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Abstract. In the online and incremental variants of Facility Location, the demands arrive one-by-one and
must be assigned to an open facility upon arrival, without any knowledge about future demands. In the
online variant, the decisions of opening a facility at a particular location and of assigning a demand to some
facility are irrevocable. In the incremental variant, the algorithm can also merge existing facilities (and the
corresponding demand clusters) with each other, and only the decision of assigning some demands to the
same facility is irrevocable. The goal is to maintain, either online or incrementally, a set of facilities and an
assignment of the demands to them that minimize the total facility opening cost plus the assignment cost for
all demands.
In this survey, we discuss the previous work on online and incremental algorithms for Facility Location. In
addition to the main results, namely that the competitive ratio for the online variant is Θ( logn

log logn
), where n

is the number of demands, and that the competitive ratio for the incremental variant is O(1), we discuss all
known online and incremental Facility Location algorithms, sketch the intuition behind them and the main
ideas of their competitive analysis, and discuss some applications.

1 Introduction

Facility Location is a classical problem that has been widely studied in both the operations research
and the computer science literature. In this survey, we consider the simplest and most popular variant
of Facility Location, namely the metric uncapacitated Facility Location problem. The input consists
of a metric space, an opening cost for each potential facility location, and a (multi)set of demand
locations. The goal is to find a set of facility locations that minimize the opening cost for all facilities
plus the assignment cost for all demands, where a demand’s assignment cost is the distance of its
location to the nearest facility.

Facility Location provides a simple and natural model for industrial planning, network design,
content distribution in networks, and data clustering, and has been the subject of a large volume of
research in combinatorial optimization and operations research (see e.g., [36, 14]), and more recently,
in computer science, especially from the point of view of approximation algorithms (see e.g., [39]).
Hence, the approximability of the Facility Location problem is practically fully understood. The best
known polynomial-time algorithm is due to Byrka and Aardal [7] and achieves an approximation ratio
of 1.5, while no polynomial-time algorithm can achieve an approximation ratio less than 1.463 un-
less NP ⊆ DTIME(nlog logn) [22]. Virtually every major technique for the design and analysis of
approximation algorithms has been applied to Facility Location. There are constant factor approxima-
tion algorithms based on Linear Programming rounding (see e.g., [40, 41]), local search (see e.g., [9,
5]), and the primal-dual method (see e.g., [27]). Moreover, there are greedy algorithms whose analy-
sis is based on Linear Programming duality and the method of dual-fitting [26], and algorithms that
combine several of the approaches above (see e.g., [31, 7]).

Online and Incremental Facility Location. The approximation algorithms above require that the set
of demand locations is fully known in advance, an assumption questionable in many practical applica-
tions. One can think of many natural settings where the demand locations are not known in advance,



and a solution must be maintained incrementally using limited information about future demands.
For example, telecommunication networks are usually upgraded incrementally to accommodate new
communication demands, because it is expensive, and often infeasible, to reconfigure the complete
network every time a few new demands arise.

Motivated mostly by applications to network design, Meyerson [33] introduced the online variant.
In Online Facility Location, the demands arrive one-by-one and must be irrevocably assigned to an
open facility upon arrival. The goal is to maintain a set of facilities and an assignment of the demands
to them that minimize the total facility opening cost plus the assignment cost for all demands.

In Online Facility Location, the decisions (and the corresponding costs) of opening a facility
at a particular location and of assigning a demand to some facility are irrevocable. This restriction
nicely fits network design applications, where once a network device or a physical link is installed
somewhere in the network, relocating it is very expensive, and often infeasible. Thus, any decision
about the network configuration should be regarded as an irrevocable one.

Nevertheless, the online variant does not really fit applications of Facility Location related to data
clustering, where merging clusters is a common practice. Thus, for clustering applications, the deci-
sions of opening a new cluster and of assigning a new demand to a particular cluster center should not
be regarded as irrevocable. On the other hand, a major concern in most modern clustering applications
is that once formed, clusters should not be broken up. This restriction reflects not only the fact that a
hierarchical clustering is often required, but also computational considerations, since splitting existing
clusters is usually computationally expensive.

Motivated by clustering applications where the demand sequence is not known in advance and a
hierarchical clustering must be maintained incrementally and efficiently, Charikar, Chekuri, Feder, and
Motwani [8] introduced the framework of incremental algorithms for optimization problems related to
data clustering, such as k-Center, Sum k-Radius, and k-Median. An incremental algorithm processes
the demands one-by-one, as they arrive, can create new clusters, and can merge existing clusters at
any point in time. However, an incremental algorithm is not allowed to split any existing clusters, and
thus the decision of placing some demands in the same cluster is an irrevocable one.

The definition of Incremental Facility Location, first studied in [16], follows directly from the
framework of incremental algorithms introduced in [8]. In Incremental Facility Location, the demands
arrive one-by-one and must be assigned to an open facility upon arrival. At any point in time, the
algorithm can also merge a facility with another one by closing the first facility and re-assigning
all the demands assigned to it to the second facility. The goal is to maintain incrementally a set of
facilities and an assignment of the demands to them that minimize the total facility opening cost plus
the assignment cost for all demands.

Aim and Roadmap. In this article, we survey a fair volume of research work on online and incre-
mental algorithms for Facility Location appeared after the introduction of Online Facility Location in
[33]. In addition to the main results, we discuss the main ideas behind several online and incremen-
tal algorithms and their competitive analysis. In the presentation, we aim to keep a balance between
completeness and accuracy, on the one hand, and simplicity and intuition, on the other.

We start, in Section 2, with a lower bound of Ω( logn
log logn) on the competitive ratio of any online

algorithm for Facility Location [19], where n denotes the number of demands. The lower bound holds
for randomized algorithms and for very simple metric spaces, such as the real line.

In Section 3, we present the main ideas behind all known online algorithms for Facility Location
with a (near-)optimal competitive ratio. After a brief discussion of the main principles on which the
online algorithms are based, we present, in Section 3.1, Meyerson’s elegant randomized algorithm
[33]. In addition to achieving an asymptotically optimal competitive ratio of Θ( logn

log logn), Meyerson’s
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algorithm has the remarkable property that it is constant-competitive if the demands arrive in random
order.

Next, we proceed to discuss deterministic online algorithms. We start, in Section 3.2, with the
primal-dual algorithm of [18], which may be the most intuitive and versatile deterministic algorithm
for Online Facility Location. We give a primal-dual interpretation of the algorithm and show that its
competitive ratio is O(log n). In Section 3.3, we discuss the deterministic algorithm of [19] which
achieves an asymptotically optimal competitive ratio. At the conceptual level, the algorithm can be
regarded as a delicate derandomization of Meyerson’s algorithm. However, the analysis is more com-
plicated, and sheds lights to some deeper issues on the use of locality by online and incremental
algorithms. In Section 3.4, we present the simple deterministic algorithm of Anagnostopoulos, Bent,
Upfal, and Van Hentenryck [3]. The algorithm applies to the Euclidean plane (more generally, to met-
ric spaces of a small constant dimension) and achieves a competitive ratio of O(log n). The algorithm
of [3] is remarkably simple to state and implement, faster, and much more space efficient than the
algorithm of [19].

In the next two sections, we discuss incremental algorithms for Facility Location. Rather sur-
prisingly, [16] proved that the incremental variant allows for a constant competitive ratio, a result
discussed in Section 4. The incremental algorithm of [16] is deterministic, and employs an elegant
facility merge rule based on distance considerations. To establish a constant competitive ratio, the
analysis shows that in addition to decreasing the algorithm’s facility cost, the merge rule succeeds in
dramatically decreasing the algorithm’s assignment cost.

In Section 5, we consider a relaxed variant of Incremental Facility Location, where the irrevocable
decisions only concern any increase in the algorithm’s facility cost. In Section 5.1, we present the
randomized memoryless algorithm of [17], which maintains a O(1)-competitive facility configuration
and keeps in memory only the locations of its facilities and some additional information of constant
size per facility. In Section 5.2, we briefly discuss the algorithm of Divéki and Imreh [13], which
moves its facilities around and achieves a constant competitive ratio.

In Section 6, we show how one can turn any online or incremental algorithm for Facility Location
into an incremental or a streaming algorithm for the closely related problem of k-Median with similar
performance characteristics. Thus, the incremental algorithm of [19] leads to an incremental algorithm
for k-Median which uses O(k) medians and achieves a O(1)-competitive ratio, and Meyerson’s online
algorithm leads to a streaming algorithm for k-Median on general metric spaces with the best known
performance characteristics [10].

We conclude, in Section 7, with a brief discussion of some work on approximation and online
algorithms for Facility Location that either draws ideas and techniques from or is related to the work
on online and incremental algorithms discussed in Sections 3 to 6.

1.1 Problem Definitions, Notation, and Preliminaries

Throughout this article, we consider a metric space (M,d), where M is the set of locations (or
points) and d : M × M 7→ IN+ is the distance function, which is non-negative, symmetric and
satisfies the triangle inequality. For a point u ∈ M and a subset of points M ′ ⊆ M , we let
d(M ′, u) ≡ minv∈M ′{d(v, u)} denote u’s distance to the nearest point in M ′. We use the convention
that d(∅, u) ≡ ∞. We let Ball(u, r) ≡ {v ∈ M : d(u, v) ≤ r} denote the set of points within a
distance of at most r to u. For every x, y, we let (x− y)+ ≡ max{x− y, 0}.

Facility Location and k-Median. In (metric uncapacitated) Facility Location, the input consists of
a metric space (M,d), a facility opening cost fz for each z ∈ M , and a (multi)set {u1, . . . , un} of
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demands in M . The goal is to find a facility configuration F ⊆M that minimizes

∑
z∈F

fz +
n∑
i=1

d(F, ui)

We highlight that we only consider unit demands and allow multiple demands to be located at
the same point. We usually distinguish between the special case of uniform facility costs, where the
facility opening cost, denoted f , is the same for all points, and the general case of non-uniform facility
costs, where the facility opening cost fz depends on the location z ∈M .

In the closely related problem of k-Median, there is an upper bound of k on the number of facil-
ities, instead of an opening cost for each facility. The input consists of a metric space (M,d) and a
(multi)set {u1, . . . , un} of demand locations in M , and the goal is to find a configuration F ⊆ M of
at most k facilities (or medians) that minimizes

∑n
i=1 d(F, ui).

Online Facility Location. In the online setting, the demand locations arrive one-by-one and must
be assigned to an open facility upon arrival. For the special case of uniform facility costs, the input
consists of the facility opening cost f and a sequence u1, . . . , un of (not necessarily distinct) demand
locations in an underlying metric space (M,d). The online algorithm maintains its facility configu-
ration in response to the demand sequence u1, . . . , un. Throughout this article, we let Fi denote the
algorithm’s facility configuration just after demand ui is processed, with F0 = ∅. Since an online
algorithm can only open facilities, Fi−1 ⊆ Fi for any i ≥ 1.

Upon arrival of a demand ui, the online algorithm applies a so-called facility opening rule, which
takes into account the cost f of opening a new facility, the algorithm’s current facility configuration
Fi−1, the location of ui, and possibly the locations of (some of) the past demands u1, . . . , ui−1, and
determines whether and at which location a new facility should open. If a new facility opens at location
w, Fi = Fi−1 ∪ {w}, and the algorithm’s facility cost increases by f . Otherwise, Fi = Fi−1. Finally,
ui is assigned to the nearest facility in Fi, and the algorithm’s assignment cost increases by d(Fi, ui).
Therefore, the algorithm’s cost just after demand ui is processed is:

|Fi|f +
i∑

`=1

d(F`, u`)

In the general case of non-uniform facility costs, the underlying metric space M along with the
facility opening cost fz for each z ∈ M are given to the algorithm in advance. The online algorithm
maintains its facility configuration F0 = ∅, F1, . . . , Fn in response to the demand sequence u1, . . . , un
as above. The only difference is that the facility opening rule should now take the different facility
opening costs into account. The algorithm’s cost just after demand ui is processed is:

∑
z∈Fi

fz +

i∑
`=1

d(F`, u`)

Incremental Facility Location and k-Median. In addition to opening new facilities and assigning
new demands to them, an incremental algorithm for Facility Location can merge existing facilities
(and the corresponding demand clusters) with each other.

