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Abstract. In the incremental versions of Facility Location andk-Median, the demand points arrive one at a
time and the algorithm must maintain a good solution by either adding each new demand to an existing cluster
or placing it in a new singleton cluster. The algorithm can also merge some of the existing clusters at any point
in time. We present the first incremental algorithm for Facility Location which achieves a constant performance
ratio and the first incremental algorithm fork-Median which achieves a constant performance ratio usingO(k)
medians, thus resolving an open question of [7]. The algorithm is based on a novel merge rule which ensures that
the algorithm’s configuration monotonically converges to the optimal facility locations according to a certain
notion of distance. Using this property, we reduce the general case to the special case that the optimal solution
consists of a single facility.

1 Introduction

The model of incremental algorithms for data clustering is motivated by practical applications where
the demand sequence is not known in advance and the algorithm must maintain a consistently good
clustering using a restricted set of operations which result in a solution of hierarchical structure. The
framework of incremental clustering was introduced by Charikar et al. [4]. In this paper, we consider
the incremental versions of metric Facility Location andk-Median. The problems of Facility Location
andk-Median find many applications in the areas of network design and data clustering and have been
the subject of intensive research over the last decade (e.g., [21] for a survey and [10] for approximation
algorithms and applications). In addition to the offline setting, there are many applications where the
demand points arrive online and the solution must be constructed incrementally using no information
about future demands (e.g., [19]).

In Incrementalk-Median [7], the demand points arrive one at a time. Each new demand must be
either added to an existing cluster or placed in a new singleton cluster upon arrival. At any point in time,
the algorithm can also merge some of the existing clusters. Each cluster is represented by its median
whose location is determined at the cluster’s creation time. When some clusters are merged with each
other, the median of the new cluster must be selected among the medians of its components. The goal is
to maintain a solution consisting of at mostk clusters/medians which minimize the total assignment cost
of the demands considered so far. The assignment cost of a demand is its distance from the median of
the cluster the demand is currently included in.

The definition ofIncremental Facility Locationis similar. Demand points arrive one at a time and
must be assigned to either an existing or a new facility upon arrival. At any point in time, the algorithm
can also merge a facility with another one by closing the first facility and re-assigning all the demands
currently assigned to it to the second facility. The objective is to maintain a solution which minimizes
the sum of facility and assignment costs. As before, the assignment cost of a demand is its distance from
the facility the demand is currently assigned to.

We evaluate the performance of incremental algorithms using theperformance ratio[4]. An incre-
mental algorithm achieves a performance ratio ofc if for all demand sequences, the cost incurred by the
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algorithm is at mostc times the cost incurred by an optimal offline algorithm, which has full knowledge
of the demand sequence, on the same instance.

Comparison to Online and Streaming Algorithms.Similarly to online algorithms, incremental algo-
rithms commit themselves to irrevocable decisions made without any knowledge about future demands.
More specifically, when a new demand arrives, the algorithm may decide to add the demand to an exist-
ing cluster or merge some clusters with each other. These decisions are irrevocable because once formed,
clusters cannot be broken up. In addition, the definition of the performance ratio is essentially identical
to the definition of the competitive ratio (e.g., [3]). However, we have avoided casting Incrementalk-
Median as “Onlinek-Median”. The most important reason is that we are not aware of any simple and
natural notion of irrevocable cost which could be associated with the irrevocable decision that a demand
is clustered together with some other demands.

Incremental algorithms also bear a resemblance to one-pass streaming algorithms for clustering prob-
lems (e.g., see [13] for a formulation of the streaming model and [12, 6] for applications tok-Median).
However, in case of streaming algorithms, the emphasis is on space and time efficient algorithms which
achieve a small approximation ratio by ideally performing a single scan over the input data. A streaming
algorithm fork-Median is not restricted in terms of the solution’s structure or the set of operations avail-
able. On the other hand, incremental algorithms must maintain a good hierarchical clustering by making
irrevocable decisions. As for time and space efficiency, we only require explicitly that incremental al-
gorithms should run in polynomial time. Nevertheless, all known incremental algorithms for clustering
problems can be either directly regarded as or easily transformed to time and space efficient one-pass
streaming algorithms (e.g., [4, 12, 7, 6]).

Previous Work. Charikar et al. [4] introduced the framework of incremental clustering and presented
incremental algorithms fork-Center (i.e., minimize the maximum cluster radius) which achieve a con-
stant performance ratio usingk clusters. Charikar and Panigrahy [7] presented an incremental algorithm
for Sumk-Radius (i.e., minimize the sum of cluster radii) which achieves a constant performance ratio
usingO(k) clusters.

The incremental version ofk-Median was first considered by Charikar and Panigrahy [7], where it is
shown that no deterministic algorithm which maintains at mostk clusters can achieve a performance ratio
better thanΩ(k). Hence, we relax the requirement on the number of clusters allowing the algorithm to
maintainO(k) clusters. Determining whether there exists an incremental algorithm fork-Median which
achieves a constant performance ratio usingO(k) medians is suggested as an open problem in [7].

The only known incremental algorithms fork-Median are the one-pass streaming algorithms of [12]
and [6]. More specifically, the streaming algorithms of Guha et al. [12] can be regarded as incremen-
tal algorithms under the assumption that the number of demandsn is known in advance. Fork much
smaller thannε, their algorithms achieve a performance ratio of2O(1/ε) usingnε medians and run in
O(nk poly(log n)) time andnε space. The best known streaming algorithm fork-Median is the one-pass
algorithm of Charikar et al. [6]. Under the assumption thatn is known in advance, this algorithm can be
easily transformed to an incremental algorithm which achieves a constant performance ratio with high
probability (whp.1) usingO(k log2 n) medians and runs inO(nk log2 n) time andO(k log2 n) space.

The only known incremental algorithms for Facility Location are the online algorithms of [19, 8, 1].
Meyerson [19] was the first to consider the online version of Facility Location, where the demand points
arrive one at a time and must be irrevocably assigned to either an existing or a new facility upon arrival.
In [19], a randomizedO( logn

log logn)-competitive algorithm and a lower bound ofω(1) are presented. In

[8], the lower bound is improved toΩ( logn
log logn) and a deterministicO( logn

log logn)-competitive algorithm is

given. In [1], it is presented a simpler deterministicO(2d log n)-competitive algorithm ford-dimensional
Euclidean spaces.

1 Throughout this paper, “whp.” means “with probability at least1−O(1/n)”.
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The lower bounds of [19, 8] hold only if the decision of opening a facility at a particular location
is irrevocable. Hence, they do not apply to the incremental version of Facility Location. However, the
lower bound of [8] implies that every algorithm which maintainso(k log n) facilities must incur a total
initial assignment cost ofω(1) times the optimal cost, where the initial assignment cost of a demand is
its distance from the first facility the demand is assigned to. Therefore, every algorithm treating merge as
a black-box operation cannot approximate the optimal assignment cost within a constant factor unless it
usesΩ(k log n) facilities (e.g., the algorithm of [6]). In other words, to establish a constant performance
ratio, one must prove that merge operations can alsodecreasethe algorithm’s assignment cost.

Related Work on Facility Location and k-Median. In the offline case, where the demand set is fully
known in advance, there are constant factor approximation algorithms for Facility Location based on
Linear Programming rounding (e.g., [22, 23]), local search (e.g., [16, 5, 2]), and the primal-dual method
(e.g., [15, 14]). The best known polynomial-time algorithm achieves an approximation ratio of 1.52
[17], while no polynomial-time algorithm can achieve an approximation ratio less than 1.463 unless
NP = DTIME(nO(log logn)) [11]. For k-Median, the best known polynomial-time algorithm achieves
an approximation ratio of3 + o(1) [2], while no polynomial-time algorithm can achieve an approxi-
mation ratio less than1 + 2/e unlessNP = DTIME(nO(log logn)) [14]. As it is also observed in [19],
our setting should not be confused with the setting of [18, 20], where the demand set is fully known in
advance and the number of facilities/medians increases online.

Contribution. We present the first incremental algorithm for metric Facility Location which achieves a
constant performance ratio. The algorithm combines a simple rule for opening new facilities with a novel
merge rule based on distance instead of cost considerations. We use a new technique to prove that a case
similar to the special case where the optimal solution consists of a single facility is the dominating case
in the analysis. This technique is also implicit in [8] and may find applications to other online problems.
To overcome the limitation imposed by the lower bound of [8], we also establish that in the dominating
case, merge operations decrease the total assignment cost.

Using the algorithm for Facility Location as a building block, we obtain the first incremental algo-
rithm for k-Median which achieves a constant performance ratio usingO(k) medians, thus resolving the
open question of [7]. Our algorithm is deterministic, runs inO(n2k) time andO(n) space, and is the first
incremental algorithm fork-Median which does not assume any advance knowledge ofn. Combining
our techniques with the techniques of [6], we obtain a randomized incremental algorithm which achieves
a constant performance ratio whp. usingO(k) medians and runs inO(nk2 log2 n) time andO(k2 log2 n)
space. This algorithm can also be regarded as an one-pass streaming algorithm fork-Median. Similarly
to the algorithms of [12, 6], the randomized version of our algorithm assumes that a constant factor
approximation tolog n is known in advance.

Notation. We only consider unit demands by allowing multiple demands to be located at the same point.
We always usen to denote the total number of demands. For Incremental Facility Location, we restrict
our attention to the special case of uniform facility costs, where the cost of opening a facility, denoted by
f , is the same for all points. We also use the terms facility, median and cluster interchangeably.

A metric spaceM = (M,d) is usually identified by its point setM . The distance functiond is
non-negative, symmetric, and satisfies the triangle inequality. For a subspaceM ′ ⊆ M , D(M ′) =
maxu,v∈M ′{d(u, v)} denotes the diameter ofM ′. For a pointu ∈ M and a subspaceM ′ ⊆ M ,
d(M ′, u) = minv∈M ′{d(v, u)} denotes the distance betweenu and the nearest point inM ′. It is
d(∅, u) = ∞. For subspacesM ′,M ′′ ⊆ M , d(M ′,M ′′) = minu∈M ′′{d(M ′, u)} denotes the minimum
distance between a point inM ′ and a point inM ′′. For a subspaceM ′ ⊆M , sep(M ′) = d(M ′,M \M ′)
denotes the distance separating the points inM ′ from the points not inM ′. It is sep(∅) = sep(M) =∞.
For a pointu ∈ M and a non-negative numberr, Ball(u, r) denotes the ball of centeru and radiusr,
Ball(u, r) = {v ∈M : d(u, v) ≤ r}.
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Let x, β, andψ be appropriately chosen constants
F ← ∅; L← ∅; /* Initialization */
For each new demandu:

L← L ∪ {u}; ru ← d(F,u)
x ;

Bu ← Ball(u, ru) ∩ L;
Pot(Bu) =

∑
v∈Bu

d(F, v);
if Pot(Bu) ≥ βf then

Letw′ be the location ofu;
open(w′); L← L \Bu;
for eachw ∈ F \ {w′} do

if d(w,w′) ≤ m(w) then
merge(w → w′);

Letw be the facility inF closest tou;
updatemergeradius(m(w));
initial assignment(u, w);

open(w′)

F ← F ∪ {w′}; Init(w′)← ∅;
C(w′)← ∅; m(1)(w′)← 3 ru;

merge(w → w′)

F ← F \ {w}; C(w′)← C(w′) ∪ C(w);

updatemergeradius(m(w))
m(2)(w) =

max{r : |Ball(w, rψ ) ∩ (Init(w) ∪ {u})| · r ≤ βf};
m(w) = min{m(1)(w),m(2)(w)};

initial assignment(u, w)

Init(w)← Init(w) ∪ {u}; C(w)← C(w) ∪ {u};

Fig. 1.The algorithm Incremental Facility Location –IFL .

2 An Incremental Algorithm for Facility Location

The algorithm Incremental Facility Location -IFL (Fig. 1) maintains itsfacility configurationF , its
merge configurationconsisting of amerge ballBall(w,m(w)) for each facilityw ∈ F , and the setL of
unsatisfied demands.

We use a simpler version of the deterministic algorithm of [8] for opening new facilities. The notion
of unsatisfied demands (the setL) ensures that each demand contributes to the facility cost at most once.
A demand becomes unsatisfied and is added toL upon arrival. Each unsatisfied demand holds apotential
which is always equal to its distance from the nearest facility. If the neighborhoodBu of a new demand
u has accumulated a potential ofβf , a new facility located at the same point withu opens. Then, the
unsatisfied demands inBu lose their potential, become satisfied, and are removed fromL.

Each facilityw ∈ F maintains the setC(w) of the demands currently assigned tow and the set
Init(w) ⊆ C(w) of the demandsinitially assignedto w. The demands inInit(w) are assigned tow
when they arrive, while the demands inC(w)\ Init(w) have been initially assigned to a facility different
from w. Each facilityw ∈ F also maintains itsmerge radiusm(w) and the correspondingmerge ball
Ball(w,m(w)). The algorithm ensures thatw is the only facility in its merge ball. Whenw opens, the
merge radius ofw is initialized to a fraction of the distance betweenw and the nearest existing facility.
Then, if a new facilityw′ is included inw’s merge ball,w is merged withw′. Namely,w is closed and
removed fromF , and every demand currently assigned tow is re-assigned tow′. The algorithm keeps
decreasingm(w) to ensure that no merge operation can dramatically increase the total assignment cost
of the demands inInit(w). More specifically, the algorithm maintains the invariant that

|Init(w) ∩ Ball(w, m(w)
ψ )| ·m(w) ≤ β f (1)

After the algorithm has updated its configuration, it initially assigns the new demand to the nearest
facility. We always distinguish between the arrival and the assignment time of a demand because the
algorithm’s configuration may have changed in between.

If the demands considered byIFL occupym different locations, a crude analysis shows thatIFL can
be implemented inO(nm|Fmax|) time andO(min{n,m|Fmax|}) space, where|Fmax| is the maximum
number of facilities inF at any point in time. The remaining of this section is devoted to the proof of the
following theorem.

Theorem 1. For everyx ≥ 18, β ≥ 4(x+1)
x−8 , andψ ∈ [max{ 6β

2β−3 , 4}, 5], IFL achieves a constant
performance ratio.
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Preliminaries. For an arbitrary fixed sequence of demands, we compare the algorithm’s cost with the
cost of a fixed add-optimal facility configuration2. We denote this solution byF ∗ and refer to it asthe
optimal solution. To avoid confusing the algorithm’s facilities with the facilities inF ∗, we use the term
optimal center, or simplycenter, to refer to an optimal facility inF ∗ and the termfacility to refer to an
algorithm’s facility inF .

The optimal solutionF ∗ consists ofk centersc1, c2, . . . , ck. Each demand is assigned to the nearest
center inF ∗. For a demandu, cu denotes the optimal centeru is assigned to. We use the clustering
induced byF ∗ to map the demands and the algorithm’s facilities to optimal centers. In particular, a
demandu is always mapped tocu, i.e., the optimal centeru is assigned to. Similarly, a facilityw is
mapped to the nearest optimal center denoted bycw. Also, let d∗u = d(cu, u) = d(F ∗, u) denote the
optimal assignment cost ofu, let Fac∗ = kf be the optimal facility cost, and letAsg∗ =

∑n
i=1 d

∗
u be the

optimal assignment cost.
In addition tox, β, andψ, let λ = 3x + 2, ρ = (ψ + 2)(λ + 2), andγ = 12ρ be also constants.

Let alsou1, . . . , un be the demand sequence considered byIFL. We show that after the demanduj
has been considered,1 ≤ j ≤ n, the facility cost ofIFL does not exceeda1Fac∗ + b1Asg∗j and the

assignment cost ofIFL does not exceeda2Fac∗ + b2Asg∗j , whereAsg∗j =
∑j
i=1 d

∗
ui

, anda1 = 1,
a2 = 2β ln(3γ2)(5(ψ+4)γ2+3), b1 = 3x

β , andb2 = 4((ρ+1)γ2+2)+14x. With a more careful analysis,
we can improvea2 andb2 to a′2 = 4β log(γ)(12(ψ+ 2) + 3) andb′2 = (λ+ 2)(8ψ+ 25). Moreover, we
can remove the assumption thatF ∗ is add-optimal by replacing the bound on the algorithm’s assignment
cost withmax{a2, b2}(Fac∗ + Asg∗j ) (see also Section A.9, in the Appendix).

Every time we want to explicitly refer to the algorithm’s configuration (or some function of it) at the
moment a demand is considered/facility opens, we use the demand’s/facility’s identifier as a subscript.
Moreover, we use the convention that the algorithm first updates its configuration and then performs
the demand’s initial assignment. Hence, we distinguish between the algorithm’s configuration at the de-
mand’s arrival and assignment times using plain symbols to refer to the former and primed symbols
to refer to the latter time. For example, for a demandu, Fu/F ′

u is the facility configuration atu’s ar-
rival/assignment time. Similarly, for a facilityw, Fw/F ′

w is the facility configuration just before/afterw
opens. Saying that an existing facilityw is merged with a new facilityw′, we mean that the existing
facility w is closed and the demands currently assigned tow are re-assigned to the new facilityw′ (and
not the other way around). We proceed to establish the basic properties ofIFL.

Lemma 1. Letβ ≥ 4(x+1)
x−8 . Then, for every facilityw mapped tocw, d(cw, w) ≤ d(Fw,cw)

3 .

Proof Sketch.To reach a contradiction, let us assume thatw is a facility such thatd(cw, w) > d(Fw,cw)
3 .

SinceBw ⊆ Ball(w, d(Fw,w)
x ), we can show that for eachu ∈ Bw, d(u,w) < 4

x−4 d
∗
u andd(Fw, u) <

4(x+1)
x−4 d∗u. Using Pot(Bw) ≥ βf , we conclude that for everyβ ≥ 4(x+1)

x−8 , f +
∑
u∈Bw

d(u,w) <∑
u∈Bw

d∗u, which contradicts to the add-optimality ofF ∗. The full proof can be found in the Appendix,
Section A.1. ut

Proposition 1. For every facilityw, there will always exist a facility inBall(w, x
x−3 m(w)) and each

demand currently assigned tow will remain assigned to a facility inBall(w, x
x−3 m(w)).

Proof. The proposition is true as long asw remains open. Ifw is merged with a new facilityw′, we
inductively assume that the proposition is true forw′. Then, the proposition follows from the observation
thatBall(w′, x

x−3 m(w′)) is included inBall(w, x
x−3 m(w)) (see also Proposition 2, Section A.1). ut

Facility Cost. It is not difficult to prove that in contrast to the online algorithms for Facility Location
[19, 8, 1], IFL does not suffer from facility proliferation. We distinguish betweensupportedfacilities,

2 A facility configurationF is add-optimal if its total cost cannot decrease by adding a new facility toF . Formally, for every
w, f +

∑
u

d(F ∪ {w}, u) ≥
∑

u
d(F, u).
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whose opening cost can be charged to the optimal assignment cost, andunsupportedfacilities. A facility
w is supportedif Asg∗(Bw) =

∑
u∈Bw

d∗u ≥
β
3x f , andunsupportedotherwise. Since each demand

contributes to the facility cost at most once, the total cost of supported facilities is at most3x
β Asg∗.

Next, we prove that there always exists at most one unsupported facility mapped to each optimal center.
Therefore, the algorithm’s facility cost does not exceedFac∗ + 3x

β Asg∗.

Lemma 2. Letw be an unsupported facility mapped to an optimal centercw, and letw′ be a new facility
also mapped tocw. If w′ opens whilew is still open, thenw is merged withw′.

