are repeatedly used in the analysis of isolated and
non-isolated coalitions. In the following, we sometimes say that a facilitg mapped to an optimal
center in a set of optimal centefSs € K instead of simply saying that is mapped to the coalitiok,
because we want to also consider facilities which open either bé&fdoecomes active or afték has
become broken.

Proposition 7. Let K € K be a set of optimal centers with representaiiyg and letw be a facility
mapped to an optimal center i. For everyz > 10, (A) d(cx,w) < %max{d(Fw, cx),\D(K)}, and
(B) g(ck,w) < max{d(Fy,ck), \D(K)}.

Proof. The first inequality follows from Lemma 1 anficx, ¢,,) < D(K). For the second inequality, us-
ing m(w) < 3 d(F,,w), we show thay(cx, w) < —%5 d(ck,w)+ =25 d(F,, cx ). Then, the inequality
follows from (A). O
Proposition 8. Let K € K be a set of optimal centers with representatiye and letw be an unsup-
ported facility mapped to an optimal center K. For everyz > 16, if d(cx,w) > AD(K), thenw is
merged with the first new facility which is also mapped to an optimal cent&r &md opens whilev is
still open.

Proof. The proof is similar to the proof of Lemma 2. Using Proposition 4, Proposition 5J@nd c¢,,) <
D(K), we show thatn(w) > Zd(w, cx). Then, the proposition follows from Proposition 7.A. O

Proposition 9. Let K € K be a set of optimal centers with representaiiyg and letw be a facility
whose neighborhoo#,, includes a demand such that,, € K andd}, < % max{d(Fy, cx), \D(K)}.
Thend(ck,w) < 2 max{d(F,, cx), \D(K)}.

Proof. Immediate consequence of @jck, c,) < D(K), (i) d(u,w) < % because: € B, and
(iii) the upper bound o@};, required by the hypothesis of the proposition. O

Proposition 10. Let K € K be a set of optimal centers with representatiye and letw be a facility
mapped to an optimal center noti. If d(F,,, cx) < % sep(K), thend(cx,w) > 2 d(F,, k).

Proof. Consequence af(ck, ¢,,) > sep(K), becausex € K andc,, ¢ K, and Lemma 1. O

Proposition 11. Let K € K be a set of optimal centers with representatiye and letw be a facility
mapped to an optimal center not Ii. Thend(cx, w) > sep(K).
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Proof. It is d(cx,w) > d(cy,w), becausev is mapped ta, instead ofcx, andd(ck, cy) > sep(K),
becausey € K andc,, € K. O

Proposition 12. Let K € K be a set of optimal centers with representatixe and for some > 0, let

w be a facility such thati(cx,w) < Ad. For everyz > 18 andy < 5, if m(w) < (X + 2)4, then
9(ck) < pé.

Proof. Immediate consequence of the definitiory¢fx ) and the choice of = (¢ + 2)(A + 2). O
Proposition 13. For every facilityw, m(w) < gf.

Proof. The sefinit(w) always contains the demand which opens the facilignd is located at the same
point with w. Therefore|Init(w) N Ball(w, %)\ > 1. The proposition follows from Ineq. (1). O

Proposition 14. Letx > 9. For every demand, d,, < 2.55f.

Proof. The proposition follows fromm(w) < (f, the fact that the initial assignment cost of every
demand is less thanf, and the definition of the final assignment cost. O

Proposition 15. Letu be a demand currently assigned to a facitity and letc be an optimal center in
F*. Thend, < d(c,u) + g(c,w).
Proof. Inmediate consequence &f < d(u, w) + —%; m(w) and the definition of(c, w). O

Proposition 16. Letu be a demand initially assigned to a facilit. For everyx > 9,

dy < 4d(F!\{w},u).

Proof. Recall thatF), is the (updated) algorithm’s facility configuration @ assignment time. Wlog.
we assume thak}, \ {w} # 0, since the bound is trivial otherwise. Let € F, be the second nearest
facility to u, i.e., d(u,w’) = d(F), \ {w},u). Sinceu is initially assigned taw instead ofw’ it must
be d(u,w) < d(u,w’), which implies thatd(w,w’) < 2d(u,w’). The final assignment cost af is
dy < d(u,w) + 225 m(w) < d(u,w') + 25 m(w).

By hypothesis, bothw andw’ are open at’s assignment time. Ifv opens beforev’, it must be
m(w) < d(w,w’) < 2d(u,w’), sincew would have been merged with’ otherwise. Therefore, for
everyz > 9,d, < d(u,w') + xz—fgd(u,w’) < 4d(u,w’). If w opens after’, for everyz > 9,
“Lom(w) < 22 d(w',w) < L5 d(u,w’) < d(u,w’), because(F,, w) < d(w', w), sincew’ opens
beforew and is still open at’s assignment time. Hencé, < d(u,w’) + 2zm(w) < 2d(u,w’). O

T

Proposition 17. Let K be a coalition with representativg,, and letu be a demand mapped 0. Then,

for everyz > 9, d, < 4 (d(cx, u) + g (cx)) < 4(d(ex,w) + gulex)).

Proof. Recall thatg, (cx ) denotes the configuration distancec@f just beforeu arrives andy,,(cx ) de-
notes the configuration distance@f atwu’s assignment time (i.e., according to the updated algorithm’s
configuration). The second inequality follows frajf)(cx) < gu(ck), because the configuration dis-
tance ofck is non-increasing with time. For the first inequality, tetbe the facility minimizing the
configuration distance afx atu’s assignment time (i.eg,, (cx) = ¢g.,(cx, w)). If w is initially assigned

to w, using Proposition 15, we obtain thdf < d(ck,u) + g, (ck,w) = d(ck,u) + ¢, (ck). If u

is initially assigned to another facility’, Proposition 16 implies thal, < 4d(u,w). Furthermore,
d(u,w) < d(cg,u) + d(ck,w) < d(ck,u) + g, (ck,w) = d(ck,u) + g, (cKx). O

A.6 Isolated Active Coalitions

Throughout this section, lek” be an isolated active coalition with representatiye As before, we
sometimes say that a facility is mapped to an optimal center Ik instead of simply saying that
is mapped toK, because we want to also consider facilities which open either bé&fdbecomes an
isolated active coalition or afték’ has become broken/not active.

Basic Properties.We start by proving the main properties of a facility spending some time as the nearest
facility to the representativey of an isolated active coalitioA'.
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Proposition 18. Letw be a facility which spends some time as the nearest facility to the representative
ck Of an isolated active coalitio”. Then,

A d(cg,w) < %Sep(K) andw is mapped to an optimal center is.
B. After K has become isolateg(cx,w) < & sep(K).
C. w can be merged only with a new facility mapped to an optimal centéf.in

Proof. We observe that it suffices to establish that each of the above claims holds as l&hg @
isolated active coalition and is the nearest facility tox. Then, (A) holds because the mapping of a fa-
cility to an optimal center does not depend on the algorithm’s configuration, (B) holds becagse)

is non-increasing, and (C) holds becausgv) is non-increasing.

A. Let us consider any point in time such thidtis an isolated coalition and is the nearest facility
to cx. Then, it must bel(cx,w) = d(F,cx) < g(ck) < 1 sep(K). The second claim follows from
Proposition 11.

B. To reach a contradiction, let us assume that there is a point in time Whi&snan isolated active
coalition, w is the nearest facility tex, and g(ckx,w) > %sep(K). SinceK is an isolated active
coalition, there must exist some other facilit§ which is open and satisfies the following inequalities at
that particular point in time.

d(ci,w) < d(ck,w') < gleg,w') < %sep(K) < g(ex,w).

By Proposition 11, bothv andw’ are mapped to optimal centers i. To establish the contradic-
tion, we consider the moment that the latestgfw’ opens. Ifw’ opens aften, eitherd(cg,w) >
AD(K), in which cased(ck,w’) < 2d(ck,w) (v’ is closer tockx thanw) by Proposition 7.A, or
d(ck,w) < AD(K), andg(cx) < AD(K) (w' has madés broken) by Proposition 7.B. i opens after
w', theng(cx,w) < max{d(cx,w’), \D(K)} by Proposition 7.B. Therefore, depending on whether
d(ck,w') > AD(K) or not, eitherg(cx, w) < d(ck,w’) < & sep(K) or w has made broken.
C. There is a point in time thab is open andK is an isolated active coalition. After that time,can
be merged only with a new facility at distance less t%&&p(K) from cg. The claim follows from
Proposition 11. O
The following proposition establishes that we have correctly defined the final assignment cost of a
demandu which is mapped to an isolated active coalitiihand is currently assigned to the nearest
facility to ck .

Proposition 19. Letu be a demand which is mapped to an isolated active coalifioand is currently
assigned to a facility. If w is currently the nearest facility toyx, thenu’s actual assignment cost can
never excee(l + 1) max{d(cx,w), \D(K)} + d},.

Proof. As long asw is not merged with a new facility,’s actual assignment cost i§u,w) and the
upper bound holds becaudéck,c,) < D(K), sincec, € K. If w is merged with a new facility
w’, by Proposition 18.Cyw’ must be mapped to an optimal centerin Hence, by Proposition 7.B,
g(cx,w') < max{d(ck,w), \D(K)}. Then, the upper bound holds becausis now assigned ta’
and by Proposition k's actual assignment cost can never exagedw’) + -Zsm(w') < dy +D(K) +
g(cr,w') < (1+ §) max{d(ck,w), \D(K)} + dj. O

Proposition 20. Let w’ be a new facility mapped to an isolated active coalitith Then eitherw’
makesK broken ord(cx, wi) > AD(K), d(ck,w') < 2 d(ck, wr), and the location ofvx changes
to wh = w'.

Proof. If d(cx,wk) < AD(K), Proposition 7.B implies thaj(cx,w’) < AD(K) and w’ makes
K broken. Hence, iK' remains active, it must bé(cx,wx) > AD(K). Then, by Proposition 7.A,
d(ck,w') < 2d(ck,wk). Thereforew’ is much closer tax thanwy and the location ofvx must
change tav}, = w'. O
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Proposition 21. Let K be an isolated active coalition, let = w be the nearest facility tox, and let
w’ be a new facility mapped t&". If w’ does not make< broken, thenuv will never become again the
nearest facility to any of the optimal centers#n

Proof. If w’ does not make< broken, Proposition 20, implies thd{cy,w) > AD(K). Moreover,
d(eg,w') < %d(cK,w), and the location of the nearest facility g must change fromwx = w to
wy = w'. Similarly to the proof of Proposition 7.B, we can show that for every optimal centelx,
gle,w) < B+ 3+ 12 dlex,w) < (B4 1+ £-25)1+ 1) d(c,w) < d(c,w), where the last
inequality holds for every: > 11 (recall that\ = 3z + 2). Hence, aftetv’ opens, there will always exist
a facility closer tac thanw. O

Lemma 8. Let K be an isolated active coalition when a new demaratrives. If u is not mapped to
K, then neither the location af 5 nor the value ofj(cx) can change.