For the incremental variant, we restrict our attention to uniform facility costs. Similarly to the
online variant, the input consists of the facility opening cost f and a sequence u1, . . . , un of demands
which arrive online. The incremental algorithm maintains its facility configuration F0 = ∅, F1, . . . , Fn
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and a clustering of the demands processed so far in response to the demand sequence u1, . . . , un. For
each facility z ∈ Fi, the algorithm maintains the set C(z) of the demands currently assigned to z (or
z’s cluster), and possibly some additional information about z. Just after each demand ui is processed,
the union of C(z) over all z ∈ Fi must be {u1, . . . , ui}.

When a demand ui arrives, the incremental algorithm applies a facility opening rule and deter-
mines whether ui should be assigned to an existing facility, or a new facility should open and ui
should be assigned to it. The algorithm also applies a so-called merge rule and determines whether
some facilities should be merged with each other. If a facility z is merged with a facility z′, z is closed,
i.e., it is removed from Fi, and the demands currently assigned to z are reassigned to z′. The cost of
the incremental algorithm just after demand ui is processed is:

|Fi|f +
∑
z∈Fi

∑
u∈C(z)

d(u, z)

The incremental variant1 of k-Median is defined similarly. The only difference is that there is no
opening cost associated with each facility / median, and the number of medians maintained by the
algorithm should not exceed k by too much.

Preliminaries. We evaluate the performance of online and incremental algorithms using competitive
analysis (see e.g., [6]). A deterministic (resp. randomized) algorithm is c-competitive if for any de-
mand sequence, its cost (resp. expected cost) is at most c times the optimal cost for the corresponding
offline Facility Location instance, where the demand sequence is fully known in advance.

For the competitive analysis, we fix a sequence of n demands, and compare the algorithm’s cost
against the cost of a (fixed offline) optimal solution. We let Fac∗ denote the facility cost and Asg∗

denote the assignment cost of the optimal solution. To avoid confusing an algorithm’s facility with a
facility of the optimal solution, we use the term optimal center, or simply center, to refer to the latter.

To sketch the main idea of an algorithm’s competitive analysis, we focus on a single optimal center
c and the demands assigned to it in the optimal solution. We let d∗u = d(u, c) denote the optimal
assignment cost of a demand u assigned to c, let Asg∗(c) =

∑
u d
∗
u denote the optimal assignment

cost for the demands assigned to c, and let δ∗ denote the average optimal assignment cost for them.

2 A Lower Bound for Online Algorithms

We start with a lower bound of Ω( logn
log logn) on the competitive ratio of any online algorithm for Facility

Location [19]. The lower bound holds for randomized algorithms against the oblivious adversary, for
uniform facility costs, and for very simple metric spaces, such as the real line.

For the lower bound construction, we employ a metric space described by a Hierarchically Well-
Separated Tree (see e.g., [15]). In particular, for some positive integers h, m, and a positive rational
D (all of them depend on n and f ), we consider a complete binary tree T of height h such that (i)
the distance of the root to its children is D, and (ii) on every path from the root to a leaf, the edge
length drops by a factor of m on every level. Thus, the distance of any vertex at level j to its children

1 The online and incremental variants of Facility Location and k-Median should not be confused with the problem of
Online Median, which was introduced in [32] and admits a constant competitive ratio (see e.g., [12, Section 9] for a brief
discussion of previous work on Online Median). In Online Median, the demand locations are fully known in advance
and the number of facilities / medians increases online. The goal is to compute a permutation of the demand locations so
that for any integer k, opening facilities at the first k locations yields a good approximate solution to the corresponding
k-Median instance. Thus, the setting of Online Median is somehow orthogonal to the setting of Online and Incremental
Facility Location, where the facility cost is known in advance and the demands arrive online.
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Fig. 1. The metric space and the demand sequence used in the lower bound construction.

is D/mj . We let Tv be the subtree of T rooted at a vertex v. The key property of T is that the distance
of a level-j vertex v to any vertex in Tv is at most D

mj−1(m−1) ≈ D/m
j , while the distance of v to any

vertex not in Tv is at least D/mj−1.
We first show the lower bound for any deterministic algorithm Alg. The demand sequence is

divided into h + 1 phases. Phase 0 consists of a single demand located at the root v0 of T . After the
end of phase j, 0 ≤ j ≤ h − 1, the location vj+1 of the demands to arrive in phase j + 1 is selected
among the children of vj . In particular, vj+1 is the right child of vj , if Alg does not have any facilities
in the right subtree of Tv, and the left child of vj , otherwise. The (j + 1)-th phase consists of mj+1

unit demands located at vj+1. Thus, the total number of demands is at most mh+1/(m− 1) ≈ mh.
If we open a single facility at vh, the assignment cost for the demands in each of the first h

phases is at most D m
m−1 . Therefore, the optimal cost is at most f + hD m

m−1 . On the other hand, Alg
incurs a cost of at least min{f,mD} for each phase. Intuitively, at to the end of phase j − 1, Alg
knows that there must be a facility in Tvj−1 , but it cannot tell in which of Tvj−1’s subtrees the facility
should be. Thus Alg opens a facility either in both subtrees of Tvj−1 , or in one of them, or in none
of them. In any case, Alg’s cost for the demands and the facilities in Tvj−1 but not in Tvj is at least
min{f,mD}. If Alg does not have a facility in Tvj−1 , its assignment cost for the demands at vj−1
is at least mj−1D/mj−2 = mD. Otherwise, vj is selected so that (at least) one of Alg’s facilities in
Tvj−1 is not included in Tvj . Taking the first h phases into account, Alg’s cost for the demands and
the facilities not in Tvh is at least hmin{f,mD}. In addition, Alg incurs a cost of min{f,mD} for
the demands located at vh. Thus, the total cost of Alg is at least (h+ 1) min{f,mD}.

Setting m = h and D = f/h, we conclude that Alg’s total cost for the demand sequence above
is at least h/2 times the optimal cost. Since the number of demands, which is roughly mh, should not
exceed n, we use h =

⌊
logn

log logn

⌋
, and obtain a lower bound of Ω( logn

log logn) on the competitive ratio of
any deterministic online Facility Location algorithm.

We can use Yao’s principle (see e.g., [6, Chapter 8]) and extend the lower bound to randomized
algorithms. As before, the metric space is given by T and the demand sequence consists of h + 1
phases, with mj arriving in each phase j. The only difference is that given vj , the location vj+1 of
the demands arriving in the next phase j + 1 is selected uniformly at random among vj’s children.
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Adapting the arguments above and applying Yao’s principle, we obtain a lower bound of Ω( logn
log logn)

on the competitive ratio of any randomized algorithm against the oblivious adversary.
Moreover, the lower bound above holds even if the metric space is the real line. At the conceptual

level, if n (and thusm) is large enough, the binary tree T is very close to a line segment. Based on this
observation, [19] describes an embedding of T in the line that preserves the main properties of T .

3 Online Algorithms for Facility Location

Next, we discuss the main ideas behind online Facility Location algorithms with a (near-)optimal
competitive ratio. For simplicity, we mostly focus on the special case of uniform facility costs, and
discuss which algorithms can be generalized to non-uniform facility costs.

Online Facility Location algorithms differ from each other with respect to their facility opening
rules. Nevertheless, all known facility opening rules are based on two main principles. The first prin-
ciple is to maintain a balance between the algorithm’s facility and assignment cost. This is typically
implemented by allocating (implicitly or explicitly) a (facility opening) potential of d(Fi−1, ui) to
each demand ui. The potential of ui serves as an upper bound both on ui’s assignment cost and on
how much ui can contribute to the opening cost of new facilities closer to it. Thus the total potential
allocated to the demands gives an upper bound both on the assignment and on the facility cost of the
algorithm.

The second principle is that the facility opening potential accumulated in any (appropriately de-
fined and typically small) area should not exceed (by too much) the cost of opening a facility. This
invariant is motivated by the dual constraint of the Linear Programming relaxation for the Facility
Location problem, with each demand’s potential playing the role of the corresponding dual variable
(cf. (DP) in Section 3.2). The facility opening rule ensures that a new facility opens in an area by the
moment when the potential accumulated in it exceeds the facility opening cost. When a new facility
opens, the potential of the nearby demands decreases accordingly, and the invariant is restored. The
main difference between known online algorithms lies in how they maintain this invariant.

3.1 Meyerson’s Randomized Algorithm

Meyerson [33] presented an elegant randomized algorithm with an (asymptotically) optimal competi-
tive ratio and a few other interesting properties. Meyerson’s algorithm, or RandOFL in short, employs
a remarkably simple and intuitive facility opening rule: each new demand ui opens a new facility at
ui’s location with probability d(Fi−1, ui)/f . Then ui is assigned to the nearest facility available.

If demand ui opens a new facility, the algorithm incurs a facility cost of f and no assignment
cost. Otherwise, the algorithms incurs an assignment cost of d(Fi−1, ui) and no facility cost. Hence
RandOFL’s expected assignment and expected facility cost due to ui both are at most d(Fi−1, ui).

RandOFL implements a stochastic version of the second principle. Using a simple potential
function argument (or expected waiting time techniques), one can show that the expected cost of
RandOFL due to any demand set D by the moment when the first facility in D opens is at most 2f .
This cost is made up of an expected assignment cost of at most f due to the demands in D arriving
before the first facility in D opens and a facility cost of f for the first facility in D.

Competitive Analysis. The properties above imply that the competitive ratio of RandOFL is at most
2(h + m + 3), where m, h are any positive integers with mh > n. To sketch the main ideas of the
analysis, we focus on a single optimal center c and the demands assigned to it in the optimal solution.

We break down the analysis of RandOFL into h + 2 disjoint phases, numbered h, h − 1, . . . , 0
as time goes, according to the distance of the algorithm’s facility configuration to c. The j-th phase,
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Fig. 2. In the analysis of RandOFL, phase j begins just after a facility within a distance ofmj+1δ∗ to c opens. The demands
in Ball(c,mjδ∗), i.e. the grey ball around c, are called inner and the remaining demands are called outer. Phase j ends as
soon as a facility within a distance of mjδ∗ to c opens, or equivalently, as soon as some inner demand opens a new facility.

j = h, . . . , 0, begins just after a facility within a distance of mj+1δ∗ to c opens, and ends as soon
as a facility within a distance of mjδ∗ to c opens. There is also a final phase, which follows phase
0 and never ends. The demands arriving in each phase are classified into inner and outer demands.
A demand u arriving in phase j ≥ 0 is inner if d∗u < mjδ∗ and outer otherwise (see also Fig. 2).
Since mhδ∗ > nδ∗ ≥ Asg∗(c), all demands arriving in (the first) phase h are inner. We also use the
convention that all demands arriving in the last phase are outer2.

Then, bounding the expected cost due to outer demands is not really difficult. By definition, the
distance of an outer demand to c is sufficiently large, so large that the algorithm’s expected cost due to
it can be charged to its optimal assignment cost. More precisely, if a demand ui arrives in a non-final
phase j as an outer demand, we have that

d(Fi−1, ui) ≤ d(Fi−1, c) + d∗ui ≤ (m+ 1)d∗ui ,

because by the definition of phase j, d(Fi−1, c) ≤ mj+1δ∗ ≤ md∗ui . Therefore, the expected increase
in RandOFL’s cost due to ui is at most 2(m+ 1)d∗ui . Similarly, the expected increase in RandOFL’s
cost due to a demand ui arriving in the final phase is at most 2(δ∗ + d∗ui), since d(Fi−1, c) ≤ δ∗.
Therefore, the algorithm’s expected cost due to outer demands is at most 2(m+ 2)Asg∗(c).

One should be more careful with inner demands, because they are located very close to c. Hence,
the optimal solution incurs a negligible assignment cost due to them, while the algorithm’s cost can
be quite large. Hence any reasonable algorithm should open a new facility in (or, at least, very close
to) the area occupied by the inner demands of the current phase, before their assignment cost becomes
much larger than f . The definition of phases aims precisely to quantifying this point. In fact, the
phases for RandOFL are defined so that phase j starts when a phase-(j + 1) inner demand opens a
new facility, and ends when a phase-j inner demand opens a new facility. Since the expected cost due
to the inner demands arriving by the moment when the first of them opens a new facility is at most 2f ,
RandOFL’s expected cost due to the inner demands arriving in phase j is at most 2f , and the total
expected cost due to inner demands is at most 2(h+ 1)f .

Putting everything together, we obtain that the expected cost of RandOFL is bounded from above
by 2(h + 1)Fac∗ + 2(m + 2)Asg∗, which implies a competitive ratio of 2(h + m + 3). Setting
m = h = Θ( logn

log logn), we conclude that RandOFL is Θ( logn
log logn)-competitive.

