
Efficient Methods for Selfish Network Design?

Dimitris Fotakis1, Alexis C. Kaporis2,3, and Paul G. Spirakis2,3

1 School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece.
2 Department of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece.

3 Research Academic Computer Technology Institute, N. Kazantzaki Str., University Campus, 26500 Patras, Greece.
Email: fotakis@cs.ntua.gr, kaporis@ceid.upatras.gr, spirakis@cti.gr

Abstract. Intuitively, Braess’s paradox states that destroying a part of a network may improve the common
latency of selfish flows at Nash equilibrium. Such a paradox is a pervasive phenomenon in real-world net-
works. Any administrator that wants to improve equilibrium delays in selfish networks, is facing some basic
questions:

– Is the network paradox-ridden?
– How can we delete some edges to optimize equilibrium flow delays?
– How can we modify edge latencies to optimize equilibrium flow delays?

Unfortunately, such questions lead to NP-hard problems in general. In this work, we impose some natural
restrictions on our networks, e.g. we assume strictly increasing linear latencies. Our target is to formulate
efficient algorithms for the three questions above. We manage to provide:

– A polynomial-time algorithm that decides if a network is paradox-ridden, when latencies are linear and
strictly increasing.

– A reduction of the problem of deciding if a network with (arbitrary) linear latencies is paradox-ridden
to the problem of generating all optimal basic feasible solutions of a Linear Program that describes the
optimal traffic allocations to the edges with constant latency.

– An algorithm for finding a subnetwork that is almost optimal wrt equilibrium latency. Our algorithm is
subexponential when the number of paths is polynomial and each path is of polylogarithmic length.

– A polynomial-time algorithm for the problem of finding the best subnetwork which outperforms any
known approximation for the case of strictly increasing linear latencies.

– A polynomial-time method that turns the optimal flow into a Nash flow by deleting the edges not used
by the optimal flow, and performing minimal modifications on the latencies of the remaining ones.

Our results provide a deeper understanding of the computational complexity of recognizing the Braess’s
paradox most severe manifestations, and our techniques show novel ways of using the probabilistic method
and of exploiting convex separable quadratic programs.

? The 3rd author was partially supported by the Future and Emerging Technologies Unit of EC (IST priority – 6th FP), un-
der contract no. FP6-021235-2 (ARRIVAL), and by the ICT Programme of the EU, under contract no. ICT-2008-215270
(FRONTS). Part of this work was done while the 1st author was with the Department of Information and Communication
Systems Engineering, University of the Aegean, Greece.

1 Introduction

A typical instance of selfish routing consists of a directed network with a source s and a destination t,
with each edge having a non-decreasing function that determines the edge’s latency as a function of
its traffic, and a rate of traffic divided among an infinite population of players, each willing to route
a negligible amount of traffic through a s − t path. The players are non-cooperative and selfish, and
seek to minimize the sum of edge latencies on their path. Observing the traffic caused by others, each
player selects a s − t path of minimum latency. Thus, they reach a Nash equilibrium (aka a Wardrop
equilibrium), where all players route their traffic on paths of equal minimum latency. Under some
general assumptions on the latency functions, a Nash equilibrium flow (or simply a Nash flow) exists
and the common (and the total) players’ latency in a Nash flow is unique (see e.g. [29, 32]).
Motivation and Previous Work. A Nash equilibrium may not optimize the network performance,
usually measured by the total latency incurred by all players. The main tool for quantifying and
understanding the performance degradation due to the players’ non-cooperative and selfish behaviour
has been the Price of Anarchy, which was suggested in a groundbreaking work by Koutsoupias and
Papadimitriou [20]. The Price of Anarchy (PoA) is the ratio of the total latency of the Nash flow to the
optimal total latency. Roughgarden [30] proved that the PoA for selfish routing is independent of the
network topology and at most ρ(D), where ρ only depends on the class of latency functions D (e.g.
ρ is 4/3 for linear, and 27+6

√
3

23 for quadratic latencies). Moreover, Roughgarden presented a class of
instances for which the bound of ρ(D) is tight.

With the PoA for selfish routing very well understood, a few natural approaches for reducing it
have been investigated. A simple approach that does not require any network modifications is Stack-
elberg routing [19], where the administrator exploits a small fraction of centrally routed (aka coor-
dinated) traffic to improve the quality of the Nash flow reached by the remaining selfish traffic. For
parallel-link networks with arbitrary latencies and for general networks with polynomial latencies, the
coordinated traffic can be allocated so that the PoA decreases smoothly as the fraction of the coordi-
nated traffic increases (see e.g. [31, 17, 4], and [11] for the case of atomic players with unsplittable
traffic). Unfortunately, there are single-commodity instances for which the PoA remains unbounded
under any allocation [4], and instances where enforcing the optimal flow may require a large fraction
of the coordinated traffic [15]. A different approach is to introduce economic incentives, usually mod-
eled as edge-dependent per-unit-of-traffic tolls, that influence the players’ selfish choices and induce
the optimal flow as the Nash flow of the modified instance. In the refundable tolls setting, where tolls
affect the players’ cost but not the network performance, a set of tolls that enforce the optimal flow
can be computed efficiently even for heterogeneous players, who may have different latency-vs-tolls
valuations (see e.g. [7, 10, 16], and [6, 12] for positive and negative results on refundable tolls for the
case of atomic players with unsplittable traffic). However, the idea of tolls is not appealing to the
players, since large tolls that significantly increase the players’ disutility may be required to enforce
the optimal flow (see e.g. [10]).

A simpler way of improving network performance at equilibrium is to exploit the essence of the
Braess’s paradox [5], namely that removing some network edges may decrease the latency of the Nash
flow (see Fig. 1 for an illustrating example). Thus, given an instance of selfish routing, the administra-
tor seeks for the best subnetwork, i.e. the subnetwork minimizing the players’ latency at equilibrium.
Compared to Stackelberg routing and refundable tolls, edge removal is simpler, more natural, and
more appealing to both the network administrator and the players. From the administrator’s point of
view, blocking the traffic on some edges is arguably easier and less expensive to implement than set-
ting up a mechanism for collecting tolls on every edge and refunding them to the players. From the
players’ point of view, edge removal is applied only if it results in a (significant) improvement on

1

their equilibrium latency, which is arguably preferable to either a toll mechanism, that increases the
disutility of all players, or a Stackelberg strategy, that allocates the coordinated traffic to slower paths.

t

w

v

s

l(x) = x

l(x) = x

l(x) = 1

l(x) = 1

(b)

t

w

v

s1

l(x) = x

l(x) = x

l(x) = 1

l(x) = 1

l(x) = 0

(a)

1

Fig. 1. (a). The optimal flow routes one half unit of traffic on the upper
path s, v, t and one half unit on the lower path s, w, t, and achieves a
total latency of 3/2. In the (unique) Nash flow, all traffic goes through
the path s, v, w, t. The players’ latency is 2, which gives a PoA of 4/3.
(b). In the subnetwork obtained by removing the edge (v, w), the Nash
flow coincides with the optimal flow. Hence the network on the left is
paradox-ridden, and the network on the right is its best subnetwork.