Proof. If a new facility w opens when: arrives,w is located at the same point withand is also not
mapped tak. Then, the value of(cx) cannot decrease becaugex ) < £ sep(K), while ¢/ (cx, w) >
dlcg,w) = d(cg,u) > %Sep(K) (Proposition 11). In addition, the location afx cannot change,
becausev is not closer ta:x thanwy and the facility at the current location afy can only be merged
with a new facility mapped td (Proposition 18).

If no new facilities open when arrives, the location ab - cannot change. Next, we show tlyét x )
cannot decrease because:ofetw be the facilityu is initially assigned to. Then, only the configuration
distance betweety, andw can be affected by. To reach a contradiction, we assume that afteinitial

assignment tav, it becomes

J (e, w) = d(ek,w) + ;5 m/(w) < g(ek) < gsep(K).

Therefore, it must bé(cx,w) < isep(K) andm/(w) < %2 sep(K). In addition, sincel(cs, u) >
3 sep(K), it must bed(u,w) > 0. The configuration distancg(cx,w) decreases only if the initial
assignment of: to w causes Ineq. (1) to be violated. Then, the algorithm decreageg to restore
the invariant. Ineq. (1) can be violated onlydfu, w) < % andu is included inBall(w, %).
The new merge radius)’(w) cannot be less thaﬁ(mx;?‘)d(u, w), because ifin'(w) = @d(u,w),
then# < d(u,w). Hence,u is no longer included iMBall(w, m’é)w)), and the invariant is restored.
Therefore, 2“2 4(u, w) < m/(w) < %3 sep(K), which implies thatd(u, w) < 35 sep(K). Con-
sequently, if¢’(cx,w) could drop below% sep(K) because of/’s initial assignment taw, it would
be d(ck,w) < gsep(K) andd(u,w) < g;sep(K). Therefore, for everyy > 3, it would be

d(ck,u) < 3sep(K), which is a contradiction. O

Lemma 9. Let K be an isolated active coalition, and letx denote the nearest facility .

A. wg is at least2 times closer tax than any other facility, i.ed(cx, wi) < 2d(F \ {wk}, ck).

B. Ifd(ck, wr) < AD(K), thend(F \ {wk},ck) > pD(K).

C. Every inner demand of the isolated active coaliti@nwhich does not mak& broken is initially
assigned tav,, i.e., the nearest facility tox at the demand’s assignment time.

Proof. Before we provide a formal proof, let us give the intuition behind this lemma. As long &s
an isolated active coalition, the locationwf;, cannot change unless a new facility mapped&topens
(Lemma 8). Hence, each time the location of the nearest facility;tchanges, either the new facility
makesK broken or the new locatiow’, is at least 2.5 times closer t@ than the previous locatiomx
(Proposition 20). On the other hand, a facility not mapped to an optimal ceniémiust be at Ieasg
times further fromex thanwy (Proposition 10). Moreover, since inner demand#adire included in a
small ball arouna g, every inner demand ok is initially assigned to the nearest facility ¢g@ .

A. Similarly to the proof of Proposition 18.B, let us assume that there is a point in time sudk thain
isolated active coalitiony = w is the nearest facility toy, and there is a facilityy’ € F'\ {w} such
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thatd(cx,w’) > d(ck,w) > 2d(ck,w'). To establish the contradiction, we consider the moment that
the latest ofw, w’ opens.

If v’ opens afterv andw’ is mapped to an optimal center i, then eitherd(cx,w) > AD(K),
in which casel(cg, w') < %d(cK, w) (w' is closer tock thanw) by Proposition 7.A, od(cx,w) <
AD(K), andg(ck,w’) < AD(K) (v’ has madek broken) by Proposition 7.B. I’ opens afterw
andw’ is mapped to an optimal center notif, thend(cx, w) < 2 d(ck,w’) by Proposition 10, since
d(ck,w) < % sep(K) by Proposition 18.A.

On the other hand, by Proposition 18.A, the facitityis mapped to an optimal center K. Hence,
if w opens after’, then eithed(cy, w') > AD(K), in which casel(cx, w) < £ d(ck,w') by Proposi-
tion 7.A, ord(ck,w’) < AD(K), andg(ck,w) < AD(K) (w has madéd{ broken) by Proposition 7.B.
B. The proof is similar to the proof of (A). The details can be found in [9].

C. Letu be an inner demand df which does not mak& broken. Let alsav, be the nearest facility
to cx andF’ be the algorithm’s facility configuration ats assignment time. A demandmapped to an
isolated active coalitio is inner ifd;, < § max{d(cx, w} ), \D(K)}.

If d(ck,wh) > AD(K), thend(u, wy) < di, + D(K) + d(ck, wh) < (14 2)d(ck, w), while
for every other facilityw € F’ \ {w}, d(u,w) > d(cx,w) — D(K) — d}; > (5 — %) d(ck,w) >
d(u,w’ ), where the second inequality follows from (A), and the third inequality holds for every2
and\ = 3z + 2.

If d(ck,wk) < AD(K), thend(u, w) < d} + D(K) + d(ck,wy) < (A + 2)D(K), while for
every other facilityw € F'\ {w }, d(u,w) > d(cx,w) — D(K)—d}, > (¢ +2)(A\+2) —2)D(K) >
d(u,w ), where the second inequality follows from (B) (recall that (¢ + 2)(A + 2)). In both cases,
d(u,wh) < d(u, F"\ {w)}) andu is initially assigned tavy, i.e., the nearest facility tox at u’s
assignment time. O

Lemma 10. Letu be an outer demand of the isolated active coalitionvhich does not makg broken.
Thend, < 4(\+2)d}.

Proof. It is d, > +max{d(ck,w)), AD(K)} becauseu is an outer demand mapped to an isolated

active coalition. Ifu is initially assigned tav’, (i.e., the nearest facility tox atu’s assignment time),
u’s final assignment cost i¢, < (1 + 3) max{d(cx,w)), AD(K)} + d; < (A + 2)d},. Otherwise,
let v # w) be the facilityw is initially assigned to. Then, we apply Proposition 16 and obtain that
dy <4d(F)\ {w},u) < 4d(u,wl) < 4(\ + 2) di, where the second inequality follows from the fact
thatw', € F), \ {w}, becausev # w. 0
Good Inner Demands.Let w be the facility which is currently the nearest facilitydg, i.e.,wxg = w.
Let Gk (w) denote the set of good inner demanddgiofi.e., the subset df k) whose initial assignment
takes place whilev is the nearest facility tox . SinceG i (w) is a subset ofz g, it is empty if K is either
non-isolated or not active. In additiofix (w) is empty beforev opens and aftew has been merged
with a new facility. As long av is the nearest facility tox and K remains an isolated active coalition,
each new inner demand mappedKais initially assigned tav (Lemma 9.C) and is added to baothy
andGg (w). After the location of the nearest facility tg; has changedy cannot become the nearest
facility to cx again (Proposition 21) and no new demands are addé€dxtaov). Next, we bound the
actual and the final assignment cost of the deman@bxifw).

Lemma 11. Let K be an isolated active coalition, and letbe the nearest facility tox (i.e.,wx = w).

If d(ck,w) > AD(K), then}_,cq () d(u, w) < Bf and 3 ,cq e (w) du < 355 B/

Proof. We consider the above sums just after a new demand is added (o). Let v be the demand in

Gk (w) arriving last. Since is added tdG x (w), K must be an isolated active coalition amdnust be

the nearest facility tex atv’s assignment time. Therefore, from the moment the first demand is added
to Gx (w) until the assignment time af, no new facilities mapped t& have opened. Otherwise, by
Proposition 20 and Proposition 21, eith€rwould have become broken or the location of the nearest
facility to cx would have changed and could not become the nearest facilitydtg again.
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Since (i) all the demands i@ x (w) are inner demands mapped to the isolated active coalifiofi)
their initial assignment takes place whileis the nearest facility tex and (iii) d(cx,w) > AD(K),
by the definition of inner demands mapped to an isolated active coalition, we obtain that fouevery
Gr(w), d < d(ck,w).

We first establish that just after has been added @ (w), it is the case thaG g (w) C B, =
Ball(v,r,)N L. Letu,, be the demand which is located at the same pointwittnd causes the algorithm
to open the facilityw. The demand.,, is initially assigned taw, but is does not belong tb. We first
show thatu,, ¢ Gg(w) and the demands ik (w) arrive afterw has opened. If,, is not mapped
to the isolated active coalitio&, it does not belong td@s x (w) by definition. Otherwisey,, cannot
be an inner demand df, becausev is the nearest facility tex at u,,’'s assignment time anat;w >
d(ck,w) — D(K) > (1 — 1) d(ck,w) > + max{d(ck,w), \D(K)}.

Each new demand is added to the set of unsatisfied deniandi®n it arrives. Next, we show that
none of the demands & x (w) can be removed from before eithes becomes broken or a new facility
mapped tak opens. More specifically, for every new facility which opens aftew and includes in its
neighborhoodB,,, some demands froi i (w), it must bed(cx, w') < 2d(cx,w) < L sep(K), where
the first inequality follows from Proposition 9 and the second from Proposition 18.A. Hehoayst be
mapped to an optimal center ik (Proposition 11). Since no new facilities mappedisiapen untilv’'s
assignment time, it must be the case Wat(w) C L.

We should also prove th&tx (w) C Ball(v, ). We first bound-, from below.