2 We should highlight the correspondence between the phases here and the phases in the lower bound construction, in
Section 2. If we consider RandOFL against the demand sequence used in the lower bound construction, phase j starts
as soon as a facility at vj−1 opens. The demands located at vj and arriving in phase j are all inner demands. Phase j
lasts until the algorithm opens a facility at vj . During each phase j, RandOFL incurs an expected assignment cost of at
most f for the demands located at vj and arriving before a facility at vj opens, and a cost of f for the new facility at vj .
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Random Demand Arrivals. A remarkable property of RandOFL is that it achieves a constant com-
petitive ratio when the demands arrive in random order [33, Theorem 2.1]. In particular, RandOFL is
8-competitive if the demands are selected by an oblivious adversary and are presented to the algorithm
according to a random permutation of them. At the intuitively level, this implies that for any set of
demands, RandOFL performs very well against most of the demand orderings.

To sketch the analysis of the competitive ratio, we again focus on a single optimal center c and the
demands assigned to it in the optimal solution. We now consider a single phase that never ends, and
classify as inner the half of the demands closer to c. Hence the distance of an inner demand to c is at
most 2δ∗. The remaining half of the demands are outer.

As before, the expected cost due to the inner demands arriving by the moment when the first of
them opens a facility is at most 2f . The expected cost due to an inner demand u arriving afterwards
is at most 2(2δ∗ + d∗u), because then u arrives, there is a facility within a distance of 2δ∗ to c. Using
that the inner demands are the half of the demands closer to c, we obtain that the expected cost due
to inner demands is at most 2f + 3Asg∗(c) in total. Moreover, this upper bound holds despite their
arrival order, an observation that facilitates the analysis of the expected cost due to outer demands.

As for the outer demands, we consider an ordering obtained by randomly injecting them into
some fixed ordering of the inner demands. In such an ordering, if an outer demand u arrives before
any inner demand, the cost due to u is at most f . Otherwise, let v be the most recent inner demand
arriving before u. Since the expected cost due u (resp. v) is at most twice its distance to the nearest
facility when u (resp. v) arrives, the expected cost due to u is at most 2d(u, v) ≤ 2(d∗u + d∗v) plus
the expected cost due to v. Moreover, v is equally likely to be any inner demand, because the outer
demands are randomly injected among the inner demands. Using that there are as many inner demands
as outer demands, one can show that the expected cost due to outer demands is at most f + 2Asg∗(c)
plus the expected cost due to inner demands.

Putting everything together, the total expected cost of RandOFL due to the demands assigned to
c in the optimal solution is at most:

cost for inner demands︷ ︸︸ ︷
2f + 3Asg∗(c) +

cost for outer demands︷ ︸︸ ︷
f + 2Asg∗(c) + (2f + 3Asg∗(c)) = 5f + 8Asg∗(c)

Taking all optimal centers into account, the expected cost of RandOFL is at most 5Fac∗ + 8Asg∗,
which implies an expected competitive ratio of 8.

Non-Uniform Facility Costs. RandOFL naturally generalizes to non-uniform facility costs. Its com-
petitive ratio is Θ( logn

log logn), when the demands arrive in an adversarial order, and at most 33, when the
demands arrive in random order [33, Theorem 3.1].

In case of non-uniform facility costs, the underlying metric space M and the facility opening
cost fz for each location z ∈ M are given to the algorithm in advance. For simplicity, we assume
that the minimum facility cost is 1. The algorithm first computes the type tz = blog2 fzc of each
location z (this is equivalent to rounding down the facility costs to the nearest integral power of 2).
For each t ≥ 0, we let F (t) denote the set of locations of type at most t, with F (−1) = ∅. When a
demand ui arrives, RandOFL opens a facility at the location of type t closest to ui with probability
(d(F (t−1) ∪ Fi−1, ui)− d(F (t) ∪ Fi−1, ui))/2t, for each type t ≥ 0 independently.

Intuitively, each demand ui is allocated a (facility opening) potential of d(Fi−1, ui), which in turn
is distributed to each facility type t according to the distance of ui to F (t). More precisely, for each
type t, we let zt denote the location in F (t)∪Fi−1 closest to ui (note that F (t−1) ⊆ F (t)). Then each zt
receives a portion of ui’s potential equal to d(zt−1, ui)− d(zt, ui). The probability that a new facility
at zt opens is obtained by dividing zt’s portion of ui’s potential by zt’s opening cost, namely 2t.
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In case of adversarial demand arrivals, the analysis proceeds as that for uniform facility costs. The
expected increase in RandOFL’s cost due to each demand ui is again bounded by 2d(Fi−1, ui). As
before, we focus on the demands assigned to an optimal center c, fix some integers h,mwithmh > n,
and divide the analysis into h + 2 phases. The distance of c to the nearest facility decreases roughly
by a factor of m in each phase. We again distinguish between inner and outer demands, and show that
the expected increase in the algorithm’s cost due to an outer demand u is O(md∗u + δ∗).

The only essential difference has to do with the analysis of the algorithm’s cost due to the inner
demands arriving in each phase. Similarly to the case of uniform facility costs, phase j starts when
a phase-(j + 1) inner demand opens a new facility of type at least tc and ends when a phase-j inner
demand opens a new facility of type at least tc, where tc is the facility type of the optimal center c.
But now the analysis should account for the facilities of smaller types that inner demands may open.
To this end, each phase is subdivided into tc + 1 stages. Each phase starts in stage 0 and ends when its
final stage tc is completed. Within a given phase, stage t starts when an inner demand opens a facility
of type t − 1, and ends when an inner demand opens a facility of type t. The crucial step is to show
that most of the potential of each inner demand u arriving in stage t is contributed towards opening
new facilities of type at least t. Then, by a potential function argument, one can show that the expected
cost due to the inner demands arriving in stage t is at most O(2t) plus a constant times their optimal
assignment cost. Therefore, the expected cost due to the inner demands arriving in the entire phase
phase is at most O(fc) plus a constant times their optimal assignment cost.

Putting everything together, we obtain that the expected facility cost and the expected assignment
cost of RandOFL are both at most O(h)Fac∗ + O(m)Asg∗. Setting m = h = Θ( logn

log logn), we

conclude that the competitive ratio of RandOFL for non-uniform facility costs is Θ( logn
log logn).

3.2 A Deterministic Primal-Dual Algorithm

We proceed to discuss the primal-dual algorithm of [18], which is quite simple and intuitive. In a
nutshell, the algorithm maintains its facility configuration so that at any point in time, the distances of
the demands processed so far to the algorithm’s facilities comprise a dual feasible solution.

Due to the inherent simplicity of the primal-dual algorithm, or PD-OFL in short, we only discuss
the version dealing with non-uniform facility costs. The algorithm is aware of the metric space M
and of the facility opening cost fz for each z ∈ M , and maintains its facility configuration F0 =
∅, F1, . . . , Fn in response to the demand sequence u1, . . . , un. When a demand ui arrives, PD-OFL
calculates the (facility opening) potential pi(z) =

∑i
`=1(d(Fi−1, u`) − d(z, u`))+ of each location

z ∈ M , and seeks for the location w maximizing pi(w)− fw. If pi(w) > fw, PD-OFL opens a new
facility at w. Otherwise, no new facilities open. Finally, ui is assigned to the nearest facility in Fi.

Intuitively, each demand ui is allocated a potential of d(Fi−1, ui), which ui can contribute to-
wards opening new facilities closer to it. In particular, if a new facility at z opens, the potential
of each demand ui becomes d(Fi−1 ∪ {z}, ui) ≤ d(Fi−1, ui). Thus, ui contributes the difference
(d(Fi−1, ui) − d(z, ui))+ in its potential towards opening a new facility at z. The (facility opening)
potential pi(z) of z corresponds to the total decrease in the potential of demands u1, . . . , ui if a new
facility at z opens. PD-OFL opens a new facility only if pi(z) exceeds the cost fz of opening a new
facility at z. Moreover, the location of the new facility is selected so as to maximize the potential sur-
plus pi(z)− fz . Thus, PD-OFL maintains the invariant that the potential accumulated in any location
z never exceeds fz . Whenever the invariant is violated due to the arrival of a new demand, a new
facility opens at the location with the maximum potential surplus, and the invariant is restored.

10



Primal-Dual Interpretation. The approach above is motivated by Linear Programming duality. The
offline version of Facility Location is naturally formulated as the following 0− 1 Integer Program:

min
∑

z∈M fzyz +
∑

z∈M
∑n

i=1 xzid(z, ui)

s.t
∑

z∈M xzi = 1 ∀ demand ui
xzi ≤ yz ∀z ∈M, ∀ demand ui (IP)

yz ∈ {0, 1}, xzi ∈ {0, 1} ∀z ∈M, ∀ demand ui

Setting yz to 1 corresponds to opening a facility at z, and setting xzi to 1 corresponds to assigning
demand ui to facility z. We obtain a Linear Programming relaxation of (IP) by replacing the 0-1
constraints to yz ≥ 0 and xzi ≥ 0 respectively. The dual of the Linear Programming relaxation is:

max
∑n

i=1 αi

s.t αi ≤ βzi + d(z, ui) ∀z ∈M, ∀ demand ui (DP′)∑n
i=1 βzi ≤ fz ∀z ∈M

αi ≥ 0, βzi ≥ 0 ∀z ∈M, ∀ demand ui

Observing that βzi ≥ (αi − d(z, ui))+, we obtain the following simplified version of the dual:

max
∑n

i=1 αi

s.t
∑n

i=1(αi − d(z, ui))+ ≤ fz ∀z ∈M (DP)
αi ≥ 0 ∀ demand ui

PD-OFL simply maintains its facility configuration so that after each demand ui is processed, the
distances d(Fi, u`), ` ≤ i, comprise a feasible solution to (DP) for demands u1, . . . , ui. Whenever
a dual constraint is violated due to the arrival of a new demand, a new facility opens at the location
corresponding to the most violated dual constraint, and dual feasibility is restored.

Dual Feasibility. We first discuss why opening a new facility at the location corresponding to the most
violated dual constraint indeed restores dual feasibility. To this end, let us inductively assume that just
after demand ui−1 is processed, the distances d(Fi−1, u`), ` ≤ i − 1, comprise a feasible solution to
(DP), and when demand ui arrives, some dual constraint is violated.

More precisely, we let p′i−1(z) =
∑i−1

`=1(d(Fi−1, u`)−d(z, u`))+ denote the potential of a location
z just after demand ui−1 is processed, and assume that p′i−1(z) ≤ fz for all locations z. Let w be the
location at which the new facility opens when ui arrives. For any location z not in Ball(ui, d(w, ui)),
ui does not contribute to z’s potential after w opens. Thus, z’s potential after w opens is at most
p′i−1(z) ≤ fz . If d(z, ui) ≤ d(w, ui), we recall that w maximizes the potential surplus pi(w) − fw,
and that for any z in Ball(ui, d(w, ui)), pi(z) = p′i−1(z) + d(Fi−1, ui) − d(z, ui) (see also Fig 3.a).
Subtracting d(Fi−1, ui)− d(w, ui), namely the contribution of ui to w’s potential, from both sides of
pi(w)− fw ≥ pi(z)− fz , we obtain that (see also Fig 3.b):

p′i−1(w)− fw ≥ p′i−1(z)− fz + d(w, ui)− d(z, ui)

In this inequality, the left-hand side is non-positive, since p′i−1(w) ≤ fw before ui arrives. The right-
hand side is no less than p′i(z), namely z’s potential after w opens, minus fz . Therefore, p′i(z) ≤ fz .
So w’s opening indeed restores the dual feasibility of the distances d(Fi, u`), ` ≤ i.

Competitive Analysis. We proceed to show that the competitive ratio of PD-OFL is at most 4Hn−2,
where Hn denotes the n-harmonic number. We first observe that the cost of PD-OFL due to any de-
mand ui is at most 2cost(ui), where cost(ui) = min

{
d(Fi−1, ui),minz{fz − p′i−1(z) + d(z, ui)}

}
.
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Fig. 3. (a) When a demand ui arrives, it is allocated a potential of d(Fi−1, ui). Demand ui contributes an amount of
d(Fi−1, ui) − d(z, ui) to the potential of every location z in Ball(ui, d(Fi−1, ui)) (e.g., w, z1, and z2), and does not
contribute to the potential of any location z not in Ball(ui, d(Fi−1, ui)) (e.g., z3). (b) After the new facility w opens, the
potential of ui decreases to d(w, ui), and ui stops contributing to the potential of any location z not in Ball(ui, d(w, ui))
(e.g., z1). Furthermore, the contribution of ui to the potential of each location z in Ball(ui, d(w, ui)) decreases by
d(Fi−1, ui)− d(w, ui).