Recent work indicates that edge re-
moval can offer a tangible improvement
on the performance of real-world net-
works (see e.g. [18, 32]). In this vein,
Valiant and Roughgarden [34] proved
that the Braess’s paradox occurs with
high probability on random networks,
and that for a natural distribution of lin-
ear latencies, edge removal can improve
the equilibrium latency by a factor arbi-
trarily close to 4/3 (i.e. the worst-case
PoA for linear latencies) with high prob-
ability (see also the references in [34] for
other results in the same spirit).

Unfortunately, Roughgarden [33] proved that it is NP-hard not only to find the best subnetwork,
but also to compute any meaningful approximation to the equilibrium latency on the best subnetwork.
In particular, he showed that even for linear latencies, it is NP-hard to distinguish between paradox-
free instances, where edge removal cannot improve the equilibrium latency, and paradox-ridden in-
stances, where the total latency of the Nash flow on the best subnetwork is equal to the optimal total
latency on the original network (i.e., edge removal can decrease the PoA to 1). Furthermore, Rough-
garden proved that for any ε > 0, it is NP-hard to approximate the equilibrium latency on the best
subnetwork within a factor of 4/3− ε for linear latencies, and within a factor ofbn/2c−ε for general
latencies, where n denotes the number of nodes. In fact, the only known algorithm for approximating
the equilibrium latency on the best subnetwork is the trivial one, which does not remove any edges
and achieves an approximation ratio of 4/3 for linear latencies andbn/2c for general latencies.

Contribution. The motivating question for this work is whether there are some practically interest-
ing settings where a set of edges, whose removal significantly improves the equilibrium latency, can
be computed efficiently. Rather surprisingly, we answer this question in the affirmative for several
interesting cases. To the best of our knowledge, our results are the first of theoretical nature which in-
dicate that the Braess’s paradox can be efficiently detected and eliminated in many interesting cases.
Throughout this paper, we mostly focus on the important case of linear latencies, even though some
of our results can be generalized to other classes of latency functions (e.g. polynomial latencies).

We first consider the problem of recognizing paradox-ridden instances. Even though this problem
is NP-complete for arbitrary linear latencies [33], we show that it becomes polynomially solvable
for the important case of strictly increasing linear latencies4. Our starting point is the observation
that recognizing a paradox-ridden instance is equivalent to deciding whether the instance admits an
optimal flow that is a Nash flow on its subnetwork (cf. Lemma 1). Then removing all edges not
used by the optimal flow yields the best subnetwork. However, an instance may admit many different
optimal flows. In fact, the NP-hardness proofs in [33] employ instances with exponentially many
optimal flows. On the other hand, if the optimal flow is unique, we can recognize paradox-ridden
instances by computing it and checking whether it is a Nash flow on its subnetwork. Based on this
observation, we present a polynomial-time algorithm that recognizes paradox-ridden instances with

4 We note that constant latency edges represent links of practically infinite capacity. Therefore real-world instances are
most unlikely to contain a large number of constant latency edges, if they contain any.

2

strictly increasing linear latencies (cf. Theorem 1). Furthermore, we reduce the problem of recognizing
a paradox-ridden network with (arbitrary) linear latencies to the problem of generating all optimal
basic feasible solutions of a Linear Program that describes the optimal traffic allocations to the edges
with constant latency (cf. Lemma 2 and Theorem 2).

Then we proceed to the more general problem of computing the best subnetwork and its equilib-
rium latency. For instances with polynomially many paths, each of polylogarithmic length, and linear
latencies, we present a subexponential-time approximation scheme. For any ε > 0, the algorithm
computes a subnetwork with an ε-Nash flow in which the players’ latencies are within an additive
term of ε/2 from the equilibrium latency on the best subnetwork. The algorithm’s running time is
exponential in poly(logm)/ε2, where m denotes the number of edges (cf. Lemma 3 and Theorem 3).
The analysis is based on a novel application of the Probabilistic Method (see e.g. [1]) motivated by
Althöfer’s “Sparsification” Lemma [2] and its application to the computation of approximate Nash
equilibria for bimatrix games [25, 24]. To the best of our knowledge, this is the first time that similar
techniques are applied in the context of selfish routing and congestion games.

Moreover, we show that for instances with strictly increasing linear latencies that are not paradox-
ridden, there is an instance-dependent δ > 0, such that the equilibrium latency (on the original net-
work) is within a factor of 4/3 − δ from the equilibrium latency on the best subnetwork. Since we
can efficiently compute the best subnetwork for paradox-ridden instances, we can use the trivial algo-
rithm for the remaining ones, and approximate the equilibrium latency on the best subnetwork within
a factor strictly smaller than the inapproximability threshold5 of 4/3 (cf. Theorem 4).

If the instance is not paradox-ridden however, it is not possible to turn the optimal flow into a
Nash flow by just removing edges. Enforcing the optimal flow is possible, if in addition to removing
edges, the administrator can modify the latency functions of the remaining ones. In the last part of the
paper, we present a polynomial-time algorithm for the problem of minimally modifying the latency
functions of the edges used by the optimal flow so that the optimal flow is enforced as a Nash flow on
the subnetwork used by the optimal flow with the modified latencies (cf. Theorem 5).

Other Related Work6. For the problem of finding the best subnetwork in the atomic model with
unsplittable traffic, Azar and Epstein [3] obtained strong inapproximability results similar to those
in [33]. In particular, they proved that for linear and polynomial latency functions, it is NP-hard to
approximate the Nash equilibrium total latency on the best subnetwork within any factor smaller than
the worst-case PoA for the corresponding class of games.

Interestingly, the Braess’s paradox can be dramatically more severe in multi-commodity instances
than in single-commodity ones. More precisely, Lin et al. [22] proved that for single-commodity in-
stances with general latency functions, the removal of at most k edges cannot improve the equilibrium
latency by a factor greater than k + 1. On the other hand, Lin et al. [23] presented a 2-commodity
instance where the removal of a single edge improves the equilibrium latency by a factor of 2Ω(n).
As for the impact of the network topology, Milchtaich [27] proved that the Braess’s paradox does not
occur in (single-commodity) series-parallel networks, which is precisely the class of networks that do
not contain the network in Fig. 1.a as a topological minor.

5 The reduction of [33, Theorem 3.3] constructs instances where almost all edges have constant latency 0. Using some very
slowly increasing linear latency (namely, using `(x) = εx, for some very small ε > 0) instead of 0, we can show that
even for strictly increasing linear latencies, it is NP-hard to approximate the equilibrium latency on the best subnetwork
within a factor considerably smaller than 4/3 for all instances. In this sense, our result is best possible.

6 Due to space limitations, we have restricted the discussion of related work to the most relevant results on the detection and
elimination of the Braess’s paradox. Nevertheless, there has been a large body of work on quantifying and mitigating the
consequences of the Braess’s paradox on selfish traffic, especially in the areas of Transportation Science and Computer
Networks. The interested reader may e.g. see [33] for an extensive list of references.

