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Abstract. We consider the Conference Program Design (CPD) problem, a multi-round generalization
of (the maximization versions of) q-Facility Location and the Chamberlin-Courant multi-winner elec-
tion, introduced by (Caragiannis, Gourvès and Monnot, IJCAI 2016). CPD asks for the selection of
kq different items and their assignment to k disjoint sets of size q each. The agents derive utility only
from their best item in each set, and we want to maximize the total utility derived by all agents from
all sets. Given that CPD is NP-hard for general utilities, we focus on utility functions that are either
single-peaked or single-crossing. For general single-peaked utilities, we show that CPD is solvable in
polynomial time and that Percentile Mechanisms are truthful. If the agent utilities are determined by
the distances of the agents to the items in the unit interval, we show that a Percentile Mechanism
achieves an approximation ratio 1/3, if q = 1, and at least (2q − 3)/(2q − 1), for any q ≥ 2. On the
negative side, we show that a generalization of CPD, where some items must be assigned to specific sets
in the solution, is NP-hard for dichotomous single-peaked preferences. For single-crossing preferences,
we present a dynamic programming exact algorithm that runs in polynomial time if k is constant.

1 Introduction

Many problems in Social Choice deal with selecting q items (or candidates), from a given set of m
items, based on the preferences of n agents. In more than a few, each agent derives utility from his
best item in the solution and the objective is to maximize the total utility of the agents, sometimes
also considering incentive compatibility constraints.

An instance of this general setting is the classical q-Facility Location problem, where we want
to place q facilities in a metric space, based on the locations suggested by n agents. Each agent
uses his nearest facility in the solution and the objective is to minimize the total distance of the
agents to their facilities. Facility Location is a fundamental optimization problem and has played
a key role in the field of Approximation Algorithms (see e.g., [29]). In Social Choice, the relevant
literature mostly focuses on strategic agents with single-peaked preferences over the possible facility
locations. The goal is to characterize the class of truthful mechanisms and to determine the best
approximation ratio achievable by truthful mechanisms when the agent preferences are determined
by agent distances on the real line (see e.g., [15, 22, 24, 28] and the references therein).

A different specimen of the same setting appears in the context of multi-winner elections. In
the model introduced by Chamberlin and Courant [7], we want to form a committee by selecting q
representatives, from a set of m candidates, so as to minimize the committee’s “misrepresentation”
with respect to a set of n agents. Similarly to Facility Location, each agent is associated with the
committee member that represents him best, and we want to minimize the total “misrepresentation
cost” of the agents. The winner determination problem for the multi-winner election of Chamberlin-
Courant has received significant attention recently, with NP-hardness results and approximation
algorithms for general agent preferences and polynomial-time algorithms for restricted preferences,
such as single-peaked or single-crossing (see e.g., [2, 6, 23, 27] and the references therein).

In this work, we study the Conference Program Design problem, which was recently introduced
by Caragiannis et al. [6] and can be regarded as a generalization of (the maximization versions of) q-
Facility Location and the Chamberlin-Courant election. An instance of Conference Program Design,



or CPD in short, consists of a set of m items X = {x1, . . . , xm}, a set of n agents L = {1, . . . , n},
each with a utility function u` : X → R≥0, and two positive integers k and q. A feasible solution
S = {S1, . . . , Sk} is a collection of k pairwise disjoint subsets of X (or slots) such that each slot
Si contains at most q items. The agents derive utility only from their most preferred item in each
slot and have additive utilities for different slots. Hence, the utility of an agent ` for a solution
S = {S1, . . . , Sk} is u`(S) =

∑k
i=1 maxx∈Si u`(x). The social objective is to maximize the total

utility of all agents, which is U(S) =
∑

`∈L u`(S) for any given solution S = {S1, . . . , Sk}. We
should underline that although a larger total utility may be achieved by assigning some items to
multiple slots, we require that the slots S1, . . . , Sk should be pairwise disjoint.

Example 1. We consider 5 items {x1, x2, x3, x4, x5}, 3 agents and k = q = 2. The utility functions of
the agents are u1 = (4, 3, 5, 1, 2), u2 = (1, 2, 3, 9, 2) and u3 = (6, 1, 4, 0, 7) (the i-th coordinate in uj
denotes the utility of agent j for item xi). The total utility of the solution S = ({x1, x2}, {x3, x4})
is U(S) = (u1(x1) + u1(x3)) + (u2(x2) + u2(x4)) + (u3(x1) + u3(x3)) = 30. �

The name of Conference Program Design is motivated from the possibility of regarding each
item as a conference talk. The conference has q parallel sessions and k time slots. During each
slot Si, at most q talks are given and each agent can attend only one of them. We assume that
every agent attends his most preferred talk, i.e., the talk that maximizes his utility, in each slot.
In addition to the natural connection with the design of multi-session conference programs, CPD
should be regarded as an abstraction of multi-round multi-winner elections, where the set of winners
in different rounds must be disjoint, each agent is represented by his most preferred winner in each
round, and the utility functions of the agents are additive with respect to their representatives in
different rounds (see also [6] for further discussion on the motivation of CPD).

Previous Work. Apart from the fact that it is a maximization problem, CPD incorporates both q-
Facility Location and the Chamberlin-Courant election (for k = 1): each item is a facility/candidate
and the utilities are the opposite of the distance/misrepresentation costs. Since the multi-winner
election of Chamberlin-Courant and q-Facility Location [16, 23] are known to be NP-hard for
general cost functions, CPD is also NP-hard for general utilities. Interestingly, Caragiannis et al.
[6] proved that CPD remains NP-hard (and inapproximable up to given constant factors) in the
special case where agent utilities are either 0 or 1 (a.k.a. uniformly dichotomous preferences), all
items fit in the solution, i.e., m = kq, and either k = 2 or q = 3. The only case where CPD is known
to be polynomially solvable is for q = 2, by a reduction to maximum matching. Based on a natural
Integer Linear Programming formulation (see also Section A.1), Caragiannis et al. [6] obtained
polynomial-time approximation algorithms for CPD with general utilities, with ratios 1− 1/e, if q
is a constant, and 1/e− 1/e2, if q is part of the input.

On the other hand, many positive results are known for natural (and practically interesting)
special cases of q-Facility Location and of the Chamberlin-Courant election, especially for the line
metric and for single-peaked or single-crossing preferences. Specifically, q-Facility Location on the
line is polynomially solvable, by a simple dynamic programming algorithm. Recently, using Linear
Programming techniques, Hajiaghayi et al. [18] extended this result to the fault tolerant version
of q-Facility Location, where each agent must connect to k different facilities. Moreover, there has
been a significant recent interest in the approximability of q-Facility Location on the line by truthful
mechanisms. As for deterministic mechanisms, the Median Mechanism is optimal for q = 1 [22, 24],
the 2-Extremes Mechanism achieves a best possible approximation ratio of n − 2 for q = 2 [15,
24], and the Percentile Mechanisms comprise the only known general class of truthful deterministic
mechanisms [28] for all q ≥ 2, but their worst-case approximation ratio cannot be bounded in terms
of n and q [15] (all these mechanisms are actually known to be group strategyproof). Moreover,
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there are randomized truthful mechanisms for q-Facility Location on the line with a constant
approximation ratio for q ∈ {2, n − 1} and an approximation ratio of n for any q ∈ {3, . . . , n − 2}
[14]. However, all these results on the approximability of Facility Location by truthful mechanisms
are about cost minimization and assume that a facility can be placed at any point on the real line.
So they are not directly relevant for CPD, where we want to maximize the total utility and the
item locations are restricted by the input. In a recent work, Feldman et al. [13] characterized the
approximability of 1-Facility Location on the line metric (by truthful or non-truthful, deterministic
or randomized mechanisms) when the potential facility locations are restricted by the input.

Similarly to the line metric for Facility Location, for the election of Chamberlin-Courant, it is
reasonable to assume that the agent preferences over the candidates is consistent with a placement
of the candidates on a societal axis. In fact, the line metric is a special case of two popular concepts
in structured preferences in Social Choice literature, namely single-peaked and single-crossing pref-
erences [4, 21, 25] (see Section 2 for their formal definition). Recent work presents polynomial-time
exact algorithms for the winner determination problem of the Chamberlin-Courant election when
the agent preferences are either single-peaked [2] or single-crossing [27].

Contribution and Techniques. Motivated by the many interesting positive results for q-Facility
Location and for the Chamberlin-Courant election when the agent preferences either are deter-
mined by the line metric or are single-peaked or single-crossing, we investigate here the algorithmic
properties of the Conference Program Design problem for such preferences. We give an almost
complete picture for CPD with single-peaked preferences and show that CPD with single-crossing
preferences is polynomially solvable if the number of slots k is constant.

An interesting observation is that for single-peaked utility functions, the best k items of any
agent occupy consecutive positions on the societal axis (Proposition 1). Therefore, for any set M
of items, |M | ≤ kq, a simple greedy assignment of the items to slots ensures that every agent can
derive utility from his best k papers in M . This observation allows us to focus on the item selection
aspect of CPD for single-peaked preferences (recall that finding an optimal assignment of kq items
to slots is NP-hard for uniformly dichotomous utilities [6]). Combining this observation with a
generalization of the Linear Programming approach of [18], in Section 3, we show that CPD can
be solved in polynomial-time for general single-peaked utility functions (Theorem 1).

In sections 4 and 5, we study the approximability of CPD with single-peaked preferences by
truthful mechanisms. To achieve truthfulness, we exploit the idea of Percentile Mechanisms, which
are known to be group strategyproof for agents with single-peaked preferences [28, Theorem 1]. To
optimize the approximation guarantees, we apply Percentile Mechanisms to the set of all tuples
consisting of k consecutive items on the societal axis. Interestingly, we show that the extension of
any single-peaked utility function on items to a utility function on tuples of k consecutive items
is also single-peaked (Lemma 1). Consequently, this variant of Percentile Mechanisms is truthful
(Theorem 2, we can also show that it is group strategyproof).

As for the approximation ratio of Percentile Mechanisms, we consider the special case of linear
preferences where the items and the agents lie in the unit interval [0, 1] and the utility of an agent `
located at v` for an item j located at xj is u`(xj) = 1−|v`−xj |. The restriction to the unit interval
is wlog., since all our results hold for any interval length B, provided that the utility functions are
u`(xj) = B − |xj − v`|. We first observe that if k = q = 1, the optimal solution is not truthful and
any deterministic truthful mechanism must have an approximation ratio at most 5/7. For q = 1 and
any k ≥ 1, we show that the approximation ratio of the 1/2-Percentile Mechanism is 1/3 (Lemma 3
and Lemma 4). For any q ≥ 2 and k ≥ 1, we show that if the number of agents is a multiple of q,
the approximation ratio of the ( 1

2q ,
3
2q , . . . ,

2q−1
2q )-Percentile Mechanism is at least (2q− 3)/(2q− 1)

(Theorem 3) and at most (2q−1)/(2q−1/q). Interestingly, the approximation ratio tends to 1, as q
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increases. If the number of agents n is not a multiple of q, we obtain a slightly weaker approximation
ratio of (2q − 3)/(2q − 1)−O(q/n) (Theorem 4).