Ty = d(F’va) — d(v,w) Z d(chw)_déchcv)_d: > A=2 d(CK7’l,U)

T T T A = % d(cK7 U)) ’

where the second equality holds because no new facility opens wéaeives and is initially assigned
tow (i.e.,d(Fy,,v) = d(F),v) = d(v,w)), the fourth inequality holds becaudécy,c,) < D(K) <

1 d(ck,w), sincec, € K, andd}; < ;d(cx,w), and the last equality follows fromh = 3z + 2. On the
other hand, since for evetye G (w), d;; < + d(ck, w), Gk (w) has a small diameter. In particular, for
everyu € Gg (w), d(u,v) < d(u,cy) + d(cy, ¢y) + d(cy,v) < 3 d(ck,w) < 1. ThereforeBall(v, 1)
includes every demand @k (w), andGg (w) C B,,.

Everyu € Gg(w) is added to the set of unsatisfied demanidsith a potential equal to its initial
assignment cost(u, w). This potential cannot increase becauseemains open at's assignment time.
Next, we prove that the potential of eacte G (w) cannot decrease as long Esremains an isolated
active coalition andv is the nearest facility teyx. Let u be a demand ifGx (w) (including v). By
Lemma 9.A, whenv arrives, it is the case thatcx, w) < £ d(F, \ {w},cx). Similarly to the proof of
Lemma 9.C, casé(ck,w) > AD(K), we can prove that(F, \ {w},u) > d(F, \ {w},cx) — D(K) —
di > (5 — 3)d(ck,w) > d(u,w). Therefore, when the demandarrives, for everyu € G (w),
d(Fy,u) = d(u,w).

The total potential in’'s neighborhood3, must be less thafif, because is initially assigned tav
instead of opening a new facility and being initially assigned there. Consequently,

Bf > Pot(By) = Xyep, d(Fy,u) = D ueGk (w) d(Fy,u) = 2 ueG (w) d(u,w)

where the third inequality follows frori x (w) C B,, and the fourth inequality from the fact that the
potential of eachy € G (w) remains equal td(u, w) as long ags remains an isolated active coalition
andw remains the nearest facility tg;. This concludes the proof of the first part of the lemma.

As for the final assignment cost, for everye G (w), we boundd,, using Proposition 19:

dy < (1+ 1) max{d(ck,w), \D(K)} + di, < 22 d(ck, w).

We conclude the proof by observing that for everg G (w), d(u, w) > ﬁ d(ck,w).

Lemma 12. Let K be an isolated active coalition, and letbe the nearest facility toy . If d(cx, w) <
AD(K), for everyz > 18 and ¥ < ¢ < 5, P oueGr (w) Au, w) < gf and > ,cq e (w) du < 3 Bf.
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Proof. By the definition of the se x(w) (see also the claims (i) and (ii) at the beginning of the proof

of Lemma 11) and sincé(ck, w) < AD(K), for everyu € G (w), it must bed!, < 2D(K). As in the

proof of Lemma 11, we consider the above sums just after a new demand is adglg@u9. Let v be

the demand irG i (w) arriving last. Sincev is added tdG i (w), K must be an isolated active coalition

atv’s assignment time. Therefore, it musthgw) > ¢ (\ + 2)D(K), becausds would have become

broken otherwise (Proposition 12, for= D(K), x > 18, andy < 5). Using Ineq. (1), we obtain that:
|Init(w) N Ball(w, (A 4+ 2)D(K))| - (A + 2)D(K) < Sf (8)

We show that as long as is the nearest facility tex and K remains an isolated active coalition,
Gr(w) C Init(w) N Ball(w, (A + 2)D(K)). Since all the demands i@ x (w) are initially assigned
to w (Lemma 9.C)Gx(w) C Init(w). In addition, for everyu € Gg(w), d(u,w) < d}; + D(K) +
d(w,cr) < (A+2)D(K). Hence Gk (w) C Ball(w, (A 4+ 2)D(K)). CombiningG k (w) C Init(w) N
Ball(w, (A + 2)D(K)) with Ineq. (8), we conclude that

Yuet (w) dusw) < |G (w)] - A +2)D(K) < .

As for the final assignment cost, we have shown that as long &sthe nearest facility t@y
and K remains an isolated active coalitiodx (w) C Init(w) N Ball(w, %“’)). Hence, by Ineq. (1).,
|Gk (w)| - m(w) < Sf. By the definition of the final assignment cost, we obtain that

2. dus D dww)tgty 3L mw) < (Gt gt) A <300,

ueG i (w) ueG i (w) ueG g (w)
where the last inequality holds for every> 1—30 andz > 18. O
The proof of Lemma 3. We prove that the total actual assignment cost of the good demaridssof
doucGr Au, wr) <2Bf +33cap dn 9
and the total final assignment cost (according to the current algorithm’s configuration) of the good de-

mands ofK is _
doueGy Qu <ABBf+T3 0 ca, du (10)

We first prove Ineq. (9) by induction and then derive Ineq. (10) from Ineq. (9). Ineq. (9) is trivially
true while G = (). By definition, the set of good deman€s is empty as long a¥ is either non-
isolated or not active. In additiol; x becomes empty every time the location of the nearest facility to
cx changes without the facility at the previous locatiog being merged with the new facility at the
new locationw’, . We inductively assume that the inequality holds just before the current locagiovf
the nearest facility tex changes. We show that the inequality remains valid until either the location of
wg changes again d£ becomes broken.

Let w be the facility at the current location afx i.e. wx = w. By Lemma 8, the location of
wyg cannot change unless a new facility mappedtopens. Letw’ be the next facility mapped tf'.

Let alsoGk be the set of good demands just befareopens. We inductively assume that Ineq. (9)
holds just befores’ opens. Wlog. we assume that does not maked< broken, since as long as is

not active/broken(Gx = () and Ineq. (9) holds trivially. Therefore, by Proposition 20, it must be (i)
d(ck,w) > AD(K), (ii) d(cx,w’) < %d(ck,w), and (iii) the location of the nearest facility toc
changes fromug = w to wj = w'.

If w is not merged withy', the set of good demands becomes empty. Henge ;. d(u,w') = 0
just afterw’ opens. Ifw is merged withw’, we show that just aften has been merged with’, it is the
case thad_,cq, d(u,w') < Bf + 33 ca, di- FOr everyu € Gg, we boundd(u, w') from above in
terms ofd(u, w) andd;,.

d(u,w") < df + D(K) + d(ck,w') u is mapped te, € K
<d:+ D( )+ 2d(ck, w) Proposit. 7.Aw’ is mapped td¥, d(cx, w) > AD(K)
< di+ (3 + 2)d(e, w) d(ck,w) > A\D(K)
<dp 4 (5 + 3)2qld + d(u,w)] d(ek,w) > AD(K) = d(cx, w) < 327[d5 + d(u, w)]
< 3d(u,w)+ 3 d for everyz > 5 and\ = 3z + 2

23



Before the initial assignment of the demand which causés open, the set of good demandsiof
is Gy, i.e., exactly the same with the set of good demands @ist beforew’ opens. Using the previous
bound ond(u, w’) and the inductive hypothesis, we conclude that just aftbas been merged with’,
it is the case that

1 3 1
Z d(u,w')§§ Z d(u,w)—#—i Z dz<§

ueGg ueGg ueGg

28f+3 ) d

ueGg

3 . .
+3 Sodi=pf+3 > d;

ueGg ueGg

Let G/ be the set of good demands Af just before eithedk’ becomes broken or a new facility
mapped tak opens and the location of the nearest facility: gochanges again. By the definition of the
setGg (w') (i.e., the set of good demands Bfwhose initial assignment takes place as long/ass the
nearest facility ta:ic), every inner demand added @, afterw’ has opened is also addedGo (w’).
Therefore Gy = G U Gk (w'). By Lemma 11 and Lemma 12, we know tal,cc . () d(u, w') <
Bf.Hence, as long as’ is the nearest facility tox and K remains an isolated active coalition, it is the

case that
Z d(u,w') = Z d(u,w') + Z d(u,w') < 206f+3 Z dy, .

e uEGK uEGK (w') uEGK

This concludes the proof of Ineq. (9). We proceed to establish Ineq. (10).

As before, letw’ be the nearest facility tox (i.e.,wx = w’), and letG/;- be the current set of good
inner demands of. We first consider the case th#{cx, w') > AD(K). Since every demand € G/,
is mapped to the isolated active coalitiihand is currently assigned to the nearest facilityto we can
bound the final assignment costwfising the upper bound of Proposition 19:

dy < (1+ 3) max{d(ck,w'), \D(K)} + d;,
< 2ld(ek,w') + d, by the assumption thal{cyc, w') > AD(K)
< A7 5+ d(u,w')] + d d(ck,w') < 25[d; + d(u, w')]
< 3d(u,w') + 5 d, for everyz > 1 and\ = 3z + 2

Using Ineq. (9), we conclude that
Suec, du < 30f + T uecy, di (12)

We have also to consider the case tiaty, w’) < AD(K). As before, letG/, denote the current
set of good demands df, and letGx be the set of good demands &f just afterw’ opens. By the
definition of the setGx (w’) (i.e., the set of good demands &f whose initial assignment takes place
as long asw’ is the nearest facility tex), Gx = Gg U Gg(w'). By Lemma 12, it is the case that
ZuEGK(w’) dy < %ﬁf

We should also bound the final assignment cost of the deman@scimccording to the current
algorithm’s configuration. Wlog. we can assume that the set of good dematidssofion-empty just
afterw’ opens G # 0), since there is nothing to bound otherwise. kebe the nearest facility tox
just beforew’ opens. By Proposition 18.A, both andw’ are mapped to optimal centers ff. Hence,
it must bed(cx,w) > AD(K), sincew’ would have madé broken otherwise (Proposition 7.B). Since
we have assumed th@tx # (), the facilityw must have been merged with and every demand € G
was assigned to beforew’ opens. Consequently, by Ineq. (9),,cc . d(u, w) < 28f +3 3 cq, du-

By the upper bound of Proposition 19, the final assignment cost of every damad, according
to the current algorithm’s configurationds < (A + 1)D(K) + d};, becausex is currently assigned to
w' andd(ck,w’) < AD(K). Sinced(ck,w) > AD(K), similarly to the proof of Ineq. (11), we obtain
that for everyu € Gy,

dy < A+ 1)D(K) +d; < (1+ 3) max{d(cx,w), \D(K)} + d; < 3 d(u,w) + 3 d .
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Therefore, Ineq. (11) also holds for the final assignment cost of the demasiég according to the
current algorithm’s configuration. We conclude the proof of the lemma by applying Lemma 12 for the
demands irG i (w’) and Inequality (11) for the demands@y:

Sodu= > dut+ D du<3Bf+T D di+153f <ABBFHT D d.

uEG’K ueGg u€Gg (w') ucGg UEGlK

A.7 Non-Isolated Active Coalitions

Throughout this section, Iét be a non-isolated active coalition with representatiye

The proof of Lemma 4. Let x > 18 and3 < ¢ < 5. We also recall thatDy(K) =
max{D(K), 3—1p sep(K)} andN g = iny(K) N L. We want to prove thalN x| - g(cx) < (v + 4)v23f.
Sinceg(ck ) is non-increasing with time, the prody®x| - g(cx ) can increase only if a new demand is
added taN . Therefore, it suffices to establish the inequality just after a new demand is added to

A new demandv is added toNg if (i) v is an inner demand mapped to the non-isolated active
coalition K (i.e.,v € iny(K)), (ii) no new facilities open when arrives, and is not removed from
the set of unsatisfied demands, and (iiifloes not make the coalitioR either isolated or broken (i.e.,
Jd'(cx) > pDn(K)). We recall that a demand mapped to a non-isolated active coalition is inner if
di < Dy(K). SinceNg C iny(K), for everyu € Ng, d(ck,u) < 2Dy (K) and the diameter of the
setsNg andiny (K) is less thaB Dy (K).

