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Abstract. We considerK-Facility Location games, where n strategic agents report their locations in a metric space,
and a mechanism maps them toK facilities. The agents seek to minimize their connection cost, namely the distance
of their true location to the nearest facility, and may misreport their location. We are interested in deterministic
mechanisms that are strategyproof, i.e., ensure that no agent can benefit from misreporting her location, do not
resort to monetary transfers, and achieve a bounded approximation ratio to the total connection cost of the agents
(or to the Lp norm of the connection costs, for some p ∈ [1,∞) or for p =∞).
Our main result is an elegant characterization of deterministic strategyproof mechanisms with a bounded approxi-
mation ratio for 2-Facility Location on the line. In particular, we show that for instances with n ≥ 5 agents, any such
mechanism either admits a unique dictator, or always places the facilities at the leftmost and the rightmost location
of the instance. As a corollary, we obtain that the best approximation ratio achievable by deterministic strategyproof
mechanisms for the problem of locating 2 facilities on the line to minimize the total connection cost is precisely
n − 2. Another rather surprising consequence is that the TWO-EXTREMES mechanism of (Procaccia and Tennen-
holtz, EC 2009) is the only deterministic anonymous strategyproof mechanism with a bounded approximation ratio
for 2-Facility Location on the line.
The proof of the characterization employs several new ideas and technical tools, which provide new insights into
the behavior of deterministic strategyproof mechanisms forK-Facility Location games, and may be of independent
interest. Employing one of these tools, we show that for every K ≥ 3, there do not exist any deterministic anony-
mous strategyproof mechanisms with a bounded approximation ratio for K-Facility Location on the line, even for
simple instances with K + 1 agents. Moreover, building on the characterization for the line, we show that there do
not exist any deterministic strategyproof mechanisms with a bounded approximation ratio for 2-Facility Location
on more general metric spaces, which is true even for simple instances with 3 agents located in a star.
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1 Introduction

We consider K-Facility Location games, where K facilities are placed in a continuous metric space based
on the preferences of n strategic agents. Such problems are motivated by natural scenarios in Social Choice,
where the government plans to build a fixed number of public facilities in an area (see e.g. [13]). The choice
of the locations is based on the preferences of local people, or agents. So each agent reports her ideal
location, and the government applies a mechanism mapping the agents’ preferences to K facility locations.
The government’s objective is to minimize the social cost, namely the total distance of the agents’ locations
to the nearest facility. On the other hand, the agents seek to minimize their individual cost, namely the
distance of their location to the nearest facility. In fact, an agent may even misreport her ideal location in
an attempt of manipulating the mechanism. Therefore, the mechanism should be strategyproof, i.e., should
ensure that no agent can benefit from misreporting her location. Moreover, to compute a socially desirable
outcome, the mechanism should achieve a reasonable approximation to the optimal social cost.
Previous Work. In addition to strategyproofness, which is an essential property of any mechanism, So-
cial Choice suggests a few additional efficiency-related properties, e.g., onto, non-dictatorship, and Pareto-
efficiency, that usually accompany strategyproofness, and ensure that the mechanism’s outcome is socially
desirable (or at least tolerable). There are several examples of beautiful characterization theorems which
state that for a particular domain, the class of strategyproof mechanisms with some efficiency-related prop-
erties coincides with a rather restricted class of mechanisms (see e.g., [2]). A notable example of a problem
admitting a rich class of strategyproof mechanisms is that of locating a single facility on the real line, where
the agents’ preferences are single-peaked. The classical characterization of Moulin [14] shows that the class
of strategyproof mechanisms for 1-Facility Location on the line coincides with the class of generalized me-
dian voter schemes. Schummer and Vohra [17] proved that this characterization extends to tree metrics,
while for non-tree metrics, any onto strategyproof mechanism is a dictatorship. Recently, Dokow et al. [4]
obtained characterizations, similar in spirit to those in [14, 4], for the class of onto strategyproof mechanisms
for 1-Facility Location on the discrete line and on the discrete circle.

Adopting an algorithmic viewpoint, Procaccia and Tennenholtz [16] introduced the framework of ap-
proximate mechanism design without money. The idea is to consider game-theoretic versions of optimization
problems, where a social objective function summarizes (or even strengthens) the efficiency-related proper-
ties. Any reasonable approximation to the optimal solution can be regarded as a socially desirable outcome,
and we seek to determine the best approximation ratio achievable by strategyproof mechanisms. For ex-
ample, the results of [14, 17] imply that 1-Facility Location in tree metrics can be solved optimally by a
strategyproof mechanism. On the other hand, the negative result of [17] implies that the best approximation
ratio achievable by deterministic mechanisms for 1-Facility Location in general metrics is n− 1.

Procaccia and Tennenholtz [16] considered several location problems on the real line, and obtained up-
per and lower bounds on the approximation ratio achievable by strategyproof mechanisms. For 2-Facility
Location, they suggested the TWO-EXTREMES mechanism, that places the facilities at the leftmost and the
rightmost location, and achieves an approximation ratio of n− 2. On the negative side, they proved a lower
bound of 3/2 on the approximation ratio of any deterministic mechanism, and conjectured that the lower
bound for deterministic mechanisms is Ω(n). Subsequently, Lu et al. [11] strengthened the lower bound for
deterministic mechanisms to 2, established a lower bound of 1.045 for randomized mechanisms, and pre-
sented a simple randomized n/2-approximation mechanism. Shortly afterwards, Lu et al. [10] significantly
improved the lower bound for deterministic mechanisms to (n− 1)/2. On the positive side, they presented
a deterministic (n − 1)-approximation mechanism for 2-Facility Location on the circle, and proved that a
natural randomized mechanism, the so-called PROPORTIONAL mechanism, is strategyproof and achieves an
approximation ratio of 4 for 2-Facility Location in any metric space. Lu et al. [10] observed that although
PROPORTIONAL is not strategyproof for more than two facilities, its combination with TWO-EXTREMES

results in a randomized (n− 1)-approximation mechanism for 3-Facility Location on the line.
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Motivation and Contribution. Facility Location games are among the central problems in the research
agenda of mechanism design without money, and have received considerable attention. Our work is moti-
vated by the apparent difficulty of obtaining any strong(er) positive results on the approximability of K-
Facility Location by deterministic mechanisms. In fact, among the main open problems of [10] were (i) to
determine the best approximation ratio achievable by deterministic mechanisms for 2-Facility Location on
the line, (ii) to investigate the existence of deterministic mechanisms with a bounded approximation ratio
for K-Facility Location with K ≥ 3, and (iii) to investigate the existence of deterministic mechanisms with
a bounded approximation ratio for 2-Facility Location in metric spaces other than the line and the circle. In
this work, we resolve the first question, and obtain strong negative results for the second and the third.