Proof. By Lemma 1, it must bed(cw, w′) ≤ 1
3 d(Fw′ , cw) ≤ 1

3 d(cw, w), becausew′ is mapped tocw
andw ∈ Fw′ by hypothesis. We also prove thatm(w) ≥ 3

2 d(cw, w) which implies the lemma because
d(w,w′) ≤ d(cw, w) + d(cw, w′) ≤ 4

3 d(cw, w) ≤ m(w) andw must be merged withw′.
To prove thatm(1)(w) ≥ 3

2 d(cw, w), we show that for every unsupported facilityw, d(cw, w) <
4 d(Fw,cw)

3(x−4) (Proposition 3). We first observe that there must be a demandu ∈ Bw such thatd∗u <
1
3x d(Fw, u), becausew is an unsupported facility. Then, the claim follows from the fact that the ra-

dius ofBw is d(Fw,w)
x . Sincem(1)(w) = 3 d(Fw,w)

x , we obtain thatm(1)(w) ≥ 3
2 d(cw, w) (Proposition 4,

x ≥ 16). The prove thatm(2)(w) ≥ 3
2 d(cw, w) (Proposition 5), we first observe thatm(2)(w) cannot

become smaller than32 d(cw, w) unless the number of demands inBall(w, 3 d(cw,w)
2ψ ) becomes greater

than 2βf
3d(cw,w) . This contradicts to the add-optimality ofF ∗ because for everyψ ≥ 6β

2β−3 , these demands
are closer to each other than to any optimal center inF ∗. The details can be found in Section A.2. ut
Assignment Cost.Bounding the algorithm’s assignment cost is technically involved because we have
to consider many different cases. We first distinguish betweeninner andouter demands. If the initial
assignment cost of a new demandu is within a constant factor from its optimal assignment costd∗u (outer
demand), then despite the merge operations, the assignment cost ofu will remain within a constant
factor fromd∗u (Lemma 10 and Lemma 13) . Our main concern is to bound the total assignment cost of
the remaining demands (inner demands) throughout the execution of the algorithm.

To provide some intuition, we consider the special case that the optimal solution consists of a single
centerc. In this case, we further distinguish betweengoodandbad inner demands. Intuitively, inner
demands start as good ones and remain good as long as their assignment cost converges to their optimal
assignment cost. Then, they become bad and never become good again. While an inner demand remains
good, it is charged with its actual assignment cost. When it becomes bad, it is charged with an irrevocable
cost which is an upper bound on its assignment cost at any future point in time (final assignment cost).

Let w be the facility which is currently the nearest one toc (in this case,w coincides with the most
recent facility to open). Each new inner demand must be assigned tow because new facilities are much
closer toc than any of the existing facilities (Lemma 1). Because of the rule for opening new facilities,
the total initial assignment cost of the inner demands considered whilew is the nearest facility toc cannot
exceedβf . Let w′ be the first new facility to open afterw (w′ becomes the nearest facility toc). If w
is merged withw′, the assignment cost of the inner demands assigned tow decreases by a factor of 2
(Lemma 1). Therefore, the total assignment cost of the inner demands which have always (i.e., from their
arrival time until the present time) been assigned to the nearest facility toc (good inner demands) keeps
converging to their optimal assignment cost. Therefore, the total assignment cost of good inner demands
cannot exceed2βf plus thrice their optimal assignment cost (Lemma 3). Ifw is not merged withw′, w
must be a supported facility (Lemma 2) andAsg∗(Bw) ≥ β

3xf compensates for the (final) assignment
cost of the good inner demands assigned tow at the momentw′ opens (these demands become bad).
From now on, no additional inner demands are assigned tow. Therefore, the total assignment cost of
inner demands always remains within a constant factor from the total optimal cost.

We proceed to define formally the basic notions used in the analysis of the assignment cost.
Configuration Distance.For an optimal centerc ∈ F ∗ and a facilityw ∈ F , the configuration distance
betweenc andw, denoted byg(c, w), is g(c, w) = d(c, w) + x

x−3 m(w). For an optimal centerc ∈ F ∗,
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the configuration distance ofc, denoted byg(c), is g(c) = minw∈F {g(c, w)} = minw∈F {d(c, w) +
x
x−3 m(w)}. The configuration distanceg(c) is non-increasing with time (Section A.3) and there always
exists a facility within a distance ofg(c) from c (Proposition 1).
Coalitions.A set of optimal centersK ⊆ F ∗ with representativecK ∈ K forms acoalition as long as
g(cK) ≥ ρD(K). A coalitionK becomesbrokenas soon asg(cK) < ρD(K). A coalitionK is isolated
if g(cK) ≤ 1

3 sep(K) andnon-isolatedotherwise. Intuitively, as long asK ’s diameter is much smaller
thang(cK) (K is a coalition), the algorithm behaves as ifK was a single optimal center. If the algorithm
is bound to have a facility which is closer toK than any optimal center not inK (K is isolated), then as
far asK is concerned, the algorithm behaves as if there were no optimal centers outsideK.

A hierarchical decompositionK of F ∗ is a complete laminar set system3 onF ∗. Every hierarchical
decomposition ofF ∗ contains at most2 |F ∗| − 1 distinct sets. Given a hierarchical decompositionK of
F ∗, we can fix an arbitrary representativecK for eachK ∈ K and regardK as a system of coalitions
which hierarchically coversF ∗. Formally, given a hierarchical decompositionK of F ∗ and the current
algorithm’s configuration, a setK ∈ K is an active coalitionif K is still a coalition (i.e.,g(cK) ≥
ρD(K)), while every superset ofK in K has become broken (i.e., for everyK ′ ∈ K,K ⊂ K ′, it
is g(cK′) < ρD(K ′)). The current algorithm’s configuration induces a collection of active coalitions
which form a partitioning ofF ∗. Sinceg(cK) is non-increasing, no coalition which has become broken
(isolated) can become active (resp. non-isolated) again.

LetDN (K) = max{D(K), 1
3ρ sep(K)}. By definition,K becomes either isolated or broken as soon

asg(cK) < ρDN (K). Using [8, Lemma 1], we show that there is a hierarchical decomposition ofF ∗

such that no coalitionK becomes active beforeg(cK) < (ρ+ 1)γ2DN (K) (Lemma 7, Section A.4). In
the following, we assume that the set of active coalitions is given by a fixed hierarchical decomposition
K of F ∗ such that for every non-isolated active coalitionK, ρDN (K) ≤ g(cK) < (ρ+ 1)γ2DN (K).

We use the notions of isolated and non-isolated active coalitions to establish a constant performance
ratio for the general case that the optimal solution consists ofk centers. More specifically, we prove that
(i) isolated active coalitions can be analyzed similarly to the special case that the optimal solution consists
of a single facility, and (ii) non-isolated active coalitions, where merge operations do not decrease the
assignment cost, can only increase the performance ratio by a constant additive term.

A new demandu makes a coalitionK broken/isolated ifK has been active/non-isolated beforeu
and becomes broken/isolated afteru. Each new demandu is mapped to the unique active coalitionKu

containingcu whenu arrives. IfKu is isolated (non-isolated) whenu arrives, we say thatu is a demand
of the isolated (resp. non-isolated) active coalitionKu. Each new facilityw is mapped to the unique
active coalition containingcw just beforew opens. For an isolated active coalitionK, we usewK to
denote thenearest facilityto K ’s representativecK at any given point in time. In other words,wK is a
function always mapping the isolated active coalitionK to the facility inF which is currently the nearest
facility to cK . Lemma 1 and Proposition 1 imply that as long asK is an isolated active coalition,wK is
much closer tocK than any other facility and converges tocK .
Inner and Outer Demands.A demandu mapped to a non-isolated active coalitionK is inner if d∗u <
DN (K), andouterotherwise. LetinN (K) denote the set of inner demands andoutN (K) denote the set
of outer demands mapped toK as long asK is a non-isolated active coalition. A demandu mapped to
an isolated active coalitionK is inner if d∗u <

1
λ max{d(cK , w′

K), λD(K)}, andouterotherwise. In this
definition,w′

K denotes the nearest facility tocK at u’s assignment time. Thereby, the characterization
of a demandu as inner or outer is determined according to the updated algorithm’s configuration atu’s
assignment time, in contrast to the active coalitionu is mapped to, which is determined according to the
algorithm’s configuration atu’s arrival time. LetinI(K) denote the set of inner demands andoutI(K)
denote the set of outer demands mapped toK as long asK is an isolated active coalition.

3 A set system islaminar if it contains no intersecting pair of sets. The setsK, K′ form an intersecting pairif neither of
K \ K′, K′ \ K andK ∩ K′ are empty. A laminar set system onF ∗ is completeif it containsF ∗ and every singleton set
{c}, c ∈ F ∗.
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Good and Bad Inner Demands.The set ofgood demandsof an isolatedactive coalitionK, denoted
by GK , consists of the inner demands ofK which havealways(i.e., from their assignment time until
the present time) been assigned towK (i.e., the nearest facility tocK). GK is empty as long asK is
either not active or non-isolated. We callbad every inner demand ofK which is not good. Each new
inner demand mapped to an isolated active coalitionK is initially assigned to the nearest facility tocK ,
because this facility is much closer tocK than any other facility. Hence, each new inner demand mapped
toK becomes good and is added toGK . An inner demand remains good until eitherK becomes broken
or the location ofwK changes and the facility at the former locationwK is not merged with the facility
at the new locationw′

K . Then, the demand becomes bad and can never become good again. SincewK
converges tocK , the actual assignment cost of good inner demands should converge to their optimal
assignment assignment cost.
Final Assignment Cost.Let u be a demand currently assigned to a facilityw with merge radius
m(w). The final assignment costof u, denoted bydu, is equal tomin{d(u,w) + x

x−3 m(w), (1 +
1
λ) max{d(cK , w), λD(K)}+d∗u} if u is mapped to an isolated active coalitionK andw is currently the
nearest facility tocK , and equal tod(u,w) + x

x−3 m(w) otherwise. If a demandu is currently assigned
to a facilityw, thenu will remain assigned to a facility inBall(w, x

x−3 m(w)) (Proposition 1). We can
also prove that ifu is mapped to an isolated active coalitionK and is currently assigned towK , thenu’s
assignment cost can never exceed(1+ 1

λ) max{d(cK , wK), λD(K)}+d∗u (Proposition 19, Section A.6).
Therefore, the final assignment cost ofu according to the current algorithm’s configuration is an upper
bound on its actual assignment cost at any future point in time.

With the exception of good demands, each demand isirrevocablycharged with its final assignment
cost at its assignment time. Then, we do not have to worry about the demand’s actual assignment cost
anymore. On the other hand, we keep track of the actual assignment cost of good demands until they
become bad. This is possible because the good demands of an isolated active coalitionK are always
assigned to the nearest facility tocK . Good demands are irrevocably charged with their final assignment
cost at the moment they become bad. Fig. 3 in the Appendix summarizes the potential function argument
used in the analysis of the assignment cost.

Isolated Coalitions.LetK be an isolated active coalition with representativecK . In the Appendix, we
show that (i) every facility spending some time as the nearest facility tocK is mapped toK and can be
merged only with a new facility mapped toK (Proposition 18), (ii) each new facility mapped toK either
makesK broken or is at least 2.5 times closer tocK than the current location ofwK (Proposition 20,
see also Lemma 1), (iii) an unsupported facility mapped toK is merged with the next facility mapped to
K (Proposition 8, see also Lemma 2), (iv) a new demand/facility not mapped toK cannot change either
the location ofwK or the value ofg(cK) (Lemma 8), (v) each inner demand ofK which does not make
K broken is initially assigned to the nearest facility tocK (Lemma 9), and (vi) for every outer demand
u which is mapped toK and does not makeK broken,du ≤ 4(λ + 2)d∗u (Lemma 10). The properties
(i)-(v) imply that the assignment cost of the inner demands ofK can be analyzed independently from
other active coalitions and similarly to the special case that there is a single optimal center.

Lemma 3. LetK be an isolated active coalition. The total actual and the total final assignment cost of
the good demands ofK can be bounded as:

∑
u∈GK

d(u,wK) < 2βf +3
∑
u∈GK

d∗u and
∑
u∈GK

du <
4.5βf + 7

∑
u∈GK

d∗u.

Proof Sketch.We sketch the proof of the first inequality. The second inequality can be derived from the
first one using the definition of the final assignment cost. The full proof can be found in Section A.6.

The proof is by induction over a sequence of merge operations where the former nearest facility tocK
is merged with the new nearest facility tocK . Letw be the nearest facility tocK , i.e.,wK = w. By (i) and
(iv), the location ofwK cannot change until a new facility mapped toK opens. Letw′ be the next facility
mapped toK and letGK be the set of good demands just beforew′ opens. Wlog. we can assume thatw′

does not makeK broken, sinceGK becomes empty otherwise. Then, by (ii),d(cK , w′) ≤ 2
5 d(cK , w),
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and the location of the nearest facility tocK must change fromwK = w to w′
K = w′ as soon asw′

opens. We inductively assume that the inequality holds just beforew′ opens, and we show that it remains
valid until either the location of the nearest facility tocK changes again orK becomes broken.

If w is not merged withw′, the set of good demands becomes empty. Then,
∑
u∈GK

d(u,w′) = 0 just
afterw′ opens. Ifw is merged withw′, (ii) implies that for everyu ∈ GK , d(u,w′) ≤ 1

2d(u,w) + 3
2d

∗
u.

Just afterw has been merged withw′, the set of good demands remainsGK , but eachu ∈ GK is now
assigned tow′. Hence,

∑
u∈GK

d(u,w′) ≤ βf + 3
∑
u∈GK

d∗u. As long asw′ remains the nearest facility
to cK andK remains an isolated active coalition, each new inner demand ofK is initially assigned to
w′ (cf. (v) above) and becomes a good demand. LetGK(w′) be the set of good inner demands ofK
whose initial assignment takes place whilew′ is the nearest facility tocK . We prove that the total initial
assignment cost of the demands inGK(w′) is at mostβf .

More specifically, ifd(cK , w′) ≥ λD(K), we observe that the demands inGK(w′) remain unsatis-
fied and hold a potential equal to their initial assignment cost (i.e., their distance fromw′) until either a
new facility mapped toK opens orK becomes broken. This is true because every facility which makes
some of them satisfied or decrease their potential must be mapped toK (see also (ii) above). In addition,
sinced(cK , w′) ≥ λD(K), for each new inner demandv which is added toGK(w′), d∗v ≤ 1

λd(cK , w
′)

andd(cK , cv) ≤ D(K) ≤ 1
λd(cK , w

′). Therefore,v’s neighborhoodBv = Ball(v, d(Fv ,v)
x ) ∩ L in-

cludes every demand inGK(w′), becaused(Fv ,v)
x = d(w′,v)

x > 3
λd(cK , w

′) (recall thatλ = 3x + 2)
and for everyu ∈ GK(w′), d(u, v) < 3

λd(cK , w
′). Consequently, the potential accumulated byGK(w′)

is at mostβf (Lemma 11). On the other hand, ifd(cK , w′) < λD(K), we observe that as long asK
remains active, it must bem(w′) ≥ ψ(λ + 2)D(K) (ρ = (ψ + 2)(λ + 2), Proposition 12). Hence,
GK(w′) ⊆ Init(w′) ∩ Ball(w′, m(w′)

ψ ), and we can use Ineq. (1) (Lemma 12). ut
Using a potential function argument based on Lemma 3 and the claims (i) - (vi) above, we can bound

the assignment cost of the demands mapped toK (see also Section A.8). WhenK becomes an isolated
active coalition, it receives a credit of7βf , which is not used untilK becomes broken. Letu be a new
demand mapped to the isolated active coalitionK. If u makesK broken,K ’s credit is charged withu’s
final assignment cost, which cannot exceed2.5βf (Proposition 14). Ifu is an outer demand and does not
makeK broken, its final assignment cost cannot exceed4(λ+ 2)d∗u by (vi). If u is an inner demand and
does not makeK broken, it is initially assigned to the nearest facility tocK (cf. (v) above) and becomes
a good demand. As long asu remains a good demand, its actual assignment cost is equal tod(u,wK).
By Lemma 3, the actual assignment cost of the demands inGK never exceeds2βf plus 3 times their
optimal assignment cost. As long asK remains active, its credit can absorb the additional cost of2βf .

The good inner demands ofK are charged with their final assignment cost as soon as they become
bad andGK becomes empty. By Lemma 3, the total final assignment cost of the demands inGK does
not exceed4.5βf plus 7 times their optimal assignment cost. IfGK becomes empty becauseK becomes
broken, the additional cost of4.5βf is charged toK ’s credit. Otherwise,GK becomes empty because
the location of the nearest facility tocK has changed and the facilityw at the previous locationwK
is not merged with the new facilityw′ at the new locationw′

K . By (i), bothw andw′ are mapped to
K. Then, by (iii), the facilityw must be a supported facility. Hence, the additional cost of4.5βf can
be charged to the optimal assignment cost of the demands contributing to the opening cost ofw, since
3xAsg∗(Bw) ≥ βf . We also prove that each supported facility is charged with the final assignment cost
of some good demands which become bad at most once (Proposition 21, see also Section A.8).

Since we consider at most2 |F ∗| − 1 different coalitions and each of them can become isolated at
most once, the total assignment cost of the demands inCI =

⋃
K∈K inI(K)∪outI(K) (i.e., the demands

mapped to isolated active coalitions) is at most14β Fac∗ + 4(λ+ 2)Asg∗(CI) + 14xAsg∗.

Non-isolated Coalitions.The demands mapped to non-isolated active coalitions are irrevocably charged
with their final assignment cost at their assignment time. The analysis of the assignment cost is based on
the notion of unsatisfied inner demands. The set ofunsatisfied inner demandsof a non-isolated active
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coalitionK, denoted byNK , consists of the inner demands ofK which are currently unsatisfied.NK is
equal toinN (K) ∩ L as long asK is a non-isolated active coalition, and empty otherwise.

Lemma 4. For every non-isolated active coalitionK, |NK | · g(cK) never exceeds(ψ + 4)γ2βf .

Proof Sketch.Sinceg(cK) is non-increasing, the product|NK | ·g(cK) can only increase if a new demand
is added to the set of unsatisfied inner demandsNK = inN (K)∩L. We recall that for eachu ∈ inN (K),
d∗u < DN (K) andd(cK , cu) ≤ DN (K). Let v be the last demand added toNK .

If d(Fv, cK) ≥ λDN (K), thenBv = Ball(v, d(Fv ,v)
x ) ∩ L includes every demand inNK because

d(Fv ,v)
x > 3DN (K) (λ = 3x+ 2) andd(u, v) < 3DN (K) for everyu ∈ inN (K). In addition, it must be

Pot(Bv) < βf becausev remains unsatisfied. Since for everyu ∈ inN (K), d(Fv, u) > (λ− 2)DN (K)
andNK ⊆ Bv, we conclude that|NK |(λ − 2)DN (K) < βf . Then, the lemma follows fromg(cK) <
(ρ+ 1)γ2DN (K), becauseK is active whenv arrives.

On the other hand, ifd(Fv, cK) < λDN (K), letw be the nearest facility tocK whenv arrives. By
hypothesis,d(cK , w) < λDN (K). We observe that as long asK remains a non-isolated active coalition,
it must bem(w) ≥ ψ(λ+2)DN (K) (ρ = (ψ+2)(λ+2), Proposition 12). Since for everyu ∈ inN (K),
d(w, u) ≤ (λ+ 2)DN (K), we obtain thatNK ⊆ Ball(w, m(w)

ψ ). At the momentw opened, it must have
beend(Fw, w) ≥ x(λ+ 2)DN (K), because otherwise,w would have madeK either isolated or broken.
Hence, the set of the unsatisfied inner demands ofK became empty whenw opened. In addition, for
each new facilityw′ which opens whilew is still open, eitherd(cK , w′) < 2(λ+2)DN (K) orw′ makes
K either isolated or broken. Therefore, as long asK remains a non-isolated active coalition,w is much
closer tocK than any other facility. Hence, every demand which is inNK at the momentv arrives, it
must have been initially assigned tow. Consequently,NK ⊆ Init(w)∩Ball(w, m(w)

ψ ). Then, the lemma
follows from Ineq. (1). The full proof can be found in Section A.7. ut

In addition to Lemma 4, we use the following properties: (i) for every non-isolated active coalitionK,
g(cK) ∈ [ ρDN (K), (ρ+1)γ2DN (K) ) (Lemma 7), and (ii) for each new facilityw′, if Bw′∩ inN (K) 6=
∅, theng′(cK) ≤ 1

3 g(cK) (Proposition 22).