To the best of our knowledge, this is the first analysis of the approximation ratio of Percentile
Mechanisms for linear preferences (note their approximation ratio for cost minimization problems
is unbounded). As for the proof technique, for the general case where q ≥ 2, we introduce the
notion of the width of a subset of agents, which allows us to bound the approximation ratio for the
entire set of agents by analyzing independently the approximation ratio of non-overlapping groups
with n/q agents each (see Lemma 5 and the proof of Theorem 3). The proof technique can be
applied to any quasilinear nonnegative utility function of the form u`(xj) = 1− f(|xj − v`|), where
f : [0, 1] → [0, 1] is any nondecreasing function of the distance. The approximation ratio can be
derived using the same approach and depends on the steepness of f .

Nevertheless, single-peaked preferences are not enough to make CPD polynomially solvable if
some items need to be assigned to specific slots. Using a reduction from PreColoring Extension,
which is known to be NP-complete in unit interval graphs [20], we show that this generalization
of CPD is NP-hard if the agent utilities are single-peaked and either 0 or 1 for each item (a.k.a.
dichotomous single-peaked preferences, see Theorem 5, in Section 6).

Finally, in Section 7, we extend the dynamic programming approach applied in [27] to the
Chamberlin-Courant election with single-crossing preferences and show that CPD with single-
crossing preferences can be solved in O(m(nq)k+1) time (Theorem 6). An interesting open question
is whether CPD with single-crossing preferences is polynomially solvable if k is part of the input.

2 Notation and Preliminaries

CPD is formally introduced in Section 1. In this section, we introduce some additional notation
and terminology and some basic facts used in this work. For any integer p ≥ 1, we denote [p] =
{1, . . . , p}. We write x �` x′ to express that an agent ` prefers item x to item x′, which happens iff
u`(x) > u`(x

′). In such cases, we sometimes write that �` is the preference order induced by the
utility function u`. In case of ties (in the utility functions or in the selections made by an algorithm),
we always break them in an arbitrary fixed deterministic way.

The best paper of an agent ` in a set of items Y ⊆ X is Y ’s most valuable item to agent `, i.e.,
arg maxy∈Y u`(y). We define the second, . . ., the k-th best item of an agent ` in Y similarly. Given
a set of items Y ⊆ X , and assuming the case where k = 1, i.e., where each agent uses a single
item, we let u`(Y ) = maxy∈Y {u`(y)} denote the maximum utility of an agent ` for his best item
in Y , and let U(Y ) =

∑n
`=1 u`(Y ) denote the total utility derived by the agents from Y . Similarly,

we let U(x) =
∑n

`=1 u`(x) denote the total utility derived by the agents from an item x ∈ X.

Conference Program Design with Item Preselection. In Section 6, we consider a natural
generalization of CPD, where a specified subset of items X ′ ⊆ X must appear in the final solution
and the assignment of the items in X ′ to slots is fully specified by the input. We call this variant
Conference Program Design with Item Preselection, or pre-CPD, in short.

More formally, in addition to the input of CPD, the input of pre-CPD includes a subset X ′ ⊆ X
of items and a mapping g : X ′ → [k]. A solution S is a collection of k disjoint subsets S1, . . . , Sk of
X, such that each Si contains at most q items and g−1(i) = {x ∈ X ′ : g(x) = i} ⊆ Si. In particular,
we assume |g−1(i)| ≤ q. Thus, CPD corresponds to pre-CPD with X ′ = ∅.
Approximation Ratio. An algorithm achieves an approximation ratio of ρ ∈ (0, 1], if for any
instance I of CPD, the solution S computed by the algorithm satisfies U(S) ≥ ρU(S∗), where S∗
denotes the optimal solution to instance I.
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Truthfulness. A mechanism A for CPD is truthful (or strategyproof ) if no agent can increase
his utility from the outcome of A by misreporting her utility function. Formally, for any pair of
instances I and I ′ that differ in the utility function of any single agent `, with u` denoting `’s utility
in I, we have that u`(S) ≥ u`(S ′), where S (resp. S ′) is the solution of A on instance I (resp. I ′).

A mechanism A for CPD is group strategyproof if no coalition of agents can simultaneously
increase their utility from the outcome of A by misreporting their utility functions. Formally, for
any pair of instances I and I ′ that differ in the utility functions of any nonempty subset L′ ⊆ L
of agents, with u1, . . . , un denoting the utility functions in I, there exists an agent ` ∈ L′ so that
u`(S) ≥ u`(S ′), where S (resp. S ′) denotes the solution computed by A on instance I (resp. I ′).

Single-Peaked Preferences. A societal axis is a linear order A over X. We say that an agent’s
preference order � is consistent with A, if for each three items xa, xb, xc ∈ X, we have that
((xa A xb A xc) ∨ (xc A xb A xa))⇒ (xa � xb ⇒ xb � xc). We say that a utility function u` of an
agent ` ∈ L is single-peaked wrt axis A [4], if the preference order �` induced by u` is consistent
with A. An instance of CPD is single-peaked (or has single-peaked utilities or preferences) with
respect to axis A, if the utility functions u` of all agents ` ∈ L are single-peaked wrt axis A. An
instance of CPD is single-peaked if it is single-peaked with respect to some societal axis.

Note that it is possible to check in polynomial time whether a set of utility functions u1, . . . , un
is single-peaked [1, 12]. For instances of CPD with single-peaked utilities wrt axis A, we always
index the items according to A, i.e., we have that x1 A x2 A · · · A xm. We sometimes abuse the
notation slightly and use xi w xj to denote that either xi precedes xj in A or xi = xj .

For instances of CPD with single-peaked preferences wrt some axis A, we say that two items
xi and xj are consecutive, if there is no other item x′ such that xi A x′ A xj or xj A x′ A xi. This
definition naturally extends to any number of items.

For example, let us consider 4 items x1, x2, x3, x4 and 5 agents with the following preferences:

1 : x1 �1 x2 �1 x3 �1 x4 2 : x2 �2 x1 �2 x3 �2 x4 3 : x2 �3 x3 �3 x1 �3 x4
4 : x3 �4 x2 �4 x4 �4 x1 5 : x3 �5 x4 �5 x2 �5 x1

This set of preferences is single peaked wrt the societal axis x1 A x2 A x3 A x4. In this example,
the items e.g., x1, x2 and x3 are consecutive.

Optimal Item Allocation for Single-Peaked Preferences. For instances with single-peaked
preferences wrt axis A, we can allocate any set of items M , |M | = kq, to slots S1, . . . , Sk in a greedy
manner, so that each slot gets q items and the utility of each agent ` is maxS⊆M,|S|=k

∑
x∈S u`(x),

i.e., equal to the maximum utility that agent ` can derive from the items in M . Specifically, we
arrange the items in M according to A, so that x1 A x2 A · · · A xkq, and let each slot Si =
{xi, xi+k, . . . , xi+(q−1)k}. This allocation ensures that any k items consecutive in x1 A x2 A · · · A xkq
are assigned to k different slots. The following shows that for single-peaked preferences, the best k
items of any agent are consecutive in the societal axis (see Section A.2 for the proof).

Proposition 1. Let X be a set of m items arranges as x1 A x2 A · · · A xm, according to the
societal axis A, and let u : X → R≥0 be any utility function that is single-peaked wrt A. Then,
for any k ∈ [m], the maximum utility obtained from k items in X is achieved by considering k

consecutive items in A, i.e., maxS⊆X,|S|=k
∑

xp∈S u(xp) = maxxj∈X
∑k+j−1

p=j u(xp).

Therefore, for instances with single-peaked utilities, we can assume a greedy allocation of the
items to slots and focus on the item selection aspect of CPD. Hence, for such instances, given
any set of items M ⊆ X, with |M | ≤ kq, we avoid referring to any particular allocation and let

u`(M) = maxxj∈M
∑k+j−1

p=j u`(xp) denote the maximum utility of an agent ` for the items in M and
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U(M) =
∑n

`=1 u`(M) denote the maximum total utility that the agents can get from M . Moreover,
for such instances, we assume that |X| > kq, since otherwise, CPD is easily solvable.

Linear Preferences. An interesting special case of single-peaked preferences are linear preferences
(or linear utilities), where both the items and the agents lie in [0, 1] and the utility of an agent `
for an item j is a linear decreasing function of their distance. For such instances, we assume that
the items are located at 0 ≤ x1 < x2 < · · · < xm ≤ 1 and the agents are located 0 ≤ v1 ≤ v2 ≤
· · · ≤ vn ≤ 1. The utility of an agent ` for an item xj is u`(xj) = 1− |xj − v`|, i.e., the length of the
interval minus the distance of v` to xj . Namely, the utility of ` for j is equal to the opposite of the
distance of v` to xj , to which we add the length of the interval, so that the utility is nonnegative.

Single-Crossing Preferences. The notion of single-crossing preferences comes from Mirrlees [21]
and Roberts [25]. A profile of preferences is single-crossing if there exists an ordering of the agents,
say π : [n] → L, such that for every pair of items xi, xj ∈ X, either all the agents rank xi and xj
in the same way, or there is an index tij ∈ {1, . . . n} such that agents π(1) to π(tij) all agree to
rank xi and xj in the same way, and agents π(tij + 1) to π(n) all agree to rank xi and xj in the
opposite way. So, either all the agents agree on the relative positions of two given items, or there
is a dichotomy L1, L \L1 such that both L1 and L \L1 contain consecutive agents with respect to
ordering π. We can check whether a preference profile is single-crossing in polynomial time [9].

For example, let us consider 4 items x1, x2, x3, x4 and 5 agents with the following preferences:

1 : x1 �1 x2 �1 x3 �1 x4 2 : x1 �2 x2 �2 x4 �2 x3 3 : x1 �3 x4 �3 x2 �3 x3
4 : x4 �4 x1 �4 x2 �4 x3 5 : x4 �5 x1 �5 x3 �5 x2

This preference profile is single-crossing, with π being the identity permutation of the agents.

3 Conference Program Design with Single-Peaked Preferences

Next, we consider CPD with single-peaked preferences and show that it can be solved in polynomial
time. By Proposition 1, we can assume an optimal greedy allocation of the selected items to the
slots and focus on the item selection aspect of CPD. Moreover, we can assume that |X| > kq.

Theorem 1. CPD with single-peaked preferences is solvable in polynomial time.

Proof (sketch). The proof extends the Linear Programming approach used in [18, Section 3] to
show that the fault-tolerant version of q-Facility Location can be solved in polynomial-time on the
line metric. Since we focus on item selection, we consider a simplified Integer Linear Programming
formulation of CPD, where the slots S1, . . . , Sk are not explicitly taken into account.