Attacking these questions requires a complete understanding of the behavior of deterministic strate-
gyproof mechanisms for K-Facility Location, similar to that offered by characterizations in Social Choice.
Hence, we suggest an approach in the intersection of Social Choice and mechanism design without money.
More specifically, following the approach of mechanism design without money, we focus on what we call
nice mechanisms, namely deterministic strategyproof mechanisms with an approximation ratio bounded by
some function of n and K, and following the approach of Social Choice, we embark on a characterization
of nice mechanisms, instead of seeking stronger lower bounds based on carefully selected instances, as e.g.,
in [16, 11, 10]. Although for simplicity and clarity, we focus on the objective of social cost, we highlight that
the class of nice mechanisms is very general and essentially independent of the choice of the social objective
function. E.g., any mechanism with a bounded approximation ratio for the objective of minimizing the Lp
norm of the agents’ distances to the nearest facility is nice, for any p ≥ 1 or for p =∞, since it also achieves
a bounded approximation for the objective of social cost. The same holds for the objectives of Sum-K-Radii
and Sum-K-Diameters, and to the best of our knowledge, for any other natural K-location objective. Thus,
to a very large extent, a characterization of nice mechanisms retains the generality of characterizations in
Social Choice, since it captures all, but some socially intolerable, strategyproof mechanisms.

On the other hand, focusing on nice mechanisms facilitates the characterization, since it excludes sev-
eral socially intolerable strategyproof mechanisms, such as mechanisms with two dictators. Nevertheless,
any characterization of nice mechanisms, even for two facilities, remains an intriguing task, because the
preferences are not single-peaked anymore, there is no apparent notion of monotonicity (as e.g., in [9]), and
the combinatorial structure of the problem is significantly more complicated than that for a single facility.

Our main result is an elegant characterization of nice mechanisms for 2-Facility Location on the line.
We show that any nice mechanism for n ≥ 5 agents either admits a unique dictator, or always places the
facilities at the two extremes (Theorem 3.1). A corollary is that the best approximation ratio achievable by
deterministic mechanisms for 2-Facility Location on the line is n−2. Another rather surprising consequence
is that TWO-EXTREMES is the only anonymous nice mechanism for 2-Facility Location on the line.

The proof of Theorem 3.1 proceeds by establishing the characterization at three different levels of gen-
erality: 3-agent, 3-location, and general instances. Along the way, we are developing stronger and stronger
technical tools that fully describe the behavior of nice mechanisms. To exploit locality, we first focus on well-
separated instances with 3 agents, where an isolated agent is served by one facility, and two nearby agents
are served by the other facility. Interestingly, we identify two large classes of well-separated instances where
any nice mechanism should keep allocating the latter facility to the same agent (Propositions 2.3 and 2.4).
Building on this, we show that the location of the facility serving the nearby agents is determined by a gen-
eralized median voter scheme, as in [14], but with a threshold depending on the location and the identity of
the isolated agent, and then extend this property to general instances with 3 agents (see Fig. 1). The next
key step is to show that the threshold of each isolated agent can only take two extreme values: one corre-
sponding to the existence of a partial dictator, and one corresponding to allocating the facility to the furthest
agent (Lemma 4.6). Then, considering all possible cases for the agents’ thresholds, we show that any nice
mechanism for 3 agents either places the facilities at the two extremes, or admits a partial dictator, namely
an agent allocated a facility for all, but possibly one, of agent permutations (Theorem 3.2).
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Next, we employ the notion of partial group strategyproofness [10, Section 3], and a new technical tool
for moving agents between different coalitions without affecting the mechanism’s outcome (Lemma 5.1),
and show that any nice mechanism applied to 3-location instances with n ≥ 5 agents either admits a (full)
dictator, or places the facilities at the two extremes (Theorem 3.3). Rather surprisingly, this implies that nice
mechanisms for 3 agents are somewhat less restricted than nice mechanisms for n ≥ 5 agents. Finally, in
Section 6, we employ induction on the number of different locations, and conclude the proof of Theorem 3.1.

In addition to extending the ideas of [14] to 2-Facility Location games and to exploiting the notions
of image sets and partial group strategyproofness, in the proof of Theorem 3.1, we introduce a few new
ideas and technical tools, which provide new insights into the behavior of nice mechanisms for K-Facility
Location games, and may be of independent interest. Among them, we may single out the notion of well-
separated instances and the idea of reducing K-Facility Location in well-separated instances to a single
facility game between the two nearby agents, the ideas used to extend the facility allocation from well-
separated instances to general instances, the use of thresholds to eliminate non-nice mechanisms, and the
technical tool of moving agents between different coalitions without affecting the outcome.

ForK ≥ 3 facilities, we show that there do not exist any deterministic anonymous strategyproof mecha-
nisms with a bounded approximation ratio, which holds even for well-separated instances withK+1 agents
on the line (Theorem 7.1). For 2-Facility Location in metric spaces more general than the line and the circle,
we show that there do not exist any deterministic strategyproof mechanisms with a bounded approximation
ratio, which holds even for simple instances with 3 agents located in a star (Theorem 8.1). Both results
are based on the technical tools for well-separated instances developed in the proof of Theorem 3.1, thus
indicating the generality and the potential applicability of our techniques. At the conceptual level, the proof
approach of Theorem 3.1 and the proofs of Theorem 7.1 and Theorem 8.1 imply that the instances with
K + 1 agents are among the hardest ones for deterministic K-Facility Location mechanisms.

Other Related Work. In Social Choice, the work on multiple facility location games mostly focuses on
Pareto-efficient strategyproof mechanisms that satisfy replacement-domination [13], and on Pareto-efficient
mechanisms whose outcome is consistent with the decisions of the agents served by the same facility [3, 8].
However, these conditions do not have any immediate implications for the approximability of the social cost
(or of any other social objective), and thus, we cannot technically exploit these results.

Locating a Single Facility. Alon at al. [1] almost completely characterized the approximation ratios achiev-
able by randomized and deterministic mechanisms for 1-Facility Location in general metrics and rings. Next,
Feldman and Wilf [6] proved that for the L2 norm of the distances to the agents, the best approximation ratio
is 1.5 for randomized and 2 for deterministic mechanisms. Moreover, they presented a class of randomized
mechanisms that includes all known strategyproof mechanisms for 1-Facility Location on the line.

Locating Multiple Facilities. For K ≥ 4, the case of K + 1 agents is the only case where a (randomized)
strategyproof mechanism with a bounded approximation ratio is known. Escoffier at al. [5] proved that in
this case, the INVERSELY PROPORTIONAL mechanism is strategyproof and achieves an approximation ratio
of (K + 1)/2 for K-Facility Location in general metric spaces. Interestingly, Theorem 7.1 shows that these
instances are among the hardest ones for deterministic anonymous mechanisms.