3

2 Model, Preliminaries, Problem Definitions, and Results

Selfish Routing Instance. A selfish routing instance is a tuple G = (G(V,E), (`e)e∈E , r), where
G(V,E) is a directed network with a source s and a destination t, `e : IR≥0 7→ IR≥0 is a non-
decreasing latency function associated with each edge e, and r > 0 is the rate of traffic entering the
network at s and leaving the network at t. Let n = |V |, let m = |E|, and let P (or PG, whenever
the network G is not clear from the context) denote the (non-empty) set of simple s − t paths in
G. We assume that the edge latency functions `e(x) are continuous, differentiable, and convex in the
interval [0, r]. We mostly focus on linear latency functions `e(x) = aex+be, with rational coefficients
ae, be ≥ 0. Such a linear latency function is constant if ae = 0.

Subnetworks and Subinstances. Given a selfish routing instance G = (G(V,E), (`e)e∈E , r), any
subgraph H(V,E′), E′ ⊆ E, obtained from G by edge deletions is called a subnetwork of G. H
has the same source s and destination t as G, and the edges of H preserve their latencies in G.
Each instance H = (H(V,E′), (`e)e∈E′ , r), where H(V,E′) is a subnetwork of G(V,E), is called a
subinstance of G.

Flows. A (G-feasible) flow f is a non-negative vector indexed by P so that
∑

p∈P fp = r. For a flow
f , let fe =

∑
p:e∈p fp be the amount of flow that f routes on e. Two flows f and g are different if there

is an edge e with fe 6= ge. An edge e is used by flow f if fe > 0. Given a flow f , the latency of each
edge e is `e(fe), and the latency of each path p is `p(f) =

∑
e∈p `e(fe). For an instance G defined on

a network G(V,E) and a flow f , we let Ef = {e ∈ E : fe > 0} be the set of edges used by f , and
Gf (V,Ef) be the corresponding subnetwork of G. A flow f is acyclic if Gf contains no cycles.

Optimal Flow. The total latency of flow f , denotedC(f), isC(f) =
∑

p∈P fp`p(f) =
∑

e∈E fe`e(fe) .
The optimal flow of instance G, denoted o, minimizes the total latency among all G-feasible flows. We
let L∗(G) = C(o)/r be the average latency in the optimal flow. We note that for every subinstanceH
of G, L∗(H) ≥ L∗(G). For an instance G defined on a network G and an optimal flow o, Go(V,Eo) is
the subnetwork of G determined by the edges used by o.

For the latency functions considered in this paper, an optimal flow can be computed efficiently,
while for strictly increasing latencies, the optimal flow is unique (in the sense that all optimal flows
route the same amount of traffic on every edge). The precise statements of these properties, along with
other useful properties of optimal flows can be found in the Appendix.

Nash Flow. The traffic is divided among an infinite population of players, each willing to route a
negligible amount of traffic through a minimum latency s − t path. A flow f is a Nash equilibrium
flow, or simply a Nash flow, if it routes all traffic on minimum latency paths. Formally, f is a Nash
flow if for every path p with fp > 0, and every path p′, `p(f) ≤ `p′(f). Therefore, in a Nash flow f ,
all players incur a common latency L(f) = minp:fp>0 `p(f) on their paths, and the total latency is
C(f) = rL(f). We note that a Nash flow f on a network G(V,E) is a Nash flow on any subnetwork
G′(V,E′) of G with Ef ⊆ E′.

For the latency functions considered in this paper, every instance G admits at least one Nash flow,
and the common players’ latency (and thus the total latency) is the same for all Nash flows (see e.g.
Lemma 9 in the Appendix). Hence, for a fixed instance G, we let L(G) (resp. rL(G)) be the common
players’ latency (resp. total latency) for some Nash flow of G. We refer to L(G) (resp. rL(G)) as the
equilibrium latency (resp. equilibrium total latency) of G. We note that for every subinstance H of
G, L∗(G) ≤ L(H), and that there may be subinstances H with L(H) < L(G) (see e.g. Fig. 1). For
the class of latency functions considered in this paper, a Nash flow can be computed in polynomial
time, while for strictly increasing latencies, the Nash flow is unique. The precise statements of these
properties, along with other useful properties of Nash flows can be found in the Appendix.

4

A Characterization of Nash and Optimal Flows. For any instance G = (G(V,E), (`e)e∈E , r)
with convex latency functions, a (G-feasible) flow f is a Nash flow iff for any (G-feasible) flow g,∑

e∈E fe`e(fe) ≤
∑

e∈E ge`e(fe) (see e.g. [8, (2.4)]). A flow o is optimal iff it is a Nash flow for
the instance G′ = (G(V,E), (`∗e)e∈E , r), where `∗e(x) = d(x`e(x))/dx (see e.g. [29, Corollary 2.7]).
Using the previous characterization of Nash flows, we obtain that a (G-feasible) flow o is optimal iff
for any (G-feasible) flow g, ∑

e∈E
oe`
∗
e(oe) ≤

∑
e∈E

ge`
∗
e(oe) (1)

ε-Nash flow. The definition of a Nash flow can be naturally generalized to that of an “almost Nash”
flow. Formally, for some ε > 0, a flow f is an ε-Nash flow if for every path p with fp > 0, and every
path p′, `p(f) ≤ `p′(f) + ε.

Price of Anarchy. The Price of Anarchy (PoA) of a selfish routing instance G, denoted ρ(G), is the
ratio of the equilibrium total latency to the optimal total latency. By the discussion above, ρ(G) =
L(G)/L∗(G). For linear latencies, ρ(G) ≤ 4/3 [30], while for general latencies, ρ(G) ≤bn/2c [33].

Other Notation and Conventions. For any integer k ≥ 1, we let [k] = {1, . . . , k}. For an event E in
a sample space, we let IP[E] denote the probability of event E happening. For a random variable X ,
we let IE[X] denote the expectation of X . For convenience and wlog., we normalize the traffic rate
to 1 7. Then L(G) equals both the common players’ latency and the total latency at equilibrium, and
L∗(G) equals both the optimal average latency and the optimal total latency of G. With the traffic rate
normalized to 1, we simply identify a selfish routing instance with the corresponding network. Thus,
given an instance G defined on a network G, we write L(G) (resp. L∗(G)) to denote the equilibrium
(resp. optimal) latency of G, and ρ(G) to denote the PoA of G.
Paradox-Free and Paradox-Ridden Instances. An instance G defined on a network G is paradox-
free if for every subnetwork H of G, L(H) ≥ L(G). Paradox-free instances do not suffer from the
Braess’s paradox and their PoA cannot be improved by edge removal. If the instance is not paradox-
free, edge removal can decrease the equilibrium latency by a factor greater than 1 and at most ρ(G).
An instance G is paradox-ridden if there is a subnetwork H of G such that L(H) = L∗(G) =
L(G)/ρ(G). Namely, the PoA of paradox-ridden instances can decrease to 1 by edge removal.