If a demand ui does not open a new facility, PD-OFL incurs an assignment cost of d(Fi−1, ui)
due to ui. Otherwise, PD-OFL’s cost is equal to ui’s contribution to the cost of the new facility w,
namely fw−p′i−1(w), plus ui’s assignment cost, namely d(w, ui). In both cases, ui’s assignment cost
must be doubled to account for ui’s (facility opening) potential, which ui can spend towards opening
new facilities closer to it. Since PD-OFL greedily chooses the minimum cost action for any demand,
the total cost due to ui is at most 2cost(ui). More precisely, a demand ui does not open a new facility
if and only if for all locations z,

pi(z)− fz = p′i−1(z)− fz + (d(Fi−1, ui)− d(z, ui))+ ≤ 0 , (1)

which is equivalent to d(Fi−1, ui) ≤ minz{fz−p′i−1(z) +d(z, ui)}. Then, the total cost of PD-OFL
due to ui is at most 2d(Fi−1, ui). On the other hand, if d(Fi−1, ui) > minz{fz− p′i−1(z) +d(z, ui)},
ui opens a new facility at the location w that maximizes the left-hand side of (1), or equivalently
minimizes fw − p′i−1(w) + d(w, ui). Then, the total cost of PD-OFL due to ui is at most fw −
p′i−1(w) + 2d(w, ui). In both cases, the total cost of PD-OFL due to ui is at most 2cost(ui).

The intuition behind the logarithmic competitive ratio is that the invariant maintained by the al-
gorithm implies that cost(ui) is bounded from above by a fraction of the optimal cost that decreases
harmonically with i. To formalize this intuition, we consider a single optimal center c and assume that
all demands u1, . . . , un are assigned to c in the optimal solution. We first observe that by the definition
of cost(ui):

fc ≥ cost(ui)− d(c, ui) + p′i−1(c)

≥ cost(ui)− d(c, ui) +
i−1∑
`=1

(d(Fi−1, u`)− d(c, u`))

Using that d(Fi−1, u`) ≥ d(Fi−1, ui) − d(c, ui) − d(c, u`), that d(Fi−1, ui) ≥ cost(ui), and that
d(c, u`) = d∗u` is the optimal assignment cost of each demand u`, we obtain that:

fc ≥ i(cost(ui)− d∗ui)− 2

i−1∑
`=1

d∗u` ,
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which can be rewritten as:

cost(ui) ≤
1

i
fc + d∗ui +

2

i

i−1∑
`=1

d∗u`

Summing up over all demands ui assigned to c in the optimal solution, we obtain that:

n∑
i=1

cost(ui) ≤ Hnfc + (2Hn − 1)Asg∗(c)

Multiplying by 2, we conclude that the competitive ratio of PD-OFL is at most 4Hn − 2.
Nagarajan and Williamson [35] suggested that PD-OFL is similar to the 1.61-approximation

greedy algorithm for offline Facility Location of [26], and cast its analysis in the framework of dual-
fitting. Thus, they prove the slightly more general claim that cost(ui)’s divided by 2Hn − 1 comprise
a feasible solution to (DP) (see [35, Section 4] for the details).

We are not aware of any examples showing that the analysis above is tight. Thus, it remains open
whether one can show a competitive ratio of o(log n) for PD-OFL by a more careful analysis. It
would be really interesting if one could establish a competitive ratio of O( logn

log logn) for PD-OFL, thus
showing that this simple deterministic algorithm achieves an asymptotically optimal competitive ratio.

3.3 An Asymptotically Optimal Deterministic Algorithm

We proceed to discuss a deterministic online algorithm with an asymptotically optimal competitive
ratio. For simplicity, we focus on the special case of uniform facility costs.

The high level idea is to formulate a deterministic algorithm that has the main properties employed
in the analysis of RandOFL, namely (i) that the current phase ends as soon as an inner demand opens
a new facility, and (ii) that the total cost due to the inner demands by the moment when the first of them
opens a new facility is at most 2f . Then, we could somehow “simulate” the analysis of RandOFL
and end up with a competitive ratio of Θ( logn

log logn). Unfortunately, it is not clear (whether and) how a
deterministic algorithm could satisfy properties (i) and (ii). So, the deterministic algorithm of [19], or
DetOFL in short, is formulated so as to satisfy appropriately relaxed versions of them.

DetOFL maintains its facility configuration F0 = ∅, F1, . . . , Fn and a set L of unsatisfied de-
mands in response to the demand sequence u1, . . . , un. When demand ui arrives, ui is marked as
unsatisfied and is added to L. DetOFL computes ui’s unsatisfied neighborhood L(ui), which con-
sists of the unsatisfied demands located much closer to ui than to any algorithm’s facility, and the
potential Pot(L(ui)) accumulated in L(ui). Formally, L(ui) = Ball(ui, d(Fi−1, ui)/x) ∩ L, where
x is a constant chosen sufficiently large, e.g., x = 10, and Pot(L(ui)) =

∑
u∈L(ui) d(Fi−1, u). If the

potential accumulated in ui’s unsatisfied neighborhood is at least f , DetOFL opens a new facility w
at an appropriately selected location in L(ui). If d(Fi−1, ui) ≥ f , the new facility w is located at ui.
Otherwise, the new facility w is located at the center of the smallest radius ball of L(ui) that contains
more than half of L(ui)’s potential3. If a new facility w opens, the demands in L(ui) are marked as
satisfied and are removed from L. If Pot(L(ui)) < f , no new facilities open. Finally, ui is assigned
to the nearest facility in Fi.

3 To achieve a sub-logarithmic competitive ratio, a deterministic algorithm must carefully select the location of the new
facility. In [19, Section 6.1], it is shown that any algorithm similar to DetOFL which opens a new facility at ui (or at
some arbitrary location in L(ui)) must have a competitive ratio of Ω(logn). We also highlight that DetOFL’s choice of
the center of the smallest radius ball that contains most of L(ui)’s potential is conceptually similar (though technically
different) to PD-OFL’s choice of the location with the maximum potential surplus.
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Main Properties and Intuition. DetOFL employs the notion of unsatisfied demands to ensure that
each demand ui can increase the algorithm’s facility cost at most once and by at most d(Fi−1, ui).
Each demand ui becomes unsatisfied upon arrival. As long as it remains unsatisfied, ui holds a poten-
tial equal to its distance to the current algorithm’s configuration, which is at most d(Fi−1, ui). When
it is included in an unsatisfied neighborhood that opens a new facility, ui is marked as satisfied, loses
its potential, and cannot increase the algorithm’s facility cost anymore.

To sketch the analysis of DetOFL, we use the notion of a small ball (or small neighborhood) to
refer to a set of locations which are much closer to each other than to the nearest algorithm’s facility.
The diameter of a small ball is at most 1/λ times the distance of its center to the nearest facility, where
λ is a constant chosen sufficiently larger than x, e.g., λ = 2x+ 1. Intuitively, the demands of a small
ball can be regarded as essentially located at the center of the ball.

Each demand u in a small ballB includes all unsatisfied demands inB in its unsatisfied neighbor-
hood L(u). Hence, the potential accumulated in any small ball B does not exceed the facility opening
cost f . Otherwise, a new facility would have opened in B when its last demand arrived, and B’s
potential would have dropped to 0. This is the main invariant maintained by DetOFL, and can be
regarded as a relaxed version of RandOFL’s property (ii) above.

In fact, the invariant of DetOFL is also a relaxed version of the invariant maintained by PD-OFL.
The idea is that DetOFL maintains its facility configuration so that after each demand ui is processed,
the distances d(Fi, u`), ` ≤ i, respect the dual constraints, but only at a local level. Since the analysis
mostly cares about the algorithm’s cost due to inner demands, which occupy a small ball around an
optimal center, the facility opening rule of DetOFL ensures that each dual constraint is not violated if
only the “local” demands, namely the demands in a small ball around each potential facility location,
are taken into account in the constraints of (DP). It turns out that maintaining dual feasibility only
locally facilitates the proof of an asymptotically optimal competitive ratio for DetOFL.

The second basic property of DetOFL has to do with the location of a new facility. A new facility
w opened by a demand ui is located in the smallest radius ball of L(ui) that contains more than half
of L(ui)’s potential. Therefore, if more than half of L(ui)’s potential is included in a small ball, w is
located very close to it. In particular, if some unsatisfied inner demands included in L(ui) contribute
more than half of L(ui)’s potential, w is located so close to them that the current phase ends. This
property can be regarded as a relaxed version of RandOFL’s property (i) above.

Competitive Analysis. We proceed to show how DetOFL’s relaxed versions of RandOFL’s prop-
erties (i) and (ii) imply an asymptotically optimal competitive ratio. Similarly to the analysis of
RandOFL, we consider a pair of positive integers h, m with mh > n, and focus on a single op-
timal center c and the demands assigned to it in the optimal solution. We break down the analysis into
h+ 2 disjoint phases according to the distance of the algorithm’s facility configuration to c. The j-th
phase, j = h, h − 1, . . . , 0, begins just after a facility within a distance of λmj+1δ∗ to c opens, and
ends as soon as a facility within a distance of λmjδ∗ to c opens. There is also a final phase, following
phase 0, that never ends. The demands which either arrive in the current phase or remain unsatisfied
from the previous phases are classified into inner and outer demands. A demand u is inner for phase
j if d∗u < mjδ∗ and outer otherwise (see also Fig. 4). For the first phase h, all demands are considered
as inner, and for the final phase, all demands are considered as outer.

The distance of an outer demand u to c is so large that both its potential and its assignment cost can
be bounded in terms of d∗u. Thus, we can show that the total potential allocated to the outer demands
and the total algorithm’s assignment cost due to them are both at most (λ(m+ 1) + 1)Asg∗(c).

By definition, the inner demands for any phase j are included in a small ball around c. For sim-
plicity, we refer to the potential of unsatisfied inner demands as the potential of c. The main invariant
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Fig. 4. In the analysis of DetOFL, phase j starts just after a facility in Ball(c, λmj+1δ∗) opens, and ends as soon as a
facility in Ball(c, λmjδ∗) opens. The demands in Ball(c,mjδ∗), namely in the small grey ball around c, are inner and
the remaining demands are outer. Choosing λ sufficiently large, we ensure that (i) each new inner demand includes all
unsatisfied inner demands in its unsatisfied neighborhood, and that (ii) if more than half of the potential for a new facility w
is contributed by unsatisfied inner demands, w is located in Ball(c, λmjδ∗) and phase j ends.

maintained by DetOFL implies that the potential of c never exceeds f . Based on this property, we can
use a potential function argument and bound the algorithm’s facility cost and the algorithm’s assign-
ment cost due to the inner demands. The idea is to trace the changes in the potential of c in each phase
j. Let the potential of c be 0 at the beginning of any phase. Every time an inner demand u arrives
and remains unsatisfied at its assignment time (i.e., u does not open a new facility), the potential of c
increases by u’s assignment cost. Since the potential of c drops to 0 at the end of phase j, the total as-
signment cost of the inner demands which arrive in phase j and remain unsatisfied at their assignment
time is bounded from above by the total decrease in c’s potential during phase j (see also Fig. 5).

The potential of c decreases only if a demand ui opens a new facility w, and either w is closer
to c than any facility in Fi−1, or some unsatisfied inner demands are included in L(ui) and become
satisfied as soon asw opens (or both). Since the potential of c is non-negative and at most f , we charge
the algorithm with a cost of f for any decrease in the potential of c due to a new facility w. Moreover,
the algorithm incurs a facility cost of f for the new facility and a cost no greater than f/x for the
assignment of ui to w. Overall, there is a cost of at most (2 + 1

x)f associated each new facility w.
If the inner demands in L(ui) contribute more than half of its potential, the new facilityw is within

a distance of λmjδ∗ to c, and phase j ends. Otherwise, the potential of L(ui)’s outer demands is at
least f/2. Thus, the cost associated with w is charged to the decrease in the potential of the outer
demands in L(ui), which is in turn charged to their optimal assignment cost. This is possible because
after w opens, the demands in L(ui) become satisfied and are not charged with any additional cost.