Imposing Mechanisms. Nissim at al. [15] introduced the notion of imposing mechanisms, where the mecha-
nism can restrict how agents exploit its outcome, and thus increase their individual cost if they lie (e.g., for
Facility Location games, an imposing mechanism can forbid an agent to connect to some facilities). They
combined the almost-strategyproof differentially private mechanism of [12] with an imposing mechanism
that penalizes lying agents, and obtained a general randomized imposing strategyproof mechanism. As a
by-product, they obtained a randomized imposing mechanism for K-Facility Location that approximates
the average optimal social cost within an additive term of roughly 1/n1/3. Subsequently, we proved, in [7],
that the imposing version of the PROPORTIONAL mechanism is strategyproof for K-Facility Location in
general metric spaces, and achieves an approximation ratio of at most 4K.

3



2 Notation, Definitions, and Preliminaries

With the exception of Section 8, we consider K-Facility Location on the real line. So, in this section, we
introduce the notation and the basic notions only for instances on the real line. Throughout this work, we let
K-Facility Location refer to the problem of placing K facilities on the real line, unless stated otherwise.
Notation. For a tuple x = (x1, . . . , xn) ∈ IRn, minx, maxx, and medx denote the smallest, the largest,
and the dn/2e-smallest coordinate of x, respectively. We let x−i be the tuple x without xi. For a non-empty
set S of indices, we let xS = (xi)i∈S and x−S = (xi)i 6∈S . We write (x−i, a) to denote the tuple x with a in
place of xi, (x−{i,j}, a, b) to denote the tuple x with a in place of xi and b in place of xj , and so on.
Instances. Let N = {1, . . . , n} be a set of n ≥ 3 agents. Each agent i ∈ N has a location xi ∈ IR, which is
i’s private information. We usually refer to a locations profile x = (x1, . . . , xn) ∈ IRn as an instance. For an
instance x, we say that the agents are arranged on the line according to a permutation π if π arranges them in
increasing order of their locations in x, i.e., xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n). In the proof of Theorem 3.1, we
consider 3-agent instances, where n = 3, and 3-location instances, where there are three different locations
x1, x2, x3, and a partition of N into three coalitions N1, N2, N3 such that all agents in coalition Ni occupy
location xi, i ∈ {1, 2, 3}. We usually denote such an instance as (x1 :N1, x2 :N2, x3 :N3). For a set N of
agents, we let I(N) denote the set of all instances, and let I3(N) denote the set of all 3-location instances.
Mechanisms. A (deterministic) mechanism F for K-Facility Location maps an instance x to a K-tuple
(y1, . . . , yK) ∈ IRK , y1 ≤ · · · ≤ yK , of facility locations. We let F (x) denote the outcome of F for
instance x, and let F`(x) denote y`, i.e., the `-th smallest coordinate in F (x). In particular, for 2-Facility
Location, F1(x) denotes the leftmost and F2(x) denotes the rightmost facility of F (x). We write y ∈ F (x)
to denote that F (x) has a facility at y. A mechanism F is anonymous if for all instances x and all agent
permutations π, F (x) = F (xπ(1), . . . , xπ(n)). Throughout this work, all references to a mechanism F
assume a deterministic mechanism, unless explicitly stated otherwise.
Social Cost. Given a mechanism F for K-Facility Location and an instance x, the (individual) cost of agent
i is cost[xi, F (x)] = min1≤`≤K{|xi − F`(x)|}. The (social) cost of F for an instance x is cost[F (x)] =∑n

i=1 cost[xi, F (x)]. The optimal cost for an instance x is min
∑n

i=1 cost[xi, (y1, . . . , yK)], where the
minimum is taken over all K-tuples (y1, . . . , yK).

A mechanism F has an approximation ratio of ρ ≥ 1, if for any instance x, the cost of F (x) is at most
ρ times the optimal cost for x. We say that the approximation ratio ρ of F is bounded if ρ is either some
constant or some (computable) function of n and K. Since for any p ≥ 1 (or for p = ∞), and for any
non-negative n-tuple c, ‖c‖p ≤

∑n
i=1 ci ≤ n1−1/p‖c‖p, a mechanism with a bounded approximation ratio

for the Lp norm of the agents’ individual costs also has a bounded approximation ratio for the social cost.
Strategyproofness. A mechanism F is strategyproof if no agent can benefit from misreporting her location.
Formally, for all instances x, every agent i, and all locations y, cost[xi, F (x)] ≤ cost[xi, F (x−i, y)]. A
mechanism F is group strategyproof if for any coalition of agents misreporting their locations, at least one
of them does not benefit. Formally, for all instances x, every coalition of agents S, and all subinstances yS ,
there exists some agent i ∈ S such that cost[xi, F (x)] ≤ cost[xi, F (x−S ,yS)]. A mechanism F is partial
group strategyproof if for any coalition of agents that occupy the same location, none of them can benefit
if they misreport their location simultaneously. Formally, for all instances x, every coalition of agents S, all
occupying the same location x in x, and all subinstances yS , cost[x, F (x)] ≤ cost[x, F (x−S ,yS)].

By definition, any group strategyproof mechanism is partial group strategyproof, and any partial group
strategyproof mechanism is strategyproof. In [10, Lemma 2.1], it is shown that any strategyproof mechanism
for K-Facility Location is also partial group strategyproof (see also [14, Section 2]).
Image Sets. Given a mechanism F , the image (or option) set Ii(x−i) of an agent i with respect to an
instance x−i is the set of facility locations the agent i can obtain by varying her reported location. Formally,
Ii(x−i) = {a ∈ IR : ∃y ∈ IR such that F (x−i, y) = a}. If F is strategyproof, any image set Ii(x−i) is a
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collection of closed intervals, and F places a facility at the location in Ii(x−i) nearest to the location of agent
i. Formally, for any agent i, all instances x, and all locations y, cost[y, F (x−i, y)] = infa∈Ii(x−i){|y − a|}.
In [10, Section 3.1], it is shown that using partial group strategyproofness, we can extend the notion of image
sets and the properties above to coalitions of agents that occupy the same location in an instance x.

Any (open) interval in the complement of an image set I ≡ Ii(x−i) is called a hole of I . Given a location
y 6∈ I , we let ly = supa∈I{a < y} and ry = infa∈I{a > y} be the locations in I nearest to y on the left and
on the right, respectively. Since I is a collection of closed intervals, ly and ry are well defined and satisfy
ly < y < ry. For convenience, given a y 6∈ I , we refer to the interval (ly, ry) as a y-hole in I .
Nice Mechanisms. For simplicity, we use the term nice mechanism to refer to any mechanism F that is
deterministic, strategyproof, and has a bounded approximation ratio. We usually refer to a nice mechanism
F without explicitly mentioning its approximation ratio, with the understanding that given F and the set N
of agents, we can determine an upper bound ρ on the approximation ratio of F for instances in I(N).