Let v be the last demand addedNgy. Let alsoN i /N’- = Ng U {v} be the set of unsatisfied inner
demands of{ before/aften. As usual, we use plain symbols to refer to the algorithm’s configuration at
v's arrival time and primed symbols to refer to the updated algorithm'’s configuratioa assignment
time. We first consider the case that whearrives,d(F,, cx) > ADy(K). Consequentlyl(F,,v) >
(A —2)Dy(K), and since\ = 3z + 2, r, = @ > 3Dy(K). HenceBall(v, r,) includes every
demand ininy (K), and B, = Ball(v, r,) N L includes every demand iN;. Since no new facilities
open wheny arrives, it must be

Bf > Pot(By) = Yyep, d(Fo,u) = ZueN/K d(Fy,u) > [Ng|(A = 2)Dn(K),

where the last inequality holds because for every N, d(F,, u) > (A —2)Dn(K), sinced(cx,u) <
2Dy (K) andd(F,, cx) > ADn(K). SinceK is an active coalition when arrives, it must bg’(cx) <
g(ck) < (p+1)y?Dy(K) (Lemma 7). Therefore,

2
NG| - ¢ (cx) < WEDAEATIT g < (4 1 4)423 ],

where the last inequality holds for= 3z + 2, p = (¢ + 2)(A + 2), andy < 324,
We have also to consider the case i@k, cx) < ADy(K). Letw be the nearest facility tox
whenw arrives. We will show that

N’ C Init'(w) N Ball(w, #) (12)

Before establishing (12), we show that it indeed implies the lemma. We first observe:'that >
Y(A + 2)Dn(K) (Proposition 12 fo = Dy (K), x > 18, andy < 5), becauses remains a non-
isolated active coalition after. Therefored(cx,w) < ADy(K) < im’(w). Since we have assumed
that Ineq. (12) holds, by Ineq. (1), it must P& | - m/(w) < 3f. Therefore,

INk| - ¢'(ci) <INk - ¢'(cr,w) < [N |(d(ck, w) + 355 m/ (w))
< INk|(5 + g55)m/ (w) < 5 B8f < (@ +4)7y°Bf -

We should also prove Ineq. (12). ForalE iny (K), d(u, w) < (A+2)Dy(K), becausd(ck,w) <
ADy(K). Sincem/(w) > (X + 2)Dy(K), we obtain that every demand N is also included in
Ball(w, ™).
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Next, we show that every demand ¥, is initially assigned tav. We first observe that when
opens, it must bé(F,,, w) > z(A + 2) Dy (K). Otherwise, it would be

m(w) < 2d(Fy,w) < 3(A+2)Dy(K) < (A +2)Dn(K),

and w would have madek either isolated or broken. Sinc& F,,w) > x(A + 2)Dy(K) and
d(ck,w) < ADyn(K), Ball(w, @) includes every demand imy (K). Thus,w’s neighborhood
B,, = Ball(w, %) N L includes every inner demand &f which is unsatisfied when opens.
Therefore, the set of unsatisfied inner demand& dfecomes empty whem opens, and the demands
currently inN’, arrive afterw’s opening.

In addition, for every facilityw’ opening afterw and beforev, it must bed(ck,w’) > 2(\ +

2)Dy(K). Otherwisew’ would have madés either isolated or broken, because
glex,w') = d(eg,w') + FZ5m(w') < 2(A+2)Dn(K) + 3252 d(w, w')

T—3 T
<2\ +2)Dn(K) + 225 (d(ck, w') + d(ck, w)) < (2 + =25) (A +2) Dy (K)
= 23 () 1 2) Dy (K) < (¢ +2)(A + 2) D (K)

Hence, between’s opening time and’s assignment time, itis the case taf"\ {w}, cx) > 2(A+
2)Dy(K). Therefore, for every inner demandvhich is mapped td< and arrives aftew’s opening and
beforev’s assignment (including) it must bed(u, w) < (A +2)Dn(K) < (2A + 2)Dy(K) < d(F'\
{w},u). In other words, every inner demand which is mapped&tand arrives aftet’s opening and
beforev’s assignment is initially assigned toand is added tbnit(w). Since the set of unsatisfied inner
demands of becomes empty when opens, ab’s assignment time, it is the case thf C Init'(w).

Combining this withN’, C Ball(w, ™-{*}), we obtain (12). 0
Proposition 22. Let K be a non-isolated active coalition and letbe a new facility such thaiB,, N

iny (K) # 0. Then, for every: > 18, ¢'(cx, w) < 3 g(ck).

Proof. Let u be a demand which belongs to bath, andiny (K). Therefored(u, w) <
d(ck,u) < 2DN(K). Using these inequalities, we obtain that

d(Fyy,w) < d(Fy, ) + d(cre, u) + d(u,w) < d(Fy, i) + 2Dy (K) + L)

d(Fw,w)

which implies thatl(F,,, w) < -Z-d(F,, cx) + 25 Dy (K). After w opens, the configuration distance
betweerci andw becomes

g/(CK7 ’U)) = d(cK7 w) + xi_gm(w)
<d(cg,u)+ d(u,w) + x%id(Fw,w)

3z
< 2DN(K) + (L + 225)d(Fy, w) d(u,w) < W)
<2Dn(K) + 2d(Fy,w) for everyz > 12
<@+ 8)DnN(K) + 25d(Fy,ck)  d(Fy,w) < Z25d(Fy, cx) + 25Dy (K)
<3Dn(K) + -25d(Fy, ck) for everyz > 11
< (5 + 727)9(ck) 9(cx) = pDn(K) andg(ck) = d(Fu, ck)
S%g(cK) x> 18, A =3x+2,andp = (¢ + 2)(A + 2)

Lemma 13. Letu be an outer demand mapped to a non-isolated active coalitiofthen,
du < 4[(p+ 1)¥% + 2] .
Proof. Applying Proposition 17, we obtain that
dy < 4d(cx,u) + gu(er)] < 4ldy + D(K) + (p+ 1D)y* Dy (K)] < 4((p+ 1)7° +2) dy,

where the second inequality follows from(cx) < (p + 1)v2Dy(K), sinceK is a non-isolated active
coalition whenu arrives (see also Lemma 7, Section A.4), and the third inequality &pea Dy (K) >
D(K), because: is an outer demand mapped to the non-isolated active coalifion O
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Lemma 14. Letu be an inner demand mapped to a non-isolated active coalftioff « does not make
K either isolated or broken, the#, < 5 ¢/,(ck).

Proof. We recall thaty],(cx) denotes the configuration distancecaf at u’s assignment time (i.e., ac-
cording to the updated algorithm’s configuration). Applying Proposition 17, we obtain that

d, < 4[4}, + D(K) + gl (cx)] < 4(2 +1) gl (cx) < 5, (cxc) -

The second inequality follows from (iJ;, < Dy (K), because: is an inner demand mapped to the
non-isolated active coalitioft, (ii) pDy(K) < g, (ck ), SinceK remains a non-isolated active coalition
afteru, and (iii) D(K) < Dy(K). The last inequality holds because= (¢ + 2)(\ + 2) > 8. 0

A.8 The Potential Function Argument

In this section, we develop a formal potential function argument establishing that the actual assignment
cost of IFL is within a constant factor from the optimal cost. Létbe the hierarchical decomposition
of F* implied by Lemma 7. Then, for every non-isolated active coalifior IC, pDy(K) < g(ck) <
(p+ 1)y* Dy (K).

We recall that with the exception of good demands, each new demarel/iscablycharged with its
final assignment cost at its assignment time. A good demand is charged with its actual assignment cost,
which is always equal to its distance from the nearest facility to the representative of the isolated active
coalition the demand is mapped to. Good demandsremeocablycharged with their final assignment
cost at the moment they become bad. The assignment cost of a demand is always charged to the active
coalition the demand is mapped to. We use ;- to denote the assignment cost the algorithm has been
charged with for the demands mapped to the coalifion

We use the following potential function to bound the algorithm’s assignment cost.

® =Y ex Oxc, where &y = =) + =& i) (D)

The functionﬁg) andEg) are defined as:

5(t0 +4)7% +9.5] F if g(cx) = pD (K) = pmax{D(K), £ sep(K)}

=(1) _ (K is a non-isolated coalition).
K ) 78f if pD(K) < g(ck) < 3sep(K) (K is an isolated coalition).
0 if g(cx) < pD(K) (K is not active/broken).
: 2
pDn(K)

)

In addition, the functiongg(V andT%) are defined as:

The functionﬁg) andEg) hold the credit given to the coalitioR € K. The credit held b)Eﬁ? +
Eg) compensates for the final assignment cost of the inner dematdsvbich arrive beforg< becomes

isolated. WhenK becomes isolated, there is a creditrgff remaining inE%). This credit absorbs the
actual assignment cost of good demands and eventually compensates for the final assignment cost of

the good demands becoming bad wh€rnbecomes broken. The functidﬁ%v) accounts for the part
of the final assignment cost of the demandNig which has not been charged Cﬂf) yet. By the

definition of N, T%V) = 0 while K is either isolated or not active. As for the functidﬂ?, the
quantityy", . d(u, wk) is always equal to the actual assignment cost of the demarilg jn.e., the
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Isolated Active Coalition K:
— Outer demand: d,, < 4(\ + 2)d? (Lemma 10).
— Inner demands:
1. They initially become good (Lemma 9) aAdg(G ) < 26f + 3Asg™(Gk) (Lemma 3).
2. When they turn into bad demands, . . dy < 458f + TAsg*(Gx) (Lemma 3).
3. Lemma 8 and Proposition 18: Good demands turn into bad demands only if
(a) K becomes broken: Chardé with 4.56f + d,, < 76 f (Proposition 14).
(b) The current nearest facility tg;, denoted byw, is not merged with a new facility’ mapped tak
(w’ becomes the nearest facility ¢g, Proposition 20).
w must be a supported facility (Proposition 20 and Proposition 8).
Asg*(By) > S%ﬁf is charged witht.55 f. EachB,, is charged at most once (Proposition 21).
Non-Isolated Active Coalition K:

— K's credit= (5(¢ + 4)7% + 2.5)(In(555%) + 1)Bf.