As long asK is a non-isolated active coalition, it holds a credit of(5(ψ+4)γ2 +2.5)(ln( g(cK)
ρDN (K))+

1)βf . In addition, the function−Υ(N)
K = −5 |NK | · g(cK) accounts for the final assignment cost of the

demands inNK which has not charged toK ’s credit yet (see also Section A.8). By Lemma 4,Υ(N)
K is

always bounded by5(ψ + 4)γ2βf .
If the new demandu either makesK isolated or broken or opens a new facilityw′ such thatBw′ ∩

inN (K) 6= ∅, the final assignment cost ofu is bounded by2.5βf and is charged toK ’s credit. In this

case, the function−Υ(N)
K may increase because some demands may be removed fromNK . However, the

increase in−Υ(N)
K cannot exceed5(ψ + 4)γ2βf . If K becomes isolated or broken,K ’s credit become

0. Hence, it decreases by at least(5(ψ + 4)γ2 + 2.5)βf . If u opens a new facilityw′ such thatBw′ ∩
inN (K) 6= ∅, theng(cK) decreases by a factor of 3 (see also (ii) above) andK ’s credit decreases by
(5(ψ + 4)γ2 + 2.5)βf . In both cases, the decrease inK ’s credit compensates for the final assignment

cost ofu and the increase in−Υ(N)
K . Otherwise, ifu is an outer demand, thendu ≤ 4[(ρ+ 1)γ2 + 2] d∗u

(Lemma 13) and its final assignment cost is charged to its optimal assignment cost. Ifu is an inner
demand, thendu ≤ 5 g′u(cK) (Lemma 14). In this case,u is added to the set of unsatisfied inner demands

NK and the function−Υ(N)
K = −5 |NK | ·g(cK) decreases and compensates for the final assignment cost

of u.
Consequently, the total assignment cost of the demands inCN =

⋃
K∈K inN (K) ∪ outN (K) (i.e.,

the demands mapped to non-isolated active coalitions) is at most2β [5(ψ+4)γ2 +2.5][ln((1+ 1
ρ)γ

2)+
1] Fac∗ + 4 [(ρ+ 1)γ2 + 2]Asg∗(CN ). By partitioning the interval[ ρDN (K), (ρ+ 1)γ2DN (K) ) into
disjoint sub-intervals[ 2iρDN (K), 2i+1ρDN (K) ) and considering different phases according to the sub-
interval g(cK) belongs to, we can improve the previous bound to4β log(γ)(12(ψ + 2) + 2.5)Fac∗ +
8(ρ+ 1)Asg∗(CN ).
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3 An Incremental Algorithm for k-Median

To obtain an incremental algorithm fork-Median, we are based on the following standard lemma which
is proven in the Appendix, Section A.9. We recall thata1, a2, b1, andb2 denote the constants in the
performance ratio ofIFL.

Lemma 5. LetAsg∗ be the cost of a feasible solution for an instance ofk-Median, letΛ be an estimation
of Asg∗, and letδ = a2

b2
. Then,IFL with facility costf = Λ

δk maintains a solution of cost no greater than

(a2 + b2) Asg∗ + b2 Λ which consists of no more than(a1 + a2
b1
b2

Asg∗

Λ ) k medians.

The algorithmIM(k) (Fig. 4 in the Appendix) operates in phases usingIFL as a building block.
Phasei is characterized by an upper boundΛi on the optimal assignment cost of the demands considered
in the current phase.IM(k) invokesIFL with facility costfi = Λi

δk , whereδ = a2
b2

. Lemma 5 implies that
as long asΛi is a valid upper bound,IFL maintains a solution consisting of no more thanνk medians
and costing at mostµΛi, whereν, µ are appropriately chosen constants. Therefore, as soon as either
the number of medians exceedsνk or the cost exceedsµΛi, we can be sure that the optimal cost has
also exceededΛi. Then,IM(k) merges the medians produced by the current phase with the medians
produced by the previous phases, increases the upper bound by a constant factor, and proceeds with the
next phase. The algorithmIM(k) is deterministic and runs inO(n2k) time andO(n) space. The proof of
the following theorem follows from Lemma 5. The details can be found in the Appendix, Section A.10.

Theorem 2. The algorithmIM(k) achieves a constant performance ratio usingO(k) medians.

The randomized algorithmRIM(k) (Fig. 5 in the Appendix) usesIFL and Gather as building
blocks. The algorithmGather (Fig. 6 in the Appendix), which is actually a modification of the algo-
rithm PARA CLUSTER [6], is made up ofO(log n) independent invocations of Meyerson’s randomized
algorithm [19] with facility costf̂i = Λi

k(logn+1) . The algorithmRIM(k) usesGather to generate a mod-
ified instance which can be represented in a space efficient manner. The modified instance contains the
same number of different unit demands, which now occupy onlyO(k log2 n) different locations. Then,
RIM(k) usesIFL with facility costfi = Λi

δk to cluster the modified instance.
For an incremental implementation, each new demand is first moved to a gathering point byGather.

Then, a new demand located at the corresponding gathering point is given toIFL, which assigns it to
a median. Both actions are completed before the next demand is considered. The current phase ends if
either the number of gathering points, the gathering cost, the number of medians, or the assignment cost
on the modified instance become too large.

We should emphasize thatIFL treats the demands moved to the same gathering point byGather
asdifferent demandsand may put them in different clusters4. In other words, the output ofGather is
regarded as a sample taken from the points of the metric space and not as a first-level clustering. This
sample is only used to improve the time and space efficiency ofIFL. On the other hand, the solution
produced byIFL on the modified instance can be directly translated into a hierarchical clustering of the
original instance.

Since the demands considered byIFL occupy onlyO(k log2 n) different locations,RIM(k) can be
implemented inO(nk2 log2 n) time andO(k2 log2 n) space. Similarly to the analysis of [6], we can
prove that the gathering step increases the performance ratio by no more than a constant factor whp. In
contrast toIM(k) which does not require any advance knowledge ofn, RIM(k) needs to know a constant
factor approximation tolog n in advance. The details can be found in Section A.11.

Theorem 3. The algorithmRIM(k) runs inO(nk2 log2 n) time andO(k2 log2 n) space and achieves a
constant performance ratio whp. usingO(k) medians.

4 This actually increases the algorithm’s time and space complexity by an additional factor ofk.

11



4 Open Problems

An interesting open problem is to determine whether there exists a time and space efficient incremental
algorithm fork-Median which does not assume any advance knowledge ofn and achieves a constant per-
formance ratio usingO(k) medians. Another interesting research direction is to improve the constants
involved in the performance ratio ofIFL. For isolated coalitions, the performance ratio can be signifi-
cantly improved by a careful analysis. On the other hand, the analysis of non-isolated coalitions increases
the performance ratio by a large constant additive term. In addition to a really careful analysis, some new
ideas concerning the analysis of non-isolated coalitions are required for establishing a performance ratio
of practical interest.
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A Appendix

A.1 Basic Properties

The Proof of Lemma 1.We assume that there exists a facilityw such thatd(cw, w) > d(Fw,cw)
3 , and we

show that this assumption contradicts to the add-optimality ofF ∗, i.e., if there exists such a facilityw,
then

f +
∑
u∈Bw

d(u,w) ≤
∑
u∈Bw

(
1
βd(Fw, u) + d(u,w)

)
<
∑
u∈Bw

d∗u (2)

where the first inequality follows fromPot(Bw) =
∑
u∈Bw

d(Fw, u) ≥ βf . In other words, we could
decrease the total cost ofF ∗ by opening a new facility atw. For everyu ∈ Bw, we boundd∗u from below
in terms ofd(u,w) andd(Fw, u). We recall thatBw = Ball(w, d(Fw,w)

x ) ∩ L is the set of unsatisfied
demands contributing to the opening cost ofw. Thus, for everyu ∈ Bw,

d(u,w) ≤ d(Fw,w)
x ≤ d(cw,w)

x + d(Fw,cw)
x < 4

xd(cw, w) (3)

where the last inequality follows from the assumption thatd(w, cw) > d(Fw,cw)
3 . In addition, for every

u ∈ Bw,

d∗u = d(cu, u) ≥ d(cu, w)− d(u,w) > d(cw, w)− 4
xd(cw, w) = x−4

x d(cw, w) (4)

where the second inequality follows from Ineq. (3) and the fact thatw is mapped tocw instead ofcu.
Using Ineq. (3) and Ineq. (4) , we obtain the following lower bound ond∗u in terms ofd(u,w).

d(u,w) < 4
xd(cw, w) < 4

x
x
x−4d

∗
u = 4

x−4d
∗
u (5)

We also obtain the following lower bound ond∗u in terms ofd(Fw, u).

d(Fw, u) ≤ d(Fw, cw) + d(cw, w) + d(u,w) < 4(x+1)
x d(cw, w) < 4(x+1)

x−4 d∗u (6)

where the second inequality follows from the Ineq. (3) and the hypothesis thatd(cw, w) > d(Fw,cw)
3 , and

the third inequality from Ineq. (4). Using inequalities (5) and (6) and assuming that1
β

4(x+1)
x−4 + 4

x−4 ≤ 1,
we obtain Ineq. (2), which contradicts to the add-optimality ofF ∗. ut

The Proof of Proposition 1.To show thatBall(w′, x
x−3m(w′)) is included inBall(w, x

x−3m(w)), we
apply the following proposition forp = w.

Proposition 2. Let w be a facility merged with a new facilityw′. Then, for every pointp, d(w′, p) +
x
x−3 m(w′) ≤ d(w, p) + x

x−3 m(w).

Proof.Sincew is merged withw′, d(w,w′) ≤ m(w). Therefore,

d(w′, p) + x
x−3 m(w′) ≤ d(w, p) + d(w,w′) + x

x−3
3
x d(w,w

′)

= d(w, p) + (1 + 3
x−3) d(w,w′) ≤ d(w, p) + x

x−3m(w) ,

where the first inequality follows fromm(w′) ≤ m(1)(w′) ≤ 3
x d(w,w

′), sincew ∈ Fw′ . ut

A.2 Facility Cost

Proposition 3. For every unsupported facilityw mapped tocw, d(cw, w) < 4
3(x−4) d(Fw, cw).

Proof.Sincew is an unsupported facility and
∑
u∈Bw

d∗u <
1
3x βf ≤

1
3x

∑
u∈Bw

d(Fw, u), there must be
at least one demandu ∈ Bw such thatd∗u <

1
3x d(Fw, u). Let cu be the optimal center the demandu is

mapped to. Then,d∗u = d(cu, u) < 1
3x−1 d(Fw, cu). We first establish that bothd(cw, w) andd(cu, w)

are bounded by 4x−1
(3x−1)(x−1) d(Fw, cu).

d(cu, w) ≤ d(w, u) + d(cu, u) ≤ d(Fw,w)
x + d(cu, u) <

d(Fw,cu)
x + d(cu,w)

x + d(Fw,cu)
3x−1 .
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Therefore,d(cw, w) ≤ d(cu, w) < 4x−1
(3x−1)(x−1)d(Fw, cu), where the first inequality holds becausew

is mapped tocw instead ofcu. Since bothd(cw, w) andd(cu, w) are small fractions ofd(Fw, cu), the
distancesd(Fw, cw) andd(Fw, cu) cannot differ by two much. In particular,

d(Fw, cu) ≤ d(Fw, cw) + d(cw, w) + d(cu, w) < d(Fw, cw) + 2 4x−1
(3x−1)(x−1) d(Fw, cu) .

Therefore,d(cw, w) < 4x−1
3x2−12x+3

d(Fw, cw) < 4
3(x−4) d(Fw, cw). ut

Proposition 4. Letx ≥ 16. For every unsupported facilityw mapped tocw,m(1)(w) ≥ 3
2 d(cw, w).

Proof.We first boundrw, i.e., the radius ofBw, from below:

rw = d(Fw,w)
x ≥ 1

x(d(Fw, cw)− d(cw, w)) > 1
x(3(x−4)

4 − 1)d(cw, w) ,

where the last inequality follows from Proposition 3. Sincem(1)(w) is equal to3 rw, we conclude that
m(1)(w) > 9x−48

4x d(cw, w) ≥ 3
2d(cw, w), where the last inequality holds for everyx ≥ 16. ut

Proposition 5. Letψ ≥ 6β
2β−3 . For every facilityw,m(2)(w) ≥ 3

2 d(cw, w).

Proof.The proof is similar to the proof of Lemma 1. To reach a contradiction, we assume thatm(2)(w)
is less than32d(cw, w). LetB(2) = Ball(w, 3d(cw,w)

2ψ )∩ Init(w). Since we have assumed thatm(2)(w) <
3
2 d(cw, w), it must be|B(2)| · 3d(cw,w)

2 > βf by the definition ofm(2)(w) (see also Fig. 1). Using this
inequality, we will establish that

f +
∑
u∈B(2) d(u,w) <

∑
u∈B(2)( 3

2βd(cw, w) + d(u,w)) ≤
∑
u∈B(2) d∗u (7)

which contradicts to the add-optimality ofF ∗. We first observe that

d∗u = d(cu, u) ≥ d(cu, w)− d(u,w) ≥ d(cw, w)− d(u,w) .

Since for everyu ∈ B(2), d(u,w) ≤ 3d(cw,w)
2ψ , we obtain thatd(cw, w) ≤ 2ψ

2ψ−3d
∗
u andd(u,w) ≤

3
2ψ−3d

∗
u. Using the inequalities above and assuming that3

2β
2ψ

2ψ−3 + 3
2ψ−3 ≤ 1, we obtain Ineq. (7). ut

A.3 The Configuration Distance is Non-Increasing

Proposition 6. For every pointp, the quantityg(p) = minw∈F {d(w, p)+ x
x−3 m(w)} is non-increasing

with time.

Proof. Let w be a facility inF . As long asw remains open, the quantityd(w, p) + x
x−3 m(w) cannot

increase because the algorithm keeps decreasingm(w) to maintain Ineq. (1). Ifw is merged with a new
facility w′, it must bed(w′, p) + x

x−3 m(w′) ≤ d(w, p) + x
x−3 m(w) by Proposition 2. ut

A.4 No Coalition Becomes Active beforeg(cK) < (ρ + 1)γ2DN(K)

A hierarchical decompositionK of F ∗ can be represented by thedecomposition treeTK, where the
nodes of the tree correspond to the sets inK and there are edges connecting each set with its maximal
subsets. The root ofTK corresponds toF ∗, and there is a leaf for each singleton set{c}, c ∈ F ∗. For
every componentK ∈ K different from the root of the decomposition treeTK, we usepK to denote the
immediate ancestor/parent ofK in TK. Throughout this section, we use the hierarchical decomposition
K and its tree representationTK interchangeably.

Next, we prove that there is a hierarchical decompositionK of F ∗ such that for any non-isolated
active coalitionK ∈ K, ρDN (K) ≤ g(cK) < (ρ + 1)γ2DN (K) (Lemma 7). The proof of Lemma 7
follows from the fact that any metric space has a hierarchical decomposition such that each component
either is relatively well-separated or has a relatively large diameter (see also [8]). For completeness, we
give a proof of this claim before we establish Lemma 7.
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Lemma 6. For any metric spaceM and anyγ ≥ 16, there is a hierarchical decompositionK ofM such
that for any setK ∈ K different fromM , eitherD(K) > D(pK)

γ2 or sep(K) > D(pK)
4γ .

Proof. Let M be any metric space, and letD = D(M). For any integeri ≥ 0, we first show thatM
can be partitioned intoleveli groupsGi1, . . . , G

i
m such that (i) for anyj1 6= j2, d(Gij1 , G

i
j2

) > D
4γi , and

(ii) for any level i groupGij , if D(Gij) >
D
γi , thenGij does not contain any subsetG ⊆ Gij such that

bothD(G) ≤ D
γi+1 andd(G,Gij \G) > D

4γi . Since leveli groups form a partitioning ofM , for anyGij ,

sep(Gij) >
D
4γi .

We inductively prove that a simple greedy procedure which introduces new groups at the next level
as long as condition (ii) is violated results in a partitioning with the desired properties. Fori = 0, M
is the only level 0 group. Given thei-th level, the next level is constructed as follows: For eachGij
of D(Gij) >

D
γi+1 (Fig. 2, large diameter groups), we setG̃ij ← Gij . While G̃ij violates (ii) for the

(i + 1)-th level (i.e., whileD(G̃ij) >
D
γi+1 and there exists aG ⊆ G̃ij such thatD(G) ≤ D

γi+2 and

d(G, G̃ij \G) > D
4γi+1 ), we create a new leveli+1 group forG, removeG from G̃ij (G̃ij ← G̃ij \G), and

iterate. We also create a new leveli + 1 group consisting of the points remaining iñGij after the loop.
The leveli+ 1 groups created fromGij form a partitioning of it and areGij ’s children. IfD(Gij) ≤ D

γi+1 ,

Gij has a single child at leveli+ 1 which is identical to it (Fig. 2, small diameter groups).

It is straight-forward that the above procedure results in leveli + 1 groups which fulfill condition
(ii). Moreover, since for anyj1 6= j2, d(Gij1 , G

i
j2

) > D
4γi , any child ofGij1 must be at distance greater

than D
4γi >

D
4γi+1 from any child ofGij2 . As for the distance between different children ofGij , when a

subsetG is removed, any point inG is at distance greater thanD
4γi+1 from the points remaining iñGij .

For anyG′ removed beforeG, it must bed(G′, G) > D
4γi+1 , because the distance betweenG′ andG was

considered whenG′ was removed. Since the quantityD
γi is decreasing withi, we eventually reach a level

ν such that all the levelν groups consist of a single point.

Level i groups are further partitioned intolevel i componentsKi
1, . . . ,K

i
m such that for anyj, (i)

D(Ki
j) ≤ D

γi , and (ii) eitherD(Ki
j) >

D
γi+1 or sep(Ki

j) >
D
4γi . To ensure the hierarchical structure,

we proceed inductively in a bottom-up fashion. Each levelν group consists of a single point. Hence,
we create a single levelν component for each levelν group. We inductively assume the collection
Ki+1
j = {K1, . . . ,Km} consisting of all the leveli + 1 components the children ofGij are partitioned

in. Ki+1
j is a partitioning ofGij and, for eachK ∈ Ki+1

j , D(K) ≤ D
γi+1 , becauseK is a leveli + 1

component.

If D(Gij) ≤ D
γi , we create a single leveli component for the leveli groupGij (Fig. 2, (a) and

(b)). We recall thatsep(Gij) >
D
4γi . If D(Gij) >

D
γi , we show thatGij can be partitioned into leveli

components of diameter in( D
γi+1 ,

D
γi ] which are obtained by merging the leveli+1 components ofKi+1

j .

Intuitively, this is true becauseGij does not contain any subsetG ⊆ Gij such that bothD(G) ≤ D
γi+1

andd(G,Gij \G) > D
4γi (i.e.,Gij does not contain any small-diameter subsets which are well-separated,

Fig. 2, (c)). In other words, for eachK ∈ Ki+1
j , there exists aK ′ ∈ Ki+1

j such thatd(K,K ′) ≤ D
4γi .

To merge the leveli + 1 components ofKi+1
j , we maintain two disjoint collectionsZ1 andZ2. Z1

contains components of diameter no greater thanD
γi+1 , whileZ2 contains components of diameter greater

than D
γi+1 obtained by merging some of the components inZ1. Initially, Z1 = Ki+1

j .

While there existK1,K2 ∈ Z1 such thatd(K1,K2) ≤ D
4γi , K1 andK2 are removed fromZ1 and

merged into a new componentK, K = K1 ∪K2. If D(K) ≤ D
γi+1 , K is put inZ1, otherwise,K is put

in Z2. Due to the choice ofK1 andK2, for anyK ∈ Z2,D(K) ≤ D
γi

(
1
4 + 2

γ

)
.
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Fig. 2.The hierarchical decomposition of Lemma 6.

The merge procedure above cannot terminate with an empty collectionZ2. If Z2 were empty,Z1

would contain more than one component, becauseD(Gij) >
D
γi and, for anyK ∈ Z1, D(K) ≤ D

γi+1 .