Any nice mechanism F for K-Facility Location is unanimous, namely for all instances x where the
agents occupy K different locations x1, . . . , xK , F (x) = (x1, . . . , xK). Similarly, any hole in an image
set Ii(x−i) of F is a bounded interval. Otherwise, we could move agent i sufficiently far away from the
remaining agents, and obtain an instance for which F would have approximation ratio larger than ρ.
Well-Separated Instances. Given a nice mechanism F for K-Facility Location with approximation ratio
ρ, a (K + 1)-agent instance x is called (i1| · · · |iK−1|iK , iK+1)-well-separated if xi1 < · · · < xiK+1 and
ρ(xiK+1 − xiK ) < min2≤`≤K{xi` − xi`−1

}. At the conceptual level, in a well-separated instance, there is a
pair of nearby agents whose distance to each other is less than 1/ρ times the distance between any other pair
of consecutive agent locations on the real line. Therefore any mechanism with an approximation ratio of at
most ρ should serve the two nearby agents by the same facility, and serve each of the remaining “isolated”
agents by a different facility.

2.1 Useful Properties

We present here some useful properties of nice mechanisms for K-Facility Location on the real line applied
to instances with K + 1 agents.

Proposition 2.1. Let F be a nice mechanism for K-Facility Location on the line. For any (K +1)-location
instance x with xi1 < · · · < xiK+1 , F1(x) ≤ xi2 and FK(x) ≥ xiK .

Proof. Let us assume that xi2 < F1(x) (the other case is symmetric). Then, the agents at xi1 have an
incentive to report xi2 and decrease their cost, since xi2 ∈ F (x−i1 , xi2), due to the bounded approximation
ratio of F . This contradicts F ’s (partial group) strategyproofness. ut

Proposition 2.2. Let F be a nice mechanism for K-Facility Location. For any (i1| · · · |iK−1|iK , iK+1)-
well-separated instance x, FK(x) ∈ [xiK , xiK+1 ].

Proof. Since F has a bounded approximation ratio, the two nearby agents iK and iK+1 are both served
by the facility at FK(x). By Proposition 2.1, FK(x) ≥ xiK . Moreover, FK(x) ≤ xiK+1 . Otherwise, the
agent iK could report xiK+1 and decrease her cost, since xiK+1 ∈ F (x−iK , xiK+1), due to the bounded
approximation ratio of F . ut

The following propositions show that if there exists an (i1| · · · |iK−1|iK , iK+1)-well-separated instance
x with FK(x) = xiK (resp. FK(x) = xiK+1), then as long as we “push” the locations of agents iK and iK+1

to the right (resp. left), while keeping the instance well-separated, the rightmost facility of F stays with the
location of agent iK (resp. iK+1). The proofs can be found in the Appendix, Section A.1 and Section A.2,
respectively. We should highlight that one can establish the equivalent of the following propositions for
well-separated instances where the two nearby agents are located elsewhere in the instance (e.g., the nearby
agents are the two leftmost agents, or the second and third agent from the left).
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Proposition 2.3. Let F be a nice mechanism for K-Facility Location, and x be a (i1| · · · |iK−1|iK , iK+1)-
well-separated instance with FK(x) = xiK . Then for every (i1| · · · |iK−1|iK , iK+1)-well-separated in-
stance x′ = (x−{iK ,iK+1}, x

′
iK
, x′iK+1

) with xiK ≤ x′iK , it holds that FK(x′) = x′iK .

Proposition 2.4. Let F be a nice mechanism for K-Facility Location, and x be a (i1| · · · |iK−1|iK , iK+1)-
well-separated instance with FK(x) = xiK+1 . Then for every (i1| · · · |iK−1|iK , iK+1)-well-separated in-
stance x′ = (x−{iK ,iK+1}, x

′
iK
, x′iK+1

) with x′iK+1
≤ xiK+1 , it holds that FK(x′) = x′iK+1

.

3 Strategyproof Mechanisms for 2-Facility Location: Outline

We proceed to discuss the key proof steps and the consequences of our main result:

Theorem 3.1. Let F be a nice mechanism for 2-Facility Location with n ≥ 5 agents. Then, either F (x) =
(minx,maxx) for all instances x, or there exists a unique dictator j such that for all x, xj ∈ F (x).

Notably, we are aware of only two nice mechanisms for 2-Facility Location with n ≥ 4 agents, one
for each case of Theorem 3.1. The DICTATORIAL mechanism chooses a dictator j, and for each instance
x, allocates a facility to xj . Then, it considers the distance of the dictator to the leftmost and to the right-
most location, dl = |minx − xj | and dr = |maxx − xj |, respectively. The second facility is placed at
xj − max{dl, 2dr}, if dl > dr, and to xj + max{dr, 2dl}, otherwise. DICTATORIAL is an adaptation of
the mechanism of [10] for the circle. As in [10, Section 5], it can be shown that DICTATORIAL is strat-
egyproof and (n − 1)-approximate for the line. The TWO-EXTREMES mechanism places the facilities at
(minx,maxx), for all instances x, and is group strategyproof, anonymous, and (n− 2)-approximate [16].
By Theorem 3.1, TWO-EXTREMES is the only anonymous nice mechanism for 2-Facility Location with
n ≥ 5 agents and its approximation ratio is best possible.

Corollary 3.1. A deterministic anonymous mechanism F for 2-Facility Location with n ≥ 5 agents is strat-
egyproof and has a bounded approximation ratio if and only if for all instances x, F (x) = (minx,maxx).

Corollary 3.2. Any deterministic strategyproof mechanism F for 2-Facility Location with n ≥ 5 agents has
an approximation ratio of at least n− 2.

Proof. For any set N of n ≥ 5 agents, we let x = (0:{j}, ε :N \ {j, k}, 1 :{k}), where j ∈ N is the
dictator of F , if any, k ∈ N \ {j}, and ε ∈ (0, 1/n). By Theorem 3.1, if F has a bounded approximation
ratio, then F1(x) = 0. For convenience, we let F2(x) = a. By Proposition 2.1, a ≥ ε. If ε ≤ a < 2ε,
cost[F (x)] ≥ 1− ε. If a ≥ 2ε, cost[F (x)] ≥ (n− 2)ε. Since the optimal cost is ε, the approximation of F
is at least n− 2. ut

The crux, and the most technically involved part of the proof of Theorem 3.1 is to establish a character-
ization for nice mechanisms dealing with just 3 agents. In particular, we show that any nice mechanism for
2-Facility Location with 3 agents either places the facilities at the two extremes, or admits a partial dictator,
namely an agent allocated a facility either for all agent permutations or for all agent permutations but one.

Theorem 3.2. Let F be any nice mechanism for 2-Facility Location with n = 3 agents. Then, there exist
at most two permutations π1, π2 with π1(2) = π2(2) such that for all instances x where the agents are
arranged on the line according to π1 or π2, medx ∈ F (x). For any other permutation π and instance x,
where the agents are arranged on the line according to π, F (x) = (minx,maxx).

In addition to extending the ideas of [14] to 2-Facility Location games, the proof of Theorem 3.2 makes,
at several places, a novel use of locality and of the structure of the image sets of nice mechanisms. Also, we
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highlight that the notion of a partial dictator is essential. The COMBINED mechanism for 3 agents chooses a
permutation (i, j, k) of the agents, and for each instance x, places the facilities using TWO-EXTREMES, if
xi < xk, and using DICTATORIAL with dictator j, otherwise. Thus, COMBINED admits a partial dictator, is
strategyproof, and achieves an approximation ratio of 2.