Initially, K’s credit< (5(¢ + 4)y% + 2.5)(1n(%) +1)3f (Lemma?7).
— Unsatisfied inner demandx = iny (K) N L.
Function—T(]éV) = —5|Ng]| - g(ck) accounts for the final assignment costNof.
T <54+ 4)726f (Lemma 4),
— g(ck) decreases by a factor of > 1: the decrease iK's credit compensates for the increaseui?ﬂ%v)
(for everya > 1,In(a) > (1 — 1)).
— Demandu does not maké isolated or broken and if a new facility’ opens, therB,, N iny (K) = 0.
1. Outer demand: d,, < 4[(p + 1)% + 2] d* (Lemma 13).
2. Innerdemand: d, < 5g.,(cx) (Lemma 14). FunctionT(Iﬁv) compensates fat,.
— Demandu either maked< isolated or broken or opens a new facility such thatB,,, Niny (K) # 0.
1. d, < 2.58f (Proposition 14).
2. —T(Iﬁv) increases by at mosty + 4)y23f.
3. K’s credit decreases by at ledstvy + 4)v2 + 2.5)3f
(if By Niny(K) # 0, theng’(ckx) < $g(ck), Proposition 22).

Fig. 3. A sketch of the potential function argument.

set of good inner demands &f. By the definition ofGx, T%) = 0 while K is either non-isolated or not
active. Fig. 3 provides a brief sketch of the potential function argument.

In the following, we use plain symbols to denote the value of the potential function and its com-
ponents at the arrival time of a new demand and primed symbols to denote the value of the potential
function at the assignment time of the demand. In addition, for a coalkiplet A®x = @ — O
denote the change in the value of the potential funclign and letAAsg, = Asg) — Asgy denote
the difference in the assignment cost chargef to

Lemma 15. For everyK € K, &k is always non-negative.

Proof. As long asK is a non-isolated coalitiorE%) = [5(x + 4)v* + 9.5] Bf, while T%) =0, and

T%V) does not exceedl(y + 4)y24f (Lemma 4). As long ag( is an isolated coalitiorEg) = 78f,
while T%V) =0, andT%) < 36 f (Lemma 3). Finally, afte/ has become broked,x = 0. In any case,
Py > 0. O

For everyK € K, the function£%) andE(Ig) are non-increasing, becauge i ) is non-increasing.
Thus, the potential functio® can increase only if{ is an active coalition and eith&k; or N is
non-empty. In addition, a new demand cannot affect the cost charged to the algorithm for the demands
mapped to a non-active coalitiaid. In particular, if K has not become active yet, there are no such
demands, while i has become active and then broké&nhhas been charged irrevocably charged with
the final assignment cost of all the demands mapped to it. Hence, we can restrict our attention to the
coalitions which are active when a new demand arrives.
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Isolated Active Coalitions.Let K be an isolated active coalition with representative Then,®x =
5&? +7 2 e B — >Zueay Au, wi), becauség) = T%V) =0.In addition,Eg) is equal to73f as
long asK is an active coalitiond(cx) > pD(K)), and it becomes zero as soonfdecomes broken
(9(cx) < pD(K)).

The algorithm isirrevocably charged with the final assignment cost of each new outer demand
mapped to the isolated active coalitibh Each new inner demand &f which does not mak&™ broken
is initially assigned to the nearest facility¢g (Lemma 9.C) and becomes a good demand. As long as an
inner demand of remains good, the algorithm is charged with its actual assignment cost. The algorithm
is irrevocablycharged with the final assignment cost of the inner demands which have become bad and
the demand making broken. In addition, a new demand mappedstanay change the location of the
nearest facility taci and/or make the set of good demandsioempty. Thus, we should account for
the case that the actual assignment cost of the good demaidslofnges because the location of the
nearest facility tacx has changed and the case that all the good demanlsb&come bad, and from
now on, the algorithm is charged with their final instead of their actual assignment cost.

More specifically, let: be a new demand mapped to the isolated active coalitipand letA Asg
be the difference in the assignment cost charged to the algorithm for the demands mdgeddoe and
afteru. Since the final assignment cost charged to the algorithm for outer and bad demands is irrevocable,
AAsgy is equal to the assignment cost charged to the algorithm for the dema@igsin{u} afteru
minus the actual assignment cost of the demandsgnbeforeu. The exact value o\ Asg ;- depends
on G/ (i.e., the set of good demands aftgr

dy + ZveGK dy — ZveGK d(v, wg) if G/K =0
The demands itz become bad and are charged with their final assignment cost.
u either is an outer demand or makigsbroken.

dy + > weGy A, whe) — > veGy v, wk) if G = Gg.
The actual assignment cost of the demands jnis updatedw is an outer demand.
AAsgy = d(u, W) + X ey dy — > veGy AV, wi) if G = {u}.

The demands ik i become bad and are charged with their final assignment cost.
u opens a new facility, is an inner demand and becomes good.
d(u, W) + e, AV, W) = Ypea, dv,wi)  if G = G U {u}.
The actual assignment cost of the demands jnis updated.
u is an inner demand and becomes good.

(13)
In the above definition, it may be the case th4t = wg, i.e.,u opens no new facility and the location
of the nearest facility tex does not change. By the definitions of the good inner deman#sanid the
final assignment cost, it should be clear that the actual assignment cost of the demands mapped to the
isolated active coalitior{ can never exceed the cost charged to the algorithm for them. The following
lemma establishes that we can ignore the demands not mapped to an isolated active ¢oatittbe
analysis ofK.

Lemma 16. Let K be an isolated active coalition when a new demaratrives. If u is not mapped to
K, thenAAsg, = 0andA®x = 0.

Proof. Sinceu is not mapped tdf<, its assignment cost is not chargedi{oIn addition, neither the value
of g(cx) nor the location of the nearest facility ¢g can change becausew{Lemma 8). Therefore, the
set of good demands i does not change and the cost charged to the algorithm for the demands mapped

to K is not affected by.. Hence, AAsgy = 0 andAT%) = 0. In addition, since the value @f{cx)
does not change, the functi&‘;? remains equal t@3 f. ConsequentlyA® - = 0. O

Lemma 17. Letu be a new demand mapped to the isolated active coalionf « makesK broken,
thenA®x + AAsgy < 0.
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Proof. Sinceu makesK broken, the functioﬁg) decreases bysf andG’; becomes empty. Hence,

veEGK veGK veEGK veEGK
where the second inequality follows from Proposition 14 and Lemma 3. On the other hand, since the
set of good demands becomes empty and the fundﬂ%ﬁ becomes zero, we obtain tha'rAT( ) =
YweGy A, wi) — T3 eq, di- Putting everything together, we conclude thab x + AAsg; < O
O

Lemma 18. Letu be a new demand mapped to the isolated active coalkioif no new facilities open
and K remains an isolated active coalition after thenA® - + AAsgy < 4(\ +2)d}.

Proof. SinceK does not become broken and no new facilities open, the location of the nearest facility to
ck remains the same (i.eu), = wx) and no good demands become bad ({3, C G';). In addition,
Az =,

If wis an outer demand, the®), = Gg. Sincew), = wg, and for everyw € Gg, d(v,w}y) =
d(v,wg), we obtain thatAAsg;. = d, < 4(\ + 2)d} (Lemma 10). On the other han(LT(,? =0
becaus&y). = Gx andw), = wi. We conclude thal\ ® i + AAsgy < 4(\ + 2)d.

If »is an inner demand, by Lemma 9.€ s initially assigned toav}, and becomes a good inner
demand. Hencey, = G U {u} and— AT(I) —d(u,wy) + 7d; (recall thatw}, = wg). On the
other handAAsg ;- = d(u, w ). ThereforeA@K + AAsgy = 7d; < 4N+ 2)d}. O

Lemma 19. Letu be a new demand mapped to the isolated active coalfioand letw be the nearest
facility to cx atu’s arrival time (i.e.,wx = w). If a new facilityw’ opens andX’ is an isolated active
coalition afteru, then

AD g + AAsgy < 4(X+2)d;, + 14zAsg™(By) (14)
In addition, the neighborhoo#,, of each facilityw is charged by Inequality (14) at most once.

Proof. We start by observing th&kEg) = 0, becauseX remains active aften. Letw = wyx be the
nearest facility tacx at«’s arrival time. By Proposition 18.Ay is mapped to an optimal center K.
The new facilityw’ is mapped to the isolated active coalitifhbecauseu’ is located at the same point
with u. Sincew’ does not makeK broken, it must bel(cx, w) > AD(K) andd(cx,w') < 2 d(ck,w)
(Proposition 20). Moreover, the location of the nearest faciliyga@hanges fromwyx = w towj, = w'.
Case A.If w is merged withw’, every demand € Gy, which was assigned ta beforeu, is now
assigned tav’. Hence, every demand € Gy remains assigned to the nearest facilitycip, which
is now w’, and no good demands become bad. Therefdre,C G/;. If u is an outer demand, then
= Gg, and

AAng— u+ZdeK ZdeK) and—ATK— ZdeK+ZdeK
veGgk veGyg veGg veGg

Usingd, < 4(\ + 2)d; (Lemma 10), we conclude th&t® ;- + AAsg; < 4(\ + 2)d}.