In addition, for anyK1,K2 ∈ Z1, d(K1,K2) > D
4γi , otherwise the merge procedure would not have

terminated. Hence,Gij would contain a subsetK ⊆ Gij such that bothD(K) ≤ D
γi+1 andd(K,Gij\K) >

D
4γi , which is a contradiction.

Therefore, the merge procedure always terminates with a non-empty collectionZ2. If Z1 is non-
empty, everyK ∈ Z1 is associated with a componentK ′ ∈ Z2 such thatd(K,K ′) ≤ D

4γi . For any

K ∈ Z1, such aK ′ ∈ Z2 must exist, because otherwise, it would be bothD(K) ≤ D
γi+1 andd(K,Gij \

K) > D
4γi , which is a contradiction.

Then, each component inZ2 is merged with the components ofZ1 associated with it. The resulting
components have diameter greater thanD

γi+1 , because all of them include a single component ofZ2. In

addition, their diameter cannot exceedD
γi+1 + D

4γi + D
γi

(
1
4 + 2

γ

)
+ D

4γi + D
γi+1 = D

γi

(
3
4 + 4

γ

)
, because

the diameter of any component inZ1 is at most D
γi+1 , the diameter of the component inZ2 is at most

D
γi

(
1
4 + 2

γ

)
, and any component ofZ1 has been associated with a component ofZ2 at distance no greater

than D
4γi . Forγ ≥ 16, D

γi

(
3
4 + 4

γ

)
is no greater thanD

γi .

By eliminating multiple occurrences of the same component at different levels (Fig. 2, (d)), we obtain
a hierarchical decomposition/complete laminar set system onM . We conclude the proof by establishing
that this decomposition has the desired properties. LetK ′ be any component different from the root
(K ′ 6= M ) and leti + 1, i ≥ 0, be the first level (i.e., the level with the smallest index) at whichK ′

appears before the elimination of multiple occurrences. SinceK ′ appears at leveli + 1, but it does not
appear at leveli, there must be a leveli componentK such thatK ′ ⊂ K. Then,K ′ is a child ofK in the
hierarchical decomposition.

We claim thatD(K) ∈ ( D
γi+1 ,

D
γi ]. To prove the claim, we consider the leveli groupGK containing

K. If D(GK) > D
γi , GK is partitioned into leveli components of diameter in( D

γi+1 ,
D
γi ] and the claim

follows. Otherwise,GK = K, since we create a single leveli component for each leveli group of
diameter at mostD

γi . In addition, ifD(K) = D(GK) were at most D
γi+1 , GK would also exist as a

level i+ 1 group, andK would exist as a leveli+ 1 component. This contradicts to the hypothesis that
K ′, which is a proper subset ofK, appears as a leveli + 1 component. SinceD(K) ∈ ( D

γi+1 ,
D
γi ]

andK ′ is a level i + 1 component, we conclude that (i)D(K ′) ≤ D
γi+1 < D(K), and (ii) either

D(K ′) > D
γi+2 ≥ D(K)

γ2 or sep(K ′) > D
4γi+1 ≥ D(K)

4γ . ut
Lemma 6 states that every metric space has a hierarchical decomposition such that each component

either is well-separated or has a large diameter. Well-separated components become isolated coalitions
soon after they have become active, while large diameter components stop being active coalitions (be-
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come broken) soon after they have become active. Therefore, no coalition can become active long before
it becomes either isolated or broken.

Lemma 7. For everyγ ≥ 12ρ, there is a hierarchical decompositionK of F ∗ such that for any non-
isolated active coalitionK ∈ K, ρDN (K) ≤ g(cK) < (ρ+ 1)γ2DN (K).

Proof. We recall thatDN (K) = max{D(K), 1
3ρ sep(K)}. For the lower bound, we observe that the

coalitionK becomes either isolated or broken as soon asg(cK) < ρDN (K). For the upper bound, we
first observe that the root ofTK, which isF ∗, is an isolated coalition as long as it remains active. Hence,
we can restrict our attention to the coalitions inTK which are different from the root.

A coalitionK different from the root cannot become active before its parent-coalitionpK becomes
broken. Therefore, at the momentK becomes active, it must beg(cK) ≤ d(cK , cpK ) + g(cpK ) <
(ρ+ 1)D(pK), where the first inequality follows from the definition of the configuration distance.

LetK be the hierarchical decomposition ofF ∗ implied by Lemma 6. Next, we show that for anyK ∈
K different from the rootF ∗, γ2DN (K) = γ2 max{D(K), 1

3ρ sep(K)} > D(pK). If D(K) > D(pK)
γ2 ,

thenγ2DN (K) ≥ γ2D(K) > D(pK). Otherwise, by Lemma 6, it must besep(K) > D(pK)
4γ . Hence,

γ2DN (K) ≥ γ2

3ρ sep(K) > γ2

3ρ
D(pK)

4γ ≥ D(pK), where the last inequality holds for anyγ ≥ 12ρ. ut

A.5 Preliminaries

In this section, we prove several propositions which are repeatedly used in the analysis of isolated and
non-isolated coalitions. In the following, we sometimes say that a facilityw is mapped to an optimal
center in a set of optimal centersK ∈ K instead of simply saying thatw is mapped to the coalitionK,
because we want to also consider facilities which open either beforeK becomes active or afterK has
become broken.

Proposition 7. LetK ∈ K be a set of optimal centers with representativecK , and letw be a facility
mapped to an optimal center inK. For everyx ≥ 10, (A) d(cK , w) < 2

5 max{d(Fw, cK), λD(K)}, and
(B) g(cK , w) < max{d(Fw, cK), λD(K)}.
Proof.The first inequality follows from Lemma 1 andd(cK , cw) ≤ D(K). For the second inequality, us-
ingm(w) ≤ 3

x d(Fw, w), we show thatg(cK , w) ≤ x
x−3 d(cK , w)+ 3

x−3 d(Fw, cK). Then, the inequality
follows from (A). ut
Proposition 8. LetK ∈ K be a set of optimal centers with representativecK , and letw be an unsup-
ported facility mapped to an optimal center inK. For everyx ≥ 16, if d(cK , w) ≥ λD(K), thenw is
merged with the first new facility which is also mapped to an optimal center inK and opens whilew is
still open.

Proof.The proof is similar to the proof of Lemma 2. Using Proposition 4, Proposition 5, andd(cK , cw) ≤
D(K), we show thatm(w) ≥ 7

5d(w, cK). Then, the proposition follows from Proposition 7.A. ut
Proposition 9. LetK ∈ K be a set of optimal centers with representativecK , and letw be a facility
whose neighborhoodBw includes a demandu such thatcu ∈ K andd∗u <

1
λ max{d(Fw, cK), λD(K)}.

Then,d(cK , w) < 3
x max{d(Fw, cK), λD(K)}.

Proof. Immediate consequence of (i)d(cK , cu) ≤ D(K), (ii) d(u,w) ≤ d(Fw,w)
x becauseu ∈ Bw, and

(iii) the upper bound ond∗u required by the hypothesis of the proposition. ut
Proposition 10. LetK ∈ K be a set of optimal centers with representativecK , and letw be a facility
mapped to an optimal center not inK. If d(Fw, cK) < 1

3 sep(K), thend(cK , w) > 5
3 d(Fw, cK).

Proof.Consequence ofd(cK , cw) ≥ sep(K), becausecK ∈ K andcw 6∈ K, and Lemma 1. ut
Proposition 11. LetK ∈ K be a set of optimal centers with representativecK , and letw be a facility
mapped to an optimal center not inK. Then,d(cK , w) ≥ 1

2sep(K).
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Proof. It is d(cK , w) ≥ d(cw, w), becausew is mapped tocw instead ofcK , andd(cK , cw) ≥ sep(K),
becausecK ∈ K andcw 6∈ K. ut

Proposition 12. LetK ∈ K be a set of optimal centers with representativecK , and for someδ > 0, let
w be a facility such thatd(cK , w) < λδ. For everyx ≥ 18 andψ ≤ 5, if m(w) < ψ(λ + 2)δ, then
g(cK) < ρδ.

Proof. Immediate consequence of the definition ofg(cK) and the choice ofρ = (ψ + 2)(λ+ 2). ut
Proposition 13. For every facilityw,m(w) ≤ βf .

Proof.The setInit(w) always contains the demand which opens the facilityw and is located at the same
point withw. Therefore,|Init(w) ∩ Ball(w, m(w)

ψ )| ≥ 1. The proposition follows from Ineq. (1). ut

Proposition 14. Letx ≥ 9. For every demandu, du ≤ 2.5βf .

Proof. The proposition follows fromm(w) ≤ βf , the fact that the initial assignment cost of every
demand is less thanβf , and the definition of the final assignment cost. ut
Proposition 15. Letu be a demand currently assigned to a facilityw, and letc be an optimal center in
F ∗. Then,du ≤ d(c, u) + g(c, w).
Proof. Immediate consequence ofdu ≤ d(u,w) + x

x−3 m(w) and the definition ofg(c, w). ut
Proposition 16. Letu be a demand initially assigned to a facilityw. For everyx ≥ 9,
du ≤ 4 d(F ′

u \ {w}, u).
Proof. Recall thatF ′

u is the (updated) algorithm’s facility configuration atu’s assignment time. Wlog.
we assume thatF ′

u \ {w} 6= ∅, since the bound is trivial otherwise. Letw′ ∈ F ′
u be the second nearest

facility to u, i.e., d(u,w′) = d(F ′
u \ {w}, u). Sinceu is initially assigned tow instead ofw′ it must

be d(u,w) ≤ d(u,w′), which implies thatd(w,w′) ≤ 2 d(u,w′). The final assignment cost ofu is
du ≤ d(u,w) + x

x−3 m(w) ≤ d(u,w′) + x
x−3 m(w).

By hypothesis, bothw andw′ are open atu’s assignment time. Ifw opens beforew′, it must be
m(w) < d(w,w′) ≤ 2 d(u,w′), sincew would have been merged withw′ otherwise. Therefore, for
everyx ≥ 9, du < d(u,w′) + 2x

x−3 d(u,w
′) ≤ 4 d(u,w′). If w opens afterw′, for everyx ≥ 9,

x
x−3 m(w) ≤ x

x−3
3
x d(w

′, w) ≤ 6
x−3 d(u,w

′) ≤ d(u,w′), becaused(Fw, w) ≤ d(w′, w), sincew′ opens
beforew and is still open atu’s assignment time. Hence,du ≤ d(u,w′) + x

x−3m(w) ≤ 2 d(u,w′). ut
Proposition 17. LetK be a coalition with representativecK , and letu be a demand mapped toK. Then,
for everyx ≥ 9, du ≤ 4 (d(cK , u) + g′u(cK)) ≤ 4 (d(cK , u) + gu(cK)).
Proof.Recall thatgu(cK) denotes the configuration distance ofcK just beforeu arrives andg′u(cK) de-
notes the configuration distance ofcK atu’s assignment time (i.e., according to the updated algorithm’s
configuration). The second inequality follows fromg′u(cK) ≤ gu(cK), because the configuration dis-
tance ofcK is non-increasing with time. For the first inequality, letw be the facility minimizing the
configuration distance ofcK atu’s assignment time (i.e.,g′u(cK) = g′u(cK , w)). If u is initially assigned
to w, using Proposition 15, we obtain thatdu ≤ d(cK , u) + g′u(cK , w) = d(cK , u) + g′u(cK). If u
is initially assigned to another facilityw′, Proposition 16 implies thatdu ≤ 4 d(u,w). Furthermore,
d(u,w) ≤ d(cK , u) + d(cK , w) ≤ d(cK , u) + g′u(cK , w) = d(cK , u) + g′u(cK). ut

A.6 Isolated Active Coalitions

Throughout this section, letK be an isolated active coalition with representativecK . As before, we
sometimes say that a facilityw is mapped to an optimal center inK instead of simply saying thatw
is mapped toK, because we want to also consider facilities which open either beforeK becomes an
isolated active coalition or afterK has become broken/not active.

Basic Properties.We start by proving the main properties of a facility spending some time as the nearest
facility to the representativecK of an isolated active coalitionK.
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Proposition 18. Letw be a facility which spends some time as the nearest facility to the representative
cK of an isolated active coalitionK. Then,

A. d(cK , w) < 1
3 sep(K) andw is mapped to an optimal center inK.

B. AfterK has become isolated,g(cK , w) < 1
3 sep(K).

C. w can be merged only with a new facility mapped to an optimal center inK.

Proof. We observe that it suffices to establish that each of the above claims holds as long asK is an
isolated active coalition andw is the nearest facility tocK . Then, (A) holds because the mapping of a fa-
cility to an optimal center does not depend on the algorithm’s configuration, (B) holds becauseg(cK , w)
is non-increasing, and (C) holds becausem(w) is non-increasing.
A. Let us consider any point in time such thatK is an isolated coalition andw is the nearest facility
to cK . Then, it must bed(cK , w) = d(F, cK) ≤ g(cK) < 1

3 sep(K). The second claim follows from
Proposition 11.
B. To reach a contradiction, let us assume that there is a point in time whenK is an isolated active
coalition,w is the nearest facility tocK , and g(cK , w) ≥ 1

3 sep(K). SinceK is an isolated active
coalition, there must exist some other facilityw′ which is open and satisfies the following inequalities at
that particular point in time.

d(cK , w) ≤ d(cK , w′) ≤ g(cK , w′) < 1
3 sep(K) ≤ g(cK , w) .

By Proposition 11, bothw andw′ are mapped to optimal centers inK. To establish the contradic-
tion, we consider the moment that the latest ofw, w′ opens. Ifw′ opens afterw, eitherd(cK , w) ≥
λD(K), in which cased(cK , w′) < 2

5d(cK , w) (w′ is closer tocK thanw) by Proposition 7.A, or
d(cK , w) < λD(K), andg(cK) < λD(K) (w′ has madeK broken) by Proposition 7.B. Ifw opens after
w′, theng(cK , w) < max{d(cK , w′), λD(K)} by Proposition 7.B. Therefore, depending on whether
d(cK , w′) ≥ λD(K) or not, eitherg(cK , w) < d(cK , w′) < 1

3 sep(K) orw has madeK broken.
C. There is a point in time thatw is open andK is an isolated active coalition. After that time,w can
be merged only with a new facility at distance less than1

3 sep(K) from cK . The claim follows from
Proposition 11. ut

The following proposition establishes that we have correctly defined the final assignment cost of a
demandu which is mapped to an isolated active coalitionK and is currently assigned to the nearest
facility to cK .

Proposition 19. Letu be a demand which is mapped to an isolated active coalitionK and is currently
assigned to a facilityw. If w is currently the nearest facility tocK , thenu’s actual assignment cost can
never exceed(1 + 1

λ) max{d(cK , w), λD(K)}+ d∗u.

Proof. As long asw is not merged with a new facility,u’s actual assignment cost isd(u,w) and the
upper bound holds becaused(cK , cu) ≤ D(K), sincecu ∈ K. If w is merged with a new facility
w′, by Proposition 18.C,w′ must be mapped to an optimal center inK. Hence, by Proposition 7.B,
g(cK , w′) < max{d(cK , w), λD(K)}. Then, the upper bound holds becauseu is now assigned tow′

and by Proposition 1,u’s actual assignment cost can never exceedd(u,w′)+ x
x−3m(w′) ≤ d∗u+D(K)+

g(cK , w′) ≤ (1 + 1
λ) max{d(cK , w), λD(K)}+ d∗u. ut

Proposition 20. Let w′ be a new facility mapped to an isolated active coalitionK. Then eitherw′

makesK broken ord(cK , wK) ≥ λD(K), d(cK , w′) < 2
5 d(cK , wK), and the location ofwK changes

tow′
K = w′.

Proof. If d(cK , wK) < λD(K), Proposition 7.B implies thatg(cK , w′) < λD(K) andw′ makes
K broken. Hence, ifK remains active, it must bed(cK , wK) ≥ λD(K). Then, by Proposition 7.A,
d(cK , w′) < 2

5 d(cK , wK). Therefore,w′ is much closer tocK thanwK and the location ofwK must
change tow′

K = w′. ut
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Proposition 21. LetK be an isolated active coalition, letwK = w be the nearest facility tocK , and let
w′ be a new facility mapped toK. If w′ does not makeK broken, thenw will never become again the
nearest facility to any of the optimal centers inK.

Proof. If w′ does not makeK broken, Proposition 20, implies thatd(cK , w) ≥ λD(K). Moreover,
d(cK , w′) < 2

5 d(cK , w), and the location of the nearest facility tocK must change fromwK = w to
w′
K = w′. Similarly to the proof of Proposition 7.B, we can show that for every optimal centerc ∈ K,

g(c, w′) < (2
5 + 1

λ + 7
5

3
x−3) d(cK , w) ≤ (2

5 + 1
λ + 7

5
3

x−3)(1 + 1
λ) d(c, w) < d(c, w), where the last

inequality holds for everyx ≥ 11 (recall thatλ = 3x+2). Hence, afterw′ opens, there will always exist
a facility closer toc thanw. ut
Lemma 8. LetK be an isolated active coalition when a new demandu arrives. Ifu is not mapped to
K, then neither the location ofwK nor the value ofg(cK) can change.

Proof. If a new facilityw opens whenu arrives,w is located at the same point withu and is also not
mapped toK. Then, the value ofg(cK) cannot decrease becauseg(cK) < 1

3 sep(K), while g′(cK , w) ≥
d(cK , w) = d(cK , u) ≥ 1

2 sep(K) (Proposition 11). In addition, the location ofwK cannot change,
becausew is not closer tocK thanwK and the facility at the current location ofwK can only be merged
with a new facility mapped toK (Proposition 18).

If no new facilities open whenu arrives, the location ofwK cannot change. Next, we show thatg(cK)
cannot decrease because ofu. Letw be the facilityu is initially assigned to. Then, only the configuration
distance betweencK andw can be affected byu. To reach a contradiction, we assume that afteru’s initial
assignment tow, it becomes

g′(cK , w) = d(cK , w) + x
x−3 m

′(w) < g(cK) < 1
3 sep(K) .

Therefore, it must bed(cK , w) < 1
3 sep(K) andm′(w) < x−3

3x sep(K). In addition, sinced(cK , u) ≥
1
2 sep(K), it must bed(u,w) > 0. The configuration distanceg(cK , w) decreases only if the initial
assignment ofu to w causes Ineq. (1) to be violated. Then, the algorithm decreasesm(w) to restore
the invariant. Ineq. (1) can be violated only ifd(u,w) ≤ m(w)

ψ andu is included inBall(w, m(w)
ψ ).

The new merge radiusm′(w) cannot be less thanψ(x−3)
x d(u,w), because ifm′(w) = ψ(x−3)

x d(u,w),
thenm′(w)

ψ < d(u,w). Hence,u is no longer included inBall(w, m
′(w)
ψ ), and the invariant is restored.

Therefore,ψ(x−3)
x d(u,w) ≤ m′(w) < x−3

3x sep(K), which implies thatd(u,w) < 1
3ψ sep(K). Con-

sequently, ifg′(cK , w) could drop below1
3 sep(K) because ofu’s initial assignment tow, it would

be d(cK , w) < 1
3 sep(K) and d(u,w) < 1

3ψ sep(K). Therefore, for everyψ ≥ 3, it would be

d(cK , u) < 1
2 sep(K), which is a contradiction. ut

Lemma 9. LetK be an isolated active coalition, and letwK denote the nearest facility tocK .

A. wK is at least53 times closer tocK than any other facility, i.e.,d(cK , wK) < 3
5d(F \ {wK}, cK).

B. If d(cK , wK) < λD(K), thend(F \ {wK}, cK) > ρD(K).
C. Every inner demand of the isolated active coalitionK which does not makeK broken is initially

assigned tow′
K , i.e., the nearest facility tocK at the demand’s assignment time.