Using the notion of partial group strategyproofness, we extend Theorem 3.2 to 3-location instances
(Corollary 5.1). The next step is to show that when applied to 3-location instances with n ≥ 5 agents, nice
mechanisms do not have the option of a partial dictator. More formally, in Section 5, we show the following:

Theorem 3.3. Let N be a set of n ≥ 5 agents, and let F be any nice mechanism for 2-Facility Location
applied to instances in I3(N). Then, either there exists a unique dictator j ∈ N such that for all instances
x ∈ I3(N), xj ∈ F (x), or for all instances x ∈ I3(N), F (x) = (minx,maxx).

Finally, in Section 6, we employ induction on the number of agents, and extend Theorem 3.3 to general
instances with n ≥ 5 agents, thus concluding the proof of Theorem 3.1. In the next three sections, we
present a detailed proof of Theorem 3.1. Throughout, we usually omit any quantification of F , with the
understanding that F denotes a nice mechanism for 2-Facility Location applied to the relevant class of
instances.

4 Strategyproof Allocation of 2 Facilities to 3 Agents: The Proof of Theorem 3.2

Throughout this section, we use the indices i, j, k to implicitly define a permutation of the agents. We mostly
use the convention that i denotes the leftmost agent, j denotes the middle agent, and k denotes the rightmost
agent.

We recall that given a nice mechanism F with approximation ratio ρ for 3 agents, a 3-agent instance
x is (i|j, k)-well-separated if xi < xj < xk and ρ(xk − xj) < xj − xi. Similarly, x is (i, j|k)-well-
separated if xi < xj < xk and ρ(xj − xi) < xk − xj . A 3-agent instance x is i-left-well-separated if x is
either (i|j, k)-well-separated or (i|k, j)-well-separated, and is k-right-well-separated if it is either (i, j|k)-
well-separated or (j, i|k)-well-separated. Moreover, a 3-agent instance x is i-well-separated if x is either
i-left-well-separated or i-right-well-separated.

In the following, we let ↑ and ↓ denote the largest and the smallest element, respectively, of the affinely
extended real line. Hence, ↑ is greater than any real number, and ↓ is less than any real number.

4.1 Outline of the Proof

At a high-level, the proof of Theorem 3.2 proceeds by gradually restricting the possible outcomes of a nice
mechanism, until it reaches the desired conclusion.

As a first step, we consider the behavior of nice mechanisms for well-separated instances (Section 4.2).
Since the mechanism has a bounded approximation ratio, for any i-well-separated instance, one facility
serves the isolated agent i, and the other facility is placed between the locations of the two nearby agents
j, k (Proposition 2.2). Thus, building on the characterization of [14], we show that for any i-well-separated
instance, the facility serving agents j and k is allocated by a generalized median voter scheme (GMVS) (see
e.g., [18, Definition 10.3]) whose characteristic threshold may depend on the identity i and the location a
of the isolated agent (Lemma 4.1 and Lemma 4.2). A bit more formally, we show, in Lemma 4.2, that any
agent-location pair (i, a) specifies a unique threshold p ∈ [a,+∞) ∪ {↑} and a preferred agent j, different
from i, that fully determine the location of the rightmost facility for all i-left-well-separated instances x with
xi = a (see also Fig. 1.a; by symmetry, the same holds for i-right-well-separated instances and the leftmost
facility, though possibly with different values of p and j). Moreover, the allocation of the rightmost facility
becomes simple for the two extreme values of the p: if p = a, the preferred agent j serves as a dictator
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Fig. 1. (a) The location of F2(x) for all i-left-well-separated instances x with xi = a. We let j be the preferred agent and p be
the threshold of (i, a) for i-left-well-separated instances. The location of agent j (resp. k) is on the x-axis (resp. y-axis). The area
around the line xj = xk includes all i-left-well-separated instances. For instances in the dark grey area (where xj ≤ xk ≤ p), the
rightmost facility is at xk, for instances in the black triangle (where xj ≤ p ≤ xk), the rightmost facility is at p, and for instances
in the light grey area (where either xj ≥ p or xk ≤ xj ≤ p), the rightmost facility is at xj . (b) We consider instances x with
xi = a < xj , xk, which are not necessarily well-separated. As in (a), we let j be the preferred agent and p be the threshold of
(i, a). The plot now depicts for which instances a facility (not necessarily the rightmost one) is placed at either xj , or xk, or p.
Lemma 4.6 shows that due to the bounded approximation ratio of F , the black triangle does not exist, and either p = a or p = ↑. If
p = a, we have light grey (i.e., xj) everywhere, while if p = ↑, we have dark grey (i.e., xk) above the line xj = xk, and light grey
(i.e., xj) below.

imposed by i for all i-left-well-separated instances, while if p = ↑, the rightmost facility is placed at the
rightmost location.

The key step in the proof is to show, in Section 4.3, that the threshold p of any agent-location pair (i, a)
can be either a or ↑ (resp. either a or ↓ if i is the rightmost agent). To this end, we first extend the allocation
of Lemma 4.2 to general instances with i as the leftmost (resp. rightmost) agent (see Fig. 1.b). Thus, if the
preferred agent j is located on the right (resp. left) of the threshold p, she essentially serves as a partial
dictator, imposed by the leftmost (resp. rightmost) agent, for the corresponding permutation of agents.

As consequence, we obtain that the thresholds of the two allocation rules (one imposed by the leftmost
agent and one imposed by the rightmost agent) always fall in the two extremes: either a or ↑ for the leftmost
agent (resp. either a or ↓ for the rightmost agent). Otherwise, there would exist instances with two different
preferred agents, essentially serving as two different partial dictators, which would lead to an unbounded
approximation ratio (Lemma 4.6). Intuitively, the case where p = a corresponds to the existence of a partial
dictator, while the case where p = ↑ (resp. p = ↓) corresponds to placing the facilities at the two extremes.

Building on Lemma 4.6, we show, in Section 4.4, that the thresholds of the two allocation rules, one
for the leftmost and one for the rightmost agent, can only depend on their identity, and not on their location
(Lemma 4.7). Moreover, if an agent i imposes a partial dictator, the third agent agrees with i not only on
the existence of a partial dictator, but also on the dictator’s identity (Lemma 4.8), and the partial dictator
is unique (Lemma 4.9). Therefore, every nice mechanism is essentially characterized by whether there are
two agents that agree on imposing the third agent as a partial dictator or not. Examining all possible cases,
we conclude that every nice mechanism F either always places the facilities at the two extremes, or admits
a partial dictator j (Lemma 4.10). In the latter case, the partial dictator j is identified by any instance x,
with xi < xj < xk, such that xj ∈ F (x). Then, F allocates a facility to agent j for all instances y with
yi < yj < yk, and possibly for all instances y with yk < yj < yi. For all other instances, F places the
facilities at two extremes.
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4.2 Well-Separated Instances

We proceed to a detailed consideration of the behavior of a nice mechanism on well-separated instances. For
simplicity and brevity, we mostly discuss left-well-separated instances here, for which we state and prove
all our technical claims. It is straightforward to verify that the symmetric statements of all our lemmas,
propositions, and technical arguments hold for right-well-separated instances.