Therefore, the total algorithm’s cost due to the demands assigned to c is at most (h+1)(2+ 1
x)f+

2(λ(m + 1) + 1)Asg∗(c). Setting m = h = logn
log logn , we obtain a competitive ratio of Θ( logn

log logn)
against solutions consisting of a single center.

Multiple Optimal Centers. Unfortunately, DetOFL does not allow for an easy generalization of the
analysis above to the case of k > 1 optimal centers c1, . . . , ck. As before, the potential of each
optimal center never exceeds f . However, a single new facility w may now (significantly) decrease
the potential of many optimal centers at the same time. Hence, if we directly apply the argument
above, we may end up with a cost of up to Ω(kf) associated with a new facility w. Such a large cost
cannot be charged to the potential of the unsatisfied demands opening w, as it was sketched above.
Therefore, bounding the decrease in the potential of each optimal center separately can only lead to a
logarithmic upper bound on the competitive ratio.

To establish an asymptotically optimal competitive ratio, [19] develops an approach based on an
appropriate hierarchical decomposition of the metric space consisting of c1, . . . , ck. The decomposi-
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Fig. 5. Bounding the assignment cost of inner demands. Some inner demands arrive as long as w0 is the nearest facility to
the optimal center c and remain unsatisfied at their assignment time. Initially, the potential of each inner demand is equal
to its assignment cost, which is roughly d(w0, c). As soon as a facility w1 closer to c opens, the potential of each inner
demand decreases to d(w1, c). The algorithm is charged with the decrease d(w0, c) − d(w1, c) in the potential of each
unsatisfied inner demand. When facility w2 opens, the current phase ends. The algorithm is charged with the remaining
potential d(w1, c) of each inner demand.

tion defines a hierarchy of optimal center coalitions. A coalition K is a set of centers that are much
closer to each other than to any algorithm’s facility. Therefore, as long as K forms a coalition, the
total potential accumulated by (the unsatisfied inner demands associated with) the optimal centers in
K is at most f . Hence the total decrease in the potential of the centers in K due to a new facility is at
most f . Intuitively, we can think of (and the analysis can treat) K as a single optimal center.

Then, the analysis distinguishes between isolated and non-isolated coalitions. A coalition K is
isolated if K is significantly closer to some algorithm’s facility than to any optimal center outside K.
Therefore, given a collection of disjoint isolated coalitions, a new facility can be closer to, and thus
can decrease the potential of, at most one isolated coalition. Thus, a collection of disjoint isolated
coalitions can be analyzed independently of each other and similarly to the special case where there is
a single optimal center. This implies that DetOFL remains Θ( logn

log logn)-competitive against solutions
consisting of many optimal centers, as long as they can be partitioned into disjoint isolated coalitions.
The key property of the hierarchical decomposition employed in [19] is that no coalition stays non-
isolated for too long. Using this property, one can show that non-isolated coalitions only increase the
competitive ratio by an additive constant term.

Non-Uniform Facility Costs. The generalization of DetOFL to non-uniform facility costs is more in-
volved. It employs the notion of facility types and rounds down the facility costs to the nearest integral
power of 2. When a demand ui arrives, DetOFL marks ui as unsatisfied, determines ui’s unsatisfied
neighborhood L(ui), and calculates the potential of L(ui). The idea of the facility opening rule is to
open a facility of smallest type in a small neighborhood around ui, provided that its opening cost is
no greater than L(ui)’s potential. If there are many facilities of the same (smallest) type sufficiently
close to ui, DetOFL opens the one closest to the center of the smallest radius ball of L(ui) which
contains more than half of L(ui)’s potential. If ui is the only demand in its unsatisfied neighborhood,
a sequence of facilities approaching ui may open. Generalizing the analysis for uniform facility costs,
one can show that DetOFL is Θ( logn

log logn)-competitive for non-uniform facility costs [19, Theorem 3].

3.4 A Simple Deterministic Algorithm for the Plane

DetOFL’s careful selection of each new facility’s location allows for an asymptotically optimal com-
petitive ratio, on the one hand, but affects the algorithm’s efficiency on the other. In fact, DetOFL
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may need to maintain the locations of up to Ω(n) unsatisfied demands and may need up to Ω(n2)
time to process the n-th demand (see also the discussion in [3, Section 2]). Therefore, despite being
a significant contribution towards understanding Online Facility Location from a theoretical point of
view, DetOFL is of limited practical applicability.

Motivated by time and space efficiency considerations, Anagnostopoulos, Bent, Upfal, and Van
Hentenryck [3] formulated a simple, natural, and computationally efficient deterministic online al-
gorithm for Facility Location on the plane (and on spaces of bounded dimension, in general). The
algorithm of Anagnostopoulos et al., or PartOFL in short, achieves a competitive ratio of Θ(log n)
for the plane and of O(2d log n) for d-dimensional spaces.

The operation of PartOFL follows the hierarchical structure of a quadtree. In particular,
PartOFL assumes a hierarchical decomposition of the plane into quadrants with log2 n levels. Level
0 consists of non-overlapping squares of side length f , which we call level-0 quadrants. Each level-j
quadrant has a side length of 2−jf and is partitioned into four level-(j+ 1) children quadrants of side
length 2−(j+1)f . The quadrants are classified into open, which have a facility at their center, active,
which have an open parent and wait for more demands to be associated with them in order to become
open, and inactive, which have yet to become active. Formally, a level-0 quadrant is active if there are
no demands associated with it, and open otherwise. For any j ≥ 1, if the parent of a level-j quadrant is
open, the quadrant is active if there are less than 2j+2 demands associated with it, and open otherwise.
If the parent of a level-j quadrant is either active or inactive, the quadrant is inactive.

PartOFL maintains a partitioning of the plane into active quadrants and associates each new
demand with the active quadrant including it. When a new demand u arrives, PartOFL finds the
active quadrant qu in which u is included, and associates u with qu. Let ju be the level of qu. If either
ju = 0 or 2ju+2 demands have been associated with qu, a new facility opens at the center of qu and u
is assigned to it. Furthermore, qu becomes open and its children become active. Otherwise, qu remains
active and u is assigned to the facility at the center of qu’s parent.

Intuition. The high level idea of PartOFL is the same as the idea behind RandOFL and DetOFL.
Namely, whenever the (facility opening) potential in a given area becomes large enough, the algo-
rithm opens a new facility there, and starts tracking the potential in its subareas. Thus, at the con-
ceptual level, all the three algorithms converge to the optimal centers by (implicitly or explicitly)
considering a hierarchical decomposition of the metric space, and opening new facilities in smaller
and smaller areas, provided that they include a sufficiently large number of demands (once more, it is
worth observing the resemblance to the lower bound construction in Section 2). However, RandOFL
and DetOFL are meant to work for general metric spaces, so they cannot explicitly rely on any fixed
hierarchical decomposition. Thus DetOFL has to calculate explicitly the potential in the neighbor-
hood of each new demand, which turns out to be computationally expensive, and RandOFL resorts
to randomization and implements the same idea, though in a simpler and more efficient way. On the
other hand, PartOFL employs a quadtree, fixed a-priori, and only tracks the potential accumulated in
active quadrants. Relying on a fixed (and particularly simple) hierarchical decomposition makes the
algorithm simpler to implement, considerably faster, and much more space efficient than DetOFL.
In fact, PartOFL enjoys the conceptual simplicity and the time and space efficiency of RandOFL
without resorting to randomization.

Competitive Analysis. PartOFL maintains a partitioning of the plane into active quadrants. Each
active quadrant at level j ≥ 1 has an open facility at one of its corners. Therefore, if a demand u
is associated with an active quadrant at level j, u’s assignment cost is at most 2−j

√
2f . Since each

level-j active (resp. open) quadrant has less than (resp. exactly) 2j+2 demands associated with it, the
assignment cost due to them is at most 4

√
2f .
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A competitive ratio of O(log n) follows by observing that there is an optimal center close to each
open quadrant. More specifically, if q is an open quadrant at level j, we show that there is an optimal
center either in q or in one of the eight level-j quadrants around q. For sake of contradiction, let us
assume that there is no optimal center in any of them. Then the optimal assignment cost due to the
demands associated with q is greater than f if j = 0, and greater than 2j+2 · 2−jf = 4f otherwise.
If j = 0, opening a facility at the location of the demand associated with q costs f and decreases the
demand’s assignment cost to 0. If j ≥ 1, opening a facility at the center of q costs f and decreases
the assignment cost for the demands associated with q to 2

√
2f . In both cases, opening a facility in q

improves the cost of the optimal solution, which is a contradiction.
Therefore, there are at most 9 open quadrants per optimal center at each level. For each of them,

the algorithm incurs a facility cost of f and an assignment cost of at most 4
√

2f due to the demands
associated with it. In addition, each open quadrant has at most 4 active children quadrants at the next
level. For each of them, the algorithm incurs an assignment cost of at most 4

√
2f due to the demands

associated with it. Therefore, PartOFL incurs a total cost of O(f) per level and per optimal center.
Since we can have open and active quadrants in at most log2 n levels, PartOFL’s total cost is at most
O(log n) times the optimal cost.

Additional Properties. Anagnostopoulos et al. show how PartOFL generalizes to the case where
facilities can open only at the demands’ locations, and to the case where facilities can open only at
a fixed set of locations given to the algorithm in advance. The latter is a special case of non-uniform
facility costs, where the opening cost for each location is either f or ∞. In both cases, PartOFL’s
competitive ratio for the plane is O(log n). Moreover, Anagnostopoulos et al. prove that PartOFL
is O(1)-competitive, with high probability, if the demands are nearly uniformly distributed over the
plane, and that for any instance, PartOFL has more or less the same competitive ratio against all
demand orderings. Hence, PartOFL lacks a remarkable property of RandOFL, namely that for any
instance, RandOFL is O(1)-competitive if the demands arrive in random order.

On the practical side, [3] presents an interesting experimental analysis of RandOFL, DetOFL,
and PartOFL. The main message is that after some fine tuning of its parameters, DetOFL slightly
outperforms PartOFL and RandOFL as far as the solution quality is concerned, but it is much more
demanding computationally and much more difficult to implement. On the other hand, PartOFL
achieves a better balance between computational complexity and solution quality, and consistently
outperforms RandOFL.

4 An Incremental Algorithm for Facility Location

We proceed to discuss the incremental variant of Facility Location. In addition to opening new fa-
cilities and assigning new demands to them, an incremental algorithm can merge existing facilities
(and the corresponding demand clusters) with each other. Hence, the irrevocable decisions made by
an incremental algorithm concern only the clusters of demands assigned to the same facility, rather
than the exact location of each facility. Rather surprisingly, [16] proved that for uniform facility costs,
the incremental version of Facility Location admits a constant competitive ratio. In this section, we
present the incremental algorithm of [16] and sketch its competitive analysis.

The algorithm of [16], or IncrFL in short, maintains its facility configuration F0 = ∅, F1, . . . , Fn
and an assignment of the demands processed so far to its facilities in response to the demand sequence
u1, . . . , un. For each facility z ∈ Fi, IncrFL maintains z’s merge radius m(z), the set C(z) of the
demands currently assigned to z, and the set Init(z) ⊆ C(z) of the demands assigned to z upon arrival.
Just after each demand ui is processed, the union of C(z) over all z ∈ Fi must be {u1, . . . , ui}.
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Facility Opening Rule. IncrFL employs a simplified version of the facility opening rule of DetOFL.
When a demand ui arrives, it becomes unsatisfied and is added to the set of unsatisfied demands L.
IncrFL computes ui’s unsatisfied neighborhood L(ui) = Ball(ui, d(Fi−1, ui)/x) ∩ L, where x is a
sufficiently large constant, and its potential Pot(L(ui)) =

∑
u∈L(ui) d(Fi−1, u).

If Pot(L(ui)) ≥ βf , where β is a sufficiently large constant, IncrFL opens a new facility w at the
location of ui. Then w’s merge radius m(w) is initialized to 3d(Fi−1, w)/x, and C(w) and Init(w)
are initialized to ∅. Moreover, the demands in L(ui) are marked as satisfied and are removed from L.
If Pot(L(ui)) < βf , no new facilities open. Finally, ui is assigned to the nearest facility wi ∈ Fi (if
ui opens a new facility w, wi is simply w), and is added to C(wi) and to Init(wi).