Proof. Before we provide a formal proof, let us give the intuition behind this lemma. As long asK is
an isolated active coalition, the location ofwK cannot change unless a new facility mapped toK opens
(Lemma 8). Hence, each time the location of the nearest facility tocK changes, either the new facility
makesK broken or the new locationw′

K is at least 2.5 times closer tocK than the previous locationwK
(Proposition 20). On the other hand, a facility not mapped to an optimal center inK must be at least53
times further fromcK thanwK (Proposition 10). Moreover, since inner demands ofK are included in a
small ball aroundcK , every inner demand ofK is initially assigned to the nearest facility tocK .
A. Similarly to the proof of Proposition 18.B, let us assume that there is a point in time such thatK is an
isolated active coalition,w = wK is the nearest facility tocK , and there is a facilityw′ ∈ F \ {w} such
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thatd(cK , w′) ≥ d(cK , w) ≥ 3
5d(cK , w

′). To establish the contradiction, we consider the moment that
the latest ofw, w′ opens.

If w′ opens afterw andw′ is mapped to an optimal center inK, then eitherd(cK , w) ≥ λD(K),
in which cased(cK , w′) < 2

5 d(cK , w) (w′ is closer tocK thanw) by Proposition 7.A, ord(cK , w) <
λD(K), andg(cK , w′) < λD(K) (w′ has madeK broken) by Proposition 7.B. Ifw′ opens afterw
andw′ is mapped to an optimal center not inK, thend(cK , w) < 3

5 d(cK , w
′) by Proposition 10, since

d(cK , w) < 1
3 sep(K) by Proposition 18.A.

On the other hand, by Proposition 18.A, the facilityw is mapped to an optimal center inK. Hence,
if w opens afterw′, then eitherd(cK , w′) ≥ λD(K), in which cased(cK , w) < 2

5 d(cK , w
′) by Proposi-

tion 7.A, ord(cK , w′) < λD(K), andg(cK , w) < λD(K) (w has madeK broken) by Proposition 7.B.
B. The proof is similar to the proof of (A). The details can be found in [9].
C. Let u be an inner demand ofK which does not makeK broken. Let alsow′

K be the nearest facility
to cK andF ′ be the algorithm’s facility configuration atu’s assignment time. A demandu mapped to an
isolated active coalitionK is inner ifd∗u <

1
λ max{d(cK , w′

K), λD(K)}.
If d(cK , w′

K) ≥ λD(K), thend(u,w′
K) ≤ d∗u +D(K) + d(cK , w′

K) < (1 + 2
λ)d(cK , w′

K), while
for every other facilityw ∈ F ′ \ {w′

K}, d(u,w) ≥ d(cK , w) − D(K) − d∗u > (5
3 −

2
λ) d(cK , w′

K) >
d(u,w′

K), where the second inequality follows from (A), and the third inequality holds for everyx ≥ 2
andλ = 3x+ 2.

If d(cK , w′
K) < λD(K), thend(u,w′

K) ≤ d∗u + D(K) + d(cK , w′
K) < (λ + 2)D(K), while for

every other facilityw ∈ F ′ \{w′
K}, d(u,w) ≥ d(cK , w)−D(K)−d∗u > ((ψ+2)(λ+2)− 2)D(K) >

d(u,w′
K), where the second inequality follows from (B) (recall thatρ = (ψ + 2)(λ+ 2)). In both cases,

d(u,w′
K) < d(u, F ′ \ {w′

K}) andu is initially assigned tow′
K , i.e., the nearest facility tocK at u’s

assignment time. ut
Lemma 10. Letu be an outer demand of the isolated active coalitionK which does not makeK broken.
Then,du ≤ 4(λ+ 2)d∗u.

Proof. It is d∗u ≥ 1
λ max{d(cK , w′

K), λD(K)} becauseu is an outer demand mapped to an isolated
active coalition. Ifu is initially assigned tow′

K (i.e., the nearest facility tocK at u’s assignment time),
u’s final assignment cost isdu ≤ (1 + 1

λ) max{d(cK , w′
K), λD(K)} + d∗u ≤ (λ + 2) d∗u. Otherwise,

let ŵ 6= w′
K be the facilityu is initially assigned to. Then, we apply Proposition 16 and obtain that

du ≤ 4 d(F ′
u \ {ŵ}, u) ≤ 4 d(u,w′

K) ≤ 4(λ+ 2) d∗u, where the second inequality follows from the fact
thatw′

K ∈ F ′
u \ {ŵ}, becausêw 6= w′

K . ut
Good Inner Demands.Letw be the facility which is currently the nearest facility tocK , i.e.,wK = w.
Let GK(w) denote the set of good inner demands ofK (i.e., the subset ofGK) whose initial assignment
takes place whilew is the nearest facility tocK . SinceGK(w) is a subset ofGK , it is empty ifK is either
non-isolated or not active. In addition,GK(w) is empty beforew opens and afterw has been merged
with a new facility. As long asw is the nearest facility tocK andK remains an isolated active coalition,
each new inner demand mapped toK is initially assigned tow (Lemma 9.C) and is added to bothGK

andGK(w). After the location of the nearest facility tocK has changed,w cannot become the nearest
facility to cK again (Proposition 21) and no new demands are added toGK(w). Next, we bound the
actual and the final assignment cost of the demands inGK(w).

Lemma 11. LetK be an isolated active coalition, and letw be the nearest facility tocK (i.e.,wK = w).
If d(cK , w) ≥ λD(K), then

∑
u∈GK(w) d(u,w) < βf and

∑
u∈GK(w) du <

λ+2
λ−2 βf .

Proof.We consider the above sums just after a new demand is added toGK(w). Let v be the demand in
GK(w) arriving last. Sincev is added toGK(w), K must be an isolated active coalition andw must be
the nearest facility tocK at v’s assignment time. Therefore, from the moment the first demand is added
to GK(w) until the assignment time ofv, no new facilities mapped toK have opened. Otherwise, by
Proposition 20 and Proposition 21, eitherK would have become broken or the location of the nearest
facility to cK would have changed andw could not become the nearest facility tocK again.
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Since (i) all the demands inGK(w) are inner demands mapped to the isolated active coalitionK, (ii)
their initial assignment takes place whilew is the nearest facility tocK and (iii) d(cK , w) ≥ λD(K),
by the definition of inner demands mapped to an isolated active coalition, we obtain that for everyu ∈
GK(w), d∗u <

1
λd(cK , w).

We first establish that just afterv has been added toGK(w), it is the case thatGK(w) ⊆ Bv =
Ball(v, rv)∩L. Letuw be the demand which is located at the same point withw and causes the algorithm
to open the facilityw. The demanduw is initially assigned tow, but is does not belong toL. We first
show thatuw 6∈ GK(w) and the demands inGK(w) arrive afterw has opened. Ifuw is not mapped
to the isolated active coalitionK, it does not belong toGK(w) by definition. Otherwise,uw cannot
be an inner demand ofK, becausew is the nearest facility tocK at uw’s assignment time andd∗uw

≥
d(cK , w)−D(K) ≥ (1− 1

λ) d(cK , w) ≥ 1
λ max{d(cK , w), λD(K)}.

Each new demand is added to the set of unsatisfied demandsL when it arrives. Next, we show that
none of the demands inGK(w) can be removed fromL before eitherK becomes broken or a new facility
mapped toK opens. More specifically, for every new facilityw′ which opens afterw and includes in its
neighborhoodBw′ some demands fromGK(w), it must bed(cK , w′) < 3

xd(cK , w) < 1
x sep(K), where

the first inequality follows from Proposition 9 and the second from Proposition 18.A. Hence,w′ must be
mapped to an optimal center inK (Proposition 11). Since no new facilities mapped toK open untilv’s
assignment time, it must be the case thatGK(w) ⊆ L.

We should also prove thatGK(w) ⊆ Ball(v, rv). We first boundrv from below.

rv = d(Fv ,v)
x = d(v,w)

x ≥ d(cK ,w)−d(cK ,cv)−d∗v
x > λ−2

x
d(cK ,w)

λ = 3
λ d(cK , w) ,

where the second equality holds because no new facility opens whenv arrives andv is initially assigned
to w (i.e., d(Fv, v) = d(F ′

v, v) = d(v, w)), the fourth inequality holds becaused(cK , cv) ≤ D(K) ≤
1
λ d(cK , w), sincecv ∈ K, andd∗v <

1
λd(cK , w), and the last equality follows fromλ = 3x+ 2. On the

other hand, since for everyu ∈ GK(w), d∗u <
1
λ d(cK , w), GK(w) has a small diameter. In particular, for

everyu ∈ GK(w), d(u, v) ≤ d(u, cu) + d(cu, cv) + d(cv, v) < 3
λ d(cK , w) < rv. Therefore,Ball(v, rv)

includes every demand inGK(w), andGK(w) ⊆ Bv.
Everyu ∈ GK(w) is added to the set of unsatisfied demandsL with a potential equal to its initial

assignment costd(u,w). This potential cannot increase becausew remains open atv’s assignment time.
Next, we prove that the potential of eachu ∈ GK(w) cannot decrease as long asK remains an isolated
active coalition andw is the nearest facility tocK . Let u be a demand inGK(w) (including v). By
Lemma 9.A, whenv arrives, it is the case thatd(cK , w) < 3

5 d(Fv \ {w}, cK). Similarly to the proof of
Lemma 9.C, cased(cK , w) ≥ λD(K), we can prove thatd(Fv \ {w}, u) ≥ d(Fv \ {w}, cK)−D(K)−
d∗u > (5

3 −
2
λ) d(cK , w) > d(u,w). Therefore, when the demandv arrives, for everyu ∈ GK(w),

d(Fv, u) = d(u,w).
The total potential inv’s neighborhoodBv must be less thanβf , becausev is initially assigned tow

instead of opening a new facility and being initially assigned there. Consequently,

βf > Pot(Bv) =
∑
u∈Bv

d(Fv, u) ≥
∑
u∈GK(w) d(Fv, u) =

∑
u∈GK(w) d(u,w) ,

where the third inequality follows fromGK(w) ⊆ Bv, and the fourth inequality from the fact that the
potential of eachu ∈ GK(w) remains equal tod(u,w) as long asK remains an isolated active coalition
andw remains the nearest facility tocK . This concludes the proof of the first part of the lemma.

As for the final assignment cost, for everyu ∈ GK(w), we bounddu using Proposition 19:

du ≤ (1 + 1
λ) max{d(cK , w), λD(K)}+ d∗u <

λ+2
λ d(cK , w) .

We conclude the proof by observing that for everyu ∈ GK(w), d(u,w) > λ
λ−2 d(cK , w). ut

Lemma 12. LetK be an isolated active coalition, and letw be the nearest facility tocK . If d(cK , w) <
λD(K), for everyx ≥ 18 and 10

3 ≤ ψ ≤ 5,
∑
u∈GK(w) d(u,w) < β

ψ f and
∑
u∈GK(w) du <

3
2 βf .
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Proof. By the definition of the setGK(w) (see also the claims (i) and (ii) at the beginning of the proof
of Lemma 11) and sinced(cK , w) < λD(K), for everyu ∈ GK(w), it must bed∗u < 2D(K). As in the
proof of Lemma 11, we consider the above sums just after a new demand is added toGK(w). Let v be
the demand inGK(w) arriving last. Sincev is added toGK(w), K must be an isolated active coalition
at v’s assignment time. Therefore, it must bem(w) ≥ ψ(λ + 2)D(K), becauseK would have become
broken otherwise (Proposition 12, forδ = D(K), x ≥ 18, andψ ≤ 5). Using Ineq. (1), we obtain that:

|Init(w) ∩ Ball(w, (λ+ 2)D(K))| · ψ(λ+ 2)D(K) ≤ βf (8)

We show that as long asw is the nearest facility tocK andK remains an isolated active coalition,
GK(w) ⊆ Init(w) ∩ Ball(w, (λ + 2)D(K)). Since all the demands inGK(w) are initially assigned
to w (Lemma 9.C),GK(w) ⊆ Init(w). In addition, for everyu ∈ GK(w), d(u,w) ≤ d∗u + D(K) +
d(w, cK) < (λ+ 2)D(K). Hence,GK(w) ⊆ Ball(w, (λ+ 2)D(K)). CombiningGK(w) ⊆ Init(w) ∩
Ball(w, (λ+ 2)D(K)) with Ineq. (8), we conclude that∑

u∈GK(w) d(u,w) < |GK(w)| · (λ+ 2)D(K) ≤ β
ψf .

As for the final assignment cost, we have shown that as long asw is the nearest facility tocK
andK remains an isolated active coalition,GK(w) ⊆ Init(w) ∩ Ball(w, m(w)

ψ ). Hence, by Ineq. (1). ,
|GK(w)| ·m(w) ≤ βf . By the definition of the final assignment cost, we obtain that∑

u∈GK(w)

du ≤
∑

u∈GK(w)

d(u,w) + x
x−3

∑
u∈GK(w)

m(w) ≤ ( 1
ψ + x

x−3)βf ≤ 3
2βf ,

where the last inequality holds for everyψ ≥ 10
3 andx ≥ 18. ut

The proof of Lemma 3.We prove that the total actual assignment cost of the good demands ofK is∑
u∈GK

d(u,wK) < 2βf + 3
∑
u∈GK

d∗u (9)

and the total final assignment cost (according to the current algorithm’s configuration) of the good de-
mands ofK is ∑

u∈GK
du < 4.5βf + 7

∑
u∈GK

d∗u (10)

We first prove Ineq. (9) by induction and then derive Ineq. (10) from Ineq. (9). Ineq. (9) is trivially
true whileGK = ∅. By definition, the set of good demandsGK is empty as long asK is either non-
isolated or not active. In addition,GK becomes empty every time the location of the nearest facility to
cK changes without the facility at the previous locationwK being merged with the new facility at the
new locationw′

K . We inductively assume that the inequality holds just before the current locationwK of
the nearest facility tocK changes. We show that the inequality remains valid until either the location of
wK changes again orK becomes broken.

Let w be the facility at the current location ofwK i.e. wK = w. By Lemma 8, the location of
wK cannot change unless a new facility mapped toK opens. Letw′ be the next facility mapped toK.
Let alsoGK be the set of good demands just beforew′ opens. We inductively assume that Ineq. (9)
holds just beforew′ opens. Wlog. we assume thatw′ does not makeK broken, since as long asK is
not active/broken,GK = ∅ and Ineq. (9) holds trivially. Therefore, by Proposition 20, it must be (i)
d(cK , w) ≥ λD(K), (ii) d(cK , w′) < 2

5 d(cK , w), and (iii) the location of the nearest facility tocK
changes fromwK = w tow′

K = w′.
If w is not merged withw′, the set of good demands becomes empty. Hence,

∑
u∈GK

d(u,w′) = 0
just afterw′ opens. Ifw is merged withw′, we show that just afterw has been merged withw′, it is the
case that

∑
u∈GK

d(u,w′) < βf + 3
∑
u∈GK

d∗u. For everyu ∈ GK , we boundd(u,w′) from above in
terms ofd(u,w) andd∗u.
d(u,w′) ≤ d∗u +D(K) + d(cK , w′) u is mapped tocu ∈ K

≤ d∗u +D(K) + 2
5 d(cK , w) Proposit. 7.A,w′ is mapped toK, d(cK , w) ≥ λD(K)

≤ d∗u + ( 1
λ + 2

5)d(cK , w) d(cK , w) ≥ λD(K)
≤ d∗u + ( 1

λ + 2
5) λ
λ−1 [d∗u + d(u,w)] d(cK , w) ≥ λD(K)⇒ d(cK , w) ≤ λ

λ−1 [d∗u + d(u,w)]
≤ 1

2 d(u,w) + 3
2 d

∗
u for everyx ≥ 5 andλ = 3x+ 2
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Before the initial assignment of the demand which causesw′ to open, the set of good demands ofK
is GK , i.e., exactly the same with the set of good demands ofK just beforew′ opens. Using the previous
bound ond(u,w′) and the inductive hypothesis, we conclude that just afterw has been merged withw′,
it is the case that

∑
u∈GK

d(u,w′) ≤ 1
2

∑
u∈GK

d(u,w)+
3
2

∑
u∈GK

d∗u <
1
2

2βf + 3
∑
u∈GK

d∗u

+
3
2

∑
u∈GK

d∗u = βf+3
∑
u∈GK

d∗u

Let G′
K be the set of good demands ofK just before eitherK becomes broken or a new facility

mapped toK opens and the location of the nearest facility tocK changes again. By the definition of the
setGK(w′) (i.e., the set of good demands ofK whose initial assignment takes place as long asw′ is the
nearest facility tocK), every inner demand added toG′

K afterw′ has opened is also added toGK(w′).
Therefore,G′

K = GK ∪ GK(w′). By Lemma 11 and Lemma 12, we know that
∑
u∈GK(w′) d(u,w

′) <
βf . Hence, as long asw′ is the nearest facility tocK andK remains an isolated active coalition, it is the
case that ∑

u∈G′
K

d(u,w′) =
∑
u∈GK

d(u,w′) +
∑

u∈GK(w′)

d(u,w′) < 2βf + 3
∑
u∈GK

d∗u .

This concludes the proof of Ineq. (9). We proceed to establish Ineq. (10).
As before, letw′ be the nearest facility tocK (i.e.,wK = w′), and letG′

K be the current set of good
inner demands ofK. We first consider the case thatd(cK , w′) ≥ λD(K). Since every demandu ∈ G′

K

is mapped to the isolated active coalitionK and is currently assigned to the nearest facility tocK , we can
bound the final assignment cost ofu using the upper bound of Proposition 19:

du ≤ (1 + 1
λ) max{d(cK , w′), λD(K)}+ d∗u

≤ λ+1
λ d(cK , w′) + d∗u by the assumption thatd(cK , w′) ≥ λD(K)

≤ λ+1
λ

λ
λ−1 [d∗u + d(u,w′)] + d∗u d(cK , w′) ≤ λ

λ−1 [d∗u + d(u,w′)]
≤ 3

2 d(u,w
′) + 5

2 d
∗
u for everyx ≥ 1 andλ = 3x+ 2

Using Ineq. (9), we conclude that∑
u∈G′

K
du < 3βf + 7

∑
u∈G′

K
d∗u (11)

We have also to consider the case thatd(cK , w′) < λD(K). As before, letG′
K denote the current

set of good demands ofK, and letGK be the set of good demands ofK just afterw′ opens. By the
definition of the setGK(w′) (i.e., the set of good demands ofK whose initial assignment takes place
as long asw′ is the nearest facility tocK), G′

K = GK ∪ GK(w′). By Lemma 12, it is the case that∑
u∈GK(w′) du ≤ 3

2βf .
We should also bound the final assignment cost of the demands inGK according to the current

algorithm’s configuration. Wlog. we can assume that the set of good demands ofK is non-empty just
afterw′ opens (GK 6= ∅), since there is nothing to bound otherwise. Letw be the nearest facility tocK
just beforew′ opens. By Proposition 18.A, bothw andw′ are mapped to optimal centers inK. Hence,
it must bed(cK , w) ≥ λD(K), sincew′ would have madeK broken otherwise (Proposition 7.B). Since
we have assumed thatGK 6= ∅, the facilityw must have been merged withw′ and every demandu ∈ GK

was assigned tow beforew′ opens. Consequently, by Ineq. (9),
∑
u∈GK

d(u,w) < 2βf + 3
∑
u∈GK

d∗u.
By the upper bound of Proposition 19, the final assignment cost of every demandu ∈ GK according

to the current algorithm’s configuration isdu < (λ + 1)D(K) + d∗u, becauseu is currently assigned to
w′ andd(cK , w′) < λD(K). Sinced(cK , w) ≥ λD(K), similarly to the proof of Ineq. (11), we obtain
that for everyu ∈ GK ,

du < (λ+ 1)D(K) + d∗u ≤ (1 + 1
λ) max{d(cK , w), λD(K)}+ d∗u ≤ 3

2 d(u,w) + 5
2 d

∗
u .

24



Therefore, Ineq. (11) also holds for the final assignment cost of the demands inGK according to the
current algorithm’s configuration. We conclude the proof of the lemma by applying Lemma 12 for the
demands inGK(w′) and Inequality (11) for the demands inGK :∑

u∈G′
K

du =
∑
u∈GK

du +
∑

u∈GK(w′)

du < 3βf + 7
∑
u∈GK

d∗u + 1.5βf ≤ 4.5βf + 7
∑
u∈G′

K

d∗u .