For any (i|j, k)-well-separated instance x, the leftmost facility F1(x) of a nice mechanism F serves the
isolated agent i, and the rightmost facility F2(x) is allocated in [xj , xk]. Intuitively, with both the order of j
and k and the range of F2(x) fixed, the restriction of F to the 2-agent subinstance x−i should behave like
an anonymous strategyproof mechanism that places a single facility in [xj , xk]. Therefore, the rightmost
facility should be allocated by a median voter scheme applied to xj and xk (see e.g. [18, Theorem 10.2]).
The following lemma formalizes this intuition:

Lemma 4.1. For any agent i ∈ {1, 2, 3} and any location a, there exists a unique threshold p ∈ [a,+∞) ∪
{↑} such that for all (i|j, k)-well-separated instances x with xi = a, it holds that F2(x) = med(p, xj , xk).

Proof. Let i ∈ {1, 2, 3} be any agent and a ∈ IR be any location. By Proposition 2.2, for every (i|j, k)-
well-separated instance z with zi = a, F2(z) ∈ [zj , zk]. We distinguish between the case where there is an
(i|j, k)-well-separated instance z with zi = a and F2(z) ∈ (zj , zk), and the case where for all (i|j, k)-well-
separated instances z with zi = a, F2(z) ∈ {zj , zk}.
Case I: ∃z F2(z) ∈ (zj , zk). Let z be any (i|j, k)-well-separated instance with zi = a and F2(z) ∈ (zj , zk).
In this case, we let p = F2(z). Next, we show that for any (i|j, k)-well-separated instance x with xi = a :

F2(x) =


xk if xk ≤ p
xj if p ≤ xj
p if xj < p < xk

(1)

This implies the existence of a unique point p ∈ (a,+∞), such that for all (i|j, k)-well-separated instances
x with xi = a, F2(x) = med(p, xj , xk).

For the first two cases of (1), we consider the instances z′ = (z−k, p) and z′′ = (z−j , p), which
are both (i|j, k)-well-separated. Since F is strategyproof, F2(z

′) = p = z′k. Then, by Proposition 2.4,
for every (i|j, k)-well-separated instance x = (z−{j,k}, xj , xk) with xk ≤ p, F2(x) = xk. Similarly,
F2(z

′′) = p = z′′j , and by Proposition 2.3, for every (i|j, k)-well-separated instance x = (z−{j,k}, xj , xk)
with xj ≥ p, F2(x) = xj .

For the third case of (1), we assume that there is an (i|j, k)-well-separated instance x with xi = a,
xj < p < xk, and F2(x) = q 6= p, and reach a contradiction (i.e., this case essentially establishes the
uniqueness of p). Without loss of generality, we assume that q > p (the case where q < p is symmetric),
and let ε ∈ (0, (q − p)/2) be appropriately small. To reach a contradiction, we exploit two (i|j, k)-well-
separated instances, y and y′, with yi = y′i = a, yj = xj , yk = q, y′j = p, and y′k = p + ε, such that
F2(y) = q = yk and F2(y

′) = p = y′j . Since y is an (i|j, k)-well-separated instance with F2(y) = yk,
Proposition 2.4 implies that for the (i|j, k)-well-separated instance y′ = (y−{j,k}, p, p + ε), with y′k < yk,
F2(y

′) = y′k 6= p, a contradiction.
To conclude the proof, it remains to show that indeed F2(y) = q and F2(y

′) = p. To this end, we
recall that q ∈ [xj , xk], by Proposition 2.2. For the former instance y = (x−k, q), we observe that it is
(i|j, k)-well-separated because the distance of xj to q is no greater than the distance of xj to xk, and that
F2(y) = q, because F2(x) = q and F is strategyproof. The latter instance y′ = (z−{j,k}, p, p + ε) is also
(i|j, k)-well-separated, because p > zj and ε is chosen sufficiently small. Furthermore, F2(y

′) = p, because
F2(z) = p, by hypothesis, F2(z−j , p) = p, by F ’s strategyproofness, and F2(z−{j,k}, p, p + ε) = p, by
Proposition A.2, because the instance (z−j , p) is (i|j, k)-well-separated.
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Case II: ∀z F2(z) ∈ {zj , zk}. Let z be any (i|j, k)-well-separated instance with zi = a. We let p = a, if
F2(z) = zj

3, and p =↑, if F2(z) = zk. To conclude the proof, we show that if (F2(z) = zj and thus) p = a,
for all (i|j, k)-well-separated instances x with xi = a, F2(x) = xj (the case where p =↑ and F2(x) = xk
is symmetric).

To reach a contradiction, let us assume that there is a (i|j, k)-well-separated instance x with xi = a and
F2(x) 6= xj . Therefore, since we have assumed that F2(x) ∈ {xj , xk}, F2(x) = xk. By Proposition A.6,
we can assume without loss of generality that xj can be arbitrarily close to xk (as long as xj stays on the
left of xk, so that x is (i|j, k)-well-separated). By Proposition 2.3, for all (i|j, k)-well-separated instances
x′ with x′i = zi = a and zj ≤ x′j , F2(x

′) = x′j . Therefore, we can assume that xj < zj , and since xj can be
arbitrarily close to xk, xj < xk < zj . To conclude the proof, we show the following technical claim, which
states that the existence of such an instance x implies that for all (i|j, k)-well-separated instances y with
yi = a and yk > xk, F2(y) = yk, a contradiction to the existence of z.

Claim 4.1 Let F be any nice mechanism, let i be any agent, and let a be any location of i such that for
all (i|j, k)-well-separated instances z with zi = a, F2(z) ∈ {zj , zk}. Then, if there exists an (i|j, k)-
well-separated instance x with xi = a and F2(x) = xk, for all (i|j, k)-well-separated instances x′ =
(x−{j,k}, x

′
j , x
′
k) with xk < x′k, F2(x

′) = x′k.