Facility Merge Rule. IncrFL employs an elegant merge rule which ensures that each facility z ∈ Fi
is the only facility in its merge ball Ball(z,m(z)). If demand ui opens a new facility w, every facility
z ∈ Fi−1 that includes w in its merge ball Ball(z,m(z)) is merged with w. Namely, every facility
z ∈ Fi−1 with d(z, w) ≤ m(z) is closed and the demands assigned to it are reassigned to w (i.e., for
each such z, Fi = Fi \ {z} and C(w) = C(w) ∪ C(z)).

IncrFL carefully adjusts the merge radius of its facilities. When a new facility w is opens, m(w)
is initialized to 3d(Fi−1, w)/x, namely to thrice the radius of the unsatisfied neighborhood opening
w. Furthermore, as more and more demands are initially assigned to w, the algorithm may decrease
m(w) so as to ensure that no merge operation can dramatically increase the assignment cost of the
demands in Init(w). In particular, IncrFL maintains the invariant that the merge radius m(z) of any
facility z satisfies that:

|Init(z) ∩ Ball(z,m(z)/4)| ·m(z) ≤ βf (2)

So after demand ui is assigned to wi, the algorithm checks whether m(wi) satisfies (2). If not, m(wi)
decreases to the largest value that satisfies (2).

Main Properties and Intuition. To discuss the main properties and sketch the analysis4 of IncrFL,
we use the notation introduced for DetOFL, in Section 3.3. Similarly to DetOFL, IncrFL uses the
notion of unsatisfied demands and ensures that each demand ui can increase the algorithm’s facility
cost at most once and by at most d(Fi−1, ui). Moreover, the facility opening rule ensures that the
potential accumulated in any small ball is at most βf . Choosing β sufficiently large, we ensure that
each new facility w is significantly closer to some optimal center than any of the existing facilities.
More precisely, let ui be a demand opening a new facility w, and let c be the nearest optimal center to
w. One can show that if β ≥ 7, then d(c, w) ≤ d(Fi−1, c)/3.

An important property of the merge rule is that for every facility w, there always exists a fa-
cility in Ball(w, x

x−3m(w)) and the demands currently assigned to w remain assigned to facility in
Ball(w, x

x−3m(w)). This holds because when an existing facility w is merged with a new facility w′,
the merge radius of w′ is at most 3/x times the merge radius of w. Therefore, the merge radii along
any sequence of merge operations are geometrically decreasing (see also Fig. 6.a).

At the conceptual level, instead of pinning each new facility w down to a single location, IncrFL
(irrevocably) determines an entire area, namely Ball(w, x

x−3m(w)), in which a facility should exist
(e.g., because the number of demands in this area is so large that an optimal center must be included
in it). At the beginning, the algorithm does not have enough information about the demand sequence,
and thus the area covered by each facility may (and should) be quite large. This helps the algorithm

4 Focusing on the Euclidean plane, one may obtain a rather accurate picture of IncrFL by thinking of it as an incremental
version of PartOFL that has facilities only in undominated open quadrants, namely in open quadrants that do not include
any smaller open quadrants. When an active child quadrant of an undominated open quadrant becomes open, the facility
in the parent quadrant is merged with the new facility in the child quadrant, and the parent quadrant becomes dominated
by its open child. Of course, there are many substantial technical details hidden behind this intuitive description.
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Fig. 6. (a) If w is merged with a new facility w′, w is open when w′ opens, and thus the merge radius m(w′) of w′ is at
most 3d(w,w′)/x ≤ 3m(w)/x. If w′ is subsequently merged with a new facility w′′, m(w′′) ≤ 3

x
m(w′) ≤ ( 3

x
)2m(w),

and so on. Therefore, the demands currently assigned to w remain assigned to facility in Ball(w, x
x−3

m(w)). (b) Let
w be an unsupported facility opened by demand ui. For simplicity, we let rw ≡ d(Fi−1, w)/x denote the radius
of L(ui). By the definition of unsupported facilities, there is a demand u ∈ L(ui) and an optimal center c at dis-
tance d(c, u) ≤ d(Fi−1, u)/(3x). Since d(w, u) ≤ rw, i.e., u is located much closer to w than to any other facility,
d(Fi−1, u) ≈ d(Fi−1, w). Therefore, d(c, u) is bounded from above by roughly rw/3, and d(c, w) is bounded from above
by roughly 4rw/3. Thus, m(w) = 3rw > 2d(c, w). Any new facility w′ for which c is the nearest optimal center has
d(c, w′) ≤ d(c, w)/3 < m(w)/6. Consequently, d(w,w′) ≤ m(w), and w is merged by the moment when w′ opens.

to keep its facility cost reasonably close to the optimal cost, but as more and more demands arrive,
it may lead to a dramatic increase in the algorithm’s assignment cost due to some merge operation.
Thus, as more and more demands arrive, the algorithm restricts facility w to smaller and smaller areas
either by decreasing m(w) according to (2) or by merging w with some new facility w′, which has a
geometrically smaller merge radius and fulfills Ball(w′, x

x−3m(w′)) ⊆ Ball(w, x
x−3m(w)).

The intuition above naturally leads to a new notion of distance, the so-called extended distance,
that is the distance of a location p to the most distant location in the area covered by some facility.
Formally, the extended distance of a location p to the algorithm’s configuration Fi is:

g(Fi, p) = min
z∈Fi

{
d(z, p) + x

x−3m(z)
}

For the analysis, it is particularly useful that the extended distance of p is non-increasing with time
(note that the distance of a location p to the nearest facility may increase due to some merge operation).
In particular, we use the extended assignment cost of a demand u, namely u’s extended distance to the
current algorithm’s configuration, and bound u’s assignment cost at any future point in time.

Competitive Analysis. In the analysis of online algorithms, we observe a recurrent pattern: In each
phase, the algorithm incurs an assignment cost of roughly f due to the inner demands arriving before
there is a facility close to them, and a facility cost of f for the first such facility. On the other hand, the
algorithm’s cost due to the outer demands can be easily bounded in terms of their optimal assignment
cost. So, the reason that online algorithms end up with an (almost) logarithmic competitive ratio is that
they incur a cost of O(f) due to the inner demands in each phase (this becomes evident if one applies
the analysis of RandOFL and DetOFL for m = 2 and h = log n). Moreover, the lower bound in
Section 2 demonstrates that this is somehow unavoidable for any online algorithm.

Facility Cost. The observation above gives an indication about how the analysis should proceed, at
least as far as the facility cost is concerned. We need not worry about facilities opened by unsatisfied
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demands whose potential is large enough compared against their optimal assignment cost. Hence, if
a demand ui opens a new facility w and every demand u in L(ui) has d∗u ≥ d(Fi−1, u)/(3x), we say
that w is a supported (by the optimal solution) facility. Then, 3x

∑
u∈L(ui) d

∗
u ≥ Pot(L(ui)) ≥ βf ,

and the opening cost of w can be charged to the optimal assignment cost of the unsatisfied demands
in L(ui). Since each demand contributes to the facility cost at most once, the total cost of supported
facilities is at most 3xAsg∗/β.

On the other hand, we should be concerned about unsupported facilities, namely facilities not
fulfilling the criterion above. Intuitively, unsupported facilities correspond to the facilities opened
by unsatisfied inner demands, and there may be up to a logarithmic number of them per optimal
center. However, the merge rule of IncrFL succeeds in eliminating all but the most recent of them.
By definition, the unsatisfied neighborhood opening an unsupported facility w includes a demand
u with d∗u < d(Fi−1, u)/(3x). Namely, u is located 3x times closer to an optimal center c than to
any algorithm’s facility. Using that u lies in w’s neighborhood, one can prove that w’s distance to c is
bounded from above by roughly 4

3d(Fi−1, w)/x, and thusw’s merge radiusm(w), which is initialized
to 3d(Fi−1, w)/x, is more than twice as large as w’s distance to c (and this cannot change because of
(2)). In simple words, the merge ball of any unsupported facility w includes a sufficiently large area
around an optimal center c. Since each new facility w′ for which c is the nearest optimal center is at
least 3 times closer to c than w, w′ is included in w’s merge ball, and thus w is merged by the moment
when w′ opens (see also Fig. 6.b). Therefore, the merge rule ensures that at any point in time, there
is at most one unsupported facility per optimal center. Putting the cost of supported and unsupported
facilities together, we obtain that IncrFL’s facility cost never exceeds Fac∗ + 3xAsg∗/β.

Assignment Cost. Bounding IncrFL’s assignment cost is technically involved. The actual reason
comes from the lower bound in Section 2. A careful look at the lower bound construction reveals
that any algorithm that processes the demands as they arrive and maintains o(log n) facilities per op-
timal center must incur a total cost for the demands’ initial assignment of ω(1) times the optimal cost,
where the initial assignment cost of a demand ui is d(ui, wi), namely equal to ui’s distance to the first
facility to which ui is assigned. Therefore, to establish a constant competitive ratio, the analysis has
to establish that in addition to the facility cost, the merge rule succeeds in decreasing the assignment
cost to a constant times the optimal cost.

As in Sections 3.1 and 3.3, the analysis of the assignment cost distinguishes between inner and
outer demands. But now the analysis is not divided into phases, and inner and outer demands are
defined in an (intuitively similar but) slightly more general way. More precisely, a demand is outer if its
initial assignment cost is within a constant factor of its optimal assignment cost, and inner otherwise.
Using the notion of extended assignment cost, one can show that despite the merge operations, the
assignment cost of an outer demand remains within a constant factor of its optimal assignment cost.

The main concern of the analysis is to bound the total assignment cost of inner demands through-
out the execution of the algorithm. The idea is to show that in a sequence of merge operations, the
assignment cost of (most of) the inner demands involved keeps converging to their optimal assignment
cost. For simplicity, we first sketch the main idea of the analysis for a simple optimal center c and the
inner demands assigned to it in the optimal solution.

The analysis further distinguishes between good and bad inner demands. At the intuitive level, an
inner demand u starts as a good one, and remains good as long as its assignment cost converges to
its optimal assignment cost. While an inner demand is good, we charge the algorithm with its actual
assignment cost. More formally, let w be the facility which is currently the nearest one to c (if c is
the only optimal center, w is just the most recent facility to open). A new inner demand is initially
assigned to w because inner demands are essentially located at c, and because w is (by far) the nearest
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facility to c. The facility opening rule ensures that the total initial assignment cost of the inner demands
arriving as long as w is the nearest facility to c is at most βf .

At some point, a new facility w′ opens. The facility opening rule ensures that w′ is much closer to
c thanw, namely that d(w′, c) ≤ d(w, c)/3, and thusw′ becomes the (new) nearest facility to c. Ifw is
merged with w′, the assignment cost of the inner demands assigned to w decreases at least by a factor
of 2, because w′ is much closer to c than w. Due to such a sequence of merge operations where the
previous nearest facility to c is merged with the next nearest facility to c, some inner demands remain
assigned to the nearest facility to c, and thus their assignment cost keeps converging to their optimal
assignment cost. As long as this happens, the inner demands assigned to the nearest facility to c are
classified as good inner demands. Using the argument above, one can show that the total assignment
cost of good inner demands cannot exceed 2βf plus their optimal assignment cost.

On the other hand, if w, i.e., the previous nearest facility to c, is not merged with w′, i.e., the next
nearest facility to c, the inner demands assigned to c are classified as bad ones. When some inner
demands become bad, they are irrevocably charged with their extended assignment cost, which is an
upper bound on their actual assignment cost at any future point in time. Using (2) and the fact that w’s
merge radius is rather small, one can show that the total extended assignment cost of the inner demands
which become bad when w is not merged with w′ is O(βf) plus their optimal assignment cost. On
the other hand, if w is not merged with w′, w must be a supported facility. Therefore, the optimal
assignment cost of the unsatisfied demands opening w is at least βf/(3x), and can compensate for
the extended assignment cost of the inner demands which become bad due to w. Moreover, since w′

is much closer to c than w, no additional inner demands are assigned to w after w′ opens.
The arguments above imply that for the special case of a single optimal center c, the assignment

cost of IncrFL never exceeds a constant factor times the optimal cost. To generalize the analysis to
multiple optimal centers, we employ the hierarchical decomposition approach developed in [19] for
the analysis of DetOFL. Again, we consider coalitions of optimal centers and distinguish between
isolated and non-isolated coalitions. For IncrFL, (isolated and non-isolated) coalitions are defined
with respect to their extended distance to the algorithm’s configuration, where it is crucial that the
extended distance is non-increasing with time.