A.7 Non-Isolated Active Coalitions

Throughout this section, letK be a non-isolated active coalition with representativecK .

The proof of Lemma 4. Let x ≥ 18 and 3 ≤ ψ ≤ 5. We also recall thatDN (K) =
max{D(K), 1

3ρ sep(K)} andNK = inN (K) ∩L. We want to prove that|NK | · g(cK) ≤ (ψ + 4)γ2βf .
Sinceg(cK) is non-increasing with time, the product|NK | · g(cK) can increase only if a new demand is
added toNK . Therefore, it suffices to establish the inequality just after a new demand is added toNK .

A new demandv is added toNK if (i) v is an inner demand mapped to the non-isolated active
coalitionK (i.e., v ∈ inN (K)), (ii) no new facilities open whenv arrives, andv is not removed from
the set of unsatisfied demands, and (iii)v does not make the coalitionK either isolated or broken (i.e.,
g′(cK) ≥ ρDN (K)). We recall that a demandv mapped to a non-isolated active coalition is inner if
d∗v < DN (K). SinceNK ⊆ inN (K), for everyu ∈ NK , d(cK , u) < 2DN (K) and the diameter of the
setsNK andinN (K) is less than3DN (K).

Let v be the last demand added toNK . Let alsoNK /N′
K = NK ∪ {v} be the set of unsatisfied inner

demands ofK before/afterv. As usual, we use plain symbols to refer to the algorithm’s configuration at
v’s arrival time and primed symbols to refer to the updated algorithm’s configuration atv’s assignment
time. We first consider the case that whenv arrives,d(Fv, cK) ≥ λDN (K). Consequently,d(Fv, v) >
(λ − 2)DN (K), and sinceλ = 3x + 2, rv = d(Fv ,v)

x > 3DN (K). Hence,Ball(v, rv) includes every
demand ininN (K), andBv = Ball(v, rv) ∩ L includes every demand inN′

K . Since no new facilities
open whenv arrives, it must be

βf > Pot(Bv) =
∑
u∈Bv

d(Fv, u) ≥
∑
u∈N′

K
d(Fv, u) > |N ′

K |(λ− 2)DN (K) ,

where the last inequality holds because for everyu ∈ N′
K , d(Fv, u) > (λ−2)DN (K), sinced(cK , u) <

2DN (K) andd(Fv, cK) ≥ λDN (K). SinceK is an active coalition whenv arrives, it must beg′(cK) ≤
g(cK) < (ρ+ 1)γ2DN (K) (Lemma 7). Therefore,

|N′
K | · g′(cK) < ((ψ+2)(λ+2)+1)γ2

λ−2 βf ≤ (ψ + 4)γ2βf ,

where the last inequality holds forλ = 3x+ 2, ρ = (ψ + 2)(λ+ 2), andψ ≤ 3x−4
2 .

We have also to consider the case thatd(Fv, cK) < λDN (K). Let w be the nearest facility tocK
whenv arrives. We will show that

N′
K ⊆ Init′(w) ∩ Ball(w, m

′(w)
ψ ) (12)

Before establishing (12), we show that it indeed implies the lemma. We first observe thatm′(w) ≥
ψ(λ + 2)DN (K) (Proposition 12 forδ = DN (K), x ≥ 18, andψ ≤ 5), becauseK remains a non-
isolated active coalition afterv. Therefore,d(cK , w) < λDN (K) < 1

ψm
′(w). Since we have assumed

that Ineq. (12) holds, by Ineq. (1), it must be|N′
K | ·m′(w) ≤ βf . Therefore,

|N′
K | · g′(cK) ≤ |N′

K | · g′(cK , w) ≤ |N′
K |(d(cK , w) + x

x−3 m
′(w))

< |N′
K |( 1

ψ + x
x−3)m′(w) ≤ 3

2 βf < (ψ + 4)γ2βf .

We should also prove Ineq. (12). For allu ∈ inN (K), d(u,w) < (λ+2)DN (K), becaused(cK , w) <
λDN (K). Sincem′(w) ≥ ψ(λ + 2)DN (K), we obtain that every demand inN′

K is also included in

Ball(w, m
′(w)
ψ ).
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Next, we show that every demand inN′
K is initially assigned tow. We first observe that whenw

opens, it must bed(Fw, w) ≥ x(λ+ 2)DN (K). Otherwise, it would be

m(w) ≤ 3
xd(Fw, w) < 3(λ+ 2)DN (K) ≤ ψ(λ+ 2)DN (K) ,

and w would have madeK either isolated or broken. Sinced(Fw, w) ≥ x(λ + 2)DN (K) and
d(cK , w) < λDN (K), Ball(w, d(Fw,w)

x ) includes every demand ininN (K). Thus,w’s neighborhood

Bw = Ball(w, d(Fw,w)
x ) ∩ L includes every inner demand ofK which is unsatisfied whenw opens.

Therefore, the set of unsatisfied inner demands ofK becomes empty whenw opens, and the demands
currently inN′

K arrive afterw’s opening.
In addition, for every facilityw′ opening afterw and beforev, it must bed(cK , w′) ≥ 2(λ +

2)DN (K). Otherwise,w′ would have madeK either isolated or broken, because

g(cK , w′) = d(cK , w′) + x
x−3m(w′) < 2(λ+ 2)DN (K) + x

x−3
3
x d(w,w

′)

≤ 2(λ+ 2)DN (K) + 3
x−3 (d(cK , w′) + d(cK , w)) < (2 + 9

x−3)(λ+ 2)DN (K)

= 2x+3
x−3 (λ+ 2)DN (K) ≤ (ψ + 2)(λ+ 2)DN (K) ,

Hence, betweenw’s opening time andv’s assignment time, it is the case thatd(F \{w}, cK) ≥ 2(λ+
2)DN (K). Therefore, for every inner demandu which is mapped toK and arrives afterw’s opening and
beforev’s assignment (includingv) it must bed(u,w) < (λ+ 2)DN (K) ≤ (2λ+ 2)DN (K) ≤ d(F \
{w}, u). In other words, every inner demand which is mapped toK and arrives afterw’s opening and
beforev’s assignment is initially assigned tow and is added toInit(w). Since the set of unsatisfied inner
demands ofK becomes empty whenw opens, atv’s assignment time, it is the case thatN′

K ⊆ Init′(w).
Combining this withN′

K ⊆ Ball(w, m
′(w)
ψ ), we obtain (12). ut

Proposition 22. LetK be a non-isolated active coalition and letw be a new facility such thatBw ∩
inN (K) 6= ∅. Then, for everyx ≥ 18, g′(cK , w) < 1

3 g(cK).

Proof. Let u be a demand which belongs to bothBw and inN (K). Therefore,d(u,w) ≤ d(Fw,w)
x and

d(cK , u) < 2DN (K). Using these inequalities, we obtain that

d(Fw, w) ≤ d(Fw, cK) + d(cK , u) + d(u,w) < d(Fw, cK) + 2DN (K) + d(Fw,w)
x ,

which implies thatd(Fw, w) < x
x−1d(Fw, cK) + 2x

x−1DN (K). Afterw opens, the configuration distance
betweencK andw becomes

g′(cK , w) = d(cK , w) + x
x−3m(w)

≤ d(cK , u) + d(u,w) + x
x−3

3
xd(Fw, w)

< 2DN (K) + ( 1
x + 3

x−3)d(Fw, w) d(u,w) ≤ d(Fw,w)
x

≤ 2DN (K) + 5
xd(Fw, w) for everyx ≥ 12

< (2 + 10
x−1)DN (K) + 5

x−1d(Fw, cK) d(Fw, w) < x
x−1d(Fw, cK) + 2x

x−1DN (K)
≤ 3DN (K) + 5

x−1d(Fw, cK) for everyx ≥ 11
≤ (3

ρ + 5
x−1)g(cK) g(cK) ≥ ρDN (K) andg(cK) ≥ d(Fw, cK)

≤ 1
3 g(cK) x ≥ 18, λ = 3x+ 2, andρ = (ψ + 2)(λ+ 2)

Lemma 13. Letu be an outer demand mapped to a non-isolated active coalitionK. Then,
du ≤ 4[(ρ+ 1)γ2 + 2] d∗u.

Proof.Applying Proposition 17, we obtain that

du ≤ 4 [d(cK , u) + gu(cK)] < 4 [d∗u +D(K) + (ρ+ 1)γ2DN (K)] ≤ 4((ρ+ 1)γ2 + 2) d∗u ,

where the second inequality follows fromgu(cK) < (ρ+ 1)γ2DN (K), sinceK is a non-isolated active
coalition whenu arrives (see also Lemma 7, Section A.4), and the third inequality fromd∗u ≥ DN (K) ≥
D(K), becauseu is an outer demand mapped to the non-isolated active coalitionK. ut
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Lemma 14. Letu be an inner demand mapped to a non-isolated active coalitionK. If u does not make
K either isolated or broken, thendu ≤ 5 g′u(cK).

Proof. We recall thatg′u(cK) denotes the configuration distance ofcK at u’s assignment time (i.e., ac-
cording to the updated algorithm’s configuration). Applying Proposition 17, we obtain that

du ≤ 4 [d∗u +D(K) + g′u(cK)] ≤ 4(2
ρ + 1) g′u(cK) < 5 g′u(cK) .

The second inequality follows from (i)d∗u < DN (K), becauseu is an inner demand mapped to the
non-isolated active coalitionK, (ii) ρDN (K) ≤ g′u(cK), sinceK remains a non-isolated active coalition
afteru, and (iii)D(K) ≤ DN (K). The last inequality holds becauseρ = (ψ + 2)(λ+ 2) > 8. ut

A.8 The Potential Function Argument

In this section, we develop a formal potential function argument establishing that the actual assignment
cost ofIFL is within a constant factor from the optimal cost. LetK be the hierarchical decomposition
of F ∗ implied by Lemma 7. Then, for every non-isolated active coalitionK ∈ K, ρDN (K) ≤ g(cK) <
(ρ+ 1)γ2DN (K).

We recall that with the exception of good demands, each new demand isirrevocablycharged with its
final assignment cost at its assignment time. A good demand is charged with its actual assignment cost,
which is always equal to its distance from the nearest facility to the representative of the isolated active
coalition the demand is mapped to. Good demands areirrevocablycharged with their final assignment
cost at the moment they become bad. The assignment cost of a demand is always charged to the active
coalition the demand is mapped to. We useAsgK to denote the assignment cost the algorithm has been
charged with for the demands mapped to the coalitionK.

We use the following potential function to bound the algorithm’s assignment cost.

Φ =
∑
K∈K ΦK , where ΦK = Ξ(1)

K + Ξ(2)
K −Υ(N)

K −Υ(I)
K .

The functionsΞ(1)
K andΞ(2)

K are defined as:

Ξ(1)
K =


[5(ψ + 4)γ2 + 9.5]βf if g(cK) ≥ ρDN (K) = ρmax{D(K), 1

3ρ sep(K)}
(K is a non-isolated coalition).

7βf if ρD(K) ≤ g(cK) < 1
3 sep(K) (K is an isolated coalition).

0 if g(cK) < ρD(K) (K is not active/broken).

Ξ(2)
K = [5(ψ + 4)γ2 + 2.5]βf max

{
ln

(
min{g(cK), (ρ+ 1)γ2DN (K)}

ρDN (K)

)
, 0

}

In addition, the functionsΥ(N)
K andΥ(I)

K are defined as:

Υ(N)
K = 5 |NK | · g(cK) and Υ(I)

K =
∑
u∈GK

(d(u,wK)− 7 d∗u) .

The functionsΞ(1)
K andΞ(2)

K hold the credit given to the coalitionK ∈ K. The credit held byΞ(1)
K +

Ξ(2)
K compensates for the final assignment cost of the inner demands ofK which arrive beforeK becomes

isolated. WhenK becomes isolated, there is a credit of7βf remaining inΞ(1)
K . This credit absorbs the

actual assignment cost of good demands and eventually compensates for the final assignment cost of
the good demands becoming bad whenK becomes broken. The functionΥ(N)

K accounts for the part

of the final assignment cost of the demands inNK which has not been charged toΞ(2)
K yet. By the

definition of NK , Υ(N)
K = 0 while K is either isolated or not active. As for the functionΥ(I)

K , the
quantity

∑
u∈GK

d(u,wK) is always equal to the actual assignment cost of the demands inGK , i.e., the
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Isolated Active CoalitionK:
– Outer demandu: du ≤ 4(λ+ 2)d∗u (Lemma 10).
– Inner demands:

1. They initially become good (Lemma 9) andAsg(GK) ≤ 2βf + 3Asg∗(GK) (Lemma 3).
2. When they turn into bad demands,

∑
u∈GK

du ≤ 4.5βf + 7Asg∗(GK) (Lemma 3).
3. Lemma 8 and Proposition 18: Good demands turn into bad demands only if

(a) K becomes broken: ChargeK with 4.5βf + du ≤ 7βf (Proposition 14).
(b) The current nearest facility tocK , denoted byw, is not merged with a new facilityw′ mapped toK

(w′ becomes the nearest facility tocK , Proposition 20).
w must be a supported facility (Proposition 20 and Proposition 8).
Asg∗(Bw) ≥ 1

3xβf is charged with4.5βf . EachBw is charged at most once (Proposition 21).

Non-Isolated Active CoalitionK:
– K ’s credit= (5(ψ + 4)γ2 + 2.5)(ln( g(cK)

ρDN (K) ) + 1)βf .

Initially, K ’s credit≤ (5(ψ + 4)γ2 + 2.5)(ln( (ρ+1)γ2

ρ ) + 1)βf (Lemma 7).
– Unsatisfied inner demandsNK = inN (K) ∩ L.

Function−Υ(N)
K = −5 |NK | · g(cK) accounts for the final assignment cost ofNK .

Υ(N)
K ≤ 5(ψ + 4)γ2βf (Lemma 4).

– g(cK) decreases by a factor ofα > 1: the decrease inK ’s credit compensates for the increase in−Υ(N)
K

(for everyα ≥ 1, ln(α) ≥ (1− 1
α )).

– Demandu does not makeK isolated or broken and if a new facilityw′ opens, thenBw′ ∩ inN (K) = ∅.
1. Outer demandu: du ≤ 4[(ρ+ 1)γ2 + 2] d∗u (Lemma 13).
2. Inner demandu: du ≤ 5 g′u(cK) (Lemma 14). Function−Υ(N)

K compensates fordu.

– Demandu either makesK isolated or broken or opens a new facilityw′ such thatBw′ ∩ inN (K) 6= ∅.
1. du ≤ 2.5βf (Proposition 14).
2. −Υ(N)

K increases by at most5(ψ + 4)γ2βf .
3. K ’s credit decreases by at least(5(ψ + 4)γ2 + 2.5)βf

(if Bw′ ∩ inN (K) 6= ∅, theng′(cK) < 1
3g(cK), Proposition 22).

Fig. 3.A sketch of the potential function argument.

set of good inner demands ofK. By the definition ofGK , Υ(I)
K = 0 whileK is either non-isolated or not

active. Fig. 3 provides a brief sketch of the potential function argument.
In the following, we use plain symbols to denote the value of the potential function and its com-

ponents at the arrival time of a new demand and primed symbols to denote the value of the potential
function at the assignment time of the demand. In addition, for a coalitionK, let ∆ΦK = Φ′

K − ΦK

denote the change in the value of the potential functionΦK , and let∆AsgK = Asg′K − AsgK denote
the difference in the assignment cost charged toK.

Lemma 15. For everyK ∈ K, ΦK is always non-negative.

Proof. As long asK is a non-isolated coalition,Ξ(1)
K = [5(ψ + 4)γ2 + 9.5]βf , while Υ(I)

K = 0, and

Υ(N)
K does not exceed5(ψ + 4)γ2βf (Lemma 4). As long asK is an isolated coalition,Ξ(1)

K = 7βf ,

while Υ(N)
K = 0, andΥ(I)

K < 3βf (Lemma 3). Finally, afterK has become broken,ΦK = 0. In any case,
ΦK ≥ 0. ut

For everyK ∈ K, the functionsΞ(1)
K andΞ(2)

K are non-increasing, becauseg(cK) is non-increasing.
Thus, the potential functionΦK can increase only ifK is an active coalition and eitherGK or NK is
non-empty. In addition, a new demand cannot affect the cost charged to the algorithm for the demands
mapped to a non-active coalitionK. In particular, ifK has not become active yet, there are no such
demands, while ifK has become active and then broken,K has been charged irrevocably charged with
the final assignment cost of all the demands mapped to it. Hence, we can restrict our attention to the
coalitions which are active when a new demand arrives.
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Isolated Active Coalitions.Let K be an isolated active coalition with representativecK . Then,ΦK =
Ξ(1)
K +7

∑
u∈GK

d∗u−
∑
u∈GK

d(u,wK), becauseΞ(2)
K = Υ(N)

K = 0. In addition,Ξ(1)
K is equal to7βf as

long asK is an active coalition (g(cK) ≥ ρD(K)), and it becomes zero as soon asK becomes broken
(g(cK) < ρD(K)).

The algorithm isirrevocably charged with the final assignment cost of each new outer demand
mapped to the isolated active coalitionK. Each new inner demand ofK which does not makeK broken
is initially assigned to the nearest facility tocK (Lemma 9.C) and becomes a good demand. As long as an
inner demand ofK remains good, the algorithm is charged with its actual assignment cost. The algorithm
is irrevocablycharged with the final assignment cost of the inner demands which have become bad and
the demand makingK broken. In addition, a new demand mapped toK may change the location of the
nearest facility tocK and/or make the set of good demands ofK empty. Thus, we should account for
the case that the actual assignment cost of the good demands ofK changes because the location of the
nearest facility tocK has changed and the case that all the good demands ofK become bad, and from
now on, the algorithm is charged with their final instead of their actual assignment cost.

More specifically, letu be a new demand mapped to the isolated active coalitionK, and let∆AsgK
be the difference in the assignment cost charged to the algorithm for the demands mapped toK before and
afteru. Since the final assignment cost charged to the algorithm for outer and bad demands is irrevocable,
∆AsgK is equal to the assignment cost charged to the algorithm for the demands inGK ∪ {u} afteru
minus the actual assignment cost of the demands inGK beforeu. The exact value of∆AsgK depends
onG′

K (i.e., the set of good demands afteru).

∆AsgK =



du +
∑
v∈GK

dv −
∑
v∈GK

d(v, wK) if G′
K = ∅

The demands inGK become bad and are charged with their final assignment cost.
u either is an outer demand or makesK broken.

du +
∑
v∈GK

d(v, w′
K)−

∑
v∈GK

d(v, wK) if G′
K = GK .

The actual assignment cost of the demands inGK is updated.u is an outer demand.

d(u,w′
K) +

∑
v∈GK

dv −
∑
v∈GK

d(v, wK) if G′
K = {u}.

The demands inGK become bad and are charged with their final assignment cost.
u opens a new facility, is an inner demand and becomes good.

d(u,w′
K) +

∑
v∈GK

d(v, w′
K)−

∑
v∈GK

d(v, wK) if G′
K = GK ∪ {u}.

The actual assignment cost of the demands inGK is updated.
u is an inner demand and becomes good.

(13)
In the above definition, it may be the case thatw′

K = wK , i.e.,u opens no new facility and the location
of the nearest facility tocK does not change. By the definitions of the good inner demands ofK and the
final assignment cost, it should be clear that the actual assignment cost of the demands mapped to the
isolated active coalitionK can never exceed the cost charged to the algorithm for them. The following
lemma establishes that we can ignore the demands not mapped to an isolated active coalitionK in the
analysis ofK.

Lemma 16. LetK be an isolated active coalition when a new demandu arrives. Ifu is not mapped to
K, then∆AsgK = 0 and∆ΦK = 0.