Proof (of Claim 4.1). We first show that for all (i|j, k)-well-separated instances y = (x−{j,k}, yj , yk) with
xj ≤ yj < xk < yk, F2(y) = yk. For sake of contradiction, let us assume that there exists such an instance
y for which F2(y) 6= yk. To establish a contradiction, we first observe that for the instance x′ = (x−j , yj),
F2(x

′) = xk, by Proposition A.6, since x′ is an (i|j, k)-well-separated instance. Since y = (x′−k, yk) and
F2(y) 6= yk, there exists a yk-hole (l, r) in the imageset Ik(yi, yj) with xk ≤ l < yk. Let y′k ∈ (l, yk)
be any point in the left half of the hole (l, r), i.e. let y′k = min{(yk + 2l)/3, (r + 2l)/3}. Due to F ’s
strategyproofness, F2(y−k, y

′
k) = l, because l is the closest point to y′k in Ik(yi, yj). This contradicts the

hypothesis, since we have found an (i|j, k)-well-separated instance y′ = (y−k, y
′
k) with F2(y

′) 6∈ {y′j , y′k}.
To conclude the proof, we inductively apply what we have shown above, i.e., that if for an (i|j, k)-well-

separated instance x, F2(x) = xk, then for all (i|j, k)-well-separated instances y = (x−{j,k}, yj , yk) with
xj ≤ yj < xk < yk, F2(y) = yk. The proof is similar to the proofs of Proposition 2.3 and Proposition 2.4.

Let x′k > xk be any point, let d = x′k − xk, let δ = (xk − xj)/2, and let κ = dd/δe. For every
χ = 1, . . . , κ, κ + 1, we inductively consider the instance xλ = (x−{j,k}, xj + (λ − 1)δ, xk + (λ − 1)δ).
We observe that the instance xλ is (i|j, k)-well-separated, because the distance of the locations of agents j
and k is 2δ, while the distance of the locations of agents i and j is at least their distance in x. Therefore, for
every χ = 1, . . . , κ, κ + 1, F2(xλ) = xk + (λ − 1)δ. Moreover, by Proposition 2.4, for any (i|j, k)-well-
separated instance y = (xi, yj , yk) with yk ≤ xk + κδ, F2(y) = yk. Therefore, since x′k ≤ xk + κδ, for all
(i|j, k)-well-separated instances x′ = (x−{j,k}, x

′
j , x
′
k) with xk < x′k, F2(x

′) = x′k. ut

With the proof of Claim 4.1, we conclude the proof of the lemma. ut

At the conceptual level, the allocation of F2(x) to i-left-well-separated instances x corresponds to a
GMVS applied to the subinstance x−i. We recall that a GMVS applied to a set N of agents is characterized
by 2|N | thresholds αS , one for each S ⊆ N (see e.g. [18, Definition 10.3]), with α∅ (resp. αN ) equal to the
smallest (resp. largest) value in the mechanism’s range. Then, for every instance x, the facility is allocated to
maxS⊆N min{αS , xi : i ∈ S}. Lemma 4.1 implies that there is a unique threshold p1 (resp. p2) such that for
any (i|j, k)-well-separated (resp. (i|k, j)-well-separated) instance x with xi = a, F2(x) = med(p1, xj , xk)
(resp. F2(x) = med(p2, xj , xk)). Therefore, for any i-left-well-separated instance x with xi = a, a GMVS

3 The uniqueness of p for the case where p = a follows from the fact that there are (i|j, k)-well-separated instances z with zi = a
and zj arbitrarily close to a.
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applied to the subinstance x−i is characterized by α{j} = p2 and α{k} = p1. Setting α∅ = a and α{j,k} = ↑,
it holds that F2(x) = max{min{xj , p2},min{xk, p1}}.

The following lemma shows that due to the bounded approximation ratio of F , either p1 = ↑ or p2 =
↑. If p2 = ↑, j has at least as much power as k, and becomes the preferred agent of the agent-location
pair (i, a) for i-left-well-separated instances. Then, the threshold p of (i, a) is equal to p1, and F2(x) =
max{xj ,min{xk, p}} (see also Fig. 1.a). We note that the threshold p essentially quantifies how much more
powerful is the preferred agent j than the third agent k. At the two extremes, if p = a, j serves as a dictator
on the right of i, while if p = ↑, the rightmost facility is allocated to the maximum of xj and xk. Similarly,
if p1 = ↑, k is the preferred agent of the agent-location pair (i, a) for i-left-well-separated instances, and
p = p2. Then, F2(x) = max{min{xj , p}, xk, }.

Lemma 4.2. For any agent i ∈ {1, 2, 3} and any location a, there are a unique threshold p ∈ [a,+∞)∪{↑}
and a preferred agent ` ∈ {1, 2, 3} \ {i} such that for any i-left-well-separated instance x with xi = a, it
holds that:

F2(x) =

{
x` if x` ≥ p
med(p, xj , xk) otherwise

Proof. By Lemma 4.1, for any agent i ∈ {1, 2, 3} and any location a ∈ IR :

– there is a unique p1 ∈ [a,+∞) ∪ {↑} such that for any (i|j, k)-well-separated instance x with xi = a,
F2(x) = med(p1, xj , xk), and

– there is a unique p2 ∈ [a,+∞) ∪ {↑} such that for any (i|k, j)-well-separated instancex with xi = a,
F2(x) = med(p2, xj , xk).

We observe that it suffices to show that either p1 = ↑ or p2 = ↑. More specifically, if p1 = ↑, then the
preferred agent is k and p = p2. Then, if xk ≥ p2, we distinguish between two cases depending on the
order of xj and xk. If xk ≤ xj , then x is an (i|k, j)-well-separated instance, and F2(x) is located at the
median of p2, xk, xj , that is xk. If xk > xj , x is an (i|j, k)-well-separated instance, and F2(x) is located at
the median of xj , xk, p1, that is xk, because p1 = ↑. If xk < p2, we again distinguish between two cases.
If xk ≤ xj , then x is an (i|k, j)-well-separated instance, and F2(x) = med(p2, xk, xj). If xk > xj , x is
an (i|j, k)-well-separated instance, and F2(x) is located at the median of xj , xk, p1, which coincides with
med(xj , xk, p2), because p1 = ↑ and p2 > xk > xj . If p2 = ↑, then the preferred agent is j and p = p1, and
the lemma follows from a similar analysis.

We proceed to establish that either p1 = ↑ or p2 = ↑. To reach a contradiction, we assume that both
p1, p2 ∈ [a,+∞). Let x be an (i|j, k)-well-separated instance where both xj and xk exceed max{p1, p2}.
Then, by Lemma 4.1, F2(x) = med(p1, xj , xk) = xj . Since F2(x) 6= xk, there is a xk-hole (l, r) in the
image set Ik(xi, xj). For some appropriately small ε > 0, we consider the instances x′ = (x−k, r − ε) and
x′′ = (x′−j , r). Since r ∈ Ik(xi, xj), F2(x

′) = r. Since r ∈ Ij(xi, r − ε), F2(x
′′) = r. On the other hand,

since ε is chosen appropriately small, the instance x′′ is (i|k, j)-well-separated. Therefore, by Lemma 4.1,
F2(x

′′) = med(p2, r − ε, r) 6= r, a contradiction. ut

By a symmetric argument, we can establish the symmetric version of Lemma 4.2 for i-right-well-
separated instances. The only difference is that p ∈ {↓} ∪ (−∞, a], and that F1(x) = x`, if x` ≤ p,
and F1(x) = med(p, xj , xk), otherwise. We highlight that an agent location pair (i, a) may have a different
preferred agent and a different threshold for i-left and i-right well-separated instances.

