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Abstract. We investigate the effect of linear independence in the strategies of congestion games on the con-
vergence time of best improvement sequences and on the pure Price of Anarchy. In particular, we consider
symmetric congestion games on extension-parallel networks, an interesting class of networks with linearly
independent paths, and establish two remarkable properties previously known only for parallel-link games.
More precisely, we show that for arbitrary (non-negative and non-decreasing) latency functions, any best
improvement sequence reaches a pure Nash equilibrium in at most as many steps as the number of players,
and that for latency functions in class D, the pure Price of Anarchy is at most ρ(D). As a by-product of
our analysis, we obtain that for symmetric congestion games on general networks with latency functions in
class D, the Price of Stability is at most ρ(D).

Keywords: Network Congestion Games, Best Response Dynamics, Price of Anarchy, Price of Stability.

1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation in large-scale com-
munication networks and have been the subject of intensive research in algorithmic game theory. In
a congestion game, a finite set of non-cooperative players, each controlling an unsplittable unit of
load, compete over a finite set of resources. All players using a resource experience a latency (or cost)
given by a non-negative and non-decreasing function of the resource’s load (or congestion). Among
a given set of resource subsets (or strategies), each player selects one selfishly trying to minimize
her individual cost, that is the sum of the latencies on the resources in the chosen strategy. A natural
solution concept is that of a pure Nash equilibrium, a configuration where no player can decrease her
individual cost by unilaterally changing her strategy.

The prevailing questions in recent work on congestion games have to do with quantifying the in-
efficiency due to the players’ selfish behaviour (see e.g. [22, 23, 17, 6, 9, 10, 4, 7]), and bounding the
convergence time to pure Nash equilibria if the players select their strategies in a selfish and decen-
tralized fashion (see e.g. [14, 21, 1, 8]). In this work, we investigate the effect of linear independence
in the strategies of congestion games on the convergence time of best improvement sequences and on
the inefficiency of pure Nash equilibria. In particular, we consider symmetric congestion games on
extension-parallel networks, an interesting class of networks whose paths are linearly independent in
the sense that every path contains an edge not included in any other path. For this class of congestion
games, which comprises a natural and non-trivial generalization of the extensively studied class of

? A preliminary version of this work appeared in the Proceedings of the 1st International Symposium on Algorithmic
Game Theory (SAGT 2008), B. Monien and U.-P. Schroeder (Eds.), Lecture Notes in Computer Science 4997, pp. 33–
45, Springer, 2008.



parallel-link games (see e.g. [22, 23, 17, 14, 21, 7]), we provide best possible answers to both research
questions above.

Convergence Time to Pure Nash Equilibria. In a seminal paper, Rosenthal [26] proved that the pure
Nash equilibria of congestion games correspond to the local optima of a natural potential function.
Hence Rosenthal established that every congestion game admits at least one pure Nash equilibrium
reached in a natural way when players iteratively make best improvement moves, i.e. adopt strategies
that minimize their individual cost given the strategies of other players. Nevertheless, this may take an
exponential number of steps, since computing a pure Nash equilibrium is PLS-complete even for non-
symmetric network congestion games as shown by Fabrikant et al. [15]. In fact, the proof of Fabrikant
et al. establishes the existence of instances where any sequence of players’ best improvement moves
is exponentially long. Even for symmetric network congestion games, where a pure Nash equilibrium
can be found efficiently by a min-cost flow computation [15], Ackermann et al. [1] presented a class
of instances where any best improvement sequence is exponentially long.

A natural approach to circumvent the strong negative results of [15, 1] is to resort to approximate
pure Nash equilibria, where no player can significantly improve her individual cost by unilaterally
changing her strategy. Chien and Sinclair [8] considered symmetric congestion games with a weak
restriction on latency functions and proved that several natural families of best improvement sequences
converge to an approximate equilibrium in polynomial time.

An orthogonal approach is to identify interesting classes of congestion games for which best
improvement sequences reach a pure Nash equilibrium in a polynomial number of steps. For instance,
it is well known that for symmetric singleton congestion games (aka parallel-link games) with non-
negative and non-decreasing latency functions, any best improvement sequence reaches a pure Nash
equilibrium in at most n steps, where n denotes the number of players. Ieong et al. [21] proved that
even for non-symmetric singleton games with non-monotonic latencies, best improvement sequences
reach a pure Nash equilibrium in a polynomial number of steps. Subsequently, Ackermann et al. [1]
generalized this result to matroid congestion games, where the strategy space of each player consists of
the bases of a matroid over the set of resources. Furthermore, Ackermann et al. proved that the matroid
property on the players’ strategy spaces is necessary for guaranteeing polynomial convergence of best
improvement sequences if one does not take into account the global structure of the game.

Contribution. The negative results of [15, 1] leave open the possibility that some particular classes
of symmetric network congestion games can guarantee fast convergence of best improvement se-
quences to pure Nash equilibria. In Section 3, we prove that for symmetric congestion games on
extension-parallel networks with arbitrary (non-negative and non-decreasing) latency functions, any
best improvement sequence reaches a pure Nash equilibrium in at most n steps1 (Theorem 1). In par-
ticular, we show that in any best improvement sequence, every player moves at most once (Lemma 1).
This result is best possible, since there are instances where reaching a pure Nash equilibrium requires

1 We highlight that matroid games and games on extension-parallel networks have a different combinatorial structure and
may have quite different properties. For example, a network consisting of two parallel-link networks connected in series
is not extension-parallel, while the corresponding network congestion game is a symmetric matroid game. For another
example, Milchtaich [25, Example 4] proved that weighted congestion games on extension-parallel networks may not
admit a pure Nash equilibrium. On the other hand, Ackermann et al. [2, Theorem 2] proved that every weighted matroid
congestion game admits at least one pure Nash equilibrium.
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that every player moves at least once. To the best of our knowledge, symmetric congestion games on
extension-parallel networks is the only class of congestion games other than parallel-link games for
which such a strong bound on the convergence time of best improvement sequences is known.

Inefficiency of Pure Nash Equilibria. Having reached a pure Nash equilibrium, selfish players enjoy
a minimum individual cost given the strategies of other players. However, the public benefit is usually
measured by the total cost incurred by all players. Since a pure Nash equilibrium does not need to
minimize the total cost, one seeks to quantify the inefficiency due to the players’ non-cooperative
and selfish behaviour. The Price of Anarchy, introduced by Koutsoupias and Papadimitriou [22], and
the Price of Stability, introduced by Anshelevich et al. [5], are two widely accepted measures of the
performance degradation due to the players’ non-cooperative and selfish behaviour. The (pure) Price
of Anarchy (PoA) (resp. Price of Stability, PoS) is the worst-case (resp. best-case ) ratio of the total
cost of a (pure) Nash equilibrium to the optimal total cost.

Many recent contributions have provided strong upper and lower bounds on the pure Price of
Anarchy for several classes of congestion games, mostly congestion games with affine and polynomial
latency functions and congestion games on parallel links2. Lücking et al. [23] were the first to consider
the PoA of congestion games for the objective of total cost. For the special case of parallel links with
linear latency functions, they proved that the PoA is 4/3. For parallel links with polynomial latency
functions of degree d, Gairing et al. [17] proved that the PoA is at most d + 1. Awerbuch et al. [6]
and Christodoulou and Koutsoupias [9] proved independently that the PoA of congestion games is
5/2 for affine latency functions and dΘ(d) for polynomial latency functions of degree d. Subsequently,
Aland et al. [4] obtained exact bounds on the PoA of congestion games with polynomial latency
functions. In the non-atomic setting, where the number of players is infinite and each player controls
an infinitesimal amount of load, Roughgarden [27] proved that the PoA is independent of the strategy
space and equal to ρ(D), where ρ depends on the class of latency functions D only (e.g. ρ is equal
to 4/3 for affine and 27+6

√
3

23 for quadratic functions). Subsequently, Correa et al. [11] introduced
β(D) = 1− 1

ρ(D) and gave a simple proof of the same bound. Recently Fotakis [16] and independently
Caragiannis et al. [7, Theorem 23] proved that the PoA of (atomic) congestion games on parallel links
with latency functions in class D is ρ(D), i.e. equal to the PoA of non-atomic congestion games with
arbitrary strategies.