If wis an inner demand, thet}, = Gx U {u} andAAsg, = d(u,wi) + > eq, d(v, wi) —
Ypeay d(v,wr). On the other hand—AYY = —d(u,wi) + Tdi — Yyeq, dv, wh) +
> veay A(v, wi). Therefore A®x + AAsgy < 7d;, < 4(A + 2)d;. In any case, ifv is merged with
w’, no good demand ok becomes bad and’s neighborhood3,, (i.e., the set of demands contributing
to the opening cost ab) is not charged with any assignment cost.

Case B.If w is not merged withy’, thenw must be a supported facility (Proposition 8). In this case, all
the demands itz x become bad and are not includedGt),, since they are no longer assigned to the
nearest facility ta:x, which is noww’. If v is an outer demand, thei,- = (). Therefore,

AAsgy = d, + Z dy — Z d(v,wg) and —AT(I) Z dv,wg) =17 Z d .

UEGK UGGK ’UGGK ’UGGK
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If « is an inner demand, thefu,, = {u}. Hence,AAsgy, = d(u,wk) + Y ,eq, v

Yveay A, wie), and—ATY = —d(u,wle) + Td + X pea, dv,wi) — 75 pec, ;- In addition,
if u is an inner demand, theid;, < 4(\ + 2)d?, while if u is an outer demand, theh, < 4(\ + 2)d},
(Lemma 10). Therefore, in both cases,

ADp + AAsgy <AA+2)d+ > dy =7 > di <4(A+2)d}, +4.508f,

veGg veGg

where the second inequality follows from Lemma 3. Sincés a supported facility3zAsg*(B,,) =

3r Y e, dy > Bf. Hence, we can charge the final assignment cost of the inner demands which be-
come bad to the optimal assignment cost of the demandssimeighborhoodB,, (i.e., the demands
contributing to the opening cost aof). Thus,

Al + AAsgr < 4(A+2)d;, + 142 Asg™(B,,) .

To conclude the proof, we should also establish that the neighborhood of each facility is charged with
the final assignment cost of some demands which become bad at most once. For simplicity, if afacility
is charged with the final assignment cost of some inner demands of an isolated active cAalittooh
become bad, we say thatis charged byx'.

A facility w is charged by an isolated active coalitihonly if (i) w is the nearest facility tey,

(i) a new facility w’ mapped toK opens, and (iiijw’ does not makes broken. By Proposition 18.A,

the nearest facility to the representative of an isolated active coalition is mapped to an optimal center
in the coalition. Thereforeyw is mapped to an optimal center i§ and cannot be the nearest facility

to the representative of any other isolated coalitishwhich is disjoint fromK (i.e., K/ C F*\

K). Consequently, the facilityy cannot be charged by any coalitidd/ C F* \ K. Moreover, by
Proposition 21, if (iyw is the nearest facility teg, (ii) a new facility w’ mapped toK opens and (iii)

w’ does not make< broken, thenv can never become again the nearest facility to any of the optimal
centers inK. Hence, oncev has been charged by the isolated coalitionit cannot be charged again by

K or any subset / descendant @fin the hierarchical decompositidd, becausev will never become

again the nearest facility to the representative of any coalfion K. O

Non-Isolated Active Coalitions.Each new demand mapped to a non-isolated active coalitibhis
irrevocablycharged with its final assignment cost at its assignment time. Heéngeg - = d,, and for

every active coalitiork’, K # K’, AAsgy, = 0. In particular, if K’ is a non-isolated active coalition,
thenu cannot affect the irrevocable final assignment cost which has been charged to the algorithm for the
demands mapped &', while if K’ is an isolated active coalition, the claim follows from Lemma 16.

Lemma 20. Letu be a new demand mapped to the non-isolated active coalifiofhen,
Adp + AAsgy = Al +d, < 4((p+ 1)V? +2)d5;.

Proof. The demand. cannot affech%) because it arrives whil& is a non-isolated active coalition. In
the following, letNx be the set of unsatisfied inner demanddsoft «’s arrival time, and lef\’, be
the set of unsatisfied inner demandgiofit u’s assignment time. We distinguish between the following
three cases:

Case A.EitherN’,. C Ng or K becomes isolated or broken. In this case, eiterx) < pDy(K) or a
new facility w’ opens andB,, N N # 0, in which case some of the demands\ig become satisfied
and are no longer included .

The functionT%V) does not exceed(y +4)v23f atu’s arrival time (Lemma 4), and is non-negative
atu’'s assignment time. Hence, the increase in the func{idfﬁv) is —AT%V) < 5(¢ + 4)728f. In

addition,d,, cannot exceed.53f (Proposition 14). On the other handifmakesK either isolated or
broken, the functiomg) decreases bip () + 4)7? + 2.5]3f. Otherwise, a new facilitys’ opens and
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its neighborhoodB,,s intersectsNx C iny(K). Then, by Proposition 22, the configuration distance
of cx decreases by a factor greater than 3, yécr) < %g(cK). Sinceg(ck) < (p + 1)v?*Dn(K),
becauseX is an active coalition before, andg’(cx) > pDn(K), becausek remains a non-isolated

active coalition aften, the functionEg) decreases by more théf(vy + 4)72 + 2.5]4f. In any case,

AE%) + AEE;?) < —[5(¢ + 4)7? + 2.5]3f. Hence,
AP d = A:(l) A:(Q) —AT(N) = _ 2 2
Ktay =Rz + Az Kk tdy < =[5V +4)y"+25]Bf +5(¢+4)yBf +2.58f < 0.

Case B.N); = Nx andK remains a non-isolated active coalition. We distinguish between the case that
v is an outer demand and the case thé an inner demand.

If w is an outer demand,, < 4 [(p+1)7y?+2] d}, (Lemma 13). Let alsex = gg,((i’;)) > 1 be the factor

by which g(ck ) decreases becausemeinceT%V) < 5(¢ + 4)y?Bf (Lemma 4), the increase in the
function—T%V) is bounded by (1 — 1)(y + 4)7?3f. On the other hand, the functi@ﬁ) decreases by

1
In(a)(5(x+4)v2 +2.5)8f, becausga(cK) < (p+1)y*Dy(K), sincekK is an active coalition before,
andg/(ck) > pDy(K), sinceK remains a non-isolated active coalition aftet)singln(e) > (1—1),
for everya > 1, we conclude tha @y + d,, < 4[(p + 1)v% + 2] d=.
If wis an inner demand of(, sincew is not added tadN (i.e., u has become satisfied), a new
facility v’ located at the same point witlh must have opened. By Proposition 22, the configuration
distance oty decreases by a factor greater than 3 (yegx) < %g(cK)), because the neighborhood

B, of the new facilityw’ intersectsny (K) atwu. Similarly to Case Ad, < 2.53f (Proposition 14),
—AT%V) < 5(¢v+4)y23f (Lemma 4), and&Eg) < —[5(y+4)y2+2.5|3f. Therefore A® i +d,, < 0.
Case C.N%. = Nx U {u} and K remains a non-isolated active coalition. Thenmust be an inner
demand which becomes unsatisfied. By Lemmadl4< 5 ¢'(ck).

Leta = ;’/((Ccf;)) > 1 be the factor by whicly(cx) decreases because «@f Similarly to Case B,
N)

AE&? < —(1 = 1)[5(¢p + 4)¥* + 2.5]8f. On the other hand, the functiGanK increases by at most
5(1— 1) (¢ +4)y*Bf, becausg(cr) decreases by a factor af and decreases Byy’(cx ), because: is
added to the set of unsatisfied inner demandk’ d¢f.e., N = N U {u}). Putting everything together,
we obtain that

Abgtd, = AZD AT 44, < —(1=L)[B(+4)y*+2.58F+5 (1= L) (p+4)728f =5 ¢ (cx)+5 ¢ (cx) -

Therefore A®x + d, < 0. O

If a new demand: is not mapped to the non-isolated active coalitionthenAAsg;,- = 0, because
u’s assignment cost is not chargeditcandwu cannot affect the irrevocable final assignment cost charged
to the algorithm for the demands mappeddo

Lemma 21. Let K be a non-isolated active coalition when a new demaradrives. Ifu is not mapped
to K, thenA®x + AAsgy = 0.

Proof. The proof is essentially identical to the proof of Lemma 20. There are some differences which only
make the proof simpler. In particular, sinde\sg - = 0, we have to bound\® i instead ofA® . + d,,
and sinceu is not mapped td<, we do not have to consider the case tat = N U {u}. Furthermore,
in Case B, we do not have to consider the possibility thabuld have been added My (i.e.,u is an
inner demand). O
The potential function argument implies that for evgry < j < n, the assignment cost incurred by
the algorithm just after the demang has been considered is at mB8t[5 () +4)72 + 3] In(37?) Fac* +
[4((p+1)y* +2) +142] Y, dy, .
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phase() phasel)
0= ‘;—j; Ao —0; fo < 0; Ag < 0; MergeF;_» U F;_; into ¢, k weighted medians using a
R(0) « 0; Fy « 0; F_y < 0; Asgy « 0; bi-criteria (c1, c2)-approximation algorithm fok-Median.
For each new demand Let F';_; be the resulting set of (weighted) medians
R(0) « R(0) U {u}; and letM;_; be the cost of assigning the weighted
IFLo(u); /* Updates Fy */ medians inF;_, U F;_; to F;_;.
if |Fy| > vk then go to phasey; A; — max{ad;_1, Mi_1};
IFL;-Initialization(A;, k) IFL;-Initialization(A;, k);
fi = 8 R(i) — 0; Fy — 0, Ay < 0 For each new demand
Asgi — Asg,-_l + M;_1; R(Z) — R(Z) U {u},
completephasef;, u) IFL;(u); /* Updates F; and A; */
Letw be the location ofi; if (| F;| > vk or A; > pA;) then
if w ¢ F; then openg); restorelFL;'s configuration before;
initial_assignment(, w); completephasef, u); go to phase(+ 1);
Asg; «— Asg;_ +M;_1 + Ay elseAsg; «— Asg,_, +M;_1 + A;;

Fig. 4. The algorithm Incremental-Median —IM (k) .