Proof.Sinceu is not mapped toK, its assignment cost is not charged toK. In addition, neither the value
of g(cK) nor the location of the nearest facility tocK can change because ofu (Lemma 8). Therefore, the
set of good demandsGK does not change and the cost charged to the algorithm for the demands mapped
to K is not affected byu. Hence,∆AsgK = 0 and∆Υ(I)

K = 0. In addition, since the value ofg(cK)
does not change, the functionΞ(1)

K remains equal to7βf . Consequently,∆ΦK = 0. ut
Lemma 17. Let u be a new demand mapped to the isolated active coalitionK. If u makesK broken,
then∆ΦK + ∆AsgK ≤ 0.
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Proof.Sinceu makesK broken, the functionΞ(1)
K decreases by7βf andG′

K becomes empty. Hence,

∆AsgK = du +
∑
v∈GK

dv −
∑
v∈GK

d(v, wK) ≤ 2.5βf + 4.5βf + 7
∑
v∈GK

d∗v −
∑
v∈GK

d(v, wK) ,

where the second inequality follows from Proposition 14 and Lemma 3. On the other hand, since the
set of good demands becomes empty and the functionΥ(I)

K becomes zero, we obtain that−∆Υ(I)
K =∑

v∈GK
d(v, wK)− 7

∑
v∈GK

d∗v. Putting everything together, we conclude that∆ΦK + ∆AsgK ≤ 0.
ut

Lemma 18. Letu be a new demand mapped to the isolated active coalitionK. If no new facilities open
andK remains an isolated active coalition afteru, then∆ΦK + ∆AsgK ≤ 4(λ+ 2)d∗u.

Proof.SinceK does not become broken and no new facilities open, the location of the nearest facility to
cK remains the same (i.e.,w′

K = wK) and no good demands become bad (i.e.,GK ⊆ G′
K). In addition,

∆Ξ(1)
K = 0.
If u is an outer demand, thenG′

K = GK . Sincew′
K = wK , and for everyv ∈ GK , d(v, w′

K) =
d(v, wK), we obtain that∆AsgK = du ≤ 4(λ + 2)d∗u (Lemma 10). On the other hand,∆Υ(I)

K = 0
becauseG′

K = GK andw′
K = wK . We conclude that∆ΦK + ∆AsgK ≤ 4(λ+ 2)d∗u.

If u is an inner demand, by Lemma 9.C,u is initially assigned tow′
K and becomes a good inner

demand. Hence,G′
K = GK ∪ {u} and−∆Υ(I)

K = −d(u,w′
K) + 7 d∗u (recall thatw′

K = wK). On the
other hand,∆AsgK = d(u,w′

K). Therefore,∆ΦK + ∆AsgK = 7 d∗u ≤ 4(λ+ 2)d∗u. ut
Lemma 19. Letu be a new demand mapped to the isolated active coalitionK, and letw be the nearest
facility to cK at u’s arrival time (i.e.,wK = w). If a new facilityw′ opens andK is an isolated active
coalition afteru, then

∆ΦK + ∆AsgK ≤ 4(λ+ 2)d∗u + 14xAsg∗(Bw) (14)

In addition, the neighborhoodBw of each facilityw is charged by Inequality (14) at most once.

Proof. We start by observing that∆Ξ(1)
K = 0, becauseK remains active afteru. Let w = wK be the

nearest facility tocK at u’s arrival time. By Proposition 18.A,w is mapped to an optimal center inK.
The new facilityw′ is mapped to the isolated active coalitionK becausew′ is located at the same point
with u. Sincew′ does not makeK broken, it must bed(cK , w) ≥ λD(K) andd(cK , w′) < 2

5 d(cK , w)
(Proposition 20). Moreover, the location of the nearest facility tocK changes fromwK = w tow′

K = w′.
Case A. If w is merged withw′, every demandv ∈ GK , which was assigned tow beforeu, is now
assigned tow′. Hence, every demandv ∈ GK remains assigned to the nearest facility tocK , which
is noww′, and no good demands become bad. Therefore,GK ⊆ G′

K . If u is an outer demand, then
G′
K = GK , and

∆AsgK = du+
∑
v∈GK

d(v, w′
K)−

∑
v∈GK

d(v, wK) and −∆Υ(I)
K = −

∑
v∈GK

d(v, w′
K)+

∑
v∈GK

d(v, wK) .

Usingdu ≤ 4(λ+ 2)d∗u (Lemma 10), we conclude that∆ΦK + ∆AsgK ≤ 4(λ+ 2)d∗u.
If u is an inner demand, thenG′

K = GK ∪ {u} and∆AsgK = d(u,w′
K) +

∑
v∈GK

d(v, w′
K) −∑

v∈GK
d(v, wK). On the other hand,−∆Υ(I)

K = −d(u,w′
K) + 7 d∗u −

∑
v∈GK

d(v, w′
K) +∑

v∈GK
d(v, wK). Therefore,∆ΦK + ∆AsgK ≤ 7 d∗u < 4(λ + 2)d∗u. In any case, ifw is merged with

w′, no good demand ofK becomes bad andw’s neighborhoodBw (i.e., the set of demands contributing
to the opening cost ofw) is not charged with any assignment cost.

Case B.If w is not merged withw′, thenw must be a supported facility (Proposition 8). In this case, all
the demands inGK become bad and are not included inG′

K , since they are no longer assigned to the
nearest facility tocK , which is noww′. If u is an outer demand, thenG′

K = ∅. Therefore,

∆AsgK = du +
∑
v∈GK

dv −
∑
v∈GK

d(v, wK) and −∆Υ(I)
K =

∑
v∈GK

d(v, wK)− 7
∑
v∈GK

d∗v .
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If u is an inner demand, thenG′
K = {u}. Hence,∆AsgK = d(u,w′

K) +
∑
v∈GK

dv −∑
v∈GK

d(v, wK), and−∆Υ(I)
K = −d(u,w′

K) + 7 d∗u +
∑
v∈GK

d(v, wK) − 7
∑
v∈GK

d∗v. In addition,
if u is an inner demand, then7 d∗u < 4(λ + 2)d∗u, while if u is an outer demand, thendu ≤ 4(λ + 2)d∗u
(Lemma 10). Therefore, in both cases,

∆ΦK + ∆AsgK ≤ 4(λ+ 2)d∗u +
∑
v∈GK

dv − 7
∑
v∈GK

d∗v < 4(λ+ 2)d∗u + 4.5βf ,

where the second inequality follows from Lemma 3. Sincew is a supported facility,3xAsg∗(Bw) =
3x
∑
v∈Bw

d∗v ≥ βf . Hence, we can charge the final assignment cost of the inner demands which be-
come bad to the optimal assignment cost of the demands inw’s neighborhoodBw (i.e., the demands
contributing to the opening cost ofw). Thus,

∆ΦK + ∆AsgK ≤ 4(λ+ 2)d∗u + 14xAsg∗(Bw) .

To conclude the proof, we should also establish that the neighborhood of each facility is charged with
the final assignment cost of some demands which become bad at most once. For simplicity, if a facilityw
is charged with the final assignment cost of some inner demands of an isolated active coalitionK which
become bad, we say thatw is charged byK.

A facility w is charged by an isolated active coalitionK only if (i) w is the nearest facility tocK ,
(ii) a new facilityw′ mapped toK opens, and (iii)w′ does not makeK broken. By Proposition 18.A,
the nearest facility to the representative of an isolated active coalition is mapped to an optimal center
in the coalition. Therefore,w is mapped to an optimal center inK and cannot be the nearest facility
to the representative of any other isolated coalitionK ′ which is disjoint fromK (i.e., K ′ ⊆ F ∗ \
K). Consequently, the facilityw cannot be charged by any coalitionK ′ ⊆ F ∗ \ K. Moreover, by
Proposition 21, if (i)w is the nearest facility tocK , (ii) a new facilityw′ mapped toK opens and (iii)
w′ does not makeK broken, thenw can never become again the nearest facility to any of the optimal
centers inK. Hence, oncew has been charged by the isolated coalitionK, it cannot be charged again by
K or any subset / descendant ofK in the hierarchical decompositionK, becausew will never become
again the nearest facility to the representative of any coalitionK ′ ⊆ K. ut
Non-Isolated Active Coalitions.Each new demandu mapped to a non-isolated active coalitionK is
irrevocablycharged with its final assignment cost at its assignment time. Hence,∆AsgK = du and for
every active coalitionK ′, K 6= K ′, ∆AsgK′ = 0. In particular, ifK ′ is a non-isolated active coalition,
thenu cannot affect the irrevocable final assignment cost which has been charged to the algorithm for the
demands mapped toK ′, while if K ′ is an isolated active coalition, the claim follows from Lemma 16.

Lemma 20. Letu be a new demand mapped to the non-isolated active coalitionK. Then,

∆ΦK + ∆AsgK = ∆ΦK + du ≤ 4((ρ+ 1)γ2 + 2)d∗u .

Proof.The demandu cannot affectΥ(I)
K because it arrives whileK is a non-isolated active coalition. In

the following, letNK be the set of unsatisfied inner demands ofK at u’s arrival time, and letN′
K be

the set of unsatisfied inner demands ofK atu’s assignment time. We distinguish between the following
three cases:
Case A.EitherN′

K ⊂ NK orK becomes isolated or broken. In this case, eitherg′(cK) < ρDN (K) or a
new facilityw′ opens andBw′ ∩ NK 6= ∅, in which case some of the demands inNK become satisfied
and are no longer included inN′

K .

The functionΥ(N)
K does not exceed5(ψ+4)γ2βf atu’s arrival time (Lemma 4), and is non-negative

at u’s assignment time. Hence, the increase in the function−Υ(N)
K is −∆Υ(N)

K ≤ 5(ψ + 4)γ2βf . In
addition,du cannot exceed2.5βf (Proposition 14). On the other hand, ifu makesK either isolated or
broken, the functionΞ(1)

K decreases by[5(ψ + 4)γ2 + 2.5]βf . Otherwise, a new facilityw′ opens and
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its neighborhoodBw′ intersectsNK ⊆ inN (K). Then, by Proposition 22, the configuration distance
of cK decreases by a factor greater than 3, i.e.,g′(cK) < 1

3 g(cK). Sinceg(cK) < (ρ + 1)γ2DN (K),
becauseK is an active coalition beforeu, andg′(cK) ≥ ρDN (K), becauseK remains a non-isolated

active coalition afteru, the functionΞ(2)
K decreases by more than[5(ψ + 4)γ2 + 2.5]βf . In any case,

∆Ξ(1)
K + ∆Ξ(2)

K ≤ −[5(ψ + 4)γ2 + 2.5]βf . Hence,

∆ΦK +du = ∆Ξ(1)
K +∆Ξ(2)

K −∆Υ(N)
K +du ≤ −[5(ψ+4)γ2 +2.5]βf +5(ψ+4)γ2βf +2.5βf ≤ 0 .

Case B.N′
K = NK andK remains a non-isolated active coalition. We distinguish between the case that

u is an outer demand and the case thatu is an inner demand.
If u is an outer demand,du ≤ 4 [(ρ+1)γ2+2] d∗u (Lemma 13). Let alsoα = g(cK)

g′(cK) ≥ 1 be the factor

by whichg(cK) decreases because ofu. SinceΥ(N)
K ≤ 5(ψ + 4)γ2βf (Lemma 4), the increase in the

function−Υ(N)
K is bounded by5(1− 1

α)(ψ+ 4)γ2βf . On the other hand, the functionΞ(2)
K decreases by

ln(α)(5(ψ+4)γ2 +2.5)βf , becauseg(cK) < (ρ+1)γ2DN (K), sinceK is an active coalition beforeu,
andg′(cK) ≥ ρDN (K), sinceK remains a non-isolated active coalition afteru. Usingln(α) ≥ (1− 1

α),
for everyα ≥ 1, we conclude that∆ΦK + du ≤ 4 [(ρ+ 1)γ2 + 2] d∗u.

If u is an inner demand ofK, sinceu is not added toNK (i.e., u has become satisfied), a new
facility w′ located at the same point withu must have opened. By Proposition 22, the configuration
distance ofcK decreases by a factor greater than 3 (i.e.,g′(cK) < 1

3 g(cK)), because the neighborhood
Bw′ of the new facilityw′ intersectsinN (K) at u. Similarly to Case A,du ≤ 2.5βf (Proposition 14),

−∆Υ(N)
K ≤ 5(ψ+4)γ2βf (Lemma 4), and∆Ξ(2)

K ≤ −[5(ψ+4)γ2+2.5]βf . Therefore,∆ΦK+du ≤ 0.
Case C.N′

K = NK ∪ {u} andK remains a non-isolated active coalition. Then,u must be an inner
demand which becomes unsatisfied. By Lemma 14,du ≤ 5 g′(cK).

Let α = g(cK)
g′(cK) ≥ 1 be the factor by whichg(cK) decreases because ofu. Similarly to Case B,

∆Ξ(2)
K ≤ −(1− 1

α)[5(ψ + 4)γ2 + 2.5]βf . On the other hand, the function−Υ(N)
K increases by at most

5(1− 1
α)(ψ+4)γ2βf , becauseg(cK) decreases by a factor ofα, and decreases by5 g′(cK), becauseu is

added to the set of unsatisfied inner demands ofK (i.e.,N′
K = NK ∪ {u}). Putting everything together,

we obtain that

∆ΦK+du = ∆Ξ(2)
K −∆Υ(N)

K +du ≤ −(1− 1
α)[5(ψ+4)γ2+2.5]βf+5 (1− 1

α)(ψ+4)γ2βf−5 g′(cK)+5 g′(cK) .

Therefore,∆ΦK + du ≤ 0. ut
If a new demandu is not mapped to the non-isolated active coalitionK, then∆AsgK = 0, because

u’s assignment cost is not charged toK andu cannot affect the irrevocable final assignment cost charged
to the algorithm for the demands mapped toK.

Lemma 21. LetK be a non-isolated active coalition when a new demandu arrives. Ifu is not mapped
toK, then∆ΦK + ∆AsgK = 0.

Proof.The proof is essentially identical to the proof of Lemma 20. There are some differences which only
make the proof simpler. In particular, since∆AsgK = 0, we have to bound∆ΦK instead of∆ΦK + du,
and sinceu is not mapped toK, we do not have to consider the case thatN′

K = NK ∪{u}. Furthermore,
in Case B, we do not have to consider the possibility thatu could have been added toNK (i.e.,u is an
inner demand). ut

The potential function argument implies that for everyj, 1 ≤ j ≤ n, the assignment cost incurred by
the algorithm just after the demanduj has been considered is at most2β [5(ψ+4)γ2+3] ln(3γ2) Fac∗ +
[4 ((ρ+ 1)γ2 + 2) + 14x]

∑j
i=1 d

∗
uj

.
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phase(0)
δ = a2

b2
; Λ0 ← 0; f0 ← 0; A0 ← 0;

R(0)← ∅; F0 ← ∅; F−1 ← ∅; Asg0 ← 0;
For each new demandu:
R(0)← R(0) ∪ {u};
IFL0(u); /* Updates F0 */
if |F0| > νk then go to phase(1);

IFLi-Initialization(Λi, k)
fi ← Λi

δk ; R(i)← ∅; Fi ← ∅; Ai ← 0;
Asgi ← Asgi−1 + Mi−1;

completephase(i, u)
Letw be the location ofu;
if w 6∈ Fi then open(w);
initial assignment(u,w);
Asgi ← Asgi−1 + Mi−1 + Ai;

phase(i)
MergeF i−2 ∪ Fi−1 into c2 k weighted medians using a
bi-criteria(c1, c2)-approximation algorithm fork-Median.
LetF i−1 be the resulting set of (weighted) medians
and letMi−1 be the cost of assigning the weighted
medians inF i−2 ∪ Fi−1 to F i−1.

Λi ← max{αΛi−1,Mi−1};
IFLi-Initialization(Λi, k);
For each new demandu:
R(i)← R(i) ∪ {u};
IFLi(u); /* Updates Fi and Ai */
if ( |Fi| > νk or Ai > µΛi) then

restoreIFLi’s configuration beforeu;
completephase(i, u); go to phase(i+ 1);

elseAsgi ← Asgi−1 + Mi−1 + Ai;

Fig. 4.The algorithm Incrementalk-Median –IM(k) .

A.9 The Proof of Lemma 5

Proof.We recall that given an add-optimal facility configuration of facility costFac∗o and assignment cost
Asg∗o, IFL maintains a solution of facility costa1Fac∗o + b1Asg∗o and assignment costa2Fac∗o + b2Asg∗o,
wherea1 = 1, a2 = 2β ln(3γ2)(5(ψ + 4)γ2 + 3), b1 = 3x

β , andb2 = 4((ρ+ 1)γ2 + 2) + 14x.
LetF ∗ be ak-Median configuration of costAsg∗ (the medians inF ∗ are not restricted to the demand

locations). Thek-Median instance can be regarded as an instance of Facility Location with facility cost
f = Λ

δk , whereδ = a2
b2

. Then,F ∗ is a facility configuration of facility costFac∗ = Λ
δ and assignment

costAsg∗. If F ∗ is not add-optimal, there must be a set of facilities whose addition toF ∗ makes it
add-optimal without increasing its cost. LetF ∗

o , F ∗ ⊆ F ∗
o , be the corresponding add-optimal facility

configuration. Let alsoFac∗o be the facility cost, and letAsg∗o be the assignment cost ofF ∗
o . It must be

the case that (i)Fac∗o + Asg∗o ≤ Fac∗ + Asg∗, (ii) Asg∗o ≤ Asg∗, (iii) Fac∗o ≤ Fac∗ + Asg∗, and (iv)
for every0 ≤ a ≤ b, aFac∗o + bAsg∗o ≤ aFac∗ + bAsg∗, where the last claim follows from (i), (ii), and
F ∗ ⊆ F ∗

o .
Let Fac be the facility cost andAsg be the assignment cost of the solution maintained byIFL. Since

a1 ≤ b1,
Fac ≤ a1Fac∗o + b1Asg∗o ≤ a1Fac∗ + b1Asg∗ ≤ a1

Λ
δ + b1 Asg∗ .

Usingf = Λ
δk andδ = a2

b2
, we obtain thatIFL’s solution consists of no more than(a1 + a2

b1
b2

Asg∗

Λ ) k
medians. As for the assignment cost,

Asg ≤ a2 Fac∗o + b2 Asg∗o ≤ a2 (Λ
δ + Asg∗) + b2 Asg∗ ≤ (a2 + b2) Asg∗ + b2 Λ .

A.10 A Deterministic Incremental Algorithm for k-Median

The algorithmIM(k) (Fig. 4) starts in phase 0, also called the initialization phase, withΛ0 = 0 and
f0 = 0. An invocation ofIFL with facility cost 0 simply opens a new facility/median at each different
demand location. Hence, phase 0 ends as soon asIFL0 has considered exactlyνk + 1 different demand
locations. Since, there is a median at each of these locations, the algorithm incurs no assignment cost
during the initialization phase.

Phasei, i ≥ 1, starts with merging the medians produced by the last phase with the medians produced
by the previous phases. Thus, we ensure that the total number of medians in the current solution does
not depend on the number of phases. More specifically, for each medianw in the current solution, we
maintain its weight|C(w)|, which is equal to the number of demands currently assigned tow. At the
beginning of phasei, the setF i−2 containing the weighted medians produced by phases0, . . . , i − 2 is
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merged with the setFi−1 containing the weighted medians produced by phasei − 1. We can use any
bi-criteria (c1, c2)-approximation algorithm fork-Median (e.g., the algorithm of [18] forc1 = 32 and
c2 = 1 in O(k2 log n) time) to mergeF i−2 with Fi−1. The resulting setF i−1 consists of no more than
c2 k weighted medians, which are the medians produced by phases0, . . . , i − 1. Mi−1 denotes the cost
of assigning the weighted medians inF i−2 ∪ Fi−1 to F i−1. The demands considered up to the end of
phasei− 1 are currently assigned to the medians inF i−1.