There is no difference between the Price of Anarchy and the Price of Stability for non-atomic
congestion games, since the Nash equilibrium in the non-atomic setting is essentially unique (under
mild assumptions on the latency functions, see e.g. [28]). In the atomic setting, Christodoulou and
Koutsoupias [10] proved that the PoS of congestion games with affine latencies lies between 1+

√
3/3

and 1.6. Subsequently, Caragiannis et al. [7, Theorem 6] proved that the PoS of affine congestion
games is 1 +

√
3/3, and that for non-symmetric singleton games with latency functions in class D,

the PoS is at most ρ(D).

Contribution. Despite the considerable interest in the PoA and the PoS of congestion games, it re-
mains open whether better upper bounds close to ρ are possible for symmetric games on simple net-
works other than parallel links (e.g. extension-parallel networks, series-parallel networks), or strong

2 Here we cite only the most relevant results on the pure PoA for the objective of total cost. For a survey on the PoA of
congestion games for the objective of total cost and the objective of maximum cost, see e.g. [18].
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lower bounds similar to the lower bounds of [6, 9, 10, 4] also apply to them. As a first step in this
direction, we prove in Section 4 that the PoA of symmetric congestion games on extension-parallel
networks with latency functions in classD is at most ρ(D) (Theorem 3). On the negative side, we show
that this result cannot be further generalized to series-parallel networks. In particular, we present an
example of a 3-player symmetric game on a simple series-parallel network with linear latencies for
which the PoA is 15/11, greater than 4/3, i.e. the value of ρ for linear latencies. To the best of our
knowledge, symmetric games on extension-parallel networks is the only class of congestion games
other than parallel-link games for which such a strong bound on the pure Price of Anarchy is known.

To establish the upper bound of ρ(D) on the PoA of symmetric games on extension-parallel net-
works, we show two properties of symmetric games that may be of independent interest. In particular,
we prove that (i) for symmetric games on general networks with latencies in class D, the total cost
of any configuration minimizing Rosenthal’s potential function is at most ρ(D) times the optimal to-
tal cost (Lemma 2 and Lemma 3), and that (ii) for symmetric games on extension-parallel networks,
every pure Nash equilibrium is a global minimum of Rosenthal’s potential function (Lemma 4, also
implicit in the work of Holzman and Law-Yone [19, Theorem 6.1]).

By the first property, we obtain an upper bound of ρ(D) on the PoS of symmetric congestion
games on general networks with latency functions in class D (Theorem 2). For instance, this implies
that the PoS of symmetric network games with affine latencies is at most 4/3, i.e. considerably better
than the bound of 1 +

√
3/3 known for general congestion games. To the best of our knowledge, the

upper bound of ρ(D) is the first bound on the Price of Stability that concerns a large natural class of
congestion games other than singleton games and applies to arbitrary latency functions.

Related Work on Congestion Games with Linearly Independent Strategies. There has been a
significant volume of previous work investigating the impact of linearly independent strategies on
properties of congestion games. In [19], Holzman and Law-Yone proved that a strategy space admits
a strong equilibrium3 for any selection of (non-negative and non-decreasing) latency functions if and
only if it consists of linearly independent strategies. Furthermore, Holzman and Law-Yone showed that
for symmetric congestion games with linearly independent strategies, every pure Nash equilibrium is
a strong equilibrium. Subsequently, Holzman and Law-Yone [20] proved that the class of congestion
games on extension-parallel networks is the network equivalent of congestion games with linearly
independent strategies.

Milchtaich [24] was the first to consider networks with linearly independent paths (under this
name). Milchtaich proved that an undirected network has linearly independent paths if and only if it is
extension-parallel. Moreover, Milchtaich showed that networks with linearly independent paths is the
only class of networks where for any selection of non-negative and increasing (resp. non-decreasing)
latency functions, all equilibria in the non-atomic setting are Pareto (resp. weakly Pareto) efficient.

Recently Epstein et al. [13, 12] considered fair connection games and congestion games on
extension-parallel networks. In [13], Epstein et al. proved that fair connection games on extension-
parallel networks admit a strong equilibrium. In [12], Epstein et al. showed that extension-parallel
networks is the only class of networks where for any selection of (non-negative and non-decreasing)
latency functions, every pure Nash equilibrium minimizes the maximum players’ cost.

3 The notion of strong equilibrium was introduced by Aumann in late 50’s. A configuration is a strong equilibrium if no
coalition of players can deviate in a way profitable for all its members.
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2 Model and Preliminaries

For any integer k ≥ 1, we denote [k] ≡ {1, . . . , k}. For a vector x = (x1, . . . , xn), we denote
x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x′i) ≡ (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

Congestion Games. A congestion game is a tuple Γ (N,E, (Σi)i∈N , (de)e∈E), where N denotes the
set of players, E denotes the set of resources, Σi ⊆ 2E \ {∅} denotes the strategy space of each
player i, and de : IN 7→ IR≥0 is a non-negative and non-decreasing latency function associated with
each resource e. A congestion game is symmetric if all players have a common strategy space. In the
following, we let n denote the number of players.

A configuration is a vector σ = (σ1, . . . , σn) consisting of a strategy σi ∈ Σi for each player i.
For every resource e, we let σe = |{i ∈ N : e ∈ σi}| denote the congestion induced on e by σ. The
individual cost of player i in the configuration σ is ci(σ) =

∑
e∈σi

de(σe). A configuration σ is a pure
Nash equilibrium if no player can improve her individual cost by unilaterally changing her strategy.
Formally, σ is a Nash equilibrium if for every player i and every strategy si ∈ Σi, ci(σ) ≤ ci(σ−i, si).

Rosenthal [26] introduced the potential function

Φ(σ) =
∑
e∈E

σe∑
i=1

de(i) ,

and proved that when a player i switches from her current strategy σi to a new strategy si ∈ Σi, the
difference in the potential value equals the difference in the individual cost of player i, i.e.

Φ(σ−i, si)− Φ(σ) = ci(σ−i, si)− ci(σ)

Thus Rosenthal established that congestion games (even with non-monotonic latency functions) admit
a pure Nash equilibrium, and that the pure Nash equilibria of a congestion game correspond to the
local minima of the potential function Φ. For symmetric network congestion games with arbitrary
(non-negative and non-decreasing) latency functions, Fabrikant et al. [15, Theorem 2] proved that the
global minimum of the potential function Φ, and thus a pure Nash equilibrium, can be computed in
polynomial time by a min-cost flow computation.

In this work, we focus on symmetric network congestion games, where the players’ strategies
are determined by a directed network G(V,E) with a distinguished source s and sink t (aka a s − t
network). The network edges play the role of resources and the common strategy space of the players
is the set of (simple) s− t paths inG, denoted P . For any s− t path p and any pair of vertices v1, v2 on
p, we let p[v1, v2] denote the segment of p between vertices v1 and v2 (p[v1, v2] is empty if v1 appears
after v2 on p). For consistency with the definition of strategies as resource subsets, we usually regard
paths as sets of edges.