Lemma 4.2 implies that every nice mechanism F admits a function χF (resp. χ′F ) that maps any agent-
location pair (i, a) to a pair (j, p), where p ∈ [a,+∞)∪{↑} (resp. p ∈ {↓}∪(−∞, a]) is the unique threshold
and j ∈ {1, 2, 3} \ {i} is the preferred agent of (i, a) satisfying the condition of (resp. the symmetric
version of) Lemma 4.2 for i-left (resp. i-right) well-separated instances. We note that the preferred agent
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is uniquely determined in the proof of Lemma 4.2, unless p = ↑ for i-left (resp. p = ↓ for i-right) well-
separated instances. If p = ↑ (resp. p = ↓), any agent different from i can play the role of the preferred
agent, since this choice does not affect the allocation of F2(x) (resp. F1(x)). For convenience, we simply
write χ(i, a) and χ′(i, a), and let χp(i, a) and χ`(i, a) (resp. χ′p(i, a) and χ′`(i, a)) denote the threshold p
and the preferred agent j of (i, a) for i-left (resp. i-right) well-separated instances. Lemma 4.2 implies that:

Corollary 4.1. Let x be any (i|j, k)-well-separated instance such that F2(x) = xj . Then χ`(i, xi) = j and
χp(i, xi) ≤ xj .

Proof. We show that for any (i|j, k)-well-separated instance x, the rightmost facility is allocated to the
middle agent j only if j is the preferred agent of (i, xi) and is located on the left of (i, xi)’s threshold. This
can be easily verified by Fig. 1.a, where the rightmost facility is never allocated to k below the xj = xk line,
where k is the middle agent, and is allocated to the preferred agent j above the xj = xk line, where j is the
middle agent, only on the right of p.

We also give a more formal argument. For convenience, we let pi ≡ χp(i, xi). We first observe that
if χ`(i, xi) = k, F2(x) = xk. This follows from Lemma 4.2, because xj < xk. More specifically, either
xk ≥ pi, and the rightmost facility is allocated to k, as the preferred agent, or xk < pi, and the rightmost
facility is allocated to xk, as the median of pi, xj , and xk. Hence, χ`(i, xi) = j. Moreover, if pi > xj ,
F2(x) = med(pi, xj , xk) > xj , by the second case of Lemma 4.2. Therefore, pi ≤ xj . ut

4.3 General Instances and the Range of the Threshold p

Next, we proceed to show that χp(i, a) ∈ {a, ↑} (and by symmetry, χ′p(i, a) ∈ {a, ↓}). As before, we con-
sider the instances from left to right, and state and prove our lemmas in terms of χ(i, a). It is straightforward
to verify that the symmetric statements hold for χ′(i, a).

We start with three useful technical lemmas that essentially extend the allocation of Lemma 4.2 to
instances that are not necessarily well-separated (see also Fig. 1.b). The first lemma shows that the preferred
agent essentially serves as a dictator when located on the right of the threshold p.

Lemma 4.3. Let i be any agent and a be any location, and let χ(i, a) = (j, p). For any instance x with
a = xi < min{xj , xk}, and xj ≥ p, it holds that xj ∈ F (x).

Proof. We fix an agent i and some location a, and let χ(i, a) = (j, p). For sake of contradiction, we assume
that there is an instance x, with xi = a and xj ≥ p, such that xj 6∈ F (x). Therefore, xj does not belong to
the image set Ij(xi, xk), and there is a xj-hole (l, r) in Ij(xi, xk). For a small ε ∈ (0,min{(r−l)/2, r−xj}),
we consider the instance x′ = (x−j , r − ε). Since r − ε is in the right half of the xj-hole (l, r), r ∈ F (x′).
Now, we consider the instance x′′ = (x−{j,k}, r − ε, r), and show that F (x′′) = (r − ε, r). On the one
hand, r ∈ F (x′′), because F is strategyproof. On the other hand, we can choose ε small enough that
the instance x′′ is (i|j, k)-well-separated. Then, by Lemma 4.2, x′′j ∈ F (x′′), because by the choice of ε,
x′′j = r − ε > xj ≥ p. However, this implies that xi is served by the facility at r − ε, which contradicts F ’s
bounded approximation ratio. ut

By a symmetric argument, we obtain the symmetric version of Lemma 4.3 for where i is the rightmost
agent: if χ′(i, a) = (j, p), for all instances x with xi = a, xi > max{xj , xk}, and xj ≤ p, xj ∈ F (x).

The next lemma shows that if both agents j and k are located (on the right of agent i and) on the left of
p, the rightmost facility is allocated to the rightmost agent.

Lemma 4.4. Let i be any agent and a be any location, and let χp(i, a) = p. For any instance x with xi = a
and xj , xk ∈ (xi, p], it holds that F2(x) = max{xj , xk}.
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Proof. We fix an agent i and a location a ∈ IR, and let χp(i, a) = p. For sake of contradiction, let us
assume that there is an instance x, with a = xi < xj < xk ≤ p, such that F2(x) 6= xk (the case where
a < xk < xj ≤ p is symmetric, while if a < xj = xk ≤ p, then F2(x) = xk, because F has a bounded
approximation ratio). Therefore, xk does not belong to the image set Ik(xi, xj), and there is a xk-hole
(l, r) in Ik(xi, xj). For an appropriately small ε ∈ (0,min{(r − l)/2, xk − l}), we consider the instance
x′ = (x−k, l + ε). Since l + ε is in the left half of the xk-hole, l ∈ F (x′). Now, we consider the instance
x′′ = (x−{j,k}, l, l+ ε), and show that F places its two facilities at l and l+ ε. On the one hand, l ∈ F (x′′),
because F is strategyproof. On the other hand, we can choose ε small enough that the instance x′′ is (i|j, k)-
well-separated. Then, by Lemma 4.2, x′′k ∈ F (x′′), because by the choice of ε, x′′j < x′′k < p. However, this
implies that xi is served by the facility at l, which contradicts F ’s bounded approximation ratio. ut

By a symmetric argument, we obtain the symmetric version of Lemma 4.4 for instances where i is the
rightmost agent: if χ′p(i, a) = p, for all instances x with xi = a > xj , xk ≥ p, F1(x) = min{xj , xk}.

The next lemma complements the previous two, and shows that the preferred agent is allocated a facility
even if she lies on the left of p and is not the rightmost agent, provided that the distance of the rightmost
agent to p is large enough.

Lemma 4.5. Let ρ be the approximation ratio of F , let i be any agent and a be any location, and let
χ(i, a) = (j, p). Then, for any instance x with a = xi < xj < xk, and xk − p > ρ(p− xi), xj ∈ F (x).

Proof. We fix an agent i and some location a, and let χ(i, a) = (j, p). For sake of contradiction, let us
assume that there is an instