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Abstract. We give a sketchy and mostly informal overview of research
on algorithmic properties of congestion games in the last ten years. We
discuss existence of potential functions and pure Nash equilibria in games
with weighted players, simple and fast algorithms that reach a pure Nash
equilibrium, and efficient approaches to improving the Price of Anarchy.

1 Introduction

Congestion games and their different variants and generalizations provide an ele-
gant model for competitive resource allocation in large-scale telecommunication
and transportation networks and have been the subject of intensive research in
Algorithmic Game Theory. In an atomic congestion game, a finite set of non-
cooperative players, each controlling an unsplittable amount of traffic demand,
compete over a finite set of resources. All players using a resource experience a
delay given by a non-negative and non-decreasing function of the resource’s load.
Among a given set of resource subsets (or strategies), each player selects one self-
ishly trying to minimize her individual delay, that is the sum of the delays on
the resources in the chosen strategy. A natural solution concept is that of a pure
Nash equilibrium, a configuration where no player can decrease her individual
delay by unilaterally switching to a different strategy. In other applications, we
consider non-atomic congestion games (or selfish routing games) where the traf-
fic demand is divided among an infinite number of players, each controlling an
infinitesimal amount of traffic. Then, the Nash equilibrium is essentially unique,
under mild assumptions on the delay functions, and all players use strategies of
equal minimum delay at equilibrium.

The prevailing research questions about algorithmic properties of congestion
games have to do either with establishing the existence of pure Nash equilibria
and of potential functions for variants and generalizations of atomic games (see
e.g., [23,29,30,34,47]), or with bounding the convergence time to a pure Nash
equilibrium if the players select their strategies in a selfish and decentralized
fashion (see e.g., [1,22,23,26,27,29,47]), or with quantifying and mitigating the
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inefficiency due to the players’ selfish behavior using the Price of Anarchy (see
e.g., [2,6,11,13,14,17,21,22,24,29,33,41,43,44,49]).

As for several other areas of Theoretical Computer Science, Paul Spirakis
has contributed interesting and significant results in all the three directions
above. On the occasion of Paul’s 60th birthday, I took the opportunity to write
this (highly biased and selective) survey on algorithmic properties of conges-
tion games that focuses either on our joint work with Paul (and with a few
other dear friends) or on research work that has been directly inspired by Paul’s
contribution in the area.

It was a sort of an obvious choice for me, since Paul was the person who
introduced me to the main research questions about algorithmic properties of
congestion games. In fall 2001, when I was a postdoc and Paul was a distin-
guished visiting scientist at Max-Planck Institut für Informatik, in Saarbrücken,
Paul insisted that we should start working together on congestion games on par-
allel links with linear delays and weighted players (a.k.a. load balancing games).
As our first problem, he proposed us to investigate the existence and efficient
computation of pure Nash equilibria and the conjecture that the mixed Nash
equilibrium with full support (a.k.a. the fully-mixed equilibrium) maximizes the
Price of Anarchy for the objective of maximum delay of the players (the latter
was motivated by Paul’s previous work in [40,44]). [29] was the result of this
effort and the beginning of a fruitful and really enjoyable collaboration with
Paul (and also with Spyros, Alexis, Vasilis, Thanasis and others) on algorithmic
properties of congestion games. Back in Patras, in fall 2003, Paul, Spyros and I
started looking at potential functions for congestion games with weighted play-
ers and simple algorithms for efficient computation of pure Nash equilibria (the
motivation came from [19,46]). What happened next is described in the following
pages. Paul, thank you for everything and happy birthday!

1.1 Organization

After a formal definition of atomic and non-atomic congestion games and related
notions (Section 2), we discuss existence of potential functions for atomic games
with weighted players (Section 3). Next, we show how a pure Nash equilibrium
can be reached, using simple and natural algorithms, after as many steps as the
number of players in series-parallel and extension-parallel networks (Section 4).
In the final part, we bound the Price of Anarchy for atomic congestion games on
extension-parallel networks (Section 5.1) and discuss how we can use tolls (Sec-
tion 5.2), Stackelberg routing (Section 5.3) and the Braess paradox (Section 5.4)
to improve the Price of Anarchy of congestion games. With the exception of the
results about the Braess paradox, which apply to non-atomic congestion games,
we mostly focus on algorithmic properties of atomic congestion games.

2 Congestion Games and Nash Equilibria

An atomic congestion game consists of a finite set N = {1, . . . , n} of players, a
finite set E = {e1, . . . , em} of edges (or resources), a strategy space Σi ⊆ 2E \{∅}
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for each player i, and a non-negative and non-decreasing delay function de(x)
associated with each edge e. A congestion game has weighted players if there is
a positive weight wi associated with each player i. Otherwise, the players are
unweighted and we have that wi = 1 for each player i. Throughout this survey,
we assume that the players are unweighted, unless stated otherwise. A congestion
game has symmetric strategies if all players share a common strategy space Σ. A
congestion game is symmetric if it is unweighted and has symmetric strategies.
A congestion game is linear if every edge e is associated with a linear delay
function de(x) = aex+ be, with ae, be ≥ 0.

In many parts of this survey, we consider symmetric network congestion
games. Then, the players’ strategies are determined by a directed networkG(V,E)
with a distinguished origin o and destination t (a.k.a. an o − t network). The
common strategy space of the players is the set of (simple) o − t paths in G,
denoted P. To be consistent with the definition of strategies as edge subsets, we
regard paths as sets of edges. An o− t network is a parallel-link network if each
path in P consists of a single edge. Hence, in congestion games on parallel links
the players’ common strategy space consists of m singleton strategies, one for
each edge.