Flows and Configurations. Let G(V,E) be a directed network with source s and sink t. A s− t flow
f is a vector (fe)e∈E ∈ IRm

≥0 that satisfies the flow conservation at all vertices other than s and t.
The volume of f is the total flow leaving s. A flow f is acyclic if there is no directed cycle in G with
positive flow on all its edges. For a flow f and a path p ∈ P , we let fmin

p ≡ mine∈p{fe}.
Given a configuration σ of a symmetric network congestion game Γ , we refer to the congestion

vector (σe)e∈E as the s−t flow induced by σ. We say that a flow f is feasible if there is a configuration
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inducing congestion fe on every edge e. Hence any configuration of Γ corresponds to a feasible
flow, while a feasible flow may be induced by many different configurations. Moreover, every integer
acyclic s−t flow of volume n corresponds to (possibly many) configurations of Γ , and thus is feasible.
We say that a configuration is acyclic if the corresponding feasible flow is acyclic. In the following,
we slightly abuse the notation by letting the same symbol denote both a configuration and the feasible
flow induced by it.

Best Improvement Sequences. A strategy si ∈ Σi is a best response of player i to a configuration
σ (or equivalently to σ−i) if for every strategy s′i ∈ Σi, ci(σ−i, si) ≤ ci(σ−i, s′i). If the current
strategy σi of player i is not a best response to the current configuration σ, a best response of i to σ is
called a best improvement of player i. We consider best improvement sequences, where in each step,
a player i whose strategy σi is not a best response to the current configuration σ switches to her best
improvement. The existence of the potential function Φ implies that any best improvement sequence
converges to a pure Nash equilibrium in a finite number of steps. In the first part of this work, we are
interested in bounding the maximum length of best improvement sequences for symmetric congestion
games on extension-parallel networks.

Social Cost, Price of Anarchy, and Price of Stability. In the second part of this work, we are in-
terested in quantifying the inefficiency of pure Nash equilibria for symmetric congestion games on
extension-parallel networks and on general networks. We evaluate configurations using the objective
of total cost. The total cost C(σ) of a configuration σ is the sum of players’ individual costs in σ, i.e.

C(σ) =
n∑
i=1

ci(σ) =
∑
e∈E

σede(σe)

The optimal configuration, denoted o, minimizes the total cost among all configurations in Pn.
The pure Price of Anarchy (PoA) of a congestion game Γ is the maximum ratio C(σ)/C(o)

over all pure Nash equilibria σ of Γ . The pure Price of Stability (PoS) of Γ is the minimum ratio
C(σ)/C(o) over all pure Nash equilibria σ of Γ . In other words, the pure PoA (resp. PoS) is equal
to C(σ)/C(o), where σ is Γ ’s pure Nash equilibrium of maximum (resp. minimum) total cost. Hence
the pure PoA (resp. PoS) of Γ is bounded from above by a number α if all pure Nash equilibria (resp.
some pure Nash equilibrium) of Γ have (resp. has) total cost at most α times the optimal total cost.

We use the quantities ρ(D) and β(D) introduced in [27, 11] respectively, to bound the PoS of sym-
metric network congestion games and the PoA of symmetric games on extension-parallel networks.
For a non-negative and non-decreasing function d(x), let ρ(d) ≡ supx≥y≥0

xd(x)
yd(y)+(x−y)d(x) , and let

β(d) ≡ supx≥y≥0
y(d(x)−d(y))

xd(x) . For a non-empty class of non-negative and non-decreasing functions
D, let ρ(D) ≡ supd∈D ρ(d), and let β(D) ≡ supd∈D β(d). We note that (1− β(D))−1 = ρ(D).

Extension-Parallel Networks. Let G1(V1, E1) and G2(V2, E2) be two networks with source s1 ∈ V1

and s2 ∈ V2 and sink t1 ∈ V1 and t2 ∈ V2 respectively, and let G′(V1 ∪ V2, E1 ∪ E2) be the union
network of G1 and G2. The parallel composition of G1 and G2 results in a s − t network obtained
from G′ by identifying s1 and s2 to the source s and identifying t1 and t2 to the sink t. The series
composition of G1 and G2 results in a s − t network obtained from G′ by letting s1 be the source s,
letting t2 be the sink t, and identifying t1 with s2.
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A directed s− t network is series-parallel if it consists of either a single edge (s, t) or two series-
parallel networks composed either in series or in parallel. A directed s−t network is extension-parallel
if it consists of either: (i) a single edge (s, t), (ii) a single edge and an extension-parallel network
composed in series, or (iii) two extension-parallel networks composed in parallel. Every extension-
parallel network is series-parallel. The converse is true only if in every series composition, at least one
component is a single edge.

The following proposition gives a useful property of series-parallel (and thus of extension-parallel)
networks. For completeness, we prove the proposition in the Appendix, Section A.1.

Proposition 1. LetG(V,E) be a series-parallel s− t network, and let u,w be two vertices connected
by two internally disjoint paths p and p′. Then every s − t path having an edge in common with p
contains both u and w and does not intersect p′ at any vertex other than u and w.

A s− t network has linearly independent paths if every s− t path contains at least one edge not
belonging to any other s− t path4. Milchtaich [24, Proposition 5] proved that an undirected s− t net-
work has linearly independent paths if and only if it is extension-parallel. Therefore, every (directed)
extension-parallel network has linearly independent paths (see also [20, Theorem 1]). Furthermore,
[24, Propositions 3 and 5] imply that a (directed) series-parallel network has linearly independent
paths if and only if it is extension-parallel.

The following proposition gives a useful property of extension-parallel networks (for a proof, see
[24, Proposition 4]).

Proposition 2 (Milchtaich). Let G be an extension-parallel s − t network. Then for every pair of
s− t paths p and p′ in G, and every vertex v common to both paths, p and p′ share either the segment
between s and v or the segment between v and t.

Proposition 2 implies that for any two paths p and p′ of an extension-parallel network, the segments
p \ p′ and p′ \ p where p and p′ deviate from each other are two internally disjoint paths with common
endpoints.

The following proposition gives an interesting property of networks with linearly independent
paths (and thus of extension-parallel networks).

Proposition 3. Let Γ be a symmetric congestion game on a s−t networkG with linearly independent
paths, let f be any configuration of Γ , and let π be any (simple) path of G with fmin

π > 0. Then there
exists a player i whose strategy in f includes π.

Proof. We first consider the case where π is a s − t path. Since G is a s − t network with linearly
independent paths, there exists an edge e ∈ π not belonging to any other s−t path. Let i be any player
whose strategy in f includes e (such a player exists because fe > 0). Then the strategy of player i in
f is π (since e would not be included in fi otherwise).

If π is not a s − t path, let u and w be the endpoints of π. Since f corresponds to a s − t flow
with fmin

π > 0, there is a s − u path π1 with fmin
π1

> 0 (π1 is empty if u is s) and a w − t path π2

4 The name is motivated by the fact that in such a network, it is not possible to express any path as the symmetric difference
of some other paths [24, Proposition 6].
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with fmin
π2

> 0 (π2 is empty if w is t). Then p = (π1, π, π2) is a s− t path with fmin
p > 0. As shown

before, there is a player i whose strategy in f is p, which includes π. ut

Every configuration of a symmetric congestion game on a series-parallel (and thus on an
extension-parallel) network corresponds to a (feasible) acyclic flow of volume n. Proposition 3 im-
plies that for every symmetric congestion game Γ on an extension-parallel s− t network, any acyclic
s − t flow of volume n corresponds to a unique configuration of Γ (uniqueness is up to players’
permutation). Therefore, for symmetric congestion games on extension-parallel networks, there is a
correspondence between configurations and feasible acyclic flows.