(SLP) maximize
∑
`∈N

∑
xi∈X

z`i · u`(xi)

subject to: yi − z`i ≥ 0, ∀` ∈ N, xi ∈ X (1)∑
xi∈X

z`i ≤ k, ∀` ∈ N (2)

∑
xi∈X

yi ≤ k · q (3)

yi, z`i ∈ {0, 1}, ∀` ∈ N, xi ∈ X

In (SLP), each variable yi indicates whether an item xi is included in the solution and each
variable z`i indicates whether an agent ` derives utility from an item xi. Constraint (1) ensures
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that an agent ` derives utility from an item xi only if xi is included in the solution. Constraint (2)
ensures that every agent should derive utility from at most k items. Constraint (3) ensures that at
most kq items should be selected in the solution.

The optimum of (SLP) is equal to the optimal total utility. Let us denote by (R-SLP) the
relaxation of (SLP) where the constraints yi, z`i ∈ {0, 1} are replaced by yi, z`i ∈ [0, 1]. Thus, the
optimal value of (R-SLP) is no less than the value of (SLP). We solve (R-SLP) and let X ′ = {xi ∈
X : ∃` ∈ L with z`i > 0}. We say that the usage of an item xi ∈ X ′ by an agent ` is full when
z`i = yi, null when z`i = 0 and intermediate when 0 < z`i < yi. In Section A.3, we show that:

Claim 1 Fix an agent ` and two consecutive items xa, xb ∈ X ′ such that xa �` xb. For that agent,
the intermediate or null usage of xa implies a null usage of xb.

Claim 1 implies that the items of X ′ for which a given agent has a non-null usage are consecutive.
Moreover, within this set of consecutive items of interest for the agent, only the two extreme items
can be used in an intermediate way. Using this observation, we modify X ′ as done in [18, Section 3],
in the context of fault tolerant q-Facility Location. The crucial observation is that we can write
a new Linear Program (FLP) for the modified instance such that (i) the optimum of (FLP) is as
good as the optimum of (R-SLP); and (ii) (FLP) satisfies the consecutive ones property, and thus,
has an integral optimal solution (see Section A.4 for a detailed description of the transformation
and for the precise formulation of (FLP)).

The algorithm consists of solving (R-SLP) to get (y, z) and X ′. Then, we split the items of
X ′ according to (y, z) in order to get a new set of items X ′′. Next, we solve (FLP) and obtain an
integral optimal solution of total utility equal to the total utility of the optimal solution of (R-SLP)
(and of (SLP)). Obtaining an optimal selection of kq items from the solution of (FLP), we allocate
the selected items using the optimal greedy allocation described in Section 2. ut

4 A Truthful Mechanism for Single-Peaked Preferences

In this section, we present a truthful mechanism for CPD with single-peaked preferences. Given a set
X of m items arranged as x1 A x2 A · · · A xm on axis A, we consider the set X = {C1, . . . , Cm−k+1}
of k-tuples of consecutive items, where Ci = (xi, . . . , xk+i−1) for each i ∈ [m−k+1]. These k-tuples
can be naturally arranged on A, as C1 A C2 A · · · A Cm−k+1, according to their first coordinate.

For each agent ` and each k-tuple Ci, we let ū`(Ci) =
∑k+i−1

j=i u`(xj) be the utility of agent ` for
the items in Ci. Naturally, utilities ū`(C1), . . . , ū`(Cm−k+1) define the preference relation of agent
` on the set X of k-tuples of consecutive items. Hence, we extend the utility function u` of each
agent ` on the set of items X to a utility function ū` on the set X of k-tuples of consecutive items.
In Lemma 1, we show that if u` is single-peaked on X, ū` is single-peaked on X .

Percentile Mechanism. In an (α1, . . . , αq)-Percentile Mechanism for CPD, with 0 ≤ α1 < · · · <
αq ≤ 1, each agent ` casts a vote for his best k-tuple C` = arg maxC∈X {ū`(C)}. For each k-tuple
Ci, we let cnt(Ci) denote the number of agents voting for Ci, i.e., cnt(Ci) = {` ∈ L : Ci = C`}.
The mechanism selects q tuples from X . For each j ∈ [q], the k-tuple Ci ∈ X is selected as the j-th
tuple of the (α1, . . . , αq)-Percentile Mechanism if

∑i−1
p=1 cnt(Cp) < αjn ≤

∑i
p=1 cnt(Cp).

Let C(1), . . . , C(q) be the k-tuples selected by the Percentile Mechanism, in the order of selec-
tion. We note that C(1) A · · · A C(q). Let also M =

⋃q
j=1C(j) be the set of items selected by the

mechanism. It may be |M | ≤ kq, since C(1), . . . , C(q) do not need to be disjoint. The items in M
are assigned greedily to slots so that if x1 A x2 A · · · A x|M | denote the items in M , each slot Si
consists of the items xi, xi+k, xi+2k, . . .. By Proposition 1 and by the discussion in Section 2, this
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greedy allocation is optimal and ensures that the utility u`(M) of each agent ` from the outcome
of the mechanism is best possible. �

We next show that Percentile Mechanisms are truthful. Namely, for any instance, each agent `
maximizes his utility from the outcome of the mechanism by voting for his best k-tuple C` ∈ X .

Theorem 2. For any tuple (α1, . . . , αq), with 0 ≤ α1 < · · · < αq ≤ 1, the (α1, . . . , αq)-Percentile
Mechanism is truthful for the Conference Program Design problem with single-peaked preferences.

We first show that if a utility function u is single-peaked wrt x1 A x2 A · · · A xm, its extension
ū on X is single-peaked wrt C1 A C2 A · · · A Cm−k+1.

Lemma 1. Let u : X → R≥0 be a single-peaked utility function wrt x1 A x2 A · · · A xm and let ū :
X → R≥0 be its extension to the set X = {C1, . . . , Cm−k+1} of k-tuples of consecutive items, where
ū(Ci) =

∑k+i−1
j=i u(xj) for each Ci ∈ X . Then, ū is single-peaked wrt C1 A C2 A · · · A Cm−k+1.

Proof (sketch). We show that for any three k-tuples Ca, Cb, Cc such that either Ca A Cb A Cc or
Cc A Cb A Ca, if ū(Ca) > ū(Cb), then ū(Cb) ≥ ū(Cc). We assume that Ca A Cb A Cc (the other
case is symmetric) and that Ca = (x1, . . . , xk), Cb = (xβ, . . . , xk+β−1), for some integer β ≥ 2, and
Cc = (xγ , . . . , xk+γ−1), for some integer β + 1 ≤ γ ≤ m− k + 1.

We need to show that for any choice of u, β and γ, ū(Ca) > ū(Cb) implies that ū(Cb) ≥ ū(Cc).
We let xj∗ be the item in X with maximum utility u(xj∗), i.e., the peak of the utility function u, and
consider three different cases depending on whether j∗ ≤ β, j∗ ≥ k+β−1, or β+1 ≤ j∗ ≤ k+β−2.

If j∗ ≤ β, the single-peakedness of u implies that for all j ∈ [k], u(xβ+j−1) ≥ u(xγ+j−1), because
xj∗ w xβ+j−1 A xγ+j−1. Hence, we conclude that ū(Cb) ≥ ū(Cc).

We next show that j∗ ≥ k + β − 1 implies ū(Cb) ≥ ū(Ca), and thus, this case cannot occur.
Specifically, if j∗ ≥ k + β − 1, the single-peakedness of u implies that for all j ∈ [k], u(xβ+j−1) ≥
u(xj), because xj A xβ+j−1 w xj∗ . Hence we obtain that ū(Cb) ≥ ū(Ca).

The most interesting case is where β + 1 ≤ j∗ ≤ k + β − 2. Then, we need to compare the
utility of some items in Cb with index less than j∗ with some items in Cc with index greater than
j∗ (note that this comparison cannot be made directly for general single-peaked utilities). We do
so by exploiting an item x` in Ca whose utility is no less than the utility of the rightmost items
in Cb. Intuitively, such an item should exist because each item included in Ca but not in Cb has
utility no greater than the utility of each item in {xβ, . . . , xj∗}. Hence ū(Ca) > ū(Cb) can hold only
if some item in Ca \Cb has utility greater then the utility than the rightmost item in Cb. Although
the idea is simple, the proof is a bit technical and can be found in Section A.5. ut

We can now conclude the proof of Theorem 2. The greedy allocation of the items in M to
slots ensures that all agents get a maximum utility from M . Thus, they do not have any incentive
to manipulate the greedy assignment. We can also show that the agents cannot change the item
selected by the mechanism in their favor. The intuition is the same as the intuition in the proofs
that Generalized Median and Percentile Mechanisms [22, 28] are truthful for agents with single-
peaked preferences. If an agent ` lies and votes for a k-tuple C ′ on the left (resp. on the right) of
C`, this could only push a k-tuple C(j) selected by the mechanism further on the left (resp. on the
right) of C`. Since agent ` has single-peaked preferences over X , such a change is not profitable for
him. In Section A.6, we give a proof of this claim for completeness and because in our setting, an
agent can use items from more than one k-tuples selected by the mechanism (instead of using a
single outcome in [22, 28]). In fact, working as in the proof of [28, Theorem 1], we can show that
Percentile Mechanisms for CPD with single-peaked preferences are group strategyproof.
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5 The Approximation Ratio of Percentile Mechanisms for Linear Preferences

Next, we consider the special case of linear preferences. The items are located at 0 ≤ x1 < x2 <
· · · < xm ≤ 1 and the agents are located at 0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ 1. The utility of an agent ` for
an item xj is u`(xj) = 1−|xj − v`|. We always assume that m > kq, otherwise a greedy assignment
of the items to slots is optimal.

The Approximation Ratio for Selecting a Single Item. We start with the case where k = q =
1, where we want to select a single item that maximizes the total utility of the agents. In contrast
to 1-Facility Location, where the Median Mechanism is optimal (see e.g., [24]), the approximation
ratio for this special case of CPD is 1/3 and we can show that any deterministic truthful mechanism
has approximation ratio at most 5/7 (see Section A.7).

In the 1/2-Percentile Mechanism, each agent ` votes for his best item, i.e. for the item xj that
minimizes |v` − xj |. We recall that cnt(xj) is the number of agents that vote for xj . Then, the
1/2-Percentile Mechanism selects the item xi that satisfies

∑i−1
j=1 cnt(xj) < n/2 ≤

∑i
j=1 cnt(xj).

So, because it cannot select the location of the median agent, as the Median Mechanism does for
1-Facility Location [24], the 1/2-Percentile Mechanism selects the item closest to the location of
the median agent (see Section A.8 for a proof of the following).

Claim 2 Let 0 ≤ x1 < · · · < xm ≤ 1 be m items and 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 be n agent locations in
[0, 1], and let vmed be the location of the median agent. Then, the 1/2-Percentile Mechanism selects
the item xi = arg minj∈[m] |xj − vmed|, i.e., the item that minimizes the distance to vmed.

The analysis of the approximation ratio uses the following (see Section A.9 for the proof).

Lemma 2. Let 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 be n agent locations in [0, 1] and let vmed be the location of
the median agent. For any items z, y ∈ [0, 1] with |vmed − z| ≤ |vmed − y|, U(y) ≤ 3U(z).

Using Lemma 2, we can now determine the approximation ratio for the case where k = q = 1.

Lemma 3. If k = q = 1, the 1/2-Percentile Mechanism achieves an approximation ratio of 1/3.

Proof. For the lower bound on the approximation ratio, we apply Lemma 2 with the item selected
by the mechanism as z and the item selected by the optimal solution as y. Claim 2 implies that
that |vmed − z| ≤ |vmed − y|, where vmed denotes the location of the median agent. Then, Lemma 2
immediately implies that the approximation ratio of the 1/2-Percentile Mechanism is at least 1/3.

To conclude the proof, we present a class of instances where the mechanism has an approxi-
mation ratio of 1/3 + ε, for any ε > 0 (see also the instance in the proof of Proposition 2). Such
instances consist of n/2 agents located at 1/2− ε, where ε > 0 is arbitrarily small, and n/2 agents
located at 1, and of 2 items, one at 0 and the other at 1. The optimal solution selects the item at
1 and has a total utility of 3n/4 − nε/2. The 1/2-Percentile Mechanism selects the item at 0 and
has a total utility of n/4 + nε/2. ut

The Approximation Ratio for Singleton Slots. We now use Lemma 2 and show that for
q = 1 and any k ≥ 1, the approximation ratio of the 1/2-Percentile Mechanism is 3. In this case,
each agent ` votes for his best k-tuple of consecutive items.The mechanism selects the k-tuple Ci
that satisfies

∑i−1
j=1 cnt(Cj) < n/2 ≤

∑i
j=1 cnt(Cj). As in Claim 2, the k-tuple Ci selected by the

mechanism is best k-tuple of the median agent, i.e., Ci = arg maxCj∈X {ūb(n+1)/2c(Cj)}.

Lemma 4. If q = 1, for any k ≥ 2, the 1/2-Percentile Mechanism on k-tuples of consecutive items
achieves an approximation ratio of 1/3.
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Proof. Let Z = {z1, . . . , zk} be the set of items selected by the mechanism and let Y be the optimal
set of k items. Since the items z1, . . . , zk are consecutive in [0, 1] and correspond to the k items
closest to the location vmed of the median agent (see also Proposition 1), we can arrange the items
in Y as y1, . . . , yk so that for each j ∈ [k], |zj − vmed| < |yj − vmed|. Hence, Lemma 2 implies that

for each pair of items zj and yj , U(yj) ≤ 3U(zj). Since the optimal utility is U(Y ) =
∑k

j=1 U(yj)

and the mechanism’s utility is U(Z) =
∑k

j=1 U(zj), the approximation ratio is at least 1/3.
Moreover, for any k ≥ 2, there instances where the mechanism has an approximation ratio of

1/3 + ε, for any ε > 0. To see this, we generalize the tight example in the proof of Lemma 3. We
consider the same agent locations and 2k items, k of them are essentially collocated at 0 and k of
them are essentially collocated at 1. It is not hard to verify that the approximation ratio of the
1/2-Percentile Mechanism for this class of instances can be arbitrarily close to 1/3. ut

The Approximation Ratio for the General Case. We proceed to bound the approximation of
the ( 1

2q ,
3
2q , . . . ,

2q−1
2q )-Percentile Mechanism for agents with linear preferences. The tight example

in the proof of Lemma 3 shows that the distances |y − z| and vn − v1 essentially determine the
approximation ratio. This motivates us to introduce the notion of the width for a subset of agents.

We let L be a set of n agents with locations 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 in [0, 1], let z ∈ [0, 1] be an
item, and let Y ⊆ [0, 1] be a nonempty set of items. Assuming that L, z and Y are fixed, we denote
yl = arg maxy∈Y ∪{z} u1(y) and yr = arg maxy∈Y ∪{z} un(y) the leftmost and the rightmost items in
Y ∪ {z} used by some agent in L. The width β(L, z, Y ) (or simply β when L, z and Y are clear
from the context) of the agent set L with respect to the item z and to the set Y is defined as:

β(L, z, Y ) =

{
0 if Y ∩ [yl, yr] ⊆ {z}
max{vn −min{z, v1},max{z, vn} − v1} otherwise

Namely, if the only useful item in Y ∪ {z} is z, the width is 0. Otherwise, the width of L is either
vn − v1, if z ∈ [v1, vn], or vn − z, if z < v1, or z − v1, if z > vn. We next show that when a set of
agents L is partitioned into groups that occupy non-overlapping intervals in [0, 1], we can bound
the approximation ratio for L by analyzing independently the approximation ratio in each group
(the proof can be found in Section A.10). This is the main intuition behind the proof of Theorem 3.

Lemma 5. Let L be a set of n agents, located at 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 and partitioned into groups
L1, . . . , Lq, where each group consists of agents at consecutive locations. For any j ∈ [q], let vjmed be

the location of the median agent in group Lj, and for any set Z of items, let zj = arg minz∈Z |vjmed−
z|. For any set Z with at most q items and any set Y of items with |vjmed− z

j | ≤ miny∈Y |vjmed−y|,
let βj denote the width of group Lj wrt zj and Y . Then,

∑q
j=1 β

j ≤ 2.

The following lemma determines the approximation ratio for a group of agents L that use the
same item z, as a function of the width β. In addition to the conclusion of the lemma, part of its
proof (in particular (4) and (16), in Section A.11), play an important role in the proof of Theorem 3.

Lemma 6. Let L be a set of n agents located at 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 and let vmed be the
location of the median agent in L. For any item z and any set of items Y such that |vmed − z| ≤
miny∈Y |vmed − y|, U(Y ) ≤ 4−β

4−3β U(z), where β ∈ [0, 1] is the width of L with respect to z and Y .

Proof (sketch). We use integer division by 2, in order to deal with both even and odd n = |L|.
Since we are only interested in the ratio of U(Y )/U(z), we restrict our attention to the set of useful
items (for the agents in L) in Y . Specifically, we assume that Y = (Y ∩ [yl, yr])∪{z}, i.e., that Y is
restricted to its items in [yl, yr] and includes z. In case where Y = {z}, the lemma holds trivially,
because β = 0 and U(Y ) = U(z). So, from now on, we assume that {z} ⊂ Y .
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We let y = arg miny′∈Y \{z} |vmed − y′| and consider the case where z < y (the case where z > y
is symmetric). So, β = max{vn − v1, vn − z} (if z > y, β = max{vn − v1, z − v1}. We denote
δ = (y − z)/2. We distinguish two cases depending on whether z ≥ v1 or z < v1 (if z > y, we
distinguish two cases depending on whether z ≤ vn or z > vn).

We first consider the case where z ≥ v1. For convenience, we denote γ = z − v1. In this case,
β = vn − v1. Wlog., we assume that y ≤ vn and that γ + 2δ ≤ β. (These inequalities can be
enforced if we add to Y an artificial item located at vn, which does not change the value of β,
can only increase U(Y ) and does not change U(z)). We let n1 be the number of agents located in
[v1, z), n2 (resp. L2) denote the number (resp. the set) of agents located in [z, z+ δ], and n3 denote
the number of agents in (z + δ, vn]. Since z < y and |vmed − z| ≤ |vmed − y|, the median agent is
located in [v1, z + δ]. Therefore, n3 ≤ n/2. Moreover, we assume that n1 ≤ n/2 (i.e., we assume
that vmed ≥ z). Otherwise, the median agent is located on the left of z and this case is similar to
the case where y < z (again, we may add to Y an artificial item located at v1). We have that

U(Y ) ≤ n−
∑
j∈L2

(z − vj) ,

because each agent j ∈ L2 has utility at most 1− (z − vj) for his favorite item in Y , while all the
remaining agents have utility at most 1 for y. Similarly,

U(z) ≥ n− n1γ −
∑
j∈L2

(z − vj)− n3(β − γ) ,

because n1 agents have utility at least 1 − (z − v1) = 1 − γ for z, each agent j ∈ L2 has utility
1− (z − vj) for z, and n3 agents have utility at least 1− (vn − z) = 1− (β − γ) for z.

We next show that for any α ≥ 1,

αU(z) +
∑
j∈L2

(z − vj) ≥ αn− 3α−1
4 βn (4)

Then, using α = (4 − β)/(4 − 3β), we obtain that (3α − 1)β/4 = α − 1. Combining this equation
with (4), we conclude that 4−β

4−3βU(z) ≥ n−
∑

j∈L2
(z − vj) ≥ U(Y ).

A detailed proof of (4) and the analysis for the case where z < v1 can be found in Section A.11.
The analysis for the case where z < v1 follows exactly the same steps, but it is considerably simpler,
since we have n1 = γ = 0 in this case. ut

We proceed to lower bound the approximation ratio in case where the number of agents is a
multiple of q. The proof is based on the analysis in the proof of Lemma 6 and on Lemma 5.

Theorem 3. For any integers k ≥ 1 and q ≥ 2, any number of items m > qk and qn agents, for
any integer n ≥ 1, the approximation ratio of the ( 1

2q ,
3
2q , . . . ,

2q−1
2q )-Percentile Mechanism for CPD

instances with linear preferences is at least (2q − 3)/(2q − 1).

Proof. We denote 0 ≤ v1 ≤ v2 ≤ · · · ≤ vqn ≤ 1 the agent locatins. We partition the agents into q
groups with n consecutive agents each. Specifically, for every j ∈ [q], we let Lj consist of the agents
(j − 1)n + 1, . . . , jn. Working as in the proof of Claim 2, we can show that for each j ∈ [q], the
( 1
2q ,

3
2q , . . . ,

2q−1
2q )-Percentile Mechanism selects the best k-tuple C(j) of the median agent of Lj . By

Proposition 1, each selected tuple C(j) consists of the best k items of the median agent of Lj .
We let M =

⋃q
j=1C(j) be the set of items selected by the mechanism. The utility is

U(M) =

q∑
j=1

∑
`∈Lj

u`(M) ≥
q∑
j=1

∑
`∈Lj

∑
xi∈C(j)

u`(xi)
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For the proof, we assume that the agents in each group Lj use only the items in C(j) and that the
utility of each group Lj is

∑
`∈Lj

∑
xi∈C(j) u`(xi). Hence, the utility of the agents in Lj does not

depend on the scheduling of the items in C(j).
We let Y denote the set of items selected by the optimal solution and let Yi = {y1i , . . . , y

q
i },

with 0 ≤ y1i < · · · < yjk ≤ 1, be the set of items assigned to each slot i ∈ [k]. We analyze the
utility in each slot i separately. To argue about the approximation ratio for each slot i, we need
an appropriate assignment of the items in the selected k-tuple C(j), so that we can use the same
approach as in the proof of Lemma 6 (this assignment does not change the utility that the agents
in Lj get from C(j), it just facilitates the proof). Since each C(j) consists of the k items closest to
the median location vjmed in Lj and since these k items are consecutive in [0, 1], we can schedule

the items in C(j) so that the distance of the item zji scheduled in slot i to vjmed is no greater than

the distance of vjmed to the nearest item in Yi. Specifically, if the item in Y closest to vjmed appears

in slot i1, we assign the item in C(j) closest to vjmed to slot i1. Next, if the item in Y \ Yi1 closest

to vjmed appears in slot i2, we assign the second closest item to vjmed in C(j) to slot i2. In general,

for each p = 1, . . . , k, if the item in Y \ (Yi1 ∪ · · · ∪ Yip−1) closest to vjmed appears in slot ip, we

assign the p-th closest item to vjmed in C(j) to slot ip. We let zji denote the item in C(j) assigned

to slot i by this procedure. Since C(j) contains the k items closest to vjmed, we have that for each

slot i ∈ [k], |zji − v
j
med| ≤ miny∈Yi |y − v

j
med|.

After all items in M are assigned to slots, we consider the total utility of the agents for
the set Zi = {z1i , . . . , z

q
i }, where 0 ≤ z1i ≤ · · · ≤ zqi ≤ 1. Since each zji belongs to C(j),

zji = arg minz∈Zi |v
j
med − z|, i.e., zji is the item in Zi closest to vjmed. Moreover, |Zi| may be less

than q, i.e., some zji ’s may correspond to the same actual item, since the k-tuples selected by
the mechanism do not need to be disjoint. We next bound the ratio of the mechanism’s utility
U(Zi) =

∑q
j=1

∑
`∈Lj u`(z

j
i ) for slot i to the optimal utility U(Yi) =

∑q
j=1

∑
`∈Lj maxy∈Yi{u`(y)}

for slot i. At this point, we use the analysis of Lemma 6 (and refer to its proof).
For each j ∈ [q], we let Uj(z

j
i ) =

∑
`∈Lj u`(z

j
i ) be the utility of the agents in group Lj for item

zji and let Uj(Yi) =
∑

`∈Lj maxy∈Yi{u`(y)} be the utility of the agents in Lj for their best item in

Yi. By the assignment of the items in C(j) to slots, we have that |vjmed − z
j
i | ≤ miny∈Yi |y − v

j
med|.

We let βji denote the width of the group Lj with respect to the item zji and to the set of items Yi
(or simply, the width of group Lj for slot i). From the proof of Lemma 6, we know that if βji = 0,

then Uj(z
j
i ) = Uj(Yi). So, we can assume wlog. that βji > 0, for all groups Lj . Then, applying (4)

and (16), from the proof of Lemma 6, we obtain that for any α ≥ 1,

αUj(z
j
i ) ≥ αn−

(3α− 1)βji n

4
−
∑
j∈Lj

2

|z − vj | , (5)

where Lj2 denotes the set of agents ` ∈ Lj so that |zji − v`| ≤ min
y∈Yi\{zji }

|y − v`|. Moreover, from

the proof of Lemma 6, we have that

U(Yi) =

q∑
j=1

Uj(Yi) ≤ qn−
q∑
j=1

∑
j∈Lj

2

|z − vj | (6)

Summing up (5) over all j ∈ [q], we obtain that

αU(Zi) ≥ αqn−
(3α− 1)n

4

q∑
j=1

βji −
q∑
j=1

∑
j∈Lj

2

|z − vj | (7)
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We observe that Lemma 5, with agent groups L1, . . . , Lq and item sets Z = Zi and Y = Yi, implies
that

∑q
j=1 β

j
i ≤ 2, for every slot i ∈ [k]. Using this bound on the sum of the widths and inequalities

(7), (5) and (6), we obtain that for α = (2q − 1)/(2q − 3),

αU(Zi) ≥ αqn−
(3α− 1)n

2
−

q∑
j=1

∑
j∈Lj

2

|z − vj | = qn−
q∑
j=1

∑
j∈Lj

2

|z − vj | ≥ U(Yi) (8)

For the equality, we observe that for α = (2q − 1)/(2q − 3), αq − 3α−1
2 = q. Summing up (8) over

all slots i ∈ [k], we obtain that

2q − 1

2q − 3
U(M) ≥ 2q − 1

2q − 3

k∑
i=1

U(Zi) ≥ U(Y ) ,

which concludes the proof of the theorem. ut

There are instances with nq agents and k = 1 where the approximation ratio of the Percentile
Mechanism tends to (2q − 1)/(2q − 1/q). E.g., for some odd integer n ≥ 3, consider an instance
with (n − 1)/2 agents at 0, n − 1 agents at each point i/q, i = 1, . . . , q − 1, (n − 1)/2 agents at
1, and a single agent at each point (2i + 1)/(2q), i = 0, . . . , q − 1. We have 2q items located at
points i/q, i = 1, . . . , q, and at points (2i + 1)/(2q), i = 0, . . . , q − 1. The optimal solution is to
select the items at i/q, for a total utility of roughly (n− 1)q− (n− 1)/(2q). The ( 1

2q ,
3
2q , . . . ,

2q−1
2q )-

Percentile Mechanism selects the items at (2i+1)/(2q), i = 0, . . . , q−1, for a total utility of roughly
nq − (n− 1)/2. So, as n increases, the approximation ratio tends to (2q − 1)/(2q − 1/q).

If the number of agents is not a multiple of q, we obtain a slightly weaker approximation ratio.
The proof is similar to the proof of Theorem 3 and can be found in Section A.12.

Theorem 4. For any k ≥ 1 and q ≥ 2, any m > qk and any number of agents |L| ≥ q + 1, the
approximation ratio of the ( 1

2q ,
3
2q , . . . ,

2q−1
2q )-Percentile Mechanism for CPD instances with linear

preferences is at least (2q − 3− 3q/|L|)/(2q − 1− q/|L|) = (2q − 3)/(2q − 1)−O(q/|L|).

6 Conference Program Design with Item Preselection

In this section, we show that despite CPD being polynomially solvable for single-peaked prefer-
ences (Theorem 1), pre-CPD is NP-hard for single-peaked preferences, even with the additional
restriction of dichotomous preferences.

The agent preferences are dichotomous if each agent “likes” a subset of items and “dislikes”
the remaining ones. This induces a preorder with two indifference classes for every agent. In a
general setting, this implies ui(x) ∈ {a, b} where a, b are two non negative reals satisfying a < b.
It is called approval-based utility when a = 0 and b = 1. Dichotomous preferences have recently
attracted some attention from the community of Computational Social Choice, especially in the case
of committee selection rules for voters [10, 11] or in judgment aggregation [8] even if the preferences
also satisfy other restrictions like single-peakedness. In our setting, dealing with approval utilities
is not restrictive with respect to algorithmic complexity issues, after a rescaling. So, we can assume
that u`(x) ∈ {0, 1} for ` ∈ L and x ∈ X.

The preferences are dichotomous single-peaked if they are both single-peaked and dichotomous.
In an equivalent view, the items are located one a line and each agent ` ∈ L corresponds to a closed
interval I` of this line, where u`(x) = 1 if x ∈ I` and u`(x) = 0 otherwise. This is also known as
Voter Interval in Voting Theory [10] or Single-Plateauedness in majority judgments [8].

In Section A.13, we prove the main result of this section.

Theorem 5. pre-CPD is NP-hard for dichotomous single-peaked preferences.
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7 Conference Program Design with Single-Crossing Preferences

In this section, we consider CPD with single-crossing preferences. Wlog., we assume that the pref-
erence profile is single-crossing for the identity permutation of the agents and that agent 1 prefers
xi to xj if and only if i < j.

We extend the dynamic programming approach applied in [27] to the multi-winner election of
Chamberlin-Courant. In particular, our dynamic programming algorithm is based on the contiguous
blocks property of the optimal solution of Chamberlin-Courant with single-crossing preferences [27,
Lemma 5], which directly extends to CPD. For a slot Sj of a solution to CPD such that Sj contains
an item xi, let L(j, i) denote the set of agents who consider xi as their best item in Sj . The contiguous
blocks property for CPD states that for every j ∈ [k] and xi ∈ Sj , either L(j, i) = ∅ or there are
two indices, tji and t′ji, such that tji ≤ t′ji and L(j, i) = {tji, tji + 1, . . . , t′ji}. Moreover, for each
i < i′ such that L(j, i) 6= ∅ and L(j, i′) 6= ∅, it holds that t′ji < tji′ . In words, the contiguous blocks
property states that an item is considered as the most preferred in a slot by a set of consecutive
agents and that such sets of agents who prefer different items of the same slot do not overlap with
each other. The proof that the contiguous blocks property holds for the optimal solution of CPD
with single-crossing preferences is obtained by applying the proof of [27, Lemma 5] for each slot
separately. The following summarizes the main result of this section.

Theorem 6. A dynamic programming algorithm solves every single-crossing instance of CPD in
O(m(nq)k+1) time.

Proof. Let U(j, (i1, t1), . . . , (ik, tk)) be the maximum total utility if we use items from set Xj =
{x1, . . . , xj} only, and in each slot Sp, only the agents 1, . . . , ip are taken into account and only tp
items are used. The function U is defined for all j = 0, . . . ,m and for all (ip, tp) ∈ {0, . . . , n} ×
{0, . . . , q} such that t1 + · · ·+ tk ≤ j. For j = 0, X0 = ∅.

We start with U(0, (i1, t1), . . . , (ik, tk)) = 0, for all pairs (i1, t1), . . . , (ik, tk). For each j ≥ 0,
the next item xj+1 either is not selected (provided that t1 + · · · + tk ≤ j), in which case U(j +
1, (i1, t1), . . . , (ik, tk)) = U(j, (i1, t1), . . . , (ik, tk)), or it is assigned to some slot Sp, in which case

U(j + 1, (i1, t1), . . . , (ik, tk)) = max
0≤`≤ip

U(j, (i1, t1), . . . , (`, tp − 1), . . . , (ik, tk)) +

ip∑
ν=`+1

uν(xj+1)


Therefore, for each j ≥ 0 and each fixed (i1, t1), . . . , (ik, tk), such that t1 + · · · + tk ≤ j + 1,
U(j + 1, (i1, t1), . . . , (ik, tk)) can be defined recursively as follows:

max


U(j, (i1, t1), . . . , (ik, tk))

max1≤p≤k max0≤`≤ip

U(j, . . . , (`, tp − 1), . . .) +

ip∑
ν=`+1

uν(xj+1)




in case where t1 + · · ·+ tk ≤ j, or

max
1≤p≤k

max
0≤`≤ip

U(j, . . . , (`, tp − 1), . . .) +

ip∑
ν=`+1

uν(xj+1)


in case where t1 + · · · + tk = j + 1. The optimal solution is given by U(m, (n, k), . . . , (n, k)) (we
implicitly assume here that m ≥ kq). The number of values that we need to compute is O(m(nq)k)
and the total running time is O(m(nq)k+1). In Section A.14, we provide some more details on how
we compute these values. ut
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A Appendix

A.1 An Integer Linear Programming Formulation of Conference Program Design

In [6], it was shown that the Conference Program Design problem can be formulated as an Integer
Linear Program, denoted by (ILP), where yij = 1, if item xi ∈ X is assigned to slot Sj , and yij = 0,
otherwise, and z`,i,j = 1, if xi is the item of Sj from which agent ` derives his utility.

(ILP) maximize
∑
`∈N

∑
j∈[k]

∑
xi∈X

z`,i,j · u`(xi)

subject to:
∑
xi∈X

z`,i,j = 1, ∀` ∈ N, j ∈ [k] (9)

yij − z`,i,j ≥ 0, ∀` ∈ N, j ∈ [k], xi ∈ X (10)∑
j∈[k]

yij ≤ 1, ∀xi ∈ X (11)

∑
xi∈X

yij ≤ q, ∀j ∈ [k] (12)

yij , z`,i,j ∈ {0, 1}, ∀` ∈ N, j ∈ [k], xi ∈ X

Constraint (9) ensures that agent ` should derive his utility from a single item in each slot Sj .
Constraint (10) ensures that an agent ` can derive utility only from an item xi which is assigned
to slot Sj . Constraint (11) ensures that each item xi should appear in at most one slot Sj , and
constraint (12) ensures that each slot Sj should contain at most q items.

A.2 The Proof of Proposition 1

We observe that the subsets S ⊆ X, with |S| ≤ k, forms a uniform matroid of rank k. Obtaining
the maximum utility from k items in X is equivalent to selecting a basis of the uniform matroid
with maximum total utility. The greedy algorithm, which selects the k best items in X according
to u, finds a subset of k items in X of maximum utility. Since the utility function u is single-peaked
with respect to A, the k best items in X are consecutive. ut

A.3 The Proof of Claim 1

If the usage of xb is not null then z`b > 0. If the usage of a is intermediate or null then z`a < ya. Let
δ = min{z`b, ya− z`a} and note that δ > 0. We can increase the utility of agent ` by simultaneously
decreasing z`b and increasing z`a by δ. This modification has no impact on the utility of the other
agents, so we get a contradiction with the optimality of (y, z) for (R-SLP). ut

A.4 Missing Details from the Proof of Theorem 1

We recall that Claim 1 implies that the items of X ′ for which a given agent has a non-null usage
are consecutive. Moreover, within this set of consecutive items of interest for the agent, only the
two extreme items can be used in an intermediate way.

Using this observation, we now modify X ′ as done in [18, Section 3], in the context of fault
tolerant q-Facility Location. Specifically, every item xi ∈ X ′ for which no agent has an intermediate
usage is renamed as f1i and we let fic(xi) := {f1i }. Every item xi ∈ X ′ for which at least one agent
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has an intermediate usage is replaced by a set fic(xi) of new items. Let left(i) and right(i) denote
the sets of agents placed to the left and to the right of xi on the societal axis, respectively. Numbers
{z`i}`∈left(i) and {yi − z`i}`∈right(i) split the interval [0, yi] into several pieces, say d(i) pieces, and
for each piece, we create a fictitious item with fractional value equal to the length of that piece.

Thus xi is replaced by a set of d(i) items fic(xi) := {f1i , . . . , f
d(i)
i } whereas yi is split in d(i) positive

values (y1i , . . . , y
d(i)
i ) such that y1i + . . .+ y

d(i)
i = yi.

Now the new set of items X ′′ is defined as
⋃
xi∈X′ fic(xi). Each agent ` is associated with a

minimal subset X ′′` of X ′′ satisfying:

– if z`,i = 0 then X ′′` ∩ fic(xi) = ∅
– if z`,i = yi then X ′′` ⊇ fic(xi)

– if 0 < z`,i < yi and ` ∈ left(i) then X ′′` ∩ fic(xi) = {f1i , . . . , f
g(`)
i } where y1i + . . .+ y

g(`)
i = z`,i

– if 0 < z`,i < yi and ` ∈ right(i) then X ′′` ∩fic(xi) = {fg(`)i , . . . , f
d(i)
i } where y

g(`)
i +. . .+y

d(i)
i = z`,i

We now consider the following Linear Program, where the variable tji is associated with the

item f ji of X ′′.

(FLP) maximize
∑
`∈N

∑
fji ∈X′′`

tji · u`(xi)

subject to:
∑

fji ∈X′′`

tji ≤ k, ∀` ∈ N (13)

∑
fji ∈fic(xi)

tji ≤ 1, ∀xi ∈ X ′ (14)

∑
fji ∈X′′

tji ≤ k · q (15)

tji ∈ [0, 1], ∀f ji ∈ X
′′

Constraint (13) ensures that every agent should derive his utility from at most k items within
the set of items from which he was deriving utility in (SLP). Constraint (14) ensures that at most
one fictitious item should be kept per original item. Constraint (15) ensures that at most kq items
should be selected in the solution.

The optimum of (FLP) is as good as the optimum of (R-SLP). Moreover, (FLP) has an integral
optimal solution t, because it satisfies the so-called consecutive ones property. Namely, in each row
of the constraint matrix, the 1s appear in consecutive positions. Indeed, in (FLP) the items of
fic(xi) for every xi ∈ X ′, or the items of X ′′` for every ` ∈ L, are consecutive. Matrices with the
consecutive ones property are known to be totally unimodular [26], and thus, (FLP) has an integral
optimal solution t.

Overall, the algorithm consists of first solving (R-SLP) to get (y, vecz) and X ′. Then, we split
the items of X ′ according to (y, z) in order to get a new set of items X ′′. Next, we solve (FLP) and
obtain an integral optimal solution t of total utility equal to the total utility of the optimal solution
of (R-SLP) (and of (SLP)). Hence, we retrieve an optimal set of at most kq items by selecting xi if
and only if there some j such that tji = 1. Finally, we allocate the selected items using the optimal
greedy allocation described in Section 2. ut
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A.5 Missing Details from the Proof of Lemma 1

The most interesting case is where β+1 ≤ j∗ ≤ k+β−2. In this case, we need to compare the utility
of some items in Cb with index less than j∗ with some items in Cc with index greater than j∗. We do
so by exploiting an item x` in Ca whose utility is no less than the utility of the rightmost items in Cb.
Specifically, we show that there is an index `, 1 ≤ ` ≤ min{k, β− 1, k+β− j∗− 1}, so that u(x`) >
u(xk+β−`). Intuitively, since Cb includes the item of maximum utility xj∗ but ū(Ca) > ū(Cb), there
is some item in Ca which is not included in Cb and has more utility than the corresponding item on
the right part of Cb. To prove this claim, we first show that there is such an index ` with 1 ≤ ` ≤ k.
Otherwise, for all j ∈ [k], it would be u(xj) ≤ u(xk+β−j). Hence, ū(Ca) ≤ ū(Cb), which contradicts
the hypothesis that ū(Ca) > ū(Cb). To show that ` ≤ β − 1, we observe that if β ≤ k, i.e., if
both Ca and Cb include items xβ, . . . , xk, then

∑k
j=β u(xj) =

∑k
j=β u(xk+β−j), because the same

terms u(xβ), . . . , u(xk) appear in both sums. Therefore, to avoid reaching the contradiction where
ū(Ca) ≤ ū(Cb), there must be a pair of items x`, included in Ca but not in Cb, and xk+β−`, included
in Cb but not in Ca, such that u(x`) > u(xk+β−`). To show that ` ≤ k + β − j∗ − 1, we observe
that if j∗ ≤ k, i.e., if the item xj∗ of maximum utility is included in Ca, then ` ≤ β− 1 implies that
` ≤ k+β−j∗−1. If j∗ > k, for all j = 0, . . . , j∗−β, u(xj∗−j) ≥ u(xk−j), because xk−j A xj∗−j w xj∗ .
Therefore,

∑j∗−β
j=0 u(xj∗−j) ≥

∑j∗−β
j=0 u(xk−j), where the sum on the lhs accounts for the utilities

of j∗ − β + 1 items in Cb and the sum on the rhs accounts for the utilities of j∗ − β + 1 items
in Ca. Hence, to avoid reaching the contradiction where ū(Cb) ≥ ū(Ca), there must be a pair of
items x` ∈ Ca and xk+β−` ∈ Cb, which are not included in the two sums. Hence, it must be that
` ≤ k − (j∗ − β)− 1.

Since 1 ≤ ` ≤ k+ β − j∗ − 1, j∗ + 1 ≤ k+ β − ` ≤ k+ β − 1. So, the item xk+β−` is included in
Cb and satisfies xj∗ A xk+β−`. Then, for any index j, with β ≤ j ≤ j∗, u(xj) ≥ u(x`) > u(xk+β−`),
where the first inequality holds because ` ≤ β−1 < j ≤ j∗ and thus, x` A xj w xj∗ , and the second
inequality holds by the choice of index `. Therefore, u(xj) > u(xk+β−`), for all j with β ≤ j ≤ j∗−1,
i.e., for any item xj in Cb with xj A xj∗ .

We are now ready to complete the proof of the lemma by showing that in case where β+1 ≤ j∗ ≤
k+β−2, that ū(Cb) ≥ ū(Cc). For brevity, we only discuss here the case where j∗ < γ ≤ k+β−1 (in
all other cases, the desired inequality can be derived by a straightforward adaptation of the same
argument). Since the items xγ , . . . , xk+β−1 are included in both Cb and Cc, they contribute the
same utility to both ū(Cb) and ū(Cc). Moreover, we observe that for any index j = 0, . . . , γ−1−j∗,
u(xj∗+j) ≥ u(xk+β+j), because xj∗ w xj∗+j A xk+β+j . Finally, we observe that for any index
j = β, . . . , j∗ − 1, u(xj) > u(xk+β−`) ≥ u(xk+γ−j∗+j), where the first inequality was shown in
the previous paragraph and the second inequality holds because xj∗ A xk+β−` w xk+γ−j∗+j , since
k + β − ` ≤ k + β + γ − j∗. Therefore, we have found a one-to-one mapping of the items in Cb to
the items in Cc so that the utility of each item in Cb is no less than the utility of the corresponding
item in Cc. This implies that ū(Cb) ≥ ū(Cc) and concludes the proof of the lemma. ut

A.6 Missing Details from the Proof of Theorem 2

To conclude the proof of Theorem 2, we fix the votes of all agents, except for a fixed agent `. To
reach a contradiction, we assume if agent ` votes for his best k-tuple C`, the set of items selected by
the (α1, . . . , αq)-Percentile Mechanism is M , while if ` votes for a different k-tuple C ′, the outcome
of the mechanism is M ′, with u`(M) < u`(M

′).

Let C(1) A · · · A C(j − 1) A C(j) A · · · A C(q) be the k-tuples selected by the mechanism
when agent ` votes for his true best k-tuple C`. We assume that C` is different from all the selected
k-tuples, since if C` is selected, agent ` has no incentive to lie about his best k-tuple. We let
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C(j − 1) A C` A C(j) and assume that j ≤ q (i.e., C` is on the left of at least one k-tuple C(j)
selected by the mechanism). We consider the case where agent ` lies by voting for a k-tuple C ′ on the
right of C`, i.e., C` A C ′ (the case where C ′ A C` is symmetric). As a result of `’s false declaration,
the Percentile Mechanism selects some sets C ′(j), . . . , C ′(q), where C(j) w C ′(j), . . . , C(q) w C ′(q).
Since we assume that agent ` improves his utility by reporting C ′ instead of C`, there must be at
least one index p, j ≤ p ≤ q, so that C(p) and C ′(p) are different. For simplicity, we assume that
the smallest such index is j and that C(j) 6= C ′(j) (the same argument applies to the smallest
index p such that C(p) 6= C ′(p)).

We first observe that since u` is single-peaked, the best k-tuple C` of agent ` includes the item
x∗ of maximum utility in u`. Since C` A C(j), x∗ lies on the left of the rightmost item in C(j).
Therefore, if the rightmost item used by ` in M is on the left of the rightmost item of C(j), agent `
cannot increase his utility by forcing the mechanism to select C ′(j) instead of C(j), because C ′(j)
just includes some items further on the right than the items used by `. So, the rightmost item used
by ` in M must coincide with the rightmost item of C(j). By Proposition 1, the best k items of `
in M are consecutive. So, C(j) consists of the best k items of ` in M . Since C(j) A C ′(j) and `
prefers C ′(j) to C(j), agent ` prefers using some items on the right of the rightmost item of C(j) to
using the leftmost items of C(j). Therefore, there exists a C ′′(j), C(j) A C ′′(j) w C ′(j) (note that
it may be C ′′(j) = C ′(j)) so that ū`(C

′′(j)) > ū`(C(j)). This contradicts the fact that the utility
function ū` is single-peaked (Lemma 1). More specifically, since agent ` prefers C ′(j) to C(j), it
must be ū`(C

`) > ū`(C(j)). Moreover, C` A C(j) A C ′′(j) and ū`(C
′′(j)) > ū`(C(j)), which is a

contradiction to Lemma 1.
In case where C(q) A C` (resp. where C` A C(1)), the k-tuples selected by the mechanism do

not change if agent ` votes for a k-tuple C ′ with C(q) A C ′ (resp. with C ′ A C(1)). This concludes
the proof of Theorem 2. ut

Working as in the proof of [28, Theorem 1], we can strengthen the proof of Theorem 2 and
show that Percentile Mechanisms for CPD with single-peaked preferences are group strategyproof.
The crucial observation is that an agent ` could lie and improve his utility from the outcome M
of the mechanism only if `’s best k items in M are included in a single k-tuple C(j) (which is
selected by the mechanism when ` reports C` truthfully) and there is a different k-tuple C ′ of total
utility ū`(C

′) > ū`(C(j)), either on the left or on the right of C(j). Thus, even though in our
setting, an agent ` can use items from more than one k-tuples, the proof of group strategyproofness
(and the proof of truthfulness above) boils down to the q-Facility Location setting analyzed in [28,
Theorem 1]. We omit further details from this extended abstract.

A.7 On the Approximation Ratio of Deterministic Truthful Mechanisms

Proposition 2. Any deterministic truthful mechanism for the Conference Program Design with
linear preferences and with k = q = 1 has approximation ratio at most 5/7.

Proof. We assume that there exists a deterministic truthful mechanism with approximation ratio
strictly greater than 5/7 and reach a contradiction. We consider an instance with 2 items, located
at x1 = 0 and x2 = 1, and 2 agents, located at v1 = 1/6 and v2 = 2/3. The optimum is to select
item x1 = 0, for a total utility of 7/6. Selecting item x2 = 1, which is preferred by agent 2, gives
a total utility of 5/6. Therefore, any deterministic mechanism with an approximation ratio greater
than 5/7 selects item x1 = 0 for this instance.

If agent 2 reports v′2 = 1, the optimum is to select item x2 = 1, for a total utility of 7/6.
Selecting item x1 = 0 now gives a total utility of 5/6. So, any deterministic mechanism with an
approximation ratio greater than 5/7 selects item x2 = 1 for this instance. Since agent 2 can enforce
item x2 to such a mechanism, the mechanism is not truthful. ut
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A.8 The Proof of Claim 2

Let xl (resp. xr) be the item closest to vmed on the left, with xl ≤ vmed (resp. on the right, with
xr > vmed). Then,

∑
xj≤xr cnt(xj) ≥ n/2, because all agents with index at most (n + 1)/2 vote

for an item in {x1, . . . , xr}. In fact, if |xl − vmed| ≤ |xr − vmed|, all agents with index at most
(n + 1)/2 vote for an item in {x1, . . . , xl}, and xl is selected by the mechanism. Otherwise, the
median agent votes for xr, which implies that

∑
xj≤xl cnt(xj) < n/2 ≤

∑
xj≤xr cnt(xj). So, in this

case, the mechanism selects the item xr. In both cases, the 1/2-Percentile Mechanism selects the
item closest to the location of the median agent vmed. ut

A.9 The Proof of Lemma 2

We use integer division by 2, in order to deal with both even and odd n. We consider the case
where z < y (the case where z > y is symmetric, while if z = y, U(z) = U(y)). We denote
δ = (y − z)/2 > 0.

Since |vmed − z| ≤ |vmed − y|, v1 ≤ · · · ≤ vmed ≤ z + δ. Let n1 denote the number of agents
located in [0, z), n2 denote the number of agents located in [z, z + δ], and n3 denote the number of
agents in (z + δ, 1]. Since the median agent is located in [0, z + δ], n3 ≤ n/2. Moreover, we assume
that n1 ≤ n/2, because if n1 ≥ (n+ 1)/2, U(z) ≤ U(y), since z would be located in [vmed, y]. Then,

U(y) ≤ n− n2δ ,

because at least n2 agents are at distance at least δ to y. So these agents have utility at most 1− δ
for y, while the remaining agents have utility at most 1 for y. Similarly,

U(z) ≥ n− n1z − n2δ − n3(1− z) ,

because n1 agents have utility at least 1 − z for z, n2 agents have utility at least 1 − δ for z, and
n3 agents have utility at least z for z.

Therefore, to conclude the proof of the lemma, it suffices to show that

2n2δ + 3n1z + 3n3(1− z) ≤ 2n .

Next, we derive a sequence of upper bounds, which shows that the lhs of the inequality above is at
most 2n. Specifically, we observe that

2n2δ + 3n1z + 3n3(1− z) ≤ n2(1− z) + 3n1z + 3n3(1− z)
≤ n(1− z) + 3n1z + 2n3(1− z)
≤ n(1− z) + (3n/2)z + n(1− z) ≤ 2n

The first inequality holds because z + 2δ ≤ 1. For the second inequality, we use that n2 + n3 ≤ n.
The third inequality follows from n1 ≤ n/2 and n3 ≤ n/2. ut

A.10 The Proof of Lemma 5

We let vjl (resp. vjr) denote the leftmost (resp. rightmost) agent in each group Lj . For convenience,
we introduce the notion of the active interval of each group Lj (with respect to the item zj and to
the set Y ). The active interval of a group Lj is empty if βj = 0. Otherwise, the active interval of

Lj is either [vjl , v
j
r ], if zj ∈ [vjl , v

j
r ], or [zj , vjr ], if zj < vjl , or [vjl , z

j ], if zj > vjr . We observe that the
length of the active interval of each group Lj is equal to βj (assuming that the length of the empty
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interval is 0). Moreover, we observe that if zj 6∈ [vjl , v
j
r ], the active interval of a group Lj cannot

extend beyond the item zj (on the left, if zj < vjl , or on the right if zj > vjr), where zj is the item

in Z closest to the median location vjmed of the agents in Lj . In the following, we say that a point
x is included strictly in an interval [a, b] if x ∈ (a, b).

To prove the lemma, we show that each point x ∈ [0, 1] is included strictly in the active interval
of at most two groups of agents Lj and Lj+1 with consecutive indices. Since the width of the active
interval of each Lj is equal to βj , this implies that

∑q
j=1 β

j ≤ 2.

We fix some index j, assume that the active interval of Lj is [vjl , v
j
r ], and consider any point x

in the active interval of Lj (a similar reasoning also applies to the case where the active interval
of Lj is either [zj , vjr ] or [vjl , z

j ]. We have to show that x is included strictly in the active interval

of at most one group Lj
′

different from Lj . If zj ∈ [vjl , v
j
r ] and x ≤ zj (the case where x ≥ zj is

symmetric), the left endpoint of the active interval of any group Lj
′
, with j′ > j, should be on the

right of zj , because zj ≤ zj′ . Therefore, x is not included strictly in any of these active intervals.
We examine now the right endpoints of the active intervals of the groups Lj

′
, with j′ < j. If

the right endpoint of the active interval of Lj−1 is at some point x′, with vj−1r ≤ x′ ≤ x, it must
be zj−1 ≤ x. Hence, in this case, x is not included strictly in any of the active intervals of groups
Lj
′
, with j′ < j. If the right endpoint of the active interval of Lj−1 is at some point x′′ > x, we

show that x is included strictly in at most one of the active intervals of L1, . . . , Lj−1. For sake of
contradiction, let us assume that x is included strictly in the active intervals of both Lj−2 and
Lj−1. Since the active interval of Lj−2 extends on the right of x, there is no item z ∈ Zi with
vj−2l ≤ z ≤ x. Hence, the item zj−2, i.e., the item in Z closest to the median location vj−2med of

Lj−2, is located at some point z′ ∈ [x, zj ]. Since |vj−2med − z
j−2| ≤ miny∈Y |vj−2med − y|, the item in

Y closest to vj−2med is located at some point y′ ≥ z′ or at some point y′ on the right of vj−2l with

|vj−2med − z
j−2| ≤ |vj−2med − y

′|. Moreover, zj−2 = zj−1 = z′, i.e., the point in Z closest to the median

locations vj−2med and vj−1med is z′. Therefore the item in Y ∪ {zj−1} closest to the leftmost and to the
rightmost agent of Lj−1 is zj−1. Hence, βj−1 = 0, because yl = yr = zj−1 for Y ∪ {zj−1} and for
Lj−1. As a result, the active interval of Lj−1 is empty and does not include x. A straightforward
generalization of the same argument implies that if x is included strictly in the active interval of
some group Lj

′
, j′ < j − 1, the active intervals of all groups Lj

′+1, . . . , Lj−1 are empty and do not
include x. ut

A.11 Missing Details from the Proof of Lemma 6

To establish (4), it suffices to show that for any α ≥ 1,

αn1γ + (α− 1)
∑
j∈L2

(z − vj) + αn3(β − γ) ≤ 3α−1
4 βn

Since for each j ∈ L2, z−vj ≤ δ, we have that
∑

j∈L2
(z−vj) ≤ n2δ. Therefore, since δ ≤ (β−γ)/2,

we obtain that:

αn1γ + (α− 1)
∑
j∈L2

(z − vj) + αn3(β − γ) ≤ αn1γ + α−1
2 n2(β − γ) + αn3(β − γ)

Bounding the rhs of the previous inequality from above, we obtain that:

αn1γ + α−1
2 n2(β − γ) + αn3(β − γ) ≤ αn1γ + α−1

2 (β − γ)n+ α+1
2 n3(β − γ)

≤ (3α−1)(β−γ)+2αγ
4 n ≤ 3α−1

4 βn
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For the first inequality, we use that n2 + n3 ≤ n. For the second inequality, we use that n1 ≤ n/2
and that n3 ≤ n/2. The last inequality holds because α ≥ 1.