Best Subnetwork. Given instance G, the best subnetwork HB is a subnetwork of G minimizing the
equilibrium latency, i.e. L(HB) ≤ L(H) for any subnetwork H of G.

2.1 Problem Definitions and Results

We now introduce three basic problems regarding selfish network design:

– Paradox-Ridden Recognition (ParRid) : Given an instance G, decide if G is paradox-ridden.
– Best Subnetwork Equilibrium Latency (BSubEL) : Given an instance G defined on a network
G, find the best subnetwork HB of G and its equilibrium latency L(HB).

– Minimum Latency Modification (MinLatMod) : Given an instance G defined on a network
G(V,E) with a polynomial latency `e(x) =

∑d
i=0 ae,ix

i, ae,i ≥ 0, for each e ∈ E, find a set
of modified latencies ˜̀

e(x) =
∑d

i=0 ãe,ix
i, ãe,i ≥ 0, e ∈ Eo, so that the Euclidean distance of

the vectors (ae,i)e∈Eo,i∈[d] and (ãe,i)e∈Eo,i∈[d] is minimum, and for the instance G̃o defined on the
network Go(V,Eo) with latencies ˜̀

e(x), o is a Nash flow with common latency L∗(G).
7 Given an instance G with traffic rate r > 0, we can modify the (linear or polynomial) latency functions and construct

an instance G′ with traffic rate 1 so that (i) a flow is optimal (resp. Nash) for G iff it is optimal (resp. Nash) for G′, (ii)
ρ(G) = ρ(G′), and (iii) a best subnetwork of G is a best subnetwork of G′ and vice versa.

5

Roughgarden [33] proved that ParRid is NP-hard to decide even for instances with latency func-
tions in the class {x, 1, 0}, and BSubEL is NP-hard to approximate within a factor of 4/3 − ε for
linear latencies, and within a factor of bn/2c−ε for general latencies, for any constant ε > 0. The
only known approximation algorithm for BSubEL is the trivial one, which returns the entire network
and achieves an approximation ratio of 4/3 for linear latencies andbn/2c for general latencies.
Results. We obtain the first polynomial-time algorithms for ParRid, in case of strictly increasing
linear latencies, and for MinLatMod, and polynomial-time approximation algorithms for BSubEL
that improve on the trivial algorithm for two interesting settings.

For ParRid, we provide a polynomial-time algorithm that decides it on instances with strictly
linear increasing latencies (cf. Theorem 1). We extend our method to instances with linear latencies
where constant latencies are allowed, under a general condition that restricts the number of different
optimal flows (cf. Theorem 2). In particular, we show that ParRid reduces to generating all optimal
basic feasible solutions of a Linear Program that describes the optimal traffic allocations to the con-
stant latency edges. This task can be efficiently performed if the number of constant latency edges is
small, which is usually the case in real-world networks.

For BSubEL, we first consider networks with polynomially many paths, each of polylogarithmic
length, and linear latencies. In this setting, we provide a subexponential-time approximation scheme,
which for any ε > 0, computes a subnetwork with an ε-Nash flow in which the players’ latencies are
at most L(HB) + ε/2. The algorithm’s running time is exponential in poly(logm)/ε2 (cf. Lemma 3
and Theorem 3). Moreover, we show that for networks G that are not paradox-ridden and have strictly
increasing linear latencies, there is an instance-dependent δ > 0, such that L(G) ≤ (4/3− δ)L(HB).
Using the algorithm for ParRid to recognize paradox-ridden instances and the trivial algorithm for the
remaining ones, we obtain a polynomial-time algorithm for BSubEL that achieves an approximation
ratio smaller than 4/3 for instances with strictly increasing linear latencies (cf. Theorem 4).

For MinLatMod, we show how to reduce it to the solution of a convex quadratic separable min-
imization problem, thus obtaining a polynomial-time algorithm for it (cf. Theorem 5). This approach
is quite useful when either finding the best subnetwork is hard, or the equilibrium latency on the best
subnetwork is not close to the optimal average latency. In such cases, the algorithm for MinLatMod
can enforce the optimal flow by keeping the network modifications (and the cost for implementing
them) at a minimal level, while not increasing the players’ disutility, as refundable tolls do.

3 Recognizing Paradox-Ridden Instances

In this section, we present a polynomial-time algorithm for ParRid on instances with strictly in-
creasing linear latencies. We start with the following lemma that reduces ParRid to the problem of
checking whether there is some optimal flow o that is a Nash flow on Go.

Lemma 1. Let G be an instance defined on a network G(V,E). Then G is paradox-ridden iff there is
an optimal flow o that is a Nash flow on the subnetwork Go(V,Eo).

Proof. If there is an optimal flow o that is a Nash flow on Go, then Go is a subnetwork of G with
L(Go) = L∗(G), and G is paradox-ridden. If G is paradox-ridden, let H be a subnetwork of G with
L(H) = L∗(G), and let f be a Nash flow on H . The flow f is a Nash flow on Gf (V,Ef) as well.
Moreover, since L(f) = L∗(G), f is an optimal flow of G. Hence, there is an optimal flow that is a
Nash flow on the subnetwork determined by its used edges. ut

For instances with strictly increasing linear latencies, the optimal flow is unique (see e.g. Remark 1
in the Appendix) and can be efficiently computed. Then, checking whether the optimal flow o is a Nash
flow on Go can be performed by a shortest path computation. Hence we obtain that:

6

Theorem 1. ParRid can be decided in polynomial time for instances with strictly increasing linear
latency functions.

Proof. Computing the (unique) optimal flow o for an instance G with strictly increasing linear la-
tencies reduces to solving a convex quadratic separable min-cost flow problem, which can be per-
formed in polynomial time (see e.g. Lemma 7 in the Appendix). To check whether o is a Nash flow
on the subnetwork Go(V,Eo), we compute the length d(v) of the shortest s − v path wrt the edge
lengths {`e(oe)}e∈Eo for all vertices v ∈ V . Then o is a Nash flow if for every edge (u, v) ∈ Eo,
d(v) = d(u) + `(u,v)(o(u,v)) (see e.g. [33, Proposition 2.10]). Since the optimal flow o is unique, we
use Lemma 1 and decide whether G is paradox-ridden in polynomial-time. ut

Dealing with Constant Latencies. Next we formulate a general sufficient condition, under which
ParRid can be decided in polynomial time for instances with (not necessarily increasing) linear la-
tencies. Let G be an instance defined on a network G(V,E) with linear latencies `e(x) = aex + be,
let Ec = {e ∈ E : ae = 0} be the set of edges with constant latencies, let Ei = E \ Ec be the
set of edges with strictly increasing latencies, and let O be the set of different optimal flows of G.
If |Ec| > 1, it may be that |O| > 1, in which case Lemma 1 reduces ParRid to examining if some
optimal flow o ∈ O is a Nash flow on Go. This can be performed efficiently, if there is a procedure
that generates all optimal flows in polynomial time.