3 Convergence Time to Pure Nash Equilibria

In this section, we prove that for symmetric congestion games on extension-parallel networks, any
best improvement sequence reaches a pure Nash equilibrium in at most n steps. The proof is based on
the following lemma establishing that in any best improvement sequence, every player moves at most
once.

Lemma 1. Let Γ be a symmetric congestion game on an extension-parallel network, let σ be the
current configuration, and let i be a player switching from her current strategy σi to her best improve-
ment σ′i. Then for every player j whose current strategy σj is a best response to σ, σj remains a best
response of j to the new configuration σ′ = (σ−i, σ′i).

Proof. For sake of contradiction, we assume that there is a player j whose current strategy σj is a best
response to σ but not to σ′. Let σ′j be the best response of j to σ′, and let p = σj \σ′j and p′ = σ′j \σj
be the segments where σj and σ′j deviate from each other. Due to the extension-parallel structure of
the network (see also Proposition 2), p and p′ are internally disjoint paths with common endpoints,
denoted u and w (u may be s and w may be t).

Since p and p′ are edge-disjoint paths and player j improves her individual cost in σ′ by switching
from p to p′, ∑

e∈p
de(σ′e) >

∑
e∈p′

de(σ′e + 1) (1)

Using the inequality above and the hypothesis that σ′i is a best improvement of player i to σ, and
exploiting the extension-parallel structure of the network, we establish that if player j prefers σ′j to
σj in the new configuration σ′, then σj is not a best response of j to σ. In particular, we show that
player j can also improve her individual cost in σ by switching from an appropriate segment of σj to
the corresponding segment of σ′i. Clearly, this contradicts the hypothesis that σj is a best response of
j to σ and implies the lemma.

The technical part of the proof proceeds by case analysis. We first distinguish between two cases
depending on whether σ′i contains both u and w or not.

Case I, u,w ∈ σ′
i : We first consider the case where σ′i contains u and w and thus σ′i[u,w] can serve

as an alternative to p. We further distinguish between two subcases depending on whether p and σ′i
are edge-disjoint or not.
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Case I.a, p ∩ σ′i = ∅ : We start with the case where p and σ′i are edge-disjoint. We first consider the
case where σ′i[u,w] \ p′ does not contain any edges of σi (see e.g. Fig. 1.a). Then,

∑
e∈p′

de(σ′e + 1) ≥
∑

e∈p′∩σ′i

de(σe + 1) +

cost of player i on p′ \ σ′i in σ︷ ︸︸ ︷∑
e∈(p′∩σi)\σ′i

de(σe) +
∑

e∈(p′\σi)\σ′i

de(σe + 1)

≥
∑

e∈p′∩σ′i

de(σe + 1) +
∑

e∈σ′i[u,w]\p′
de(σe + 1)

︸ ︷︷ ︸
cost of player i on σ′i[u,w] \ p′ in σ

=
∑

e∈σ′i[u,w]

de(σe + 1) (2)

For the first inequality, we use that when player i switches from σi to σ′i: (i) the congestion of any
edge e in σ′i does not decrease (i.e. ∀e ∈ σ′i , σ′e ≥ σe), (ii) the congestion of any edge e decreases
by at most 1 (i.e. ∀e, σ′e ≥ σe − 1), and (iii) the congestion of any edge e not in σi or σ′i does not
change (i.e. ∀e 6∈ σi ∪ σ′i , σ′e = σe). For the second inequality, we observe that the marked terms
on the left-hand side is the individual cost of player i on p′ \ σ′i in σ (i.e. when the configuration of
the remaining players is σ−i) and that the marked term on the right-hand side is the individual cost of
player i on σ′i[u,w] \ p′ in σ (recall that we consider the case where σ′i[u,w] \ p′ does not contain any
edges of σi). Since σ′i is a best response of player i to σ−i, the former cost is no less than the latter.

Using (2), we conclude that player j can improve her individual cost in σ by changing her path
between u and w from p to σ′i[u,w], which contradicts the hypothesis that σj is a best response of
player j to σ. Formally,∑

e∈p
de(σe) ≥

∑
e∈p

de(σ′e) >
∑
e∈p′

de(σ′e + 1) ≥
∑

e∈σ′i[u,w]

de(σe + 1)

The first inequality holds because p ∩ σ′i = ∅. Therefore, for all e ∈ p, σe ≥ σ′e, since the congestion
of any edge not in σ′i does not increase when player i switches from σi to σ′i. The second inequality is
(1), and the third inequality is (2).

If σ′i[u,w] \ p′ contains some edges of σi, we show that due to the extension-parallel structure of
the network, the congestion of the edges in p and p′ does not change when player i switches from σi
to σ′i (see Fig. 1.b). This contradicts the hypothesis that the best response of player j changes from σj
to σ′j when player i moves from σi to σ′i.

We first show that the congestion of the edges of p does not change when player i switches from
σi to σ′i. Since u and w are connected by two internally disjoint paths p and σ′i[u,w], and since σi and
σ′i[u,w] have some edges in common, by Proposition 1, σi contains u and w and does not have any
edges in common with p. Hence the congestion of the edges of p is the same in both σ and σ′.

Next we show that the congestion of the edges of p′ does not change when player i switches from
σi to σ′i. Let π = σ′i[u,w] \ p′ and π′ = p′ \ σ′i[u,w] be the segments where σ′i[u,w] and p′ deviate
from each other. Since π ∩ σi 6= ∅, π and π′ are non-empty. Thus they are internally disjoint paths
with common endpoints, denoted u′ and w′. Their first endpoint u′ appears no sooner than u and their
last endpoint w′ appears no later than w on σ′i and p′. Since σi has some edges in common with π,
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Fig. 1. The different cases considered in the proof of Lemma 1. In each case, the solid black path labeled p represents the
best response of player j in σ between vertices u andw, the solid grey path labeled σi represents the strategy of player i in σ,
and the dotted grey path labeled σ′i represents the best response of player i to σ. We assume that the best response of player
j changes from p to the dotted black path labeled p′ when player i switches from σi to σ′i , and establish a contradiction in
all cases.

by Proposition 1, σi contains u′ and w′ and does not intersect π′ at any vertex other than u′ and w′.
Moreover, since all three paths p′, σ′i[u,w] and σi[u,w] contain u′ and w′, and since σ′i[u,w] and
σi[u,w] deviate from p′ between u′ and w′, by Proposition 2, the three paths share their u − u′ and
w′ − w segments (see also Fig. 1.b). Therefore, if σ′i[u,w] and σi[u,w] deviate from each other, this
happens between u′ and w′. Consequently, the corresponding path segments σ′i[u

′, w′] and σi[u′, w′]
do not contain any edges of p′. Thus the congestion of the edges of p′ does not change when player i
switches from σi to σ′i.

Case I.b, p ∩ σ′i 6= ∅ : We proceed with the case where p and σ′i are not edge-disjoint. Then, by
Proposition 1, σ′i does not have any edges in common with p′ and does not intersect p′ at any vertex
other than u and w. We first consider the case where σ′i[u,w] \ p does not contain any edges of σi (see
e.g. Fig. 1.c). Then,∑

e∈p∩σ′i

de(σ′e) +
∑
e∈p\σ′i

de(σe) ≥
∑
e∈p

de(σ′e) >
∑
e∈p′

de(σ′e + 1)

≥
∑

e∈p′∩σi

de(σe) +
∑

e∈p′\σi

de(σe + 1)

≥
∑

e∈σ′i[u,w]

de(σ′e)

=
∑

e∈p∩σ′i

de(σ′e) +
∑

e∈σ′i[u,w]\p

de(σe + 1) (3)

The first inequality holds because the congestion of any edge not in σ′i does not increase when player i
switches from σi to σ′i (i.e. ∀e 6∈ σ′i , σe ≥ σ′e). The second inequality is (1). The third inequality holds
because when player i switches from σi to σ′i: (i) the congestion of any edge decreases by at most 1
(i.e. ∀e, σ′e ≥ σe − 1), and (ii) the congestion of any edge not in σi does not decrease (i.e. ∀e 6∈ σi ,
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σ′e ≥ σe). For the fourth inequality, we observe that the left-hand side is equal to the individual cost of
player i on p′ in σ (i.e. when the configuration of the remaining players is σ−i), and that the right-hand
side is equal to the cost of player i on σ′i[u,w] in σ. Since σ′i is a best response of player i to σ−i, the
former cost is not less than the latter. The equality holds because σ′i[u,w] \ p does not contain any
edges of σi and thus the congestion of every edge in σ′i[u,w]\p increases by 1 when player i switches
from σi to σ′i (i.e. ∀e ∈ σ′i[u,w] \ p , σ′e = σe + 1). Thus (3) implies that∑

e∈p\σ′i

de(σe) >
∑

e∈σ′i[u,w]\p

de(σe + 1)

Therefore, player j can improve her individual cost in σ by switching from p \ σ′i to σ′i[u,w] \ p. This
contradicts the hypothesis that σj is a best response of player j to σ.

The case where σ′i[u,w] \ p contains some edges of σi (see e.g. Fig. 1.d) is symmetric to the
subcase of I.a where σ′i[u,w]\p′ contains some edge of σi. Applying the same arguments to the paths
σ′i[u,w], σi[u,w] and p (instead of p′ in the subcase of I.a), we show that the congestion of the edges in
p and p′ does not change when player i switches from σi to σ′i. This contradicts the hypothesis that the
best response of player j changes from σj to σ′j when player i moves from σi to σ′i. For completeness,
we include the details in the Appendix, Section A.2.

Case II, either u 6∈ σ′
i orw 6∈ σ′

i : We proceed with the case where σ′i does not contain at least one
of u and w. Then, by Proposition 1, σ′i does have any edges in common with both p and p′.

If σi too does not contain at least one of u and w, then σi does not have any edges in common
with both p and p′. Therefore, the congestion of the edges in p and p′ does not change when player i
switches from σi to σ′i. This contradicts the hypothesis that the best response of player j changes from
σj to σ′j when player i moves from σi to σ′i.

Hence we restrict our attention to the case where σi contains both u and w. Let σ′i \ σi and σi \ σ′i
be the segments where σi and σ′i deviate from each other. Since σ′i does not contain either u or w
(or both) and σi contains both u and w, σ′i \ σi and σi \ σ′i are non-empty. By Proposition 2, σ′i \ σi
and σi \ σ′i are (non-empty) internally disjoint paths with common endpoints, denoted u′ and w′.
Their first endpoint u′ appears no later than u and their last endpoint w′ appears no sooner than w
on σi and σ′i (see e.g. Fig. 1.e). Furthermore, either u is different from u′ or w is different from w′

(or both). By Proposition 2 and since σi deviates from at least one of p and p′ between u and w,
there is a unique path σi[u′, u] between u and u′ and a unique path σi[w,w′] between w and w′. Let
z = σi[u′, u] ∪ σi[w,w′]. We highlight that both σi[u′, u] and σi[w,w′] are included in strategies σj
and σ′j . In particular, σj [u′, w′] = z ∪ p. Using the previous observations, we obtain that:∑

e∈σj [u′,w′]

de(σe) ≥
∑
e∈z

de(σe) +
∑
e∈p

de(σ′e)

>
∑
e∈z

de(σe) +
∑
e∈p′

de(σ′e + 1)

≥
∑
e∈z

de(σe) +
∑

e∈p′∩σi

de(σe) +
∑

e∈p′\σi

de(σe + 1)

≥
∑

e∈σ′i[u′,w′]

de(σe + 1) (4)
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The first inequality holds because the edges of p are not included in σ′i, and the congestion of any edge
not in σ′i does not increase when player i moves from σi to σ′i (i.e. ∀e 6∈ σ′i , σe ≥ σ′e). The second
inequality follows from (1). The third inequality holds because when player i switches from σi to σ′i:
(i) the congestion of any edge decreases by at most 1 (i.e. ∀e, σ′e ≥ σe − 1), and (ii) the congestion
of any edge not in σi does not decrease (i.e. ∀e 6∈ σi , σ′e ≥ σe). For the fourth inequality, we observe
that the left-hand side is equal to the individual cost of player i on σi[u′, u] ∪ p′ ∪ σi[w,w′] in σ (i.e.
when the configuration of the remaining players is σ−i), and that the right-hand side is equal to the
individual cost of player i on σ′i[u

′, w′] in σ (recall that σ′i[u
′, w′] and σi[u′, w′] are edge disjoint).

Since σ′i is a best response of player i to σ−i, the former cost is not less than the latter.

Thus (4) implies that player j can decrease her individual cost in σ by switching from σj [u′, w′]
to σ′i[u

′, w′]. This contradicts the hypothesis that σj is a best response of player j to σ. Since we have
reached a contradiction in all different cases, this concludes the proof of the lemma. ut

By Lemma 1, once a player finds herself on her best response strategy, she will not have an
incentive to deviate as long as the remaining players switch to their best improvement strategies.
Hence we obtain the main result of this section:

Theorem 1. For any n-player symmetric congestion game on an extension-parallel network, every
best improvement sequence reaches a pure Nash equilibrium in at most n steps.

4 Bounding the Inefficiency of Pure Nash Equilibria

We proceed to establish an upper bound of ρ(D) on the PoS of symmetric network congestion games
and on the PoA of symmetric games on extension parallel networks. We start with a technical property
of the configurations of symmetric network congestion games that minimize the potential function Φ
(cf. Lemma 2). Based on this property and on the definition of β(D), we prove that for symmetric
network games, the total cost of any global minimum of Φ is at most (1 − β(D))−1 = ρ(D) times
the optimal total cost (cf. Lemma 3). Since a global minimum of Φ is also a local minimum, and
thus a pure Nash equilibrium, we obtain that the PoS of symmetric network congestion games with
latency functions in classD is at most ρ(D) (cf. Theorem 2). Furthermore, we show that for symmetric
games on extension-parallel networks, every pure Nash equilibria is a global minimum of the potential
function Φ (cf. Lemma 4). Therefore, for symmetric congestion games on extension-parallel networks
with latency functions in class D, the PoA is at most ρ(D) (cf. Theorem 3).

Lemma 2. Let Γ be a symmetric network congestion game, and let G(V,E) be the underlying s− t
network. An acyclic configuration f of Γ minimizes the potential function Φ if and only if for every
configuration g of Γ ,

∆(f, g) ≡
∑

e:fe>ge

(fe − ge)de(fe)−
∑

e:fe<ge

(ge − fe)de(fe + 1) ≤ 0 (5)
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Proof. For the if-part, we observe that for all configurations f, g,

Φ(f)− Φ(g) =
∑

e:fe>ge

fe∑
i=ge+1

de(i)−
∑

e:fe<ge

ge∑
i=fe+1

de(i)

≤
∑

e:fe>ge

(fe − ge)de(fe)−
∑

e:fe<ge

(ge − fe)de(fe + 1) = ∆(f, g)

The inequality holds because for every edge e with fe > ge,
∑fe

i=ge+1 de(i) consists of fe − ge terms
no greater than de(fe), and for every edge e with fe < ge,

∑ge

i=fe+1 de(i) consists of ge− fe terms no
less than de(fe + 1). Therefore, if for all configurations g of Γ , ∆(f, g) ≤ 0, then Φ(f) ≤ Φ(g) for
all configurations g, which implies that f is a global minimum of the potential function Φ.