A.9 The Proof of Lemma 5

Proof. We recall that given an add-optimal facility configuration of facility cBst;; and assignment cost
Asg?, IFL maintains a solution of facility cost; Fac, + b; Asg}; and assignment cogbFac], + by Asg?,
wherea; = 1, as = 261n(37%)(5(¢ + 4)7* +3), b1 = %, andba = 4((p + 1)7* + 2) + 14,

Let F* be ak-Median configuration of costsg™ (the medians irf™* are not restricted to the demand
locations). Thek-Median instance can be regarded as an instance of Facility Location with facility cost
f= % , Whered = 2. Then,F™ is a facility configuration of facility cosFac® = % and assignment
cost Asg®. If F* is not add-optimal, there must be a set of facilities whose additioR*tanakes it
add-optimal without increasing its cost. LEf, F* C F7, be the corresponding add-optimal facility
configuration. Let alsdac) be the facility cost, and leAsg’ be the assignment cost 6f'. It must be
the case that (ifac) + Asgl < Fac* + Asg®, (i) Asg) < Asg”, (iii) Fac, < Fac* + Asg*, and (iv)
for every0 < a < b, aFac} + bAsg} < aFac® 4+ bAsg*, where the last claim follows from (i), (ii), and
F* C F*.

Let Fac be the facility cost and.sg be the assignment cost of the solution maintainediiiy. Since

<
o< b Fac < a1Fac) + by Asg) < a;Fac® + bjAsg® < al% + by Asg™.

Using f = #; andd = £, we obtain thalFL's solution consists of no more than; + a2 2%&°) k

medians. As for the assignment cost,
Asg < ag Fac) + bg Asg) < aq (% + Asg®) + bo Asg™ < (ag + bg) Asg™ + b A.

A.10 A Deterministic Incremental Algorithm for k-Median

The algorithmIM (k) (Fig. 4) starts in phase 0, also called the initialization phase, With= 0 and

fo = 0. An invocation of[FL with facility cost O simply opens a new facility/median at each different
demand location. Hence, phase 0 ends as sodFilashas considered exactly: + 1 different demand
locations. Since, there is a median at each of these locations, the algorithm incurs no assignment cost
during the initialization phase.

Phase, ¢ > 1, starts with merging the medians produced by the last phase with the medians produced
by the previous phases. Thus, we ensure that the total number of medians in the current solution does
not depend on the number of phases. More specifically, for each mediathe current solution, we
maintain its weight{C'(w)|, which is equal to the number of demands currently assigned tt the
beginning of phase the setF’;_, containing the weighted medians produced by phases ,i — 2 is
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merged with the sef;_; containing the weighted medians produced by phiasel. We can use any
bi-criteria (c1, c2)-approximation algorithm fok-Median (e.g., the algorithm of [18] far, = 32 and

c2 = 1in O(k?logn) time) to mergeF;_, with F;_;. The resulting seF’;_; consists of no more than
co k weighted medians, which are the medians produced by pBasesi — 1. M;_; denotes the cost
of assigning the weighted mediansih_» U F;_; to F;_;. The demands considered up to the end of
phase — 1 are currently assigned to the mediangin ;.

The upper bound\; which characterizes the phasés set to the maximum ofA;_; andM,_1,
whereq is a constant chosen sufficiently large. Hence, we ensure that the cost incurred by the algorithm
up to the end of phase— 1, denoted byAsg, ;, does not exceed; (Lemma 22). After initializing the
invocation of [FL corresponding to phage denoted byiFL;, IM(k) starts considering new demands.
IFL; incorporates each new demand into the current solution and updates its median configuration, de-
noted byF;, and its assignment cost for the demands considered in the currentipdaseted byA,.

If either F; contains more thank medians or the assignment cast exceeds:A;, phasei ends. The
algorithm places a new median at the location of the last demand of each phase instead ditlktting
incorporate it into the current solution. Hence, the algorithm maintains the invarianfthat vk + 1
andA; < pA,. Itis straight-forward to modifyM (k) so as to ensure that no phase ends before it consid-
ers at leastk + 1 new demands. Hence, we can assume that the number of phaggs isfo establish

the algorithm’s performance ratio, we prove that for every complete phake optimal cost for the

demands considered up to the end of phaset leasinax{A;, %} (Lemma 23 and Lemma 24).

Notation. Let R(i) denote the set of demands considered in phaéphasei is the current phaseé?(7)

is the set of demands considered from the beginning of the phase up to the present tifRg.) Let
Ui_oR(¢). If i is a complete phase&/(:) is the set of demands considered up to the end of phasle
if 4 is the current phasé?(i) includes all the demands considered by the algorithm so far. LeCaM0

denote the cost of the optimal solution &ii).

Asg; denotes the cost of the solutid®_; U F; on R(i). More specifically, ifi is a complete phase,
Asg; denotes the cost incurred by the algorithm up to the end of phagdle if i is the current phase,
Asg,; denotes the cost of the current solution on the demands considered Aegfais always equal
to Asg; ;, namely, the cost of’; > U F;_; on R(i — 1), plus M;_1, namely, the cost of assigning
F; o UF,_1toF;_q,plusA;, namely, the cost of; on R(7).

Analysis. The algorithmIM (%) maintains a solution consisting of no more thant c2) k + 1 medians.

The following proposition establishes that we have correctly defitnegd as the algorithm’s cost on the
demands considered so far.

Proposition 23. For every phasé, Asg; is equal to the cost of;_; U F; on R(4).

Proof. We prove the proposition by induction énFor the initialization phase (= 0), the proposition
holds becaus&'L is invoked with facility costfy = 0. Hence,Fj contains a median at each different
demand location, and the total algorithm’s cosbis= Asg,. We inductively assume thatsg, ; is
equal to the cost of;_5 U F;_; on R(i — 1). Then, the cost of assigning(i — 1) to F;_; is at most
Asg;_; + M;_1, i.e., the cost of first moving the demandsti — 1) from their original locations
to F;_o U F;_; and then toF;_;. In addition, the cost of assigning the demandsgifi) to F; is A,;.
Therefore Asg;, which is always equal tdsg; ; +M;_1 + A;, is indeed equal to the cost %_; U F;

on R(i). O

Lemma 22. Leta > p + 2. Then, for every phasig Asg;, < aA; < Ajy1.

Proof. We prove the lemma by induction an For the initialization phasei (= 0), the lemma holds
because\sg, = 0 < aAg < A;. We inductively assume that the lemma holds until the end of phase
i > 0. Then, until the end of phaget- 1, it is the case that

Asgi_H = Asgi + MZ’ + Ai+1 < OéAZ' + Mi + MAi-i-l < (/J + 2)Ai+1 < aAi-i—l < AH_Q s
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where the first inequality follows from the inductive hypothesis and the invafiant < pA;;+1 main-
tained in phase + 1, the second inequality fromy;; = max{aA;, M;}, and the third inequality from
o> p+ 2. O

Lemma 23. Letr > a1 + ag% andu > as + 2by. For every complete phaseOPT; > A;.

Proof. For the initialization phase & 0), the lemma holds becau€ T, > Ag = 0. Let us assume that
for some complete phase> 1, OPT; < A;. Let OPT} be the optimal cost for the demands considered
in phasei. It must beOPT, < OPT; < A,;. Therefore, by Lemma FFL; must maintain a solution
consisting of no more thafu; + ag%)k} < vk medians and costing at mdsty + 2b2)A; < pA;. This
contradicts to the hypothesis that phasecomplete. a

Lemma 24. For every complete phaseM; < 2¢;(a + 1) OPT;.

Proof. The optimal solution or(i) suggests a way of merging; _; U F; into k medians. In particular,

we can assign each weighted mediaFin; U F; to the nearest optimal median. Similarly to the proof

of [12, Theorem 2.3], we can show that this assignment costs no mordtgan OPT;, i.e., the cost of

first moving the demands back to their original locations and then to the optimal medians. Consequently,
there is a way of merging’;_; U F; into k¥ medians at a cost no greater thasg; + OPT; < aA; +

OPT; < (a + 1) OPT;, where the first inequality follows from Lemma 22 and the second inequality
from Lemma 23. The above solution can be transformed to a solution using medians 6nly; io F;

and costing at most (a + 1) OPT; (e.g., [12, Theorem 2.1]). SincE; is computed by a bi-criteria

(1, co)-approximation algorithm fok-Median,M;, i.e., the cost of assigning;_; U F; to F;, cannot
exceec; (a + 1) OPT;. O

The Proof of Theorem 2.The number of medians in the current solution can never exeged aQ% +
c2) k + 1. In the initialization phaseQPT, > 0 = Asg,. Leti > 0 be the last complete phase. By
Lemma 23 and Lemma 24, it must 6P T; > max{A;, %} On the other hand, the current
algorithm’s assignment costissg; | < aA;+1 (Lemma 22). IfA;+1 = aA;, thenAsg; ; < a? OPT;.
If Aiy1 = M;, thenAsg, | < 2cia(a + 1) OPT; (Lemma 24). Sincer > p + 2 (Lemma 22) and
@ > as + 2by (Lemma 23), the performance ratiolofl (k) is less thar2ey (az + 2bs + 3)2.

The algorithmIM (k) runs inO(n2k) time andO(n) space. More specifically, computirg; from
F;_1 U F; at the beginning of phasetakesO (k2 log n) time (e.g., [18]) and there aKke() phases. In
addition,IFL needsO(nk) time to incorporate each new demand into the current solution. The bound
on the space complexity is trivial, since it implies that every demand is stored in main memoryO

A.11 A Randomized Incremental Algorithm for k-Median

The algorithmRIM (k) (Fig. 5) also operates in phases, where ph#seharacterized by an upper bound
A; on the optimal cost of the demands considered in the current phase. Inplddéd (k) invokes
Gather; with upper bound\; andIFL; with facility cost f; = g‘—k Each new demand is first given

to Gather;, which returns a demand to the nearest gathering goiithen, is given tolFL;, which
assigns it to a median iR}*. Apart from the use ofzather, the description and the analysisRIM (k)

are similar to those ofM(k), Section A.10. In the following, we use the notation introduced in the
previous section with exactly the same meaning.