By Lemma 9 and Lemma 10 in the Appendix, all optimal flows assign the same traffic to the edges
with strictly increasing latencies, and can differ only on edges with constant latencies. Assuming a
fixed optimal flow o, we formulate a Linear Program whose feasible solutions correspond to all (G-
feasible) flows that agree with the optimal flows on the edges with strictly increasing latencies.

min
∑
e∈Ec

febe

s.t.
∑

u:(v,u)∈Ei

o(v,u) +
∑

u:(v,u)∈Ec

f(v,u) =
∑

u:(u,v)∈Ei

o(u,v) +
∑

u:(u,v)∈Ec

f(u,v) ∀v ∈ V \ {s, t}∑
u:(s,u)∈Ei

o(s,u) +
∑

u:(s,u)∈Ec

f(s,u) = 1 (LP)∑
u:(u,t)∈Ei

o(u,t) +
∑

u:(u,t)∈Ec

f(u,t) = 1

fe ≥ 0 ∀e ∈ Ec

(LP) has a variable fe for each edge e ∈ Ec, while all o-related terms are fixed and determined
by o. A feasible solution to (LP) corresponds to a G-feasible flow that agrees with o (and any other
optimal flow) on all edges in Ei. An optimal solution to (LP) corresponds to a flow that agrees with o
on all edges in Ei and allocates traffic to the edges in Ec so that the total latency is minimized (note
that the total latency on the edges in Ei, namely the term

∑
e∈Ei(aeo2

e + beoe), is fixed for all feasible
solutions). Hence, every optimal solution to (LP) corresponds to an optimal flow. On the other hand,
every optimal flow o′ has oe = o′e for all e ∈ Ei, and is translated into an optimal solution to (LP) by
setting fe = o′e for all e ∈ Ec. Therefore, there is a one-to-one correspondence between the optimal
solutions to (LP) and the optimal flows in O. Hence, we obtain the following:

Lemma 2. The number of optimal flows of a selfish routing instance G with linear latencies is equal
to the number of optimal solutions to (LP). Moreover, each optimal solution to (LP) can be translated
into an optimal flow of G, and vice versa.

7

Given an optimal flow o, Lemma 2 reduces the problem of checking if there is a o′ ∈ O that is
a Nash flow on Go′ to the problem of generating all optimal solutions of (LP) and checking whether
some of them can be translated into a Nash flow on the corresponding subnetwork. This can be per-
formed in polynomial time if (LP)’s optimal solution is unique (see e.g. [26, Theorem 2] on how to
decide the uniqueness of the optimal solution of a Linear Program). Thus,

Theorem 2. ParRid can be decided in polynomial time for instances with linear latency functions
where (LP) has a unique optimal solution.

In fact, it suffices to generate the optimal basic feasible solutions, since (LP) allocates traffic to
constant latency edges only. Hence, if a feasible solution f can be translated into a Nash flow on the
corresponding subnetwork, this holds for any other feasible solution f ′ with {e : f ′e > 0} ⊆ {e : fe >
0}. Therefore, the approach above can be extended to instances where (LP) has a small number of
basic feasible solutions (i.e. polynomial many in m). For example, this class includes instances with
a constant number of constant latency edges.

4 Approximating the Best Subnetwork

We give two types of approximation for the best subnetwork and its equilibrium latency on instances
with linear latencies. We first consider networks with polynomially many paths, each of polylogarith-
mic length, and present a subexponential-time approximation scheme for BSubEL.

Networks with Polynomially Many Short Paths. We first show that any flow can be approximated
by a “sparce” flow that assigns traffic to at most a logarithmic (in m) number of paths. The proof is
along the lines of the proof of Althöfer’s “Sparsification” Lemma [2].

Lemma 3. Let G be an instance defined on a network G(V,E), and let f be any G-feasible flow. For
any ε > 0, there exists a G-feasible flow f̃ that assigns positive traffic to at most

⌊
log(2m)/(2ε2)

⌋
+1

paths, such that |f̃e − fe| ≤ ε, for all edges e.

Proof. For convenience, we let µ = |P| denote the number of paths in G, and index the s− t paths in
G by integers in [µ]. We recall that the traffic rate is normalized to 1. Then, we can interpret the flow
f as a probability distribution on the set of paths P , where fj is the probability that path j is selected.
We prove that if we select k > log(2m)/(2ε2) paths uniformly at random with replacement according
to (the probability distribution) f , and assign to each path j a flow equal to the number of times j is
selected divided by k, we obtain a flow that is an ε-approximation to f with positive probability. By
the Probabilistic Method (see e.g. [1]), such a flow exists.

Let ε be any fixed positive number, and let k =
⌊
log(2m)/(2ε2)

⌋
+1. We define k independent

identically distributed random variables P1, . . . , Pk, each taking an integer value in [µ] according to
distribution f . Namely, for all i ∈ [k] and j ∈ [µ], IP[Pi = j] = fj .

For each path j ∈ [µ], let Fj be a random variable defined as Fj = |{i ∈ [k] : Pi = j}|/k.
By linearity of expectation, IE[Fj] = fj . For each edge e ∈ E and each random variable Pi, i ∈
[k], we define an indicator variable Fe,i that is 1 if e is included in the path indicated by Pi, and 0
otherwise. Since the random variables {Pi}i∈[k] are independent, for every fixed edge e, the variables
{Fe,i}i∈[k] are independent as well. In addition, for every edge e, let Fe be a random variable defined
as the average of the indicator variables Fe,i , i.e. Fe = 1

k

∑k
i=1 Fe,i . By the definition of the random

variables {Fj}j∈[µ] , Fe is equal to the sum of Fj’s over all paths j that include e. Formally, Fe =∑
j:e∈j Fj = 1

k

∑k
i=1 Fe,i . By linearity of expectation, IE[Fe] = fe for all edges e.

8

Since
∑µ

j=1 Fj = 1, we can interpret the value of each Fj as an amount of flow assigned to
path j, and the value of each Fe as an amount of flow assigned to edge e. Then the random variables
F1, . . . , Fµ define a (G-feasible) flow on G that assigns positive traffic to at most k paths and agrees
with f on expectation. It suffices to show that the probability that there is an edge e with |Fe−fe| > ε
is less than 1. By applying the Chernoff-Hoeffding bound8, we obtain that for each fixed edge e,

IP[|Fe − fe| > ε] ≤ 2e−2ε2k < 1/m

The first inequality holds because IE[Fe] = fe, and Fe is the average of k independent 0/1 random
variables. For the second inequality, we use that k > log(2m)/(2ε2).