The idea is to show that any collection of disjoint isolated coalitions can be analyzed independently
of each other and similarly to the special case where there is a single optimal center. This implies that
IncrFL is O(1)-competitive against solutions consisting of many optimal centers, as long as they can
be partitioned into disjoint isolated coalitions. For non-isolated coalitions, one can employ essentially
the analysis of DetOFL, and show that since no coalition stays non-isolated for too long, non-isolated
coalitions only increase the competitive ratio of IncrFL by an additive constant term.

5 A Relaxed Incremental Model for Facility Location

A relaxed variant of Incremental Facility Location was studied in [17, 13]. In this variant, the irrevo-
cable decisions made by the algorithm concern any increase in the algorithm’s facility cost rather than
the assignment of some demands to the same facility. Hence, in addition to opening new facilities and
merging existing facilities with each other, the algorithms of [17, 13] can also reassign demands to the
nearest facility. However, the algorithm is charged for its maximum facility cost over time, and thus
increasing its facility cost is an irrevocable decision.

5.1 A Memoryless Algorithm with Constant Competitive Ratio
The algorithm of [17] is essentially a streaming algorithm for Facility Location. Similarly to online
and incremental algorithms, streaming algorithms have only sequential access to the input and typi-
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cally make a single pass over the input sequence. However, instead of irrevocable decisions to which
online and incremental algorithms commit themselves, the emphasis of streaming algorithms is on
computational efficiency. The goal of a streaming algorithm is to compute a good approximate solu-
tion in space typically polylogarithmic in the input size, while spending a typically polylogarithmic
processing time per input element.

For Facility Location however, one cannot hope for a streaming algorithm that maintains an O(1)-
approximate facility configuration and is really efficient in the worst case. The reason is that there
are instances where every (near-)optimal solution needs to open Ω(n) facilities, and every O(1)-
approximation algorithm needs to run for Ω(n2) time (see e.g., [42, Section 4]). Thus, Indyk [25]
suggested that an algorithm may maintain only the cost of an approximate facility configuration and
not the configuration itself. For the discrete d-dimensional space, Indyk [25] presented a randomized
algorithm that approximates the optimal cost within a factor of O(d log2 n) in O(npoly(log n)) time
and O(d2 log2 n) space. Subsequently, the approximation ratio was improved to a constant by Lam-
mersen and Sohler [28]. It is worth mentioning that the cost estimator used in [25] is conceptually
similar to PartOFL, and that the cost estimator used for the algorithm of [28] is conceptually similar
to the incremental version of PartOFL discussed in Footnote 4.

Motivated by streaming applications that require an approximate facility configuration and not
just an estimation of the optimal cost, [17] presented a Facility Location algorithm that maintains
an O(1)-approximate facility configuration and uses a minimal amount of computational resources.
The algorithm of [17], or MemlFL in short, processes the demand points one-by-one, as they arrive,
and keeps in memory only the locations of its facilities and some additional information of constant
size per facility. So MemlFL is memoryless, in the sense that it maintains an approximate facility
configuration using essentially just the space required for that. In this sense, RandOFL and PartOFL
are also memoryless, but since they commit themselves to irrevocable decisions about their facility
locations, they suffer from facility proliferation and an (almost) logarithmic competitive ratio.

The Memoryless Algorithm. MemlFL can be regarded as a randomized memoryless version of
IncrFL. MemlFL maintains its facility configuration F0 = ∅, F1, . . . , Fn and the replacement radius
m(z) for each facility z in response to the demand sequence u1, . . . , un.

MemlFL is based on the notion of extended assignment cost, and uses the facility opening
rule of RandOFL and a memoryless version of IncrFL’s merge rule. The extended assignment
cost of a demand u to a facility z is now g(z, u) = d(z, p) + 2m(z). When a demand ui arrives,
MemlFL calculates ui’s extended assignment cost g(Fi−1, ui) = minz∈Fi−1{d(z, ui)} with respect
to the current configuration Fi−1. Demand ui opens a new facility w located at ui with probabil-
ity g(Fi−1, ui)/(βf), where β is a small constant. If a new facility w opens, its replacement radius
m(w) is set to min{g(Fi−1, ui), βf}/6, and any other facility z that includes w in its replacement
ball Ball(z,m(z)) is replaced5 by w. Namely, each z ∈ Fi−1 with d(z, w) ≤ m(z) is removed from
Fi. Intuitively, w replaces all facilities whose removal from Fi does not increase the extended distance
of any location. The total cost of MemlFL just after demand ui is processed is:

max
1≤`≤i

{|Fi| f}+
i∑

`=1

d(Fi, u`) (3)

Competitive Analysis. Combining ideas from the analyses of IncrFL and RandOFL, one can show
that the competitive ratio of MemlFL is less than 14. Using the notions of supported and unsupported

5 Even though the facility replacement rule of MemlFL is almost identical to the facility merge rule of IncrFL, we use the
term “replacement” because we wish to emphasize that when z is replaced byw, each demand assigned to z is reassigned
to the nearest facility available (and not necessarily to w, as it happens when z is merged with w in IncrFL).
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facilities, as in the analysis of IncrFL, one can show that the expected facility cost of MemlFL is at
most Fac∗ plus a (small) constant times Asg∗.

Though similar, the analysis of MemlFL’s assignment cost is simpler than that of IncrFL. This
happens not only because MemlFL is simpler than IncrFL, but mostly because the demands are now
reassigned to the nearest facility without any restrictions. As in the analysis of IncrFL, the extended
distance of any location to the algorithm’s configuration is non-increasing with time. We use the
extended distance of an optimal center c and break down the analysis of the assignment cost for the
demands assigned to it into a number of disjoint phases, numbered 0, 1, . . . as the time goes. For every
integer j ≥ 0, the j-th phase begins when the extended distance of c becomes less than f/2j−1 and
ends when the extended distance of c becomes less than f/2j . A demand u arriving in phase j is
inner if d∗u < f/(2jλ), where λ is a constant chosen sufficiently large, and outer otherwise. Thus,
when an outer demand u arrives, its extended assignment cost is at most (2λ+ 1)d∗u. Thus the actual
assignment cost of an outer demand u never exceeds (2λ+ 1)d∗u.

Provided that λ is large enough, the inner demands arriving in the current phase can be regarded
as essentially located at the optimal center c. Using this intuition, one can prove (i) that the current
phase ends as soon as an inner demand opens a new facility, and (ii) that every inner demand arriving
in phase j opens a new facility with probability roughly 1/(2jβ). Therefore, the expected number of
inner demands arriving in phase j is roughly 2jβ and the expected number of inner demands arriving
up to the end of phase j is roughly 2j+1β. As long as c is in phase j, the extended assignment cost
of every demand is at most f/2j−1 plus its optimal assignment cost. Therefore, the total expected
extended assignment cost of the inner demands arriving up to the end of phase j (with respect to any
algorithm’s configuration in phase j) is roughly 4βf plus their optimal assignment cost.

Hence, the expected assignment cost of MemlFL for the demands assigned to c is bounded from
above by roughly 4βf plus (2λ + 1)Asg∗(c). Putting everything together and optimizing the choice
of β and λ, we obtain that the competitive ratio of MemlFL is less than 14.

Non-Uniform Facility Costs. In [17, Section 3], it is shown that MemlFL generalizes to non-uniform
facility costs and achieves a competitive ratio of less than 49.

5.2 Incremental Facility Location with Facility Moves

The model of Incremental Facility Location with facility moves of Divéki and Imreh [13] is a further
relaxation of the model of [17]. The algorithm of [13] is not memoryless and can move its facilities
anywhere when a new demand arrives, but as in [17], its is charged for its maximum facility cost over
time, and thus increasing its number of facilities is an irrevocable decision.

The algorithm of [13], or MoveFL, maintains its facility configuration F0, F1, . . . , Fn in response
to the demand sequence u1, . . . , un. When a demand ui arrives, MoveFL uses an offline algorithm
Alg1 and solves the Facility Location instance for demands u1, . . . , ui. Let F ∗i be the facility configu-
ration computed by Alg1 for the demands up to ui. If |Fi−1| ≤ |F ∗i |, MoveFL adopts F ∗i as its current
facility configuration Fi. Otherwise, MoveFL solves the |Fi−1|-Median instance for the demands up
to ui by an offline algorithm Alg2, and adopts the solution of Alg2 as its current facility configuration
Fi. The total cost of MoveFL just after demand ui is processed is again given by (3).

Divéki and Imreh proved that the competitive ratio of MoveFL is c1(1+c2), where c1 (resp. c2) is
the approximation ratio of algorithm Alg1 (resp. Alg2) for Facility Location (resp. k-Median). If Alg1
and Alg2 are exact algorithms, [13] shows that MoveFL is 2-competitive for general metric spaces
and 3/2-competitive on the line. On the negative side, [13] shows that the competitive ratio of any
incremental algorithm for the relaxed model with facility moves is at least 1.15, even if the metric
space is a line segment.
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6 Application to Streaming and Incremental Algorithms for k-Median

A few streaming algorithms for k-Median draw ideas and techniques from previous work on on-
line and incremental algorithms for Facility Location, especially from the memoryless algorithms of
Meyerson [33] and Anagnostopoulos et al. [3]. For instance, the best known streaming algorithm for
k-Median on general metric spaces [10] uses RandOFL as its main building block (see also [23]),
and the coreset construction employed in the streaming algorithm of [21] for k-Median on the discrete
d-dimensional space is conceptually similar to the approach of PartOFL. In this section, we discuss a
generic way of turning any online or incremental algorithm for Facility Location into an incremental
or streaming algorithm for k-Median with similar performance characteristics. We also discuss how
this general approach is employed in the streaming algorithm of [10] and in the incremental algorithm
of [16], where the main building blocks are RandOFL and IncrFL, respectively.

Generic Algorithm. The idea is to exploit the intrinsic similarity between Facility Location with
uniform facility costs and k-Median. In fact, any feasible solution for an instance of k-Median can
be regarded as a feasible solution for an instance of Facility Location on the same set of demands.
Moreover, if the facility cost f is chosen appropriately, the Facility Location algorithm computes a
solution with not much more than k facilities and an assignment cost reasonably close to the optimal
assignment cost for the k-Median instance. We note that a few approximation algorithms for k-Median
are based on the same idea (see e.g., [9, 27]), and that the same approach has been applied to the
incremental algorithms for k-Center [8] and Sum k-Radius [11].

To sketch the main idea, we let Alg be any online or incremental algorithm for Facility Location.
We assume that for any (uniform) facility cost f and any demand sequence, the facility and the as-
signment cost of the solution maintained by Alg are both at most ψFac∗+ ρAsg∗, where ψ, ρ > 1 are
determined by Alg’s competitive analysis (if Alg is a randomized algorithm, we consider its expected
facility and assignment cost). For example, we can use ψ = 1 + log n and ρ = 4 for RandOFL,
ψ = Θ(log n) and ρ = O(1) for DetOFL, and ψ = O(1) and ρ = O(1) for IncrFL and MemlFL.

Let u1, . . . , un be any demand sequence, and let F ∗, |F ∗| = k, be an optimal k-median config-
uration and OPT be its assignment cost for u1, . . . , un. We consider the application of Alg to the
demand sequence u1, . . . , un with a facility cost of f = Λ/(kψ), where Λ > 0 is meant to be an
estimation of OPT, and bound the number of facilities and the assignment cost of Alg. For the Fa-
cility Location instance processed by Alg, F ∗ gives a solution with a facility cost of Λ/ψ and an
assignment cost of OPT. Therefore, the facility and the assignment cost of the solution maintained
by Alg are both at most Λ + ρOPT. Since the cost for each facility is Λ/(kψ), the number of facili-
ties maintained by Alg is at most kψ(1 + ρOPT/Λ). Thus, if Λ is within a constant factor of OPT,
e.g., if OPT ≤ Λ ≤ µOPT, for some constant µ > 1, Alg maintains a (ρ + µ)-approximation to
the optimal solution for the k-Median instance using at most kψ(1 + ρ) medians. The idea is to use
doubling, a standard tool in online algorithms and competitive analysis (see e.g., [12]), and maintain
incrementally an appropriate estimation Λ of OPT.