We should emphasize thaFL; still treats different demands moved to the same gathering point
by Gather; as different unit demands and may be put them in different clusters. In other words, the
output of Gather; should be thought of as just a sample taken from the points of the underlying metric
space and not as a first-level clustering of the demand sequeidék) uses this sample to generate a
modified instance which can be represented in a space efficient mannerlFhgis, solely responsible
for maintaining a good hierarchical clustering of the modified instance, which can be directly translated
into a good hierarchical clustering of the original instance.
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phasel)
MergeF;_» U F;_; into ¢, k weighted medians using a
bi-criteria (c1, c2)-approximation algorithm fok-Median.
Let F,_, be the resulting set of (weighted) medians
and letM;_; be the cost of assigning the weighted
medians inF;_, U F;_; to F;_;.

phase()
0 =732 Mo —0; fo — 0; Ag < 0;
R(0) « 0; Fy < 0; F_1 0 Asgy — 0;
For each new demand
R(0) — R(0) U {u};

IFLo(u); /* Updates Fy */ Ai — max{ad;_1, M1 };
if ‘FO‘ > vk then go to phasel’ Gatheri(Ai, k, 10g n, t)'lnitialization;
o IFL;-Initialization(A;, k);
IFL;-Initialization(A;, k) For each new demand
fi = 55 R() — 05 Fy — 07 Ay — O; R(i) — R(i) U {u};
Asg; — Asg; 1 +M;_1; i« Gather;(u); /* Updates AS *

if Gather;(u) failed then
completephasef, u); go to phase(+ 1);
IFL;(4); /* Updates F; and A; *
if (| F;| > vk or A; > pA;) then
restorelFL;’s configuration beforé;
completephasef, @); go to phase(+ 1);
elseAsg; «— Asg;_; +M;_1 +AF + A;;

completephasef, i)
Let w be the location ofi;
if w ¢ F; then openg);
initial_assignmenty, w);
Asg; «— Asg; 1 +M;_1 + A + A;;

Fig. 5. The algorithm Randomized IncrementaMedian —RIM (k) .

The current phase a&tIM(k) ends if eitherGather; fails to maintain the invariants on the number
of gathering points and the gathering costIBL; fails to maintain the invariants on the number of
medians and the assignment cost. To establish the performance rRfidiok), we prove that the total
algorithm’s cost up to the end of phaseannot exceed A; (Lemma 28), while for every complete phase
i, OPT; is at leastnax{A;, %} whp. (Lemma 29) and Lemma 30).

The algorithmGather (Fig. 6) can be thought of as the incremental version kA2 CLUSTER
[6]. It is made up ofO(log n) independent invocations of Meyerson’s randomized algorithm for Online
Facility Location [19], denoted by ROFL. In phageGather; invokes ROFL; with facility cost f; =
m. The j-th invocation of ROFL, denoted by ROFLj), maintains its own set of gathering
points, denoted b (j), and its individual cost, denoted tAf(j). When a new demandis considered,
with probability min{w, 1}, ROFL(y) places a new gathering point as location. Then, it
movesu to the nearest gafhering point@# (7). ROFL;(j) fails as soon as either its number of gathering
points exceed80k (logn + 1) or its individual cost exceed®)A;. After ROFL;(j) has failed, it stops
considering new demands.

Gather; maintains the union of the sets of gathering points, denoted;bgnd the gathering cost,
denoted byA$. When a new demand is consideredGather; places a new gathering point aks
location if at least one of the invocations ROJJ) does so. Then, it movesto the nearest gathering
point currently inG;, denoted byi. Gather; fails as soon as all the invocations ROJFL have failed.

Lemma 25. Gather;(A;, k, log n, t) maintains a collection of no more thaokt (logn + 1)? gathering
points at a cost not exceediggA,;.

Proof. The set of gathering point; is equal to the union of the set§(j) maintained by the invocations
ROFL;(j),j7 = 1,...,tlogn. The cardinality of eacly;(;j) cannot exceed0k (logn + 1) + 1, because
as soon asG;(j)| becomes greater thatdk (logn + 1), ROFL;(j) fails and stops considering new
demands. In addition, the location of the last demand, namely, the demand raking; fail, is also
added toG;. Hence, the number of gathering points maintainedGayher;(A;, k,logn,t) is upper
bounded by20k (logn + 1) + 1] tlogn + 1 < 20kt (logn + 1)2.

As long asGather; does not fail, the gathering coaf” is upper bounded by the individual cost
A (4) of any invocation ROFL(j) which has not failed yet. This is true becausether; moves each
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Gather;(u)

Gather;(A;, k, log n, t)-Initialization forj < 1totlogn do
fi = palirry G — 0 AG — 0; if (not fail; (7)) then
for j «— 1totlogn do ROFL;(j)(u);

G(j) — ¢ AG(j) — 0 if (|Gl(j)‘ > 20k(logn + 1) OI'AZG(j) > 20/\2) then
: . ’ fail;(j) < TRUE;

fail;(j) < FALSE;
if (A\j_, fail;(j)) then

ROFL;(j)(u) G; — G; U {u}; returnEAILURE);
A t W
with probabilitymin{d(G; (j),u)/f;, 1} do|| ~ Gi —U;=1 Gi(4);
Gi(j) «— Gi(5) U {u}; let & be the nearest gathering pointitp
AG(j) — AF()) +d(Gi(), w); moveu tod; A7 — A7 +d(Gi, u);
returng);

Fig. 6. A randomized algorithm for gathering the original demand® {i log? n) points.

new demand to the nearest gathering poinGinand G;(j) C G;. Hence, as long as there exists an
invocation ROFL(j) which has not failed yet, it is the case thaf < A (j) < 20A;. In addition,
Gather; places a gathering point at the location of the last demand and incurs no gathering cost for it.
O

The following lemma is proven in [6], Lemma 1 and Corollary 1. Its proof follows from the analysis
of [19].
Lemma 26. Let Asg™ be the cost of a feasible solution for an instancesa¥ledian consisting of no
more thann unit demands, and let be an estimation ohsg*. With probability at Ieas%, ROFL with
facility costf = ;sag; Maintains a solution consisting of no more théin(logn + 1)(1 + “4%-)
medians and costing at moftA + 4Asg™).

Lemma 27. Let Asg* be the cost of a feasible solution for an instance:dfledian consisting of no
more thann unit demands, leh > Asg* be an upper bound oAsg*, and lett be a positive constant.
Then, with probability at least — n~t, Gather(A, k, logn, t) does not fail on this instance.

Proof. The algorithmGather fails only if all independent invocations RO} fail. For everyj, j =
1,...,tlogn, ROFL(j) fails only if either|G(j)| > 20k(logn + 1) or A%(j) > 20A. SinceA > Asg*,
by Lemma 26, the probability that ROF{) fails on this instance is at mo%t Since the invocations of
ROFL are independent from each other, the probability that all of them fail on this instance is at most
n=t. O

As before RIM(k) operates irO(7) phases and always maintains a solution consisting of no more
than(v + ¢2) k + 1 medians. Similarly to Proposition 23, we can prove that for every phassg, =
Asg, | +M;_1 + AiG + A; is equal to the cost of;_; U F; on R(3) (i.e., the set of original demands
considered up to the end of pha3e

Lemma 28. Leta > p + 22. Then, for every phase Asg, < aA; < Ajyg.

Proof. We prove the lemma by induction an For the initialization phasei (= 0), the lemma holds
because no gathering takes place asd, = 0 < aAy < A;. We inductively assume that the lemma
holds until the end of phage: > 0. Then, until the end of phaget 1, it is the case that

Asgi i = Asgi+ M+ ALY + A1 < aly+M;+20A 001 +phip < (+22)Ai < alirr < Ao
The first inequality follows from the inductive hypothesis, the invariz&ﬁ,;l < 20A;41 maintained by

Gather; (Lemma 25), and the invariadt;; < pA;1; maintained byRIM (k) in phasei. The second
inequality follows fromA;;; = max{aA;, M;}, and the third inequality fromx > 1 + 22. O

Lemma 29. Letv > a; + 21a22—;, > 2lag + 22by, and leti be a complete phase. With probability at
leastl — n~t, OPT; > A;.
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Proof. For the initialization phase (= 0), the lemma holds with certainty becaud®T, > Ag = 0.
Let us assume that for some complete phasel, OPT; < A;. Let OPT} be the optimal cost for the
demands considered in phaisdt must beOPT, < OPT; < A;. By Lemma 27, the probability that
phase ends becaug@ather; fails is at most:~¢. On the other hand, DPT} < A; andGather; does not
fail, phasei cannot end because HfL; (see also Lemma 23). In particular, let us assume@aaher;
does not fail and phaseends because eithéF;| > vk or A; > uA;. By Lemma 25, the gathering
costAiG is at most0A;. Hence, for the modified instance consideredBl;, there exists &-Median
solution of cost no greater thaxf” + OPT, < 21A;, namely, the solution obtained by first moving the
demands inRk(i) from the gathering points to their original locations and then to the optimal medians.
We also recall thalF'L; still treats different demands moved to the same gathering poittatyer; as
different unit demands. By Lemma 5, the solution producediiy; on the modified instance consists
of no more thar{a; + 21a22—;)k < vk medians and costs at md&tlas + 22b2)A; < pA;. Therefore, if
OPT/ < A; andGather; does not fail, phasecannot end because BfL;. Consequently, the probability
thatOPT; < A; and phase ends is at most . O

Lemma 30. Leti be a complete phase. ®PT; > A;, thenM; < 2¢;(a + 1) OPT;.
Proof. The proof is essentially identical to the proof of Lemma 24. O

The Proof of Theorem 3.The number of medians in the current solution (if€;,; U F;) can never
exceeda; + 21@2% + c2) k + 1. In the initialization phase)PTy > 0 = Asg,. Leti + 1,7 > 0, be

the current phase, and lebe the last complete phase. The current algorithm’s costds, | < a;11
(Lemma 28). Given thaOPT; > A;, we distinguish betwee;.; = aA; andA; 1 = M;. In the

first caseAsg; ., < o OPT;, while in the second casfsg; | < 2cia(a+1) OPT; (Lemma 30). Let

t > 2. By Lemma 29 and since there &¢7;) complete phases, the probability that there exist a complete
phasei such thatOPT; < A; is at most» 1. Sincea > ;1 + 22 (Lemma 28) angl > 21ay + 22by
(Lemma 29), the performance ratioRIM (k) is less tharkc; [22(as + by + 1)]2 with probability at least

1— n—t+1'

The algorithmRIM (k) runs inO(nk? log? n) time andO(k? log® n) space. More specifically, com-
puting F'; from F;_; U F; at the beginning of phasitakesO(k? logn) time (e.g., [18]) and there are
O(%) phases. In additiorGather needsO(k log? n) time to move each new demand to the nearest gath-
ering point andFL needs0 (k2 log? n) time to incorporate each new demand (of the modified instance)
into the current solution. As for the space complexityther can be implemented i@ (k log? n) space
andIFL can be implemented i (k% log? n) space. O
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