By applying the union bound, we obtain that IP[∃e : |Fe−fe| > ε] < m(1/m) = 1. Therefore, for
any integer k > log(2m)/(2ε2), there is positive probability that the (G-feasible) flow (F1, . . . , Fµ),
which assigns positive flow to at most k paths, satisfies |Fe−fe| ≤ ε for all e ∈ E. By the Probabilistic
Method, there exists a flow f̃ with the properties of (F1, . . . , Fµ). ut

For any ε > 0, let ε1 > 0 depend on ε and on some parameters of the instance G. Lemma 3
guarantees the existence of an ε1-approximation f̃ to a Nash flow f on the best subnetwork L(HB)
that assigns positive traffic to at most

⌊
log(2m)/(2ε21)

⌋
+1 paths. If the network G has polynomially

many paths, such an f̃ can be found in subexponential time by exhaustive search. In the following, we
show that if all paths in G are relatively short, f̃ is an ε-Nash flow on Gf̃ , and all players’ latencies in
f̃ are at most L(HB)+ε/2. Thus we obtain a subexponential approximation scheme for the BSubEL.

Theorem 3. Let G = (G(V,E), (aex + be)e∈E , 1) be an instance with linear latency functions, let
α = maxe∈E{ae}, and letHB be the best subnetwork of G. For some constants d1, d2, let |P| ≤ md1

and |p| ≤ logd2 m, for all p ∈ P . Then, for any ε > 0, we can compute in time

mO(d1α2 log2d2+1(2m)/ε2)

a flow f̃ that is an ε-Nash flow on Gf̃ and satisfies `p(f̃) ≤ L(HB) + ε/2, for all paths p in Gf̃ .

Proof. Let ε > 0 be any fixed constant, let ε1 = ε/(2α logd2(2m)), and let f be a Nash flow on the
best subnetwork HB . Then, L(f) = L(HB). In the following, we assume wlog. that f is acyclic, and
that HB is precisely Gf (V,Ef). By applying Lemma 3 to HB and f with approximation parameter
ε1, we obtain that there exists a G-feasible flow f̃ on HB that assigns positive flow to at most

k =
⌊

log(2m)
2ε21

⌋
+1 =

⌊
2α2 log2d2+1(2m)

ε2

⌋
+1

paths, and satisfies |fe− f̃e| ≤ ε1 for all edges e in HB , and f̃e = 0 for all edges e outside HB . Since
f is acyclic, f̃ is acyclic too.

Next we show that f̃ is an ε-Nash flow on the subnetwork Gf̃ (V,Ef̃) determined by the edges
used by f̃ . For every p ∈ PGf̃

⊆ PHB , `p(f) =
∑

e∈p(aefe + be) = L(HB), since f is a Nash flow

on HB . In addition, since f̃e ≤ fe + ε1 for all edges e in HB , and thus for all edges in Gf̃ ,

`p(f̃) ≤
∑

e∈p(ae(fe + ε1) + be)

≤ L(HB) + |p|α ε1
≤ L(HB) + ε/2 ,

8 We use the following form of the Chernoff-Hoeffding bound (see e.g. [14]): Let X1, . . . , Xk be random variables inde-
pendently distributed in [0, 1], and let X = 1

k

∑k
i=1Xi. Then, for all ε > 0, IP[|X − IE[X]| > ε] ≤ 2e−2ε2k, where

e = 2.71 . . . is the basis of natural logarithms.

9

where the last inequality follows from the choice of ε1 and the polylogarithmic upper bound on the
length of the paths in G. Similarly, using that f̃e ≥ fe − ε1 for all edges e in HB , we show that for
every path p ∈ PGf̃

, `p(f̃) ≥ L(HB) − ε/2. Therefore, there exists a G-feasible acyclic flow f̃ that

assigns positive flow to at most k paths, is an ε-Nash flow onGf̃ , and satisfies |`p(f̃)−L(HB)| ≤ ε/2
for all paths p in Gf̃ .

A flow with the properties of f̃ can be computed in timemO(d1k) by exhaustive search. In particu-
lar, for each multiset with k paths from P , we generate the corresponding flow g in the same way that
in the proof of Lemma 3, the flow (F1, . . . , Fµ) is constructed from (the actual values of) P1, . . . , Pk .
If the subnetwork Gg is acyclic, we check whether g is an ε-Nash flow on Gg. This can be performed
by computing the minimum and the maximum latency paths in Gg, and checking whether their la-
tencies differ by at most ε. Since Gg is a directed acyclic network, the minimum and the maximum
latency paths can be computed in polynomial time. Among all acyclic flows that are ε-Nash flows on
the corresponding subnetworks, we return the one that minimizes the latency on the maximum latency
path. Since exhaustive search encounters f̃ , this latency cannot exceed L(HB)+ε/2. Hence we return
a flow that is an ε-Nash flow on the corresponding subnetwork, and has all its path latencies bounded
from above by L(HB)+ε/2. Since G has at mostmd1 different paths, there are at mostmd1k different
multisets with k paths from P , and the exhaustive search takes at most mO(d1k) time. ut

Instances with Strictly Increasing Latencies. Next we focus on instances with strictly increasing
linear latencies, and show how to approximate the equilibrium latency on the best subnetwork within
a factor less than the inapproximability threshold of 4/3.

Theorem 4. For instances with strictly increasing linear latencies, BSubEL can be approximated in
polynomial time within a factor of 4/3− δ, where δ > 0 depends on the instance.

Proof. Let G be an instance with strictly increasing linear latencies defined on a network G(V,E),
and let HB be the best subnetwork of G. If G is paradox-ridden, by Theorem 1, we can recognize it
and compute the best subnetwork HB and its equilibrium latency L(HB) in polynomial time. Hence
for paradox-ridden instances, we have an approximation ratio of 1.

If G is not paradox-ridden, we use the trivial algorithm that returns the entire network G. Next we
prove that there is an instance-dependent δ > 0, such that L(G)/L(HB) ≤ ρ(G) − δ. Since G has
linear latencies, ρ(G) ≤ 4/3, and the theorem follows.

Let f be the Nash flow on the best subnetwork HB , and let o be the optimal flow of G. Since G is
not paradox-ridden, the flows f and o are different. By Taylor expansion for quadratic functions,∑

e∈E
(aef2

e + befe) =
∑
e∈E

(aeo2
e + beoe) +

∑
e∈E

(2aeoe + be)(fe − oe) +
∑
e∈E

ae(fe − oe)2 ⇔

C(f) = C(o) +
∑
e∈E

(2aeoe + be)(fe − oe) +
∑
e∈E

ae(fe − oe)2

︸ ︷︷ ︸
= σ

(2)

We note that σ > 0 because
∑

e∈E ae(fe − oe)2 > 0, since ae > 0 for all e ∈ E and f and o are
different, and

∑
e∈E(2aeoe + be)(fe − oe) ≥ 0, by the characterization of optimal flows by (1).

Using that the traffic rate is 1, we obtain that C(f) = L(f) = L(HB), and C(o) = L∗(G).
Moreover, by the definition of the PoA, L∗(G) = L(G)/ρ(G). Therefore, (2) implies that

L(HB) = L(G)/ρ(G) + σ ⇒ L(G)/L(HB) = ρ(G)− ρ(G)σ/L(HB)

Setting δ = ρ(G)σ/L(HB) > 0 concludes the proof of the theorem. ut

10

5 Enforcing the Optimal Flow by Latency Modifications

Despite our positive results, there are instances where either finding the best subnetwork is hard, or
the equilibrium latency on the best subnetwork is not close to the optimal average latency. For such
instances, we present a polynomial-time algorithm that enforces the optimal flow by performing a
minimal amount of latency modifications on the edges used by the optimal flow.