For the converse, let f be an acyclic configuration that minimizes Φ, and let g be any acyclic
configuration of Γ . The assumption that g is acyclic can be made without loss of generality, since
any configuration g′ can be turned into an acyclic configuration g with ge ≤ g′e for all e ∈ E, which
implies that ∆(f, g′) ≤ ∆(f, g). In the following, we assume that the configurations f and g are not
identical, and consider the corresponding feasible s− t flows.

Let Ĝ(V, Ê) be the network of the flow g− f . In particular, for each edge (u,w) ∈ E, Ê contains
a forward edge (u,w) with flow g(u,w) − f(u,w) if g(u,w) > f(u,w), a backward edge (w, u) with flow
f(u,w) − g(u,w) if g(u,w) < f(u,w), and no edge between u and w if f(u,w) = g(u,w). For a (directed)
cycle C in Ĝ, let

C+ ≡ {(u,w) ∈ E : (u,w) ∈ C and g(u,w) > f(u,w)}

be the set of edges of the original network G corresponding to the forward edges of C, let

C− ≡ {(u,w) ∈ E : (w, u) ∈ C and g(u,w) < f(u,w)}

be the set of edges of the original network G (with their directions as in E) corresponding to the
backward edges of C, and let

costf (C) ≡
∑
e∈C+

de(fe + 1)−
∑
e∈C−

de(fe)

be the cost (with respect to f ) of cycle C. The only-if-part of the lemma follows from the following
claims: (i) if f is acyclic and a global minimum of the potential function Φ, then for every acyclic
configuration g, the network Ĝ of the flow g − f does not contain any cycles C with costf (C) < 0,
and (ii) if every cycle C in the network Ĝ of the flow g − f has costf (C) ≥ 0, then ∆(f, g) ≤ 0.

We first establish claim (ii), namely that if Ĝ does not contain any cycles of negative cost (with
respect to f ), then ∆(f, g) ≤ 0. Since f and g are acyclic s − t flows of the same volume, a flow
decomposition of g−f yields only cycles and no paths of Ĝ. Let {C1, . . . , Ck} be the set of (directed,
simple) cycles of Ĝ produced by the standard flow decomposition of g − f (see e.g. the algorithm in
[3, Theorem 3.5]), and let si be the amount of flow carried by each cycle Ci in the decomposition of
g − f . Since g and f are acyclic s− t flows, every cycle Ci contains at least one forward and at least
one backward edge (i.e. both C+

i and C−i are non-empty).
By the properties of the standard flow decomposition,

⋃
i∈[k]C

+
i = {e ∈ E : ge > fe} (i.e. the

union of C+
i ’s corresponds to the set of forward edges of Ĝ), and

⋃
i∈[k]C

−
i = {e ∈ E : ge < fe}
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(i.e. the union of C−i ’s corresponds to the set of backward edges of Ĝ). Moreover, for every forward
edge (u,w) ∈ Ê,

∑
i:(u,w)∈C+

i
si = g(u,w) − f(u,w), and for every backward edge (w, u) ∈ Ê,∑

i:(u,w)∈C−i
si = f(u,w) − g(u,w). Therefore,

∆(f, g) =
∑

e:fe>ge

(fe − ge)de(fe)−
∑

e:fe<ge

(ge − fe)de(fe + 1)

=
k∑
i=1

si

 ∑
e∈C−i

de(fe)−
∑
e∈C+

i

de(fe + 1)


︸ ︷︷ ︸

=−costf (Ci)

= −
k∑
i=1

si costf (Ci) (6)

Hence, if Ĝ does not contain any (simple) cycles of negative cost (with respect to f ), then for every
cycle Ci in the flow decomposition of g − f , costf (Ci) ≥ 0, which implies that ∆(f, g) ≤ 0. This
concludes the proof of claim (ii).

We proceed to establish claim (i), namely that if f is a global minimum of the potential function
Φ, then Ĝ does not contain any cycles of negative cost (with respect to f ). For sake of contradiction,
we assume that there is a (directed) cycle C in Ĝ with costf (C) < 0. Given the flow f and the
cycle C, we construct a feasible s − t flow f ′ by increasing the flow by one unit on the edges of
C+ (i.e. f ′e = fe + 1 on all e ∈ C+), decreasing the flow by one unit on the edges of C− (i.e.
f ′e = fe − 1 on all e ∈ C−), and keeping the same flow on the remaining edges (i.e. f ′e = fe on
all e ∈ E \ (C+ ∪ C−) ). By construction, the network of the flow g − f ′ can be obtained from Ĝ

(i.e. the network of the flow g − f ) by decreasing the flow by one unit on all edges of C. Since f
and g are feasible acyclic s − t flows, f ′ is a feasible acyclic s − t flow (and thus corresponds to a
configuration of Γ ). By construction, the potential value of f ′ is Φ(f ′) = Φ(f) + costf (C) < Φ(f),
because costf (C) < 0, which contradicts the hypothesis that f is a global minimum of the potential
function Φ. This concludes the proof of claim (i), and the proof of the lemma. ut

The following lemma bounds the total cost of configurations (of symmetric network games) that
minimize the potential function Φ in terms of the optimal total cost. The proof follows from the
definition of ρ(D) and Lemma 2.

Lemma 3. Let Γ be a symmetric network congestion game with latency functions in class D, let f
be an acyclic configuration of Γ that minimizes the potential function Φ, and let o be the optimal
configuration. Then, C(f) ≤ ρ(D)C(o).

Proof. Let G(V,E) be the network underlying the definition of Γ . For every edge e with fe > oe,

fede(fe) = oede(fe) + (fe − oe)de(fe)
≤ oede(oe) + β(D)fede(fe) + (fe − oe)de(fe) (7)

For the inequality, we use that oe(de(fe)−de(oe)) ≤ β(D)fede(fe), which follows from the definition
of β(D), since fe > oe and de(x) ∈ D.
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On the other hand, for every edge e with fe < oe,

fede(fe) = oede(oe)− oede(oe) + fede(fe)

≤ oede(oe)− (oe − fe)de(fe + 1) (8)

The inequality follows from de(fe) ≤ de(fe + 1) and de(fe + 1) ≤ de(oe), because the latency
functions are non-decreasing and fe + 1 ≤ oe (recall that oe and fe are integral).

Using (7), (8), and Lemma 2, we obtain that:

C(f) ≤ C(o) + β(D)
∑

e:fe>oe

fede(fe) +

= ∆(f, o) ≤ 0, by Lemma 2︷ ︸︸ ︷∑
e:fe>oe

(fe − oe)de(fe)−
∑

e:fe<oe

(oe − fe)de(fe + 1)

≤ C(o) + β(D)C(f) ,

which implies that C(f) ≤ (1− β(D))−1C(o) = ρ(D)C(o). For the first inequality, we apply (7) to
every edge e with fe > oe and (8) to every edge e with fe < oe. For the last inequality, since f is an
acyclic configuration that minimizes the potential function Φ and o is a configuration of Γ , Lemma 2
implies that ∆(f, o) ≤ 0. ut

Every symmetric network congestion game admits an acyclic configuration that minimizes the
potential function Φ. Since the global minimum of Φ is also a local minimum, and thus a pure Nash
equilibrium, Lemma 3 implies that every symmetric network game with latencies in class D admits
a pure Nash equilibrium of total cost at most ρ(D) times the optimal total cost. Hence we obtain the
following upper bound on the (pure) Price of Stability of symmetric network congestion games.

Theorem 2. For any symmetric network congestion game with latency functions in class D, the PoS
is at most ρ(D).

For symmetric games on extension-parallel networks, configurations are acyclic and every pure
Nash equilibrium is a global minimum of the potential function Φ (cf. Lemma 4). Therefore, by
Lemma 3, for symmetric games on extension-parallel networks with latency functions in class D,
the total cost of any pure Nash equilibrium is at most ρ(D) times the optimal total cost. Hence we
obtain the following upper bound on the pure Price of Anarchy of symmetric congestion games on
extension-parallel networks.

Theorem 3. For symmetric congestion games on extension-parallel networks with latency functions
in class D, the PoA is at most ρ(D).

To conclude the proof of Theorem 3, we have to show that:

Lemma 4. Every pure Nash equilibrium of a symmetric congestion game on an extension-parallel
network is a global minimum of the potential function Φ.

Proof 5. Let Γ be a symmetric congestion game on an extension-parallel network G(V,E), and let
f be any pure Nash equilibrium of Γ . We show that for every configuration g of Γ , ∆(f, g) ≤ 0.

5 Lemma 4 is implicit in the work of Holzman and Law-Yone (see [19, Theorem 6.1]). However, the proof of Theorem 6.1
is omitted from [19]. Hence, for sake of completeness and because our framework is different from that of [19], we give
a complete proof of Lemma 4 using techniques different from those in [19].
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Then by Lemma 2 (if-part), Φ(f) ≤ Φ(g) for all configurations g, which implies that f is a global
minimum of the potential function Φ. To establish that ∆(f, g) ≤ 0, we consider the network Ĝ(V, Ê)
of the flow g − f , and show that if f is a pure Nash equilibrium, the cost (with respect to f ) of any
(directed) simple cycle in Ĝ is non-negative (i.e. this corresponds to claim (i) in the proof of Lemma 2,
only-if-part, claim (ii) holds with exactly the same proof).

In the following, we use the same notation as in the proof of Lemma 2. We recall that ∆(f, g) =
−

∑k
i=1 si costf (Ci) (see (6)), where {C1, . . . , Ck} is the set of (directed, simple) cycles produced

by the standard flow decomposition of g− f , and si is the amount of flow carried by each cycle Ci in
the decomposition of f − g (recall that f, g are acyclic, as configurations of a symmetric game on an
extension-parallel network). Therefore to establish that ∆(f, g) ≤ 0, it suffices to prove that for every
(simple) cycle Ci in the decomposition of g − f , costf (Ci) ≥ 0.

In fact, we prove that for every simple cycle C of Ĝ, costf (C) ≥ 0, which by the discussion
above, implies the lemma. The crux of the proof is to show that due to extension-parallel structure
of the network, every simple cycle C of Ĝ contains two vertices u,w such that C+ and C− are two
internally disjoint u − w paths in the original network G (cf. Proposition 4). Then the claim follows
from the hypothesis that f is a pure Nash equilibrium. More precisely, since C− consists of backward
edges only, fe > 0 for all e ∈ C−. Hence by Proposition 3, there is a player i whose strategy in f
includes C−. Therefore,

∑
e∈C− de(fe) ≤

∑
e∈C+ de(fe + 1), since otherwise player i could switch

from C− to C+ between u and w and improve her individual cost, which contradicts the hypothesis
that f is a pure Nash equilibrium. Consequently, for every simple cycle C of Ĝ, costf (C) ≥ 0.

To conclude the proof of the lemma, we have to show that the forward and the backward part of
every cycle C in Ĝ correspond to two internally paths in the extension-parallel network G.

Proposition 4. Let G be any extension-parallel s− t network, let f, g be any acyclic s− t flows, let
Ĝ be the network of the flow g − f , and let C be any simple cycle of Ĝ. Then there exist vertices u,w
on C such that C+ and C− are two internally disjoint u− w paths in G.

Proof. We first establish a property of Ĝ required in the proof of Proposition 4.

Proposition 5. Let G be any extension-parallel s− t network, let f, g be any acyclic s− t flows, and
let Ĝ be the network of the flow g − f . Then any (simple) s − t path in Ĝ consists of forward edges
only, and any (simple) t− s path in Ĝ consists of backward edges only.

Proof. We prove only the first part, namely that any (simple) s− t path in Ĝ consists of forward edges
only. The second part concerning t− s paths follows by applying the first part to the flow f − g.

The proof is by induction on the extension-parallel structure of the network. The proposition holds
if the network consists of a single edge (s, t). We inductively assume that the proposition holds for
any extension-parallel network with less edges than G.

If G is the parallel composition of two extension-parallel s− t networks G1 and G2, since g (resp.
f ) is an acyclic s− t flow, it can be decomposed into an acyclic s− t flow g1 (resp. f1) going through
G1, and an acyclic s− t flow g2 (resp. f2) going through G2. More precisely, g1 (resp. f1) is defined
on G1 only and is equal to ge (resp. fe) on every edge e of G1. Similarly, g2 (resp. f2) is defined on
G2 only and is equal to ge (resp. fe) on every edge e of G2. Let Ĝ1 (resp. Ĝ2) be the network of the
flow g1 − f1 (resp. g2 − f2). Then Ĝ is the parallel composition of Ĝ1 and Ĝ2, and any s− t path in
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Ĝ goes through either Ĝ1 or Ĝ2. The proposition follows from the induction hypothesis stating that
s− t paths in Ĝ1 and Ĝ2 consist of forward edges only.

If G is the series composition of an edge (s, s1) and an extension-parallel s1 − t network G1, we
assume that g(s,s1) > f(s,s1) (i.e. that (s, s1) is a forward edge in Ĝ), since Ĝ does not contain any
s− t path otherwise. Let g1 (resp. f1) be the flow obtained from g (resp. f ) by ignoring the (flow on)
edge (s, s1). Then g1 (resp. f1) is an acyclic s1− t flow on G1 with g1

e = ge (resp. f1
e = fe) on every

edge e of G1. Let Ĝ1 be the network of the flow g1 − f1. Ĝ is the series composition of the forward
edge (s, s1) and Ĝ1. Thus any s − t path in Ĝ begins with the forward edge (s, s1) and continues
with a s1 − t path in Ĝ1. The proposition follows from the induction hypothesis stating that s1 − t
paths in Ĝ1 consist of forward edges only. Exactly the same argument applies when G is the series
composition of an extension-parallel s− t1 network G1 an edge (t1, t). ut

We proceed to establish Proposition 4, namely that for every simple cycle C of Ĝ, there are
vertices u,w on C such that C+ and C− are two internally disjoint u−w paths in G. The proof is by
induction on the extension-parallel structure of the network. If the network consists of a single edge
(s, t), the proposition holds trivially because Ĝ does not contain any cycles. We inductively assume
that the proposition holds for any extension-parallel network with less edges than G.

If G is the series composition of an edge (s, s1) and an extension-parallel s1 − t network G1, no
cycle of Ĝ contains s. Thus the vertex s and the edge (s, s1) can be ignored. Let g1 (resp. f1) be the
flow obtained from g (resp. f ) by ignoring the (flow on) edge (s, s1). Then g1 (resp. f1) is an acyclic
s1 − t flow on G1 with g1

e = ge (resp. f1
e = fe) on every edge e of G1. Let Ĝ1 be the network of the

flow g1 − f1. Then every simple cycle C of Ĝ is also a simple cycle of Ĝ1 (and vice versa), and the
proposition follows from the induction hypothesis. The same argument applies when G is the series
composition of an extension-parallel s− t1 network G1 and an edge (t1, t).