Next, we consider the case where z < v1. In this case, β = vn − z. Since vmed ≥ v1, and
|z − vmed| ≤ |y − vmed|, we get that y ≥ z + δ ≥ v1. As in the former case, we assume wlog. that
y ≤ vn and that 2δ ≤ β. Now, we let n2 (resp. L2) denote the number (resp. the set) of agents
located in [v1, z1 + δ] and n3 denote the number of agents in (z + δ, vn]. Again, the median agent
is located in [v1, z + δ] and n3 ≤ n/2. Working as in the previous case, we obtain that

U(Y ) ≤ n−
∑
j∈L2

(vj − z) ,

because each agent j ∈ L2 has utility at most 1− (vj − z) for his favorite item in Y , while all the
remaining agents have utility at most 1 for y. Similarly,

U(z) ≥ n−
∑
j∈L2

(vj − z)− n3β ,

because each agent j ∈ L2 has utility 1−(vj−z) for z and n3 agents have utility at least 1−(vn−z) =
1− β for z.

We next show that for any α ≥ 1,

αU(z) +
∑
j∈L2

(vj − z) ≥ αn− 3α−1
4 βn (16)

As in the previous case, using α = (4 − β)/(4 − 3β), we obtain that (3α − 1)β/4 = α − 1 which,
combined with (16), implies that 4−β

4−3βU(z) ≥ n−
∑

j∈L2
(vj − z) ≥ U(Y ).

The proof of (16) is essentially identical to the proof of (4), if we use n1 = γ = 0. We give the
proof for completeness. As in the proof of (4), it suffices to show that for any α ≥ 1,

(α− 1)
∑
j∈L2

(vj − z) + αn3(β − γ) ≤ 3α−1
4 βn

Since for each j ∈ L2, vj − z ≤ δ, we have that
∑

j∈L2
(vj − z) ≤ n2δ. Therefore, since δ ≤ β/2, we

obtain that:
(α− 1)

∑
j∈L2

(vj − z) + αn3β ≤ α−1
2 n2β + αn3β

Bounding the rhs of the previous inequality from above, we obtain that:

α−1
2 n2β + αn3β ≤ α−1

2 βn+ α+1
2 n3β ≤ 3α−1

4 βn

The first inequality follows from n2 +n3 ≤ n and the second inequality holds because n3 ≤ n/2. ut

A.12 The Proof of Theorem 4

We proceed as in the proof of Theorem 3, until (7), with the only difference that each group N j

has either d|L|/qe or b|L|/qc agents. Thus, we obtain the following weaker form of (8),

αU(Zi) ≥ α|L| −
(3α− 1)|L|

2q
− 3α− 1

2
−

q∑
j=1

∑
j∈Lj

2

|z − vj | = |L| −
q∑
j=1

∑
j∈Lj

2

|z − vj | ≥ U(Yi) ,

where for the equality we need to use α = (2q − 1− q/|L|)/(2q − 3− 3q/|L|). The lower bound on
the approximation ratio is obtained by summing the inequality above for all slots i ∈ [k]. ut
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A.13 The Proof of Theorem 5

Required Graph Theoretic Notions. Before proving Theorem 5, we need to introduce some
graph theoretic notions. Given a simple graph G = (V,E), we denote by n(G) and m(G) the number
of vertices and edges of G, respectively. The closed neighborhood of vertex v, denoted NG[v], is the
set of adjacent vertices including v and the closed degree is its size, i.e. dG[v] = |NG[v]|. A proper
k-coloring of G is a mapping c from V to [k] such that c(u) 6= c(v) as soon as [u, v] ∈ E. The
problem of finding a proper k-coloring with smallest k (Coloring in short) is NP-hard in general
[16], but is solvable in polynomial-time for some graph classes like chordal and interval (see [17]
for more). An interval graph is the intersection graph of a family of intervals on the real line. It is
a proper interval graph if there is an interval representation in which no interval properly contains
another. In the same way, it is a unit interval graph if there is an interval representation of it in
which all the intervals have the same length. It is well known that the last two classes of graphs
coincide [17, 5]. A perfect elimination order (peo in short) of a graph G = (V,E) is an ordering σ
of the vertices V , i.e. σ is a bijection from [n(G)] to V such that for every i ≤ n(G), the closed
neighborhood of σ(i) in the subgraph Gi induced by {σ(i), . . . , σ(n(G))} is a clique (σ(i) is usually
called simplicial vertex). It is well known that a graph is chordal iff it has a peo and a graph is a unit
interval graph iff it has an ordering σ such that σ and σinv are peo where σinv(i) = σ(n(G) + 1− i),
[5, 19]. Moreover, if G is connected, then for all i ≤ n(G)− 1, [σ(i), σ(i+ 1)] ∈ E. From now on, we
assume σ(i) = vi for i ≤ n(G), Gi is the subgraph induced by {vi, . . . , vn(G)} and di = dGi [vi].

A generalization of the decision version of Coloring where some vertices have a given color
and the goal is to extend it to a proper coloring, has been studied in the literature under the name
PreColoring Extension [3].

PreColoring Extension
Input: A simple graph G = (V,E), a subset W ⊂ V , a coloring c′ of W .
Parameter: An integer k.
Question: Deciding whether there is a proper k-coloring c of G extending c′, i.e.

c(v) = c′(v) for v ∈W .

Obviously, when W = ∅ we obtain the decision version of Coloring. PreColoring Exten-
sion has been proved NP-complete in interval graphs even if each precolored set has size at most
2 [3] and in unit interval graphs [20]. We are now ready to prove Theorem 5.

Proof (of Theorem 5). We propose a reduction from PreColoring Extension in unit interval
graphs proved NP-complete in [20]. Let G = (V,E) be a connected unit interval graph, a subset
W ⊂ V , a coloring c′ of W and an integer k′. We assume V = {v1, . . . , vn(G)} where σ(i) = vi as
indicated previously, Gi is the subgraph induced by {vi, . . . , vn(G)} and di = dGi [vi] for i ≤ n(G).
We build an instance of pre-CPD as follows:

– n = n(G) agents L = {1, . . . , n} and n items X = {x1, . . . , xn};
– two positive integers k = k′ and q = n;
– X ′ = {xi : vi ∈W}, a mapping g(xi) = c′(vi) for xi ∈ X ′;
– a utility function for each agent defined by ui(x`) = 1 iff v` ∈ NGi [vi] and ui(x`) = 0 otherwise.

Note that the agent preferences are dichotomous and single peaked. Actually, let `i = max{` :
v` ∈ NGi [vi]} for i ≤ n; we have that ui(xj) = 1 iff vj ∈ Ii = {vi, . . . , v`i} because on the one hand,
[vi, vi+1] ∈ E (G is assumed to be connected) and on the other hand NGi [vi] is a clique of Gi.

We claim that the answer of PreColoring Extension is yes iff there exists a solution S
made of k disjoint subsets S1, . . . , Sk of X with utilitarian social welfare U(S) =

∑
`∈L u`(S) ≥

n(G) +m(G).
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If c is a proper k-coloring of G extending c′, then by setting Si = {x` ∈ X : c(v`) = i} for i ≤ k,
we obtain a solution S with U(S) =

∑
`∈L u`(S) = n(G) + m(G) because k = k′ ≥ maxi≤n(G)d

i

(recall that NGi [vi] is a clique of size di and it is a yes-instance of PreColoring Extension).
Hence U(S) =

∑
`∈L u`(S) =

∑
i≤n d

i = n(G) +m(G) and g−1(`) = {x ∈ X ′ : g(x) = `} ⊆ S`.
Conversely, assume that there is a collection S of k disjoint subsets S1, . . . , Sk of X with U(S) ≥

n(G) + m(G) and g−1(i) ⊆ Si. We also have U(S) =
∑

`∈L u`(S`) ≤
∑

i≤n(G) d
i = n(G) + m(G)

because there are n agents and agent ` approves at most d` items. Thus, we deduce U(S) =
n(G)+m(G) and then u`(S`) = d` or equivalently each agent approves all these items. In conclusion,
by setting c(v`) = i iff x` ∈ Si, c is a k-coloring extending c′. ut

A.14 Missing Details from the Proof of Theorem 6

To compute these values required by the dynamic programming algorithm in the proof of Theorem 6,
we start with the basis, where U(0, (i1, t1), . . . , (ik, tk)) = 0, for all pairs (i1, t1), . . . , (ik, tk).

Then, we compute the values U(1, (i1, t1), . . . , (ik, tk)) for all pairs (i1, t1), . . . , (ik, tk) such that
t1 + · · ·+ tk ≤ 1. Specifically, we have that

U(1, (i1, 0), . . . , (ip, 1), . . . , (ik, 0)) =

ip∑
ν=1

uν(x1) ,

and that
U(1, (i1, 0), . . . , (ip, 0), . . . , (ik, 0)) = 0 .

Next, we proceed to compute the values U(2, (i1, t1), . . . , (ik, tk)) for all pairs (i1, t1), . . . , (ik, tk)
such that t1 + · · ·+ tk ≤ 2. Specifically, we have that

U(2, (i1, 0), . . . , (ip, 2), . . . , (ik, 0)) = max
1≤`≤ip

U(1, (i1, 0), . . . , (`, 1), . . . , (ik, 0)) +

ip∑
ν=`+1

uν(x2)

 ,

which is exactly as in the proof of [27, Theorem 6]. Moreover,

U(2, . . . , (ip1 , 1), . . . , (ip2 , 1), . . .) = max

{
U(1, . . . , (ip1 , 1), . . . , (ip2 , 0), . . .) +

∑ip2
ν=1 uν(x2)

U(1, . . . , (ip1 , 0), . . . , (ip2 , 1), . . .) +
∑ip1

ν=1 uν(x2)

}

U(2, (i1, 0), . . . , (ip, 1), . . . , (ik, 0)) = max

U(1, (i1, 0), . . . , (ip, 1), . . . , (ik, 0)),

ip∑
ν=1

uν(x2)


and U(2, (i1, 0), . . . , (ik, 0)) = 0.

For each j = 3, . . . ,m, we compute similarly the values U(j, (i1, t1), . . . , (ik, tk)), for all pairs
(i1, t1), . . . , (ik, tk) such that t1 + · · ·+ tk ≤ j. ut
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