Theorem 5. MinLatMod can be solved in polynomial time for instances with polynomial latency
functions.

Proof. Let G be an instance defined on a networkG(V,E) with a polynomial latency function `e(x) =∑d
i=0 ae,ix

i, ae,i ≥ 0, for each e ∈ E. We can efficiently compute an optimal flow o within any
specified accuracy (see e.g. Lemma 8 in the Appendix) and the corresponding subnetworkGo(V,Eo).

Let α = (ae,i)e∈Eo,i∈[d] be coefficients vector of the latency functions for the edges used by the
optimal flow o. We seek, due to monetary reasons, to turn the optimal flow o into a Nash flow of aver-
age latency L∗(G) onGo(V,Eo) by modifying α as little as possible. In particular, we seek a modified
coefficients vector α̃ = (ãe,i)e∈Eo,i∈[d] so that the Euclidean distance of α and α̃ is minimized, and for
the instance G̃o defined on Go with latency functions ˜̀

e(x) =
∑d

i=0 ãe,ix
i, ãe,i ≥ 0, e ∈ Eo, the flow

o is a Nash flow with common latency L∗(G). The best coefficients vector α̃ is given by the optimal
solution to the following Quadratic Program:

min
∑
e∈Eo

d∑
i=1

(ae,i − ãe,i)2

s.t.
∑
e∈p

d∑
i=0

ãe,i o
i
e = L∗(G) ∀p ∈ PGo (QP)

ãe,i ≥ 0 ∀e ∈ Eo , ∀i ∈ [d]

The equality constraints of (QP) ensure that all paths in Go have a common latency L∗(G) in o
wrt the modified latency functions ˜̀. Thus o is a Nash flow with common latency L∗(G) for the
modified instance G̃o . (QP) is a convex separable Quadratic Program, and can be solved in polynomial
time within any specified accuracy (see e.g. [21]). Moreover, (QP) always admits a feasible solution
since the optimal flow o is a Nash flow on Go with latency functions `∗e(x) = d(x`e(x))/dx =∑d

i=0(i + 1)ae,ixi. Therefore, there is a Λ > 0, such that all paths in Go have a common latency Λ
wrt to the latency functions `∗. Scaling the coefficients {(i+ 1)ae,i}e∈Eo,i∈[d] uniformly by L∗(G)/Λ
gives a feasible solution to (QP). ut

Remark. We can use the same approach to compute a modified coefficients vector that turns the
optimal flow o into a Nash flow on Go wrt to the modified latencies with any prescribed common
latency Λ. In particular, the proof of Theorem 5 implies that by changing the rhs of the equality
constraints in (QP) to Λ (instead of L∗(G)), we can efficiently compute a coefficients vector α̃ so that
the Euclidean distance of α and α̃ is minimized, and the optimal flow o is a Nash flow with common
latency Λ for the corresponding instance G̃o .

References

1. N. Alon and J. Spencer. The Probabilistic Method. John Wiley, 1992.
2. I. Althöfer. On Sparse Approximations to Randomized Strategies and Convex Combinations. Linear Algebra and

Applications, 99:339–355, 1994.

11

3. Y. Azar and A. Epstein. The hardness of network design for unsplittable flow with selfish users. In Proc. of the 3rd
Workshop on Approximation and Online Algorithms (WAOA ’05), pp. 41–54, 2005.

4. V. Bonifaci, T. Harks, and G. Schäfer. Stackelberg Routing in Arbitrary Networks. In Proc. of the 4th Workshop on
Internet and Network Economics (WINE ’08), pp. 239–250, 2008.

5. D. Braess. Über ein paradox aus der Verkehrsplanung. Unternehmensforschung, 12:258–268, 1968.
6. I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Taxes for Linear Atomic Congestion Games. In Proc. of the 14th

European Symposium on Algorithms (ESA ’06), pp. 184–195, 2006.
7. R. Cole, Y. Dodis, and T. Roughgarden. How Much Can Taxes Help Selfish Routing? Journal of Computer and System

Sciences, 72(3):444–467, 2006.
8. J.R. Correa, A.S. Schulz, and N.E. Stier Moses. Selfish Routing in Capacitated Networks. Mathematics of Operations

Research, 29(4):961–976, 2004.
9. J. Edmonds and R.M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. of

the ACM, 19(2):248–264, 1972.
10. L. Fleischer, K. Jain, and M. Mahdian. Tolls for Heterogeneous Selfish Users in Multicommodity Networks and

Generalized Congestion Games. In Proc. of the 45th IEEE Symp. on Foundations of Computer Science (FOCS ’04),
pp. 277–285, 2004.

11. D. Fotakis. Stackelberg strategies for atomic congestion games. In Proc. of the 15th European Symposium on Algo-
rithms (ESA ’07), pp. 299–310, 2007.

12. D. Fotakis and P. Spirakis. Cost-Balancing Tolls for Atomic Network Congestion Games. In Proc. of the 3rd Workshop
on Internet and Network Economics (WINE ’07), pp. 179–190, 2007.

13. D.S. Hochbaum and J.G. Shanthikumar. Convex separable optimization is not much harder than linear optimization. J.
of the ACM, 37(4):843–862, 1990.

14. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

15. A.C. Kaporis and P.G. Spirakis. The Price of Optimum in Stackelberg Games on Arbitrary Single Commodity Networks
and Latency Functions. In Proc. 18th ACM Symp. on Parallel Algorithms and Architect. (SPAA ’06), pp. 19–28, 2006.

16. G. Karakostas and S. Kolliopoulos. Edge Pricing of Multicommodity Networks for Heterogeneous Selfish Users. In
Proc. of the 45th IEEE Symp. on Foundations of Computer Science (FOCS ’04), pp. 268–276, 2004.

17. G. Karakostas and S. Kolliopoulos. Stackelberg Strategies for Selfish Routing in General Multicommodity Networks.
Algorithmica, 53(1):132–153, 2009.

18. F. Kelly. The Mathematics of Traffic in Networks. In The Princeton Companion to Mathematics (Editors: T. Gowers, J.
Green and I. Leader). Princeton University Press, 2008.

19. Y.A. Korilis, A.A. Lazar, and A. Orda. Achieving Network Optima Using Stackelberg Routing Strategies. IEEE/ACM
Transactions on Networking, 5(1):161–173, 1997.

20. E. Koutsoupias and C. Papadimitriou. Worst-Case Equilibria. In Proc. of the 16thAnnual Symposium on Theoretical
Aspects of Computer Science (STACS ’99), pp. 404–413, 1999.

21. M.K. Kozlov, S.P. Tarasov, and L.G. Khachian. Polynomial Solvability of Convex Quadratic Programming. Soviet
Mathematics., Doklady 20:1108–1111, 1979.