Hence, using Alg as a building block, we obtain an incremental (or streaming) algorithm for
k-Median that operates in phases. Each phase i employs an estimation Λi of the optimal cost and
invokes Alg with a facility cost of Λi/(kψ). The previous phase i − 1 ends with at most kψ(1 + ρ)
medians whose assignment cost for the demand sequence processed in phase i− 1 is no greater than
(1+ρ)Λi−1. The medians produced by phase i−1 are weighted by the number of demands assigned to
each of them. Then phase i invokes Alg with a facility cost of Λi/(kψ) first on the weighted medians
produced by phase i − 1 and then on the demands yet to be processed, as they arrive. Phase i lasts
as long as the number of medians maintained by Alg is at most kψ(1 + ρ) and the assignment cost
for the demand sequence processed in phase i is no greater than (1 + ρ)Λi. The first time that a new

25



demand u is about to increase either the number of medians above kψ(1 + ρ) or the assignment cost
above (1+ρ)Λi, phase i ends (without processing u), and phase i+1 begins with Λi+1 = (2ρ+3)Λi.

Competitive Analysis. The total assignment cost of the algorithm above for the demands processed up
to the end of phase i− 1 to the medians produced by phase i− 1 is:

costi−1 ≤ (ρ+ 1)Λ1 + (ρ+ 1)Λ2 + . . .+ (ρ+ 1)Λi−1

The first term on the right-hand side is an upper bound on the cost for the assignment of the demands
processed in the first phase to the weighted medians produced by the first phase, the second term is
an upper bound on the cost for the assignment of the weighted medians of the first phase and the
demands processed in the second phase to the weighted medians produced by the second phase, and
so on. Since Λ’s increase geometrically by a factor of (2ρ+ 3), costi−1 ≤ 2ρ+3

2 Λi−1 = Λi/2.
Due to Alg’s performance guarantee, when phase i ends, the optimal cost OPT′i for the demand

sequence processed in phase i (along with the last demand u) is greater than Λi. Of course, OPT′i may
be larger than OPT because the first part of the demand sequence processed in phase i consists of the
weighted medians produced by phase i − 1 (instead of the original demands assigned to them). But
since the total distance of the original demands to the weighted medians produced by phase i− 1 is at
most costi−1, OPT′i ≤ OPT+costi−1 (see e.g., [24, Theorem 2.3] for a detailed proof of this claim).
Since Λi < OPT′i and costi−1 ≤ Λi/2, we obtain that Λi < 2OPT and that Λi+1 < 2(2ρ+ 3)OPT.
Therefore, the assignment cost of the demands processed up to the end of phase i+ 1 to the medians
maintained by phase i + 1 is at most 2ρ+3

2 Λi+1 ≤ (2ρ + 3)2OPT. Hence, the algorithm above
maintains incrementally a configutation of at most kψ(1 + ρ) medians with an assignment cost of
(2ρ+ 3)2 times the optimal assignment cost for the corresponding k-Median instance.

Streaming Algorithm for k-Median on General Metrics. Employing the generic algorithm above
with RandOFL as the main building block, Charikar, O’Callaghan, and Panigrahy [10] obtained the
best known streaming algorithm for k-Median on general metric spaces. The algorithm of Charikar et
al., or Stream in short, achieves a constant approximation ratio, with polynomially high probability,
and runs in O(k log2 n) space and in O(nk log2 n) time. Stream can also be regarded as an incremen-
tal algorithm for k-Median that achieves a constant competitive ratio using O(k log2 n) medians.

Stream follows the generic algorithm above with a subtle difference dictated by the fact that
RandOFL’s performance guarantee holds only on expectation. Thus, each phase i of Stream employs
Θ(log n) independent parallel invocations of RandOFL, with each invocation ending when either its
number of facilities becomes greater than 4kψ(1 + ρ) or its assignment cost becomes greater than
4(1 +ρ)Λi. Phase i ends when all invocations of RandOFL end, and the weighted medians produced
by the invocation finished last are passed to the next phase.

By RandOFL’s performance guarantee and Markov’s inequality, the probability that an invoca-
tion of RandOFL in phase i ends before OPT′i exceeds Λi is at most 1/2. Therefore, the probability
that any fixed phase i ends before OPT′i exceeds Λi is polynomially small. Moreover, one can show
that there are at most n phases, and thus, with polynomially high probability, all phases i end after
their OPT′i’s exceed their Λi’s. Except for this technical issue, the analysis of Stream is as above.
The only difference is that Λ’s should scale a bit faster, which increases the competitive ratio by a
small constant factor. Since for RandOFL, we can have ψ = 1 + log n and ρ = 4, Stream maintains
O(k log2 n) medians and achieves a constant competitive ratio with polynomially high probability.

Incremental Algorithm for k-Median. Employing the generic algorithm above with IncrFL as the
main building block, [16] obtained a deterministic incremental algorithm for k-Median which achieves
a constant competitive ratio using O(k) medians. Thus, [16] resolved an open question by Charikar
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and Panigrahy [11], who proved that any deterministic incremental algorithm for k-Median that main-
tains at most (1 + ε)k medians must have a competitive ratio of Ω(1/ε), and posed as an open prob-
lem the existence of an incremental algorithm which maintains O(k) medians and achieves a constant
competitive ratio.

Although the algorithm of [16] is an improvement on Stream with respect to the number of
medians, it is much slower and dramatically more space consuming. An interesting open question
is whether one can use the generic algorithm above with MemlFL (or with some other memory-
less O(1)-competitive algorithm for Facility Location). This could lead to an improved incremental /
streaming algorithm for k-Median on general metric spaces with O(k log n), or even O(k), medians
(and a similar space consumption) and a running time of O(nk log n), or even of O(nk). The main
technical issue with MemlFL is that it does not maintain (a good estimation of) the demands’ assign-
ment cost with respect to the current facility configuration (see also the discussion in [17, Section 1]).
Hence, it is not clear how one can determine whether the assignment cost in the i-th phase of the
generic algorithm has exceeded (1 + ρ)Λi or not.

7 Other Applications and Related Work

We conclude this survey with a brief discussion of some work on approximation and online algorithms
for Facility Location that either draws ideas and techniques from or is related to the work on online
and incremental algorithms presented before.

Computational Efficiency. In the offline setting, where the demands are known in advance, one can
apply RandOFL to a random permutation of the demands and obtain an O(1)-approximate facility
configuration in time O(n2), i.e., linear in the size of the input. Although the approximation ratio
is considerably worse than the best known approximation ratio for Facility Location, one can use
RandOFL as a preprocessing step and improve the computational efficiency of some known algo-
rithms. For instance, Meyerson [33, Section 5] showed how one can apply RandOFL as a prepro-
cessing step and improve the running time of the local search algorithm of Charikar and Guha [9]
from O(n2/ε + n2 log n) to O(n2/ε). Along the same lines, Guha et al. [23, Section 4.3] showed
how a good initial solution computed by RandOFL on specific parts of the input can improve the
computational efficiency of their streaming algorithm for k-Median.

Non-Metric Facility Location. Alon, Awerbuch, Azar, Buchbinder, and Naor [1] studied the non-
metric version of Online Facility Location, where the distances need not satisfy the triangle inequality.
Building on their work on Online Set Cover [2], Alon et al. presented a randomized O(log n logm)-
competitive algorithm for non-metric Facility Location, where n is the number of demands and m is
the number of potential facility locations. The algorithm employs an elegant primal-dual algorithm
which is O(logm)-competitive for the fractional version of the problem, where the algorithm can
open a facility to any extent between 0 and 1, and a randomized rounding procedure, which is applied
in an online fashion and increases the competitive ratio by a factor of O(log n). On the negative side,
the non-metric version of Online Facility Location is a generalization of Online Set Cover. Therefore,
the lower bound of Ω( logm logn

log logn+log logm) on the competitive ratio of any deterministic algorithm for
Online Set Cover proven in [2] also applies to the non-metric version of Online Facility Location.

Facility Leasing. Nagarajan and Williamson [35] studied the problem of Facility Leasing, an inter-
esting generalization of Facility Location introduced by Anthony and Gupta [4]. Facility Leasing is
motivated by practical applications where the demands and the facilities serving them have a limited
lifespan, rather than being permanent, and the facility costs obey economies of scale and are given by
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a non-decreasing concave function of their lifespan. Thus, in Facility Leasing, the set of demands may
change over time and the facility costs depend on the time length for which the facilities stay open.

More precisely, the input consists of a set of demands Dt which are active on each day t, and K
possible lease types for each potential facility location. Each lease type determines the lease cost and
the time length for which the facility stays open. Namely, for each lease type k, a facility z can be
leased at any day t for lk days at a cost of fkz , i.e., the facility z is open from day t until day t+ lk− 1,
and any demand u active on some day τ , t ≤ τ ≤ t+ lk − 1, can be assigned to z at a cost of d(z, u).
The goal is to minimize the total cost of facility leases plus the total cost of assigning the demands in
each set Dt to some facility open at day t.

For the offline version of Facility Leasing, Nagarajan and Williamson proved that an elegant mod-
ification of the primal-dual algorithm of Jain and Vazirani [27] gives an approximation ratio of 3.

In the online version of Facility Leasing, the potential facility locations and their lease types are
given to the algorithm in advance. In each day t, the demands inDt arrive online and must be assigned
to an open facility upon arrival. In fact, Online Facility Leasing is an interesting generalization of both
Online Facility Location and Online Parking Permit [34]. Nagarajan and Williamson [35] presented
a primal-dual O(K log n)-competitive algorithm for Online Facility Leasing. At the conceptual level,
the algorithm of [35] combines PD-OFL with Meyerson’s O(K)-competitive deterministic algorithm
for Parking Permit [34].

An interesting problem left open by [35] is to determine the competitive ratio of deterministic
and randomized algorithms for Online Facility Leasing. The best known lower bounds are Ω(K +
logn

log logn) and Ω(logK + logn
log logn) respectively, and follow from the lower bounds on the competitive

ratio of Online Facility Location [19] and Online Parking Permit [34]. Hence, it would be interesting
to know whether the competitive ratio of Online Facility Leasing is Ω(K logn

log logn) for deterministic

and O(logK logn
log logn) for randomized algorithms, or there are online algorithms with a considerably

better competitive ratio, close to the best known lower bounds. In simple words, we ask whether the
spatial and the temporal dimensions of the problem are really independent from each other, or one can
somehow combine the information collected for each of them and improve the competitive ratio.

Strategyproof Mechanisms for Facility Location Games. In the field of Algorithmic Game The-
ory, there has been a significant recent interest in approximate strategyproof and group strategyproof
mechanisms for Facility Location Games, where a number of facilities are placed in a metric space
based on the preferences of strategic agents (see e.g., [37, 30, 29, 20]). In a Facility Location game, n
agents report their locations to a mechanism, which based on them, determines a set of facilities to
open. The agents are selfish, and seek to minimize their own assignment cost, namely the distance of
their (true) location to the nearest facility. In fact, an agent may even falsely report her location in an
attempt of manipulating the mechanism. The mechanism cannot give any monetary incentives to the
agents (or compensate them in any other way), and should be strategyproof, i.e. should ensure that no
agent can benefit from misreporting her location, or even group strategyproof, i.e. should ensure that
for any group of agents misreporting their locations, at least one of them does not benefit. At the same
time, the mechanism should optimize, or at least approximate, some reasonable notion of social cost.

Recent work on strategyproof mechanisms for Facility Location games adopts k-Median as the
prevailing notion of social cost. Namely, the mechanism seeks to minimize the assignment cost for all
agents, given k facilities to open. However, known impossibility results suggest that even in some very
simple settings, such as 1-Median on non-tree metrics and 2-Median on the line, the optimal solution
is not strategyproof (see e.g., [38, 37]). Therefore, recent work mostly focuses on the approximability
of some simple special cases of k-Median, such as 1-Median on general metrics and 2-Median on the
line, by deterministic and randomized strategyproof mechanisms (see e.g., [37, 30, 29]).
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Motivated by the absence of any positive or negative results if the mechanism may open more than
2 facilities, [20] investigated the approximability of Facility Location by deterministic and randomized
(group) strategyproof mechanisms. Among other results, [20] proved that a variant of PartOFL is
group strategyproof and achieves an approximation ratio of O(log n) for Facility Location on the real
line. Moreover, [20] introduced the notion of winner-imposing mechanisms, which require that if a
facility is placed at an agent’s reported location, the agent should connect to it, and proved that the
winner-imposing version of RandOFL is strategyproof. Therefore, applying RandOFL to a random
permutation of the agents’ locations, [20] obtained an 8-approximate randomized winner-imposing
strategyproof mechanism for Facility Location on general metric spaces. A really interesting point
is that the results of [20] may suggest a more general connection between approximate mechanism
design without monetary transfers and online optimization.
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