The upper boundΛi which characterizes the phasei is set to the maximum ofαΛi−1 andMi−1,
whereα is a constant chosen sufficiently large. Hence, we ensure that the cost incurred by the algorithm
up to the end of phasei − 1, denoted byAsgi−1, does not exceedΛi (Lemma 22). After initializing the
invocation ofIFL corresponding to phasei, denoted byIFLi, IM(k) starts considering new demands.
IFLi incorporates each new demand into the current solution and updates its median configuration, de-
noted byFi, and its assignment cost for the demands considered in the current phasei, denoted byAi.
If either Fi contains more thanνk medians or the assignment costAi exceedsµΛi, phasei ends. The
algorithm places a new median at the location of the last demand of each phase instead of lettingIFLi
incorporate it into the current solution. Hence, the algorithm maintains the invariant that|Fi| ≤ νk + 1
andAi ≤ µΛi. It is straight-forward to modifyIM(k) so as to ensure that no phase ends before it consid-
ers at leastνk+ 1 new demands. Hence, we can assume that the number of phases isO(nk ). To establish
the algorithm’s performance ratio, we prove that for every complete phasei, the optimal cost for the
demands considered up to the end of phasei is at leastmax{Λi, Mi

2c1(α+1)} (Lemma 23 and Lemma 24).

Notation. LetR(i) denote the set of demands considered in phasei. If phasei is the current phase,R(i)
is the set of demands considered from the beginning of the phase up to the present time. LetR(i) =
∪i`=0R(`). If i is a complete phase,R(i) is the set of demands considered up to the end of phasei, while
if i is the current phase,R(i) includes all the demands considered by the algorithm so far. Let alsoOPTi

denote the cost of the optimal solution onR(i).
Asgi denotes the cost of the solutionF i−1 ∪ Fi onR(i). More specifically, ifi is a complete phase,

Asgi denotes the cost incurred by the algorithm up to the end of phasei, while if i is the current phase,
Asgi denotes the cost of the current solution on the demands considered so far.Asgi is always equal
to Asgi−1, namely, the cost ofF i−2 ∪ Fi−1 on R(i − 1), plus Mi−1, namely, the cost of assigning
F i−2 ∪ Fi−1 to F i−1, plusAi, namely, the cost ofFi onR(i).

Analysis.The algorithmIM(k) maintains a solution consisting of no more than(ν + c2) k+ 1 medians.
The following proposition establishes that we have correctly definedAsgi as the algorithm’s cost on the
demands considered so far.

Proposition 23. For every phasei, Asgi is equal to the cost ofF i−1 ∪ Fi onR(i).

Proof. We prove the proposition by induction oni. For the initialization phase (i = 0), the proposition
holds becauseIFL0 is invoked with facility costf0 = 0. Hence,F0 contains a median at each different
demand location, and the total algorithm’s cost is0 = Asg0. We inductively assume thatAsgi−1 is
equal to the cost ofF i−2 ∪ Fi−1 onR(i − 1). Then, the cost of assigningR(i − 1) to F i−1 is at most
Asgi−1 + Mi−1, i.e., the cost of first moving the demands inR(i − 1) from their original locations
to F i−2 ∪ Fi−1 and then toF i−1. In addition, the cost of assigning the demands inR(i) to Fi is Ai.
Therefore,Asgi, which is always equal toAsgi−1 + Mi−1 + Ai, is indeed equal to the cost ofF i−1 ∪Fi
onR(i). ut

Lemma 22. Letα ≥ µ+ 2. Then, for every phasei, Asgi ≤ αΛi ≤ Λi+1.

Proof. We prove the lemma by induction oni. For the initialization phase (i = 0), the lemma holds
becauseAsg0 = 0 ≤ αΛ0 ≤ Λ1. We inductively assume that the lemma holds until the end of phasei,
i ≥ 0. Then, until the end of phasei+ 1, it is the case that

Asgi+1 = Asgi + Mi + Ai+1 ≤ αΛi + Mi + µΛi+1 ≤ (µ+ 2)Λi+1 ≤ αΛi+1 ≤ Λi+2 ,
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where the first inequality follows from the inductive hypothesis and the invariantAi+1 ≤ µΛi+1 main-
tained in phasei + 1, the second inequality fromΛi+1 = max{αΛi,Mi}, and the third inequality from
α ≥ µ+ 2. ut

Lemma 23. Letν ≥ a1 + a2
b1
b2

andµ ≥ a2 + 2b2. For every complete phasei, OPTi > Λi.

Proof.For the initialization phase (i = 0), the lemma holds becauseOPT0 > Λ0 = 0. Let us assume that
for some complete phasei ≥ 1, OPTi ≤ Λi. Let OPT′

i be the optimal cost for the demands considered
in phasei. It must beOPT′

i ≤ OPTi ≤ Λi. Therefore, by Lemma 5,IFLi must maintain a solution
consisting of no more than(a1 + a2

b1
b2

)k ≤ νk medians and costing at most(a2 + 2b2)Λi ≤ µΛi. This
contradicts to the hypothesis that phasei is complete. ut

Lemma 24. For every complete phasei, Mi ≤ 2c1(α+ 1) OPTi.

Proof.The optimal solution onR(i) suggests a way of mergingF i−1 ∪ Fi into k medians. In particular,
we can assign each weighted median inF i−1 ∪ Fi to the nearest optimal median. Similarly to the proof
of [12, Theorem 2.3], we can show that this assignment costs no more thanAsgi+OPTi, i.e., the cost of
first moving the demands back to their original locations and then to the optimal medians. Consequently,
there is a way of mergingF i−1 ∪ Fi into k medians at a cost no greater thanAsgi + OPTi ≤ αΛi +
OPTi ≤ (α + 1)OPTi, where the first inequality follows from Lemma 22 and the second inequality
from Lemma 23. The above solution can be transformed to a solution using medians only inF i−1 ∪ Fi
and costing at most2 (α + 1)OPTi (e.g., [12, Theorem 2.1]). SinceF i is computed by a bi-criteria
(c1, c2)-approximation algorithm fork-Median,Mi, i.e., the cost of assigningF i−1 ∪ Fi to F i, cannot
exceed2c1(α+ 1) OPTi. ut
The Proof of Theorem 2.The number of medians in the current solution can never exceed(a1 +a2

b1
b2

+
c2) k + 1. In the initialization phase,OPT0 > 0 = Asg0 . Let i ≥ 0 be the last complete phase. By
Lemma 23 and Lemma 24, it must beOPTi ≥ max{Λi, Mi

2c1(α+1)}. On the other hand, the current

algorithm’s assignment cost isAsgi+1 ≤ αΛi+1 (Lemma 22). IfΛi+1 = αΛi, thenAsgi+1 ≤ α2 OPTi.
If Λi+1 = Mi, thenAsgi+1 ≤ 2c1α(α + 1) OPTi (Lemma 24). Sinceα ≥ µ + 2 (Lemma 22) and
µ ≥ a2 + 2b2 (Lemma 23), the performance ratio ofIM(k) is less than2c1(a2 + 2b2 + 3)2.

The algorithmIM(k) runs inO(n2k) time andO(n) space. More specifically, computingF i from
F i−1 ∪ Fi at the beginning of phasei takesO(k2 log n) time (e.g., [18]) and there areO(nk ) phases. In
addition,IFL needsO(nk) time to incorporate each new demand into the current solution. The bound
on the space complexity is trivial, since it implies that every demand is stored in main memory.ut

A.11 A Randomized Incremental Algorithm for k-Median

The algorithmRIM(k) (Fig. 5) also operates in phases, where phasei is characterized by an upper bound
Λi on the optimal cost of the demands considered in the current phase. In phasei, RIM(k) invokes
Gatheri with upper boundΛi andIFLi with facility cost fi = Λi

δk . Each new demandu is first given
to Gatheri, which returns a demand to the nearest gathering pointû. Then,û is given toIFLi, which
assigns it to a median inF ∗

i . Apart from the use ofGather, the description and the analysis ofRIM(k)
are similar to those ofIM(k), Section A.10. In the following, we use the notation introduced in the
previous section with exactly the same meaning.

We should emphasize thatIFLi still treats different demands moved to the same gathering point
by Gatheri as different unit demands and may be put them in different clusters. In other words, the
output ofGatheri should be thought of as just a sample taken from the points of the underlying metric
space and not as a first-level clustering of the demand sequence.RIM(k) uses this sample to generate a
modified instance which can be represented in a space efficient manner. Then,IFLi is solely responsible
for maintaining a good hierarchical clustering of the modified instance, which can be directly translated
into a good hierarchical clustering of the original instance.
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phase(0)
δ = a2

b2
; Λ0 ← 0; f0 ← 0; A0 ← 0;

R(0)← ∅; F0 ← ∅; F−1 ← ∅; Asg0 ← 0;
For each new demandu:
R(0)← R(0) ∪ {u};
IFL0(u); /* Updates F0 */
if |F0| > νk then go to phase(1);

IFLi-Initialization(Λi, k)
fi ← Λi

δk ; R(i)← ∅; Fi ← ∅; Ai ← 0;
Asgi ← Asgi−1 + Mi−1;

completephase(i, û)
Letw be the location of̂u;
if w 6∈ Fi then open(w);
initial assignment(̂u,w);
Asgi ← Asgi−1 + Mi−1 + AG

i + Ai;

phase(i)
MergeF i−2 ∪ Fi−1 into c2 k weighted medians using a
bi-criteria(c1, c2)-approximation algorithm fork-Median.
LetF i−1 be the resulting set of (weighted) medians
and letMi−1 be the cost of assigning the weighted
medians inF i−2 ∪ Fi−1 to F i−1.

Λi ← max{αΛi−1,Mi−1};
Gatheri(Λi, k, log n, t)-Initialization;
IFLi-Initialization(Λi, k);
For each new demandu:
R(i)← R(i) ∪ {u};
û← Gatheri(u); /* Updates AG

i */
if Gatheri(u) failed then

completephase(i, u); go to phase(i+ 1);
IFLi(û); /* Updates Fi and Ai */
if ( |Fi| > νk or Ai > µΛi) then

restoreIFLi’s configuration beforêu;
completephase(i, û); go to phase(i+ 1);

elseAsgi ← Asgi−1 + Mi−1 + AG
i + Ai;

Fig. 5.The algorithm Randomized Incrementalk-Median –RIM(k) .

The current phase ofRIM(k) ends if eitherGatheri fails to maintain the invariants on the number
of gathering points and the gathering cost orIFLi fails to maintain the invariants on the number of
medians and the assignment cost. To establish the performance ratio ofRIM(k), we prove that the total
algorithm’s cost up to the end of phasei cannot exceedαΛi (Lemma 28), while for every complete phase
i, OPTi is at leastmax{Λi, Mi

2c1(α+1)} whp. (Lemma 29) and Lemma 30).
The algorithmGather (Fig. 6) can be thought of as the incremental version of PARA CLUSTER

[6]. It is made up ofO(log n) independent invocations of Meyerson’s randomized algorithm for Online
Facility Location [19], denoted by ROFL. In phasei, Gatheri invokes ROFLi with facility cost f̂i =

Λi
k(logn+1) . The j-th invocation of ROFLi, denoted by ROFLi(j), maintains its own set of gathering

points, denoted byGi(j), and its individual cost, denoted byAG
i (j). When a new demandu is considered,

with probability min{d(Gi(j),u)

f̂i
, 1}, ROFLi(j) places a new gathering point atu’s location. Then, it

movesu to the nearest gathering point inGi(j). ROFLi(j) fails as soon as either its number of gathering
points exceeds20k (log n + 1) or its individual cost exceeds20Λi. After ROFLi(j) has failed, it stops
considering new demands.

Gatheri maintains the union of the sets of gathering points, denoted byGi, and the gathering cost,
denoted byAG

i . When a new demandu is considered,Gatheri places a new gathering point atu’s
location if at least one of the invocations ROFLi(j) does so. Then, it movesu to the nearest gathering
point currently inGi, denoted bŷu. Gatheri fails as soon as all the invocations ROFLi(j) have failed.

Lemma 25. Gatheri(Λi, k, log n, t) maintains a collection of no more than20kt (log n+1)2 gathering
points at a cost not exceeding20Λi.

Proof.The set of gathering pointsGi is equal to the union of the setsGi(j) maintained by the invocations
ROFLi(j), j = 1, . . . , t log n. The cardinality of eachGi(j) cannot exceed20k (log n+1)+1, because
as soon as|Gi(j)| becomes greater than20k (log n + 1), ROFLi(j) fails and stops considering new
demands. In addition, the location of the last demand, namely, the demand makingGatheri fail, is also
added toGi. Hence, the number of gathering points maintained byGatheri(Λi, k, log n, t) is upper
bounded by[20k (log n+ 1) + 1] t log n+ 1 ≤ 20kt (log n+ 1)2.

As long asGatheri does not fail, the gathering costAG
i is upper bounded by the individual cost

AG
i (j) of any invocation ROFLi(j) which has not failed yet. This is true becauseGatheri moves each
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Gatheri(Λi, k, log n, t)-Initialization

f̂i ← Λi

k(logn+1) ; Gi ← ∅; AG
i ← 0;

for j ← 1 to t log n do
Gi(j)← ∅; AG

i (j)← 0;
faili(j)← FALSE;

ROFLi(j)(u)

with probabilitymin{d(Gi(j), u)/f̂i, 1} do
Gi(j)← Gi(j) ∪ {u};

AG
i (j)← AG

i (j) + d(Gi(j), u);

Gatheri(u)
for j ← 1 to t log n do

if (not faili(j)) then
ROFLi(j)(u);
if ( |Gi(j)| > 20k(log n+ 1) or AG

i (j) > 20Λi) then
faili(j)← TRUE;

if (
∧t
j=1 faili(j)) then

Gi ← Gi ∪ {u}; return(FAILURE);
Gi ←

⋃t
j=1Gi(j);

let û be the nearest gathering point tou;
moveu to û; AG

i ← AG
i + d(Gi, u);

return(̂u);

Fig. 6.A randomized algorithm for gathering the original demands inO(k log2 n) points.

new demand to the nearest gathering point inGi andGi(j) ⊆ Gi. Hence, as long as there exists an
invocation ROFLi(j) which has not failed yet, it is the case thatAG

i ≤ AG
i (j) ≤ 20Λi. In addition,

Gatheri places a gathering point at the location of the last demand and incurs no gathering cost for it.
ut

The following lemma is proven in [6], Lemma 1 and Corollary 1. Its proof follows from the analysis
of [19].

Lemma 26. Let Asg∗ be the cost of a feasible solution for an instance ofk-Median consisting of no
more thann unit demands, and letΛ be an estimation ofAsg∗. With probability at least12 , ROFL with

facility costf = Λ
k(logn+1) maintains a solution consisting of no more than4k (log n + 1)(1 + 4Asg∗

Λ )
medians and costing at most4(Λ + 4Asg∗).

Lemma 27. Let Asg∗ be the cost of a feasible solution for an instance ofk-Median consisting of no
more thann unit demands, letΛ ≥ Asg∗ be an upper bound onAsg∗, and lett be a positive constant.
Then, with probability at least1− n−t, Gather(Λ, k, log n, t) does not fail on this instance.

Proof. The algorithmGather fails only if all independent invocations ROFL(j) fail. For everyj, j =
1, . . . , t log n, ROFL(j) fails only if either|G(j)| > 20k(log n+ 1) or AG(j) > 20Λ. SinceΛ ≥ Asg∗,
by Lemma 26, the probability that ROFL(j) fails on this instance is at most1

2 . Since the invocations of
ROFL are independent from each other, the probability that all of them fail on this instance is at most
n−t. ut

As before,RIM(k) operates inO(nk ) phases and always maintains a solution consisting of no more
than(ν + c2) k + 1 medians. Similarly to Proposition 23, we can prove that for every phasei, Asgi =
Asgi−1 + Mi−1 + AG

i + Ai is equal to the cost ofF i−1 ∪ Fi onR(i) (i.e., the set of original demands
considered up to the end of phasei).

Lemma 28. Letα ≥ µ+ 22. Then, for every phasei, Asgi ≤ αΛi ≤ Λi+1.

Proof. We prove the lemma by induction oni. For the initialization phase (i = 0), the lemma holds
because no gathering takes place andAsg0 = 0 ≤ αΛ0 ≤ Λ1. We inductively assume that the lemma
holds until the end of phasei, i ≥ 0. Then, until the end of phasei+ 1, it is the case that

Asgi+1 = Asgi+Mi+AG
i+1+Ai+1 ≤ αΛi+Mi+20Λi+1+µΛi+1 ≤ (µ+22)Λi+1 ≤ αΛi+1 ≤ Λi+2 .

The first inequality follows from the inductive hypothesis, the invariantAG
i+1 ≤ 20Λi+1 maintained by

Gatheri (Lemma 25), and the invariantAi+1 ≤ µΛi+1 maintained byRIM(k) in phasei. The second
inequality follows fromΛi+1 = max{αΛi,Mi}, and the third inequality fromα ≥ µ+ 22. ut
Lemma 29. Letν ≥ a1 + 21a2

b1
b2

, µ ≥ 21a2 + 22b2, and leti be a complete phase. With probability at
least1− n−t, OPTi > Λi.
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Proof. For the initialization phase (i = 0), the lemma holds with certainty becauseOPT0 > Λ0 = 0.
Let us assume that for some complete phasei ≥ 1, OPTi ≤ Λi. Let OPT′

i be the optimal cost for the
demands considered in phasei. It must beOPT′

i ≤ OPTi ≤ Λi. By Lemma 27, the probability that
phasei ends becauseGatheri fails is at mostn−t. On the other hand, ifOPT′

i ≤ Λi andGatheri does not
fail, phasei cannot end because ofIFLi (see also Lemma 23). In particular, let us assume thatGatheri
does not fail and phasei ends because either|Fi| > νk or Ai > µΛi. By Lemma 25, the gathering
costAG

i is at most20Λi. Hence, for the modified instance considered byIFLi, there exists ak-Median
solution of cost no greater thanAG

i + OPT′
i ≤ 21Λi, namely, the solution obtained by first moving the

demands inR(i) from the gathering points to their original locations and then to the optimal medians.
We also recall thatIFLi still treats different demands moved to the same gathering point byGatheri as
different unit demands. By Lemma 5, the solution produced byIFLi on the modified instance consists
of no more than(a1 + 21a2

b1
b2

)k ≤ νk medians and costs at most(21a2 + 22b2)Λi ≤ µΛi. Therefore, if
OPT′

i ≤ Λi andGatheri does not fail, phasei cannot end because ofIFLi. Consequently, the probability
thatOPTi ≤ Λi and phasei ends is at mostn−t. ut

Lemma 30. Let i be a complete phase. IfOPTi ≥ Λi, thenMi ≤ 2c1(α+ 1) OPTi.

Proof.The proof is essentially identical to the proof of Lemma 24. ut

The Proof of Theorem 3.The number of medians in the current solution (i.e.,F i−1 ∪ Fi) can never
exceed(a1 + 21a2

b1
b2

+ c2) k + 1. In the initialization phase,OPT0 > 0 = Asg0 . Let i + 1, i ≥ 0, be
the current phase, and leti be the last complete phase. The current algorithm’s cost isAsgi+1 ≤ αΛi+1

(Lemma 28). Given thatOPTi ≥ Λi, we distinguish betweenΛi+1 = αΛi andΛi+1 = Mi. In the
first case,Asgi+1 ≤ α2 OPTi, while in the second case,Asgi+1 ≤ 2c1α(α+1) OPTi (Lemma 30). Let
t ≥ 2. By Lemma 29 and since there areO(nk ) complete phases, the probability that there exist a complete
phasei such thatOPTi < Λi is at mostn−t+1. Sinceα ≥ µ + 22 (Lemma 28) andµ ≥ 21a2 + 22b2
(Lemma 29), the performance ratio ofRIM(k) is less than2c1[22(a2 + b2 +1)]2 with probability at least
1− n−t+1.

The algorithmRIM(k) runs inO(nk2 log2 n) time andO(k2 log2 n) space. More specifically, com-
putingF i from F i−1 ∪ Fi at the beginning of phasei takesO(k2 log n) time (e.g., [18]) and there are
O(nk ) phases. In addition,Gather needsO(k log2 n) time to move each new demand to the nearest gath-
ering point andIFL needsO(k2 log2 n) time to incorporate each new demand (of the modified instance)
into the current solution. As for the space complexity,Gather can be implemented inO(k log2 n) space
andIFL can be implemented inO(k2 log2 n) space. ut
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