22. H. Lin, T. Roughgarden, and É. Tardos. A Stronger Bound on Braess’s Paradox. In Proc. of the 15th ACM-SIAM Symp.
on Discrete Algorithms (SODA ’04), pp. 340–341, 2004.

23. H. Lin, T. Roughgarden, É. Tardos, and A. Walkover. Braess’s Paradox, Fibonacci Numbers, and Exponential Inap-
proximability. In Intl. Colloquium on Automata, Languages and Programming (ICALP ’05), pp. 497–512, 2005.

24. R.J. Lipton, E. Markakis, and A. Mehta. Playing Large Games Using Simple Strategies. In Proc. of the 4th ACM
Conference on Electronic Commerce (EC ’03), pp. 36–41, 2003.

25. R.J. Lipton and N.E. Young. Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory.
In Proc. of the 26th ACM Symp. on Theory of Computing (STOC ’94), pp. 734–740, 1994.

26. O.L. Mangasarian. Uniqueness of Solution on Linear Programming. Linear Algebra and Applicat., 25:151–162, 1979.
27. I. Milchtaich. Network Topology and the Efficiency of Equilibrium. Games and Economic Behavior, 57:321346, 2006.
28. M. Minoux. A Polynomial Algorithm for Minimum Quadratic Cost Flow Problems. European Journal of Operational

Research, 18(3):377–387, 1984.
29. T. Roughdarden and É. Tardos. How Bad is Selfish Routing? J. of the ACM, 49(2):236–259, 2002.
30. T. Roughgarden. The Price of Anarchy is Independent of the Network Topology. In Proc. of the 34th ACM Symp. on

Theory of Computing (STOC ’02), pp. 428–437, 2002.
31. T. Roughgarden. Stackelberg Scheduling Strategies. SIAM Journal on Computing, 33(2):332–350, 2004.
32. T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.
33. T. Roughgarden. On the Severity of Braess’s Paradox: Designing Networks for Selfish Users is Hard. Journal of

Computer and System Sciences, 72(5):922–953, 2006.
34. G. Valiant and T. Roughgarden. Braess’s Paradox in Large Random Graphs. In Proc. of the 7th ACM Conference on

Electronic Commerce (EC ’06), pp. 296–305, 2006.

12

A Basic Properties of Nash and Optimal Flows

Objective and Feasible Set. Nash flows and optimal flows are closely related, as it is suggested by
the objective function for computing them via the following Non-Linear Program :

(NLP) min
f

∑
e∈E

ηe(fe) , where ηe(fe) =

`e(fe)fe for an optimal flow∫ fe

0
`e(t)dt for a Nash flow

For an instance G = (G(V,E), (`e)e∈E , r), the feasible set of (NLP) consists of all G-feasible flows.
For the instances considered in this paper, where the latency functions `e(x) are non-negative, non-
decreasing, continuous, continuously differentiable, and convex, and there always exist an acyclic
optimal flow and an acyclic Nash flow, there is no essential difference between letting the feasible set
of (NLP) consist of all G-feasible edge flows (fe)e∈E , and letting the feasible set of (NLP) consist
of all G-feasible path flows (fp)p∈P . In the following, we call a latency function standard if it is
non-negative, non-decreasing, continuous, continuously differentiable, and convex.

We observe that (NLP) is a separable program, i.e. each non-linear term is a function of a single
variable. Furthermore, for standard latency functions, (NLP) is a convex program.
Interplay of Nash and Optimal Flows. An important consequence of the convexity of NLP is the
following characterizations of optimal and Nash flows (see e.g. [32]):

Lemma 4. Let G = (G(V,E), (`e)e∈E , r) be an instance with standard latency functions. A G-
feasible flow o is optimal for G iff it is a Nash flow for the instance G′ = (G(V,E), (`∗e)e∈E , r),
where `∗e(x) = d(x`e(x))/dx.

Lemma 5. Let G = (G(V,E), (`e)e∈E , r) be an instance with standard latency functions. A G-
feasible flow f is a Nash flow iff for any G-feasible flow g,∑

e∈E
fe`e(fe) ≤

∑
e∈E

ge`e(fe)

Lemma 6. Let G = (G(V,E), (`e)e∈E , r) be an instance with standard latency functions, and let
`∗e(x) = d(x`e(x))/dx. A G-feasible flow o is optimal iff for any G-feasible flow g,∑

e∈E
oe`
∗
e(oe) ≤

∑
e∈E

ge`
∗
e(oe)

Time Complexity of (NLP). Minoux [28] proved that the scaling technique of Edmonds and Karp
[9], which for linear costs gives a polynomial running time for the out-of-kilter method, can be applied
to separable quadratic min-cost flow problems. Thus Minoux presented a polynomial-time algorithm
for the quadratic min-cost flow problem.

Lemma 7. (NLP) can be solved in polynomial time for instances with linear latency functions `e(x) =
aex+ be with non-negative rational coefficients ae, be .

Subsequently, Hochbaum and Shanthikumar [13] proved that solving convex separable min-cost
flow problems is not much harder than linear optimization. More precisely, they presented an al-
gorithm that finds a feasible solution whose components are within an additive term of ε from the
optimal solution (this is called an ε-accurate solution). The algorithm’s running time is polynomial in
log(1/ε) and the input size. In simple words, the algorithm of Hochbaum and Shanthikumar computes
the optimal solution to any specified accuracy in polynomial time.

13

Lemma 8. For instances with standard latency functions, an ε-accurate solution to (NLP) can be
computed in time polynomial in log(1/ε) and the input size.

Existence and Uniqueness of Nash and Optimal Flows. The following lemma establishes that for
instances with standard latency functions, a Nash flow exists and all Nash flows have the same com-
mon players’ latency and total latency (see e.g. [32]).

Lemma 9. Let G = (G(V,E), (`e)e∈E , r) be an instance with standard latency functions. Then, G
admits a Nash flow f . Furthermore, if f, f ′ are Nash flows, then `e(fe) = `e(f ′e) for all e ∈ E,
`p(f) = `p(f ′) for all p ∈ P , L(f) = L(f ′), and C(f) = C(f ′).

Moreover, if the latency functions `e are strictly increasing, then the Nash flow is unique (see e.g.
[32, Corollary 2.6.4]). We note that Lemma 10 does not rule out the possibility that some instances
with constant latency functions also admit a unique Nash flow (see e.g. the instance in Fig. 1).

Lemma 10. Let G = (G(V,E), (`e)e∈E , r) be an instance with standard strictly increasing latency
functions. If f, f ′ are Nash flows, then fe = f ′e for all e ∈ E.

Remark 1. Lemma 9 and Lemma 10 essentially follow from the convexity of (NLP). By similar argu-
ments, one can prove that for an instance G = (G(V,E), (`e)e∈E , r) with standard latency functions,
if o, o′ are optimal flows, then `e(oe) = `e(o′e), for all e ∈ E. In addition, if the latency functions are
strictly increasing, then oe = o′e for all e ∈ E.

14