A configuration is a tuple s = (s1, . . . , sn) consisting of a strategy si ∈ Σi
for each player i. For every edge e, we let se = |{i ∈ N : e ∈ si}| denote the
congestion (or load) induced on e by s. If the congestion game has weighted
players, e’s load in s is se =

∑
i:e∈si wi . Given a congestion game on a directed

network G, a configuration s is acyclic if there is no directed cycle in G with
positive load on all its edges. For a configuration s and a path p ∈ P, we let
smin
p = mine∈p{se} denote the minimum load on some edge of p.

Pure Nash Equilibrium. The individual delay (or cost) of player i in the
configuration s is ci(s) =

∑
e∈si de(se). A configuration s is a pure Nash equi-

librium if no player can improve her individual delay by unilaterally changing
her strategy. Formally, s is a pure Nash equilibrium if for every player i and all
strategies s′i ∈ Σi, ci(s) ≤ ci(s−i, s′i).

2.1 Price of Anarchy and Price of Stability

We evaluate configurations using the objective of (weighted) total delay. The
(weighted) total delay C(s) of a configuration s in a congestion game (with
weighted players) is the (weighted) sum of players’ individual delays in s, namely

C(s) =
∑
i∈N

wici(s) =
∑
e∈E

sede(se) .

The optimal configuration, usually denoted o, achieves a minimum (weighted)
total delay C(o) among all configurations.

The Price of Anarchy (PoA) of a congestion game is the maximum ratio
C(s)/C(o) over all pure Nash equilibria s of the game. The Price of Stability
(PoS) is the minimum ratio C(s)/C(o) over all pure Nash equilibria s of the
game. In words, the Price of Anarchy (resp. the Price of Stability) is equal to
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C(s)/C(o), where s is the pure Nash equilibrium of maximum (resp. minimum)
total delay. The Price of Anarchy (resp. the Price of Stability) for a class of
congestion games is the maximum PoA (resp. PoS) of any game in this class.

2.2 Potential Functions and Best Responses

A function Φ that assigns a non-negative number Φ(s) to each configuration s
is an exact (resp. weighted) potential function if when a player i moves from
her current strategy si to a new strategy s′i ∈ Σi, the difference in the potential
value equals the difference in the individual delay of player i (resp. times some
function of i’s weight wi). Namely, Φ is an exact potential function if

Φ(s−i, s
′
i)− Φ(s) = ci(s−i, s

′
i)− ci(s) .

If a game admits an (exact or weighted) potential function, its pure Nash equi-
libria correspond to the local minima of the potential function.

Rosenthal [48] proved that the pure Nash equilibria of an (unweighted) con-
gestion game correspond to the local optima of the following potential function

Φ(s) =
∑
e∈E

se∑
k=1

de(k) .

Hence every congestion game admits at least one pure Nash equilibrium (and
possibly many of them). For symmetric network congestion games with general
delay functions, Fabrikant, Papadimitriou and Talwar [19] proved that the global
minimum of the potential function Φ, and thus a pure Nash equilibrium, can be
computed in polynomial time by a min-cost flow computation.

A strategy si ∈ Σi is a best response of player i to a configuration s−i of the
remaining players if for all strategies s′i ∈ Σi, ci(s−i, si) ≤ ci(s−i, s′i). A strategy
s′i ∈ Σi is an improvement move of player i in a configuration s if ci(s−i, s

′
i) <

ci(s). For a congestion game that admits a potential function, every improvement
move decreases the potential value. Therefore, the Nash dynamics, namely, any
sequence of improvement moves, converges to a pure Nash equilibrium in a finite
number of steps.

2.3 Non-Atomic Congestion Games

In non-atomic congestion games (or selfish routing games), the number of play-
ers is infinite and each player controls an infinitesimal amount of traffic. Unless
stated otherwise, we assume that the traffic rate is r = 1. For simplicity and
convenience, when we consider non-atomic congestion games, we focus on sym-
metric games on an o−t network G. Everything else is defined as above, with the
important difference that since the number of players is infinite, a configuration
s should be regarded now as a flow s = (sp)p∈P that assigns an amount of traffic
sp ≥ 0 to each path p so that

∑
p∈P sp = r.
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The delay on each path p ∈ P in a configuration s is dp(s) =
∑
e∈p de(se).

A configuration s is a Nash equilibrium if it routes all traffic on minimum de-
lay paths, i.e., if for every path p with sp > 0, and every path p′, dp(s) ≤
dp′(s). Hence, in a Nash equilibrium s, all players incur the same delay D(s) =
minp:sp>0 dp(f) and the total delay is C(s) = rD(s).

Since the equivalent of Rosenthal’s potential function is convex for non-
atomic games, the Nash equilibrium is essentially unique (under mild assump-
tions on the delay functions). Therefore, the Price of Anarchy and the Price of
Stability coincide and are equal to C(s)/C(o), where s is the Nash equilibrium
configuration and o is the configuration of minimum total delay.

3 Potential Functions for Weighted Players

In [46], Monderer and Shapley presented conditions for the acyclicity of Nash
dynamics and for the existence of pure Nash equilibria in non-cooperative games.
Most of these conditions are naturally associated with potential functions and
their generalizations. One of the most interesting results in [46] is that every
finite non-cooperative game with an exact potential function is isomorphic to a
congestion game. Motivated by [46], we investigated in [30] which classes of con-
gestions games with weighted players admit a potential function and to which
extent we can generalize existence of pure Nash equilibria on parallel-link games
with weighted players [29]. We proved that linear congestion games with weighted
players admit a weighted potential function that naturally generalizes the poten-
tial function of Rosenthal. Hence, any sequence of improvement moves converges
to a pure Nash equilibrium.

Theorem 1. ([30]) Every linear congestion game with weighted players admits
a weighted potential function and thus, a pure Nash equilibrium.

Proof. The intuition is that Rosenthal’s potential can be generalized to weighted
players if the order of the players in the sum of their delays does not make any
difference (just as in the case of unweighted players). So, any deviating player can
be considered as the last player in the sum. This holds for linear delay functions,
since their derivative is constant.

Formally, let s be any configuration of a linear congestion game with weighted
players. We let

U(s) =
∑
i∈N

wi
∑
e∈si

(aewi + be)

be the weighted total delay of the players in s, if each player was alone in the
game. We also recall that

C(s) =
∑
i∈N

wici(s) =
∑
i∈N

wi
∑
e∈si

(aese + be) =
∑
e∈E

se(aese + be)

is the weighted total delay of the players in configuration s.
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We next show that Φ(s) = (C(s) + U(s))/2 is a weighted potential function
(note that for unweighted players and linear delays, Φ(s) becomes Rosenthal’s
potential). To this end, we let i be some player switching from her strategy si in
s to a different strategy s′i and let s′ = (s−i, s

′
i) be the resulting configuration.

We observe that

U(s′)− U(s) = wi
∑

e∈s′i\si

(aewi + be)− wi
∑

e∈si\s′i

(aewi + be)

and that

C(s′)− C(s) = wi
∑

e∈s′i\si

[ae(2se + wi) + be]− wi
∑

e∈si\s′i

[ae(2se − wi) + be] .

Using that for all e ∈ s′i \ si, s′e = se + wi, that for all e ∈ si \ s′i, s′e = se − wi,
and that for all e ∈ s′i ∩ si, s′e = se, we conclude that

Φ(s′)− Φ(s) = (C(s′)− C(s) + U(s′)− U(s))/2

= wi
∑

e∈s′i\si

[ae(se + wi) + be]− wi
∑

e∈si\s′i

(aese + be)

= wi(ci(s
′)− ci(s)) .

Therefore, Φ(s) = (C(s) + U(s))/2 is a weighted potential function for linear
congestion games with weighted players. ut

The potential function of Theorem 1 is versatile and works for several other
generalizations of linear congestions games, by appropriately adapting U in each
case. It works e.g., for linear congestion games with static coalitions of play-
ers [27, Section 6], for linear congestion games in a social context of surplus
collaboration [5], and for graphical linear games with weighted players [23].

In [30], we proved that Theorem 1 is essentially best possible, in the sense
that (i) congestion games with weighted players and linear delays are not exact
potential games, and that (ii) there is a simple congestion game with only two
weighted players and delay functions that are either linear or 2-wise linear which
admits neither a generalized potential function nor a pure Nash equilibrium.

Shortly after [30], Panagopoulou and Spirakis [47] presented a weighted po-
tential function for congestion games with weighted players and delays given by
an exponential function. Subsequently, Harks, Klimm and Möhring [34] signif-
icantly strengthened the negative result of [30] by proving that for congestion
games with weighted players even the slightest deviation from the settings that
guarantee weighted potential functions in [30,47] leads to games that do not
admit weighted potentials.

4 Reaching a Pure Nash Equilibrium

The existence of a potential function for congestion games and for linear con-
gestion games with weighted players implies that any sequence of improvement



A Selective Tour through Congestion Games 7

moves converges to a pure Nash equilibrium. Nevertheless, Fabrikant, Papadim-
itriou and Talwar [19] proved that it is PLS-complete to compute a pure Nash
equilibrium in symmetric congestion games and in non-symmetric network con-
gestion games. PLS-completeness holds even if the delay functions are linear.
Moreover, Ackermann, Röglin and Vöcking [1] proved that in symmetric net-
work congestion games with linear delays, where a pure Nash equilibrium can
be computed in polynomial time by min-cost flow techniques, there are instances
and initial configurations from which any best response sequence is exponentially
long. On the positive side, [1] proved that in asymmetric congestion games with
general delays, best response dynamics converges fast to a pure Nash equilibrium
if (and essentially only if) the strategy space of each player is a matroid.

4.1 Series-Parallel Networks

For symmetric network congestion games, the matroid property corresponds to
very simple networks consisting of bunches of parallel links connected in series.
Trying to identify some more general classes of symmetric network congestion
games where natural and efficient algorithms reach a pure Nash equilibrium,
we considered, in [31], series-parallel networks and the so-called Greedy Best
Response approach. We recall that an o−t network is series-parallel if it consists
of either a single edge (o, t) or two series-parallel networks composed either in
series or in parallel.

Greedy Best Response, or GBR in brief, considers the players one-by-one
in an arbitrary order. Each player adopts her best response strategy given the
strategies of the previous players. The choice is irrevocable, in the sense that no
player can switch to a different strategy afterwards. We proved that for series-
parallel networks, GBR maintains a pure Nash equilibrium. Namely, after a new
player selects her strategy, the other players do not have an incentive to deviate.

Theorem 2. ([31]) Greedy Best Response applied to symmetric congestion games
on series-parallel networks with general delays maintains a pure Nash equilibrium
in time O(nm logm).

In [31], we show that for any non-series-parallel network, we can select linear
edge delays so that GBR does not maintain a pure Nash equilibrium even for two
players. Moreover, we prove that Theorem 2 can be generalized to congestion
games with weighted players that satisfy the common best response property,
namely that all players agree on their best responses with respect to any given
collection of edge loads.

4.2 Extension-Parallel Networks

An interesting generalization of congestion games on parallel links is that of
symmetric games on extension-parallel networks. An o− t network is extension-
parallel if it consists of either (i) a single edge (o, t), or (ii) a single edge and
an extension-parallel network composed in series, or (iii) two extension-parallel
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networks composed in parallel. An interesting property of extension-parallel net-
works is that they have linearly independent o− t paths, in the sense that every
o− t path contains at least one edge not belonging to any other o− t path (and
thus, it is not possible to express a path as the symmetric difference of some
other paths, see [35,45]).

In [22], we proved that for symmetric congestion games on extension-parallel
networks1, each player moves at most once in any sequence of best response
moves. More formally, we show the following:

Lemma 1. ([22]) For a symmetric congestion game on an extension-parallel
network, let s be the current configuration and let i be a player switching from
her current strategy si to her best response s′i. Then, for every player j whose
current strategy sj is a best response to s, sj remains a best response of j to the
new configuration s′ = (s−i, s

′
i).

Lemma 1 directly implies that in extension-parallel networks, the best re-
sponse dynamics converges to a pure Nash equilibrium in at most n steps. One
can also show that the following theorem is essentially best possible, in the sense
that it does not hold for any generalization of extension-parallel networks.

Theorem 3. ([22]) For any n-player symmetric congestion game on an extension-
parallel network, every sequence of best response moves converges to a pure Nash
equilibrium in at most n steps.

5 The Price of Anarchy and How to Deal with It

Since the seminal paper of Koutsoupias and Papadimitriou [41], the Price of
Anarchy of both atomic and non-atomic congestion games has been investigated
extensively. Lücking et al. [43] were the first to consider the PoA of atomic
congestion games for the objective of total delay. The proved that for parallel-link
games with linear delays, the PoA is 4/3. For parallel-link games with polynomial
delays of degree d, Gairing et al. [33] proved that the PoA is at most d + 1.
Awerbuch, Azar and Epstein [6] and Christodoulou and Koutsoupias [13] proved
independently that the PoA of congestion games is 5/2 for linear delays and dΘ(d)

for polynomial delays of degree d. Subsequently, Aland et al. [2] obtained exact
bounds on the PoA of congestion games with polynomial delays.

For non-atomic congestion games, Roughgarden [49] proved that the PoA
is independent of the strategy space and equal to ρ(D), where ρ depends on
the class of delay functions D only. Specifically, for a non-negative and non-
decreasing function d(x),

ρ(d) = sup
x≥y≥0

xd(x)

yd(y) + (x− y)d(x)
.

1 Note that matroid congestion games and congestion games on extension-parallel net-
works have a different combinatorial structure and may have quite different prop-
erties. E.g., a network consisting of two parallel-link networks composed in series is
not extension-parallel, but corresponds to a symmetric matroid congestion game.



A Selective Tour through Congestion Games 9

For a non-empty class D of delay functions, ρ(D) = supd∈D ρ(d). For example, ρ

is equal to 4/3 for linear delays, to 27+6
√
3

23 for quadratic delays and to Θ(d/ ln d)
for polynomial delays of degree d. Subsequently, Correa, Schulz, and Stier-Moses
[17] introduced the quantities β(d) = 1 − 1/ρ(d) and β(D) = 1 − 1/ρ(D), as
alternatives to ρ(d) and ρ(D), respectively, and gave a simple and elegant proof
of the same bound.

The general picture is that the PoA of atomic congestion games can be quite
large and there is a considerable gap between the PoA of atomic and non-atomic
congestion games. In fact, for polynomial delays of degree d, this gap is expo-
nential in d. Therefore, it is natural to ask about possible ways of improving
the PoA of atomic congestion games either to 1 or at least close to the PoA
of non-atomic congestion games. Moreover, it is interesting to investigate pos-
sible approaches to further improving the PoA of non-atomic congestion games
without expensive changes in the structure of the game.

5.1 The Price of Anarchy for Extension-Parallel Networks

A possible approach to improving the PoA of atomic congestion games is to
consider special classes of networks. In contrast to non-atomic games, where the
PoA is independent of the strategy space, the PoA of atomic games crucially
depends on it (e.g., the PoA of linear congestion games is 4/3 for parallel-links
[43] and 5/2 in general [6,13]). In this direction, we [21] and Caragiannis et al.
[11] proved independently that the PoA of atomic congestion games on parallel
links with delay functions in class D is at most ρ(D), i.e., it is bounded from
above by the PoA of non-atomic congestion games.

Theorem 4. ([11,21]) The Price of Anarchy of atomic congestion games on
parallel links with delay functions in class D is at most ρ(D).

Proof. We consider a congestion game on a set E of parallel links with delay
functions {de(x)}e∈E ⊆ D. Let o be the optimal configuration, and let s be the
pure Nash equilibrium of maximum total delay. For every link e ∈ E,

sede(se) = oede(se) + (se − oe)de(se)
≤ oede(oe) + β(D)sede(se) + (se − oe)de(se) , (1)

where the inequality follows from the definitions of β(d) and β(D).
For every link e with oe > se,

sede(se) = oede(oe)− oede(oe) + sede(se)

≤ oede(oe)− (oe − se)de(se + 1) . (2)

The inequality follows from de(se) ≤ de(se + 1) and de(se + 1) ≤ de(oe), because
the delays are non-decreasing and se + 1 ≤ oe.

Now, let us assume that the following holds:∑
e:se>oe

(se − oe)de(se) ≤
∑

e:oe>se

(oe − se)de(se + 1) . (3)
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Then, using (1), for links e with se ≥ oe, using (2), for links e with oe > se, and
employing (3), we obtain that:

C(s) ≤
∑
e∈E

oede(oe) + β(D)
∑

e:se≥oe

sede(se)+∑
e:se>oe

(se − oe)de(se)−
∑

e:oe>se

(oe − se)de(se + 1)

≤ C(o) + β(D)C(s) .

Therefore, C(s) ≤ (1−β(D))−1C(o) = ρ(D)C(o), i.e., the PoA is at most ρ(D).
For parallel-link games, (3) is an immediate consequence of the pure Nash

equilibrium condition. Formally, since s is a pure Nash equilibrium, for every
link e with se > oe (which implies that se ≥ 1) and every link e′,

de(se) ≤ de′(se′ + 1) .

Then, (3) follows from the fact that∑
e:se>oe

(se − oe) =
∑

e:oe>se

(oe − se) ,

because in parallel-link networks,
∑
e∈E se =

∑
e∈E oe . ut

We observe that in the proof of Theorem 4, the assumption of parallel-link
networks is used only to establish (3). Everything else holds for general sym-
metric congestion games. Therefore, the upper bound of ρ(D) on the PoA (or,
more generally, on the inefficiency of a pure Nash equilibrium s) holds if the
strategy space and the selected configuration s are such that (3) is satisfied. In
[22], we observed that if we regard configurations s and o as flows, (3) essen-
tially states that switching from s to o does not increase the value of Rosenthal’s
potential function. Intuitively, in such cases, one can reduce (3) to the absence
of a negative cost cycle in the circulation o− s with Rosenthal’s potential as a
cost function. Based on this intuition, one can show that for symmetric network
congestion games, (3) holds if s is a minimizer of Rosenthal’s potential function.
Then, we immediately obtain that:

Theorem 5. ([4,22]) For any symmetric network congestion game with delay
functions in class D, the Price of Stability is at most ρ(D).

Moreover, in [35,22], it is shown that if the network is extension-parallel, any
pure Nash equilibrium is a minimizer of Rosenthal’s potential function. There-
fore, the PoA of symmetric congestion games on extension-parallel networks is
bounded from above by the PoA of non-atomic congestion games.

Theorem 6. ([22]) For symmetric network congestion games on extension-parallel
networks with delay functions in class D, the Price of Anarchy is at most ρ(D).

In [22], we presented a congestion game with 3 players on a simple series-
parallel network with linear delays and PoA equal to 15/11 > 4/3, i.e., larger
than the PoA of non-atomic congestion games with linear delays.
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5.2 Optimal Tolls for Atomic Congestion Games

With the PoA of (atomic and non-atomic) congestion games very well under-
stood, a few natural approaches to reducing it have been investigated. A strong
approach is to introduce economic incentives, usually modeled as edge-dependent
per-unit-of-traffic tolls, that influence the players’ selfish choices and induce the
optimal configuration as a pure Nash equilibrium (and in the ideal case, as the
unique pure Nash equilibrium) of the modified game with tolls.

In a modified congestion game with tolls t = (te)e∈E , the individual cost of a
player i in configuration s is equal to c′i(s) =

∑
e∈si(de(se)+te), i.e., equal to the

total delay through the edges in her strategy si plus the tolls for using the edges
in si. Nash equilibria are now defined with respect to the modified costs c′i(s)
that also account for include tolls. However, most of the literature assumes that
the tolls are refundable to the players and thus, do not affect the social cost.
Therefore, each configuration s is evaluated by (and the PoA is defined with
respect to) the total delay C(s) =

∑
e∈E sede(se) of the players in s. The goal

in this research direction is to find a set of moderate and efficiently computable
optimal tolls, under which the Nash equilibria of the modified game coincide
with the optimal configuration o.

Existence and efficient computation of optimal tolls for non-atomic conges-
tion games have been investigated extensively. A classical result is that the opti-
mal configuration o is realized as the Nash equilibrium of a non-atomic conges-
tion game with marginal cost tolls [8]. If the delay functions are differentiable,
the marginal cost toll of each edge e is te = oed

′
e(oe), where d′e(x) denotes the

first derivative of de(x). Cole, Dodis, and Roughgarden [16] considered hetero-
geneous players, who may have different valuations of time (delay) in terms
of money (toll), and established the existence of optimal tolls for non-atomic
symmetric network congestion games through a non-costructive proof based on
Brouwer’s fixed point theorem. Subsequently, Fleischer, Jain, and Mahdian [20]
and Karakostas and Kolliopoulos [37] proved independently that the existence of
optimal tolls for non-atomic congestion games with heterogeneous players follows
directly from Linear Programming duality. Therefore, optimal tolls can be com-
puted efficiently by solving a Linear Program. These results (and essentially all
known results about existence and efficient computation of tolls for non-atomic
games) crucially depend on uniqueness of the Nash equilibrium.

For atomic congestion games, that may admit many different pure Nash
equilibria, one has to distinguish between the case where a set of tolls weakly
enforces the optimal configuration o, in the sense that o is realized as some pure
Nash equilibrium of the modified game with tolls, and the case where a set of
tolls strongly enforces o, in the sense that o is realized as the unique pure Nash
equilibrium of the modified game with tolls.

Caragiannis, Kaklamanis, and Kanellopoulos [12] considered atomic conges-
tion games with linear delays and homogeneous players and investigated exis-
tence of optimal tolls and how much tolls can improve the Price of Anarchy. They
presented a simple non-symmetric congestion game for which the PoA remains
at least 6/5 under any set of tolls. Therefore, they proved that non-symmetric
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congestion games do not necessarily admit strongly optimal tolls. On the positive
side, [12] presented (i) a set of strongly optimal tolls for linear congestion games
on parallel links, and (ii) efficiently computable tolls that reduce to the PoA to
2 for linear games with arbitrary strategies (and even with weighted players).

Motivated by [12], we investigated in [32] the existence of optimal tolls for
symmetric atomic network congestion games with homogeneous players and gen-
eral delay functions. In [32], we presented a natural toll mechanism, called cost-
balancing tolls, which are motivated by the optimal tolls for non-atomic games
in [20,37]. A set of cost-balancing tolls for a given configuration turns every path
with positive load on its edges into a minimum cost path (the optimal tolls for
linear games on parallel links in [12] are also based on the same principle). For-
mally, a set of tolls t is cost-balancing for a configuration s if for every path
p ∈ P with smin

p > 0 and every path p′ ∈ P,∑
e∈p

(de(se) + te) ≤
∑
e∈p′

(de(se) + te) .

Essentially by definition, any given configuration s is induced as a pure Nash
equilibrium of the modified congestion game with cost-balancing tolls for s. We
proved that every acyclic configuration s admits cost-balancing tolls. Moreover,
the computation of cost-balancing tolls for s naturally reduces to a longest path
computation from the origin in the subnetwork used by s. Using the fact that
the optimal configuration o in symmetric network congestion games is acyclic,
we proved the following.

Theorem 7. ([32]) For every symmetric network congestion game, the optimal
configuration o is weakly enforceable by cost-balancing tolls t for o, which satisfy
the following properties:

(a) Given the optimal configuration o, t is computed in time linear in the size
of the network.

(b) The maximum toll on any edge is at most tmax = δ+maxp∈P
∑
e∈p de(n), for

any δ > 0. Every edge with toll tmax is not used in any pure Nash equilibrium
of the modified game with tolls.

(c) The total amount of tolls paid by any player in any pure Nash equilibrium
of the modified game with tolls does not exceed maxp:omin

p >0

∑
e∈p de(oe).

In [32], we gave a simple example where the optimal configuration cannot
be weakly enforced by tolls substantially smaller than the cost-balancing tolls
of Theorem 7. Therefore, there are symmetric network games where tolls as
large as cost-balancing tolls are also necessary for weakly enforcing the optimal
configuration. In [28], we generalized Theorem 7 and proved that cost-balancing
tolls exist and can be computed efficiently even for heterogeneous players.

The main result of [32] is that for symmetric congestion games on series-
parallel networks with increasing delay functions, the optimal configuration is
strongly enforceable by the corresponding cost-balancing tolls. Therefore, sym-
metric congestion games on series-parallel networks with increasing delays admit
a set of moderate optimal tolls computable in linear time.
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Theorem 8. ([32]) Every symmetric congestion game on a series-parallel net-
work with increasing delay functions admits a set of strongly optimal tolls with
the properties (a), (b), and (c) of Theorem 7.

Interestingly, games on series-parallel networks admit many different pure
Nash equilibria in general. However, games on series-parallel networks with cost-
balancing tolls admit an essentially unique pure Nash equilibrium that coincides
with the optimal configuration!

If the network is not series-parallel, cost-balancing tolls may not strongly
enforce the optimal solution even for linear delay functions. Moreover, Theorem 8
cannot be generalized to heterogeneous players. In [28], we presented a simple
congestion game on parallel links with linear delay functions and heterogeneous
players for which the PoA remains at least 28/27 under any set of tolls.

Given the existence of efficiently computable strongly optimal tolls for con-
gestion games on series-parallel networks, it is natural to ask for optimal tolls
that minimize some objective function (e.g. the sum of tolls, the maximum toll,
etc.) on the amount of tolls charged to the players. In [32], we proved that even
for 2-player linear congestion games on series-parallel networks, it is NP-hard to
distinguish between the case where the optimal configuration is the unique pure
Nash equilibrium (and thus, tolls only serve to increase the players’ disutility)
and the case where there is another pure Nash equilibrium of total delay at least
6/5 times the optimal total delay (and hence some tolls are required to strongly
enforce the optimal configuration).

An intriguing problem that remains open in this research direction is whether
strongly optimal tolls exist for symmetric network congestion games with homo-
geneous players.

5.3 Stackelberg Routing

A different simple and appealing approach to reducing the PoA is Stackelberg
routing [39]. The idea is to exploit a small fraction of centrally routed (a.k.a. co-
ordinated) players to improve the quality of the Nash equilibrium reached by the
remaining selfish players. A Stackelberg policy is an algorithm that determines
the strategies of the coordinated players. Given the strategies of (and the con-
gestion caused by) the coordinated players, the selfish players lead the system
to a configuration where they are at a pure Nash equilibrium. Our goal is to find
a Stackelberg policy of minimum Price of Anarchy, that is the worst-case ratio
of the total delay of all (coordinated and selfish) players at a Nash equilibrium
for the selfish players to the optimal total delay. The PoA of a given Stackelberg
strategy is a non-increasing function of the fraction of coordinated players, usu-
ally denoted by α, and ideally is given by a continuous curve decreasing from
the value of PoA if all players are selfish to 1 if all players are coordinated.

There has been a significant volume of work on the PoA of Stackelberg rout-
ing in non-atomic congestion games. For non-atomic linear games on parallel
links, Roughgarden [50] proved that it is NP-hard to compute an optimal Stack-
elberg configuration for a given fraction of coordinated players. To deal with
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NP-hardness, he proposed two “heuristic” Stackelberg policies, called Scale
and Largest Latency First (LLF), and investigated their worst-case PoA as
a function of the fraction α of coordinated players. Scale simply employs the
optimal configuration scaled by α. LLF assigns the coordinated players to the
largest cost strategies in the optimal configuration. Roughgarden proved that
the PoA of LLF on parallel links is 1/α for general delay functions and 4/(3+α)
for linear delays.

Swamy [52] and independently Correa and Stier-Moses [18] proved that the
PoA of LLF is at most 1+1/α for series-parallel networks with general delay func-
tions. Moreover, Swamy proved that the PoA of LLF is at most α+ (1−α)ρ(D)
for parallel links with delay functions in class D. The best known upper and
lower bounds on the PoA of LLF and Scale for non-atomic congestion games
on general networks with linear and polynomial delays are due to Karakostas
and Kolliopoulos [38]. An upper bound for Scale with linear delays in [38] is
4(1 − α2/4)/3. Other upper bounds for Scale and the upper bounds for LLF
are rather too complicated for stating (and explaining) them in this survey.

In [21], we investigated the PoA of Scale and LLF for atomic congestion
games on general networks with linear delays and on parallel-links with general
delay functions. We proved that the PoA of LLF is at most min{(20−11α)/8, (3−
2α+

√
5− 4α)/2} and at least 5(2−α)/(4 +α). For Scale, we proved that the

PoA is at most max{(5−3α)/2, (5−4α)/(3−2α)}. These bounds are continuous
functions of α and drop from 5/2 to 1, as α grows from 0 to 1. For parallel-link
games, we prove that the PoA of LLF matches that for non-atomic games on
parallel links, i.e., it is at most 1/α for general delays and at most α+(1−α)ρ(D)
for delay functions in class D.

The general picture is that for parallel-link networks with general delays
and for general networks with polynomial delays, the coordinated players can be
allocated so that the PoA decreases smoothly as the fraction α of the coordinated
players increases. Unfortunately, there are non-atomic games on o− t networks
with delay functions chosen so that the PoA cannot be bounded by any function
of α under any Stackelberg configuration [9].

In a different and also very interesting research direction, Kaporis and Spi-
rakis [36] introduced the price of optimum, namely the smallest fraction of co-
ordinated players required to induce an optimal configuration. They presented
efficient algorithms for computing the price of optimum in Stackelberg routing
for non-atomic games on parallel links and on general o − t networks. An in-
teresting consequence of their work is that there are instances where enforcing
the optimal configuration may require a large fraction of the coordinated traffic
to be sacrificed through slower paths, since optimal configurations can be quite
unfair with respect to the players’ individual delay.

5.4 Approximate Network Design for Non-Atomic Games

A simple, albeit counterintuitive, way of improving the Price of Anarchy is to
exploit the essence of the Braess paradox [10], namely the fact that removing
some network edges may improve the players’ delay at equilibrium (see Fig. 1
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Fig. 1. (a) The optimal total delay is 3/2, achieved by splitting the traffic among the
paths (s, v, t) and (s, w, t). In the Nash equilibrium, all traffic goes through the path
(s, v, w, t) and has delay 2. This gives a PoA of 4/3. (b) If we remove the edge (v, w),
the Nash equilibrium coincides with the optimal configuration. Hence the network on
the left is paradox-ridden, and the network on the right is its best subnetwork.

for a non-atomic congestion game suffering from the paradox). Since Braess’s
paradox have been studied mostly for non-atomic symmetric network congestion
games, we restrict our attention to such games throughout this section.

Focusing on understanding to which extent the PoA can be improved by
exploiting the Braess paradox, Roughgarden [51], introduced the optimization
problem of the best subnetwork (a.k.a. network design). Namely, given a non-
atomic symmetric network congestion game, to compute the subnetwork induced
by edge deletions that minimizes the players’ delay at Nash equilibrium (we recall
that for non-atomic games, the Nash equilibrium is unique and all players incur
the same delay in it). Roughgarden proved that it is NP-hard not only to find
the best subnetwork, but also to compute any meaningful approximation to the
equilibrium delay on the best subnetwork. In particular, he proved that even
for linear delays, it is NP-hard to distinguish between paradox-free instances,
where edge removal cannot improve the equilibrium delay, and paradox-ridden
instances, where the total equilibrium delay on the best subnetwork is equal
to the optimal total delay on the original network. Furthermore, Roughgarden
proved that for any ε > 0, it is NP-hard to approximate the equilibrium delay
on the best subnetwork within a factor of 4/3− ε for linear delays, and within a
factor of b|V |/2c−ε for general delays, where |V | is the number of nodes in the
network. Hence, the only general algorithm for approximating the equilibrium
delay on the best subnetwork is the trivial one, which does not remove any
edges from the network. This algorithm achieves an approximation ratio of 4/3
for linear delays and of b|V |/2c for general delays.

Despite the strong and discouraging results of [51], we proved, in [24], that
paradox-ridden instances of the best subnetwork problem can be recognized in
polynomial time for networks with strictly increasing linear delay functions. The
idea is that if the delay functions are linear and strictly increasing, then the
optimal configuration is unique. Therefore, a non-atomic game is paradox-ridden
if and only if the unique optimal configuration is a Nash equilibrium for the
subnetwork consisting of the edges used by it. In [24], we further generalized
this result using properties of Linear Programming and proved the following.
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Theorem 9. ([24]) Given a non-atomic symmetric network game with linear
delays and at most a constant number of constant delay edges, we can recognize
in polynomial time whether it is Braess’s-paradox-ridden instance or not.

If the network is not paradox-ridden, we sought, in [24], for nontrivial spe-
cial cases that allow for an efficient approximation of the best subnetwork. For
networks with polynomially many o − t paths, each of polylogarithmic length,
and arbitrary linear delays, we presented a subexponential-time approximation
scheme for the equilibrium delay of the best subnetwork. For any ε > 0, the
algorithm computes a subnetwork and an ε-Nash equilibrium2 in it so that the
players’ delays are within an additive term of ε/2 from the equilibrium delay on
the best subnetwork. The running time is exponential in poly(logm)/ε2. The
analysis is based on an application of the Probabilistic Method, motivated by
Althöfer’s Sparsification Lemma [3] and its application to the computation of
approximate Nash equilibria for bimatrix games [42]. In particular, we apply the
Probabilistic Method and show that any configuration admits an ε-approximate
“sparse” configuration that assigns traffic only to O(logm/ε2) paths.

In a subsequent work [25], we presented a subexponential-time approximation
for the best subnetwork in sparse random networks. The motivation came from
the works of Valiant and Roughgarden [53] and Chung and Young [15], who
proved that the Braess paradox occurs with high probability in random Gn,p
networks with p = Ω(lnn/n), i.e., just greater than the connectivity threshold,
and linear delays drawn independently from a natural probability distribution.
Our result in [25] is essentially an approximation scheme for a class of so-called
good instances, which includes the random instances of [15,53] as a special case.
Namely, given a good instance and any constant ε > 0, we compute a configura-
tion that (i) is an ε-Nash equilibrium for the subnetwork consisting of the edges
used by it, and (ii) has maximum delay no greater than (1 + ε)D∗+ ε, where D∗

is the equilibrium delay on the best subnetwork.

Our main contribution in [25] is a polynomial-time approximation-preserving
reduction of the best subnetwork problem for a good o− t network G to a best
subnetwork problem for a 0-delay simplified network G0. The latter is a layered
network obtained from G if we keep only o, t and their immediate neighbors,
and connect all neighbors of o and t by direct edges of 0 delay. In [25], we proved
that the equilibrium delay of the best subnetwork does not increase when we
consider the 0-delay simplified network G0. Although this may sound reasonable,
one should be very careful because decreasing edge delays to 0 may trigger the
Braess paradox (e.g., starting from the network in Fig. 1.a with d̂3(x) = 1 and
decreasing it to d3(x) = 0 is just another way of triggering the paradox). Given
the 0-latency simplified network G0, we can employ the approximation scheme
of [24] and approximate the best subnetwork problem on G0.

The final (and crucial) step of the approximation preserving reduction of
[25] is to start with the solution to the best subnetwork problem for the 0-delay

2 For some ε > 0, a configuration s is an ε-Nash equilibrium if for every path p with
sp > 0 and every path p′, dp(s) ≤ dp′(s) + ε.
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simplified network and extend it to a solution to the best subnetwork problem
for the original good network G. In [25], we show how to “simulate” 0-delay
edges by low delay paths in the original good network G. Intuitively, this is
possible because due to the expansion properties and the random delay functions
of G, the intermediate subnetwork of G, connecting the neighbors of o to the
neighbors of t, essentially behaves as a complete bipartite network with 0-delay
edges. Interestingly, this is also the key step in the approach of [15,53], showing
that the Braess paradox occurs in good networks with high probability. Hence,
one could say that the reason that the Braess paradox exists in good networks
is the very same reason that the paradox can be efficiently approximated.

Since the approximation preserving reduction above runs in polynomial time,
we could replace the subexponential-time approximation scheme of [24], for ap-
proximating the best subnetwork on the 0-delay simplified network G0, with an
improved approximation scheme based on the generalization of Althöfer’s Spar-
sification Lemma presented in [7]. We believe that this approach could lead to
a polynomial-time approximation scheme for many interesting classes of good
instances.
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1. H. Ackermann, H. Röglin, and B. Vöcking. On the Impact of Combinatorial Struc-
tre on Congestion Games. Journal of the Association for Computing Machinery,
55(6), 2008.

2. S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact
price of anarchy for polynomial congestion games. SIAM Journal on Computing,
40(5):1211-1233, 2011.
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