If G is the parallel composition of two extension-parallel s− t networks G1 and G2, since g (resp.
f ) is an acyclic s− t flow, it can be decomposed into an acyclic s− t flow g1 (resp. f1) going through
G1, and an acyclic s− t flow g2 (resp. f2) going through G2. More precisely, g1 (resp. f1) is defined
only on G1 and is equal to ge (resp. fe) on every edge e of G1. Similarly, g2 (resp. f2) is defined
only on G2 and is equal to ge (resp. fe) on every edge e of G2. Let Ĝ1 (resp. Ĝ2) be the network
of the flow g1 − f1 (resp. g2 − f2). Then Ĝ is the parallel composition of Ĝ1 and Ĝ2. Therefore
every simple cycle C of Ĝ either lies entirely inside Ĝ1 (or Ĝ2) or consists of an s − t path p+ in
Ĝ1 (resp. Ĝ2) followed by a t − s path p− in Ĝ2 (resp. Ĝ1). In the former case, the proposition
follows from the induction hypothesis. In the latter case, by Proposition 5, the s− t path p+ consists
of forward edges only and the t − s path p− consists of backward edges only. Hence C+ = p+ and
C− = {(u,w) ∈ E : (w, u) ∈ p−}, and C+ and C− are two internally disjoint s− t paths in G. ut

This concludes the proof of Lemma 4. ut

Remark. The PoA may be greater than ρ(D) even for series-parallel networks with linear latencies.
For example, let us consider the 3-player game in Fig. 2. Since the latency functions are linear, ρ =
4/3. In the optimal configuration o, every edge has congestion 1 and the total cost is C(o) = 11 (e.g.
an optimal configuration is obtained by assigning the first player to the upper path (e1, e3, e5), the
second player to the middle path (e2, e4, e6), and the third player to the lower path (e7)). On the other
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Fig. 2. A symmetric congestion game on a series-parallel network with linear latency functions and PoA greater than 4/3.

hand, there is a pure Nash equilibrium f where the first player is assigned to (e1, e3, e6), the second
player to (e1, e4, e5), and the third player to (e2, e3, e5). Each player incurs an individual cost of 5 and
does not have an incentive to deviate to e7. The total cost is C(f) = 15 and the PoA is 15/11 > 4/3.
In addition, we observe that f is not a global minimum of the potential function Φ (this follows from
Lemma 3 as well). In fact, Φ(f) = 12, while the optimal configuration has Φ(o) = 11 and is the
global minimum of Φ (and thus a pure Nash equilibrium). Although Proposition 4 holds for the more
general class of series-parallel networks, Lemma 4 fails in this example because Proposition 3 does
not hold for series-parallel networks (and for the network in Fig. 2 in particular). ut

5 Conclusions

In this work, we considered symmetric congestion games on extension-parallel networks, and estab-
lished two remarkable properties previously known only for parallel-link games. In particular, we
proved that for arbitrary (non-negative and non-decreasing) latency functions, any best improvement
sequence reaches a pure Nash equilibrium in at most n steps, and that for latency functions in class
D, the PoA is at most ρ(D). Moreover, our analysis implies that for symmetric network games with
latency functions in class D, the PoS is at most ρ(D).

An interesting direction for further research is to investigate whether similar properties hold for
more general classes of symmetric network congestion games. For instance, it would be quite interest-
ing to establish a polynomial upper bound on the length of (certain) best improvement sequences for
symmetric games on series-parallel networks. Lemma 1 may be a good starting point in this direction,
since the analysis of several of the cases considered in the proof also applies to series-parallel net-
works. As for the inefficiency of Nash equilibria, it would be interesting to establish matching upper
and lower bounds on the pure Price of Anarchy for symmetric congestion games on series-parallel
networks and on general networks, especially if these bounds turn up to be considerably better than
the known bounds for general congestion games (see e.g. [6, 9, 4]).
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Fig. 3. (a) The θ-network whose absence characterizes series-parallel s− t networks. (b) and (c) If a path π has some edges
in common with p (here p and π share the segment (u′, w) in (b) and the segment (u,w′) in (c)) and avoids either u or
w, it forms (together with p, p′, and their extension to the source in (b) and to the sink in (c)) a network that includes the
θ-network as a topological minor, and thus it is not series-parallel.

A Appendix

A.1 The Proof of Proposition 1

We first recall that a s− t network is series-parallel if and only if it does not contain a θ-network with
terminals of degree 2 (see Fig. 3.a) as a topological minor (see e.g. [24, Proposition 1].)

We observe that the proposition is trivial if u = s and w = t. Hence, we assume that u 6= s. The
case where u = s and w 6= t follows by symmetry.

Let π be a s − t path sharing some edges with p. We first argue by contradiction that π does not
intersect p′ at any vertex other than u and w. Let us assume that π intersects p′ at some vertex other
than u and w. Since π has some edges in common with p, there is a segment of π connecting a vertex
of p−{u,w} to a vertex of p′−{u,w} (or connecting a vertex of p′−{u,w} to a vertex of p−{u,w}
depending on whether π first goes through an edge of p and then intersects p′ − {u,w} or the other
way around). The endpoints of this segment of π belong to (p ∪ p′) − {u,w}. Thus the endpoints of
this segment of π together with p and p′ form a θ-network with terminals u and w, a contradiction.
Consequently π does not intersect p′ except possibly at u and w.

We then prove that π contains both u and w. To reach a contradiction, we assume that π does not
contain u. Let π′ be a path connecting s to u, and let s′, s′ 6= u, be the last common vertex of π and
π′ before u (s′ exists because π and π′ have a common source and π does not contain u). Let also u′,
u′ 6= u, be the first common vertex of π and p after u (u′ exists because π intersects p and π does
not contain u). Then, the vertices s′, u, u′, and w along with π′ (the segment from s′ to u), p (the
segment from u to u′ and the segment from u′ to w), p′ (the segment from u to w), and π (the segment
from s′ to u′) form the θ-network of Fig. 3.b, which is a topological minor of G. This contradicts the
hypothesis that G is series-parallel network. If π contains u but not w, w is different from t. Then the
proposition follows from the previous argument by symmetry (see also Fig. 3.c). ut

A.2 Proof of Lemma 1: Case I.b, σ′
i ∩ p 6= ∅ and (σ′

i[u,w] \ p) ∩ σi 6= ∅

We first show that the congestion of the edges of p′ does not change when player imoves from σi to σ′i.
We recall that by Proposition 1, σ′i does not have any edges in common with p′ and does not intersect
p′ at any vertex other than u and w. In addition, since u and w are connected by two internally disjoint
paths p′ and σ′i[u,w], and since σi and σ′i[u,w] have some edges in common, by Proposition 1, σi also
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contains u and w and does not have any edges in common with p′. Hence the congestion of the edges
of p′ is the same in both σ and σ′.

Next we prove that the congestion of the edges of p does not change when player i moves from
σi to σ′i. Let π = σ′i[u,w] \ p and π′ = p \ σ′i[u,w] be the segments where σ′i[u,w] and p deviate
from each other. Since π∩σi 6= ∅, π and π′ are non-empty. Thus π and π′ are internally disjoint paths
with common endpoints, denoted u′ and w′. Their first endpoint u′ appears no sooner than u and their
last endpoint w′ appears no later than w on σ′i and p. Since σi has some edges in common with π,
by Proposition 1, σi contains u′ and w′ and does not intersect π′ at any vertex other than u′ and w′.
Furthermore, since all three paths p, σ′i[u,w] and σi[u,w] contain u′ and w′, and since σ′i[u,w] and
σi[u,w] deviate from p between u′ and w′, by Proposition 2, the three paths share their u − u′ and
w′ − w segments (see also Fig. 1.d). Therefore, if σ′i[u,w] and σi[u,w] deviate from each other, this
happens between u′ and w′. Consequently, the corresponding path segments σ′i[u

′, w′] and σi[u′, w′]
do not contain any edges of p. Thus the congestion of the edges of p does not change when player i
switches from σi to σ′i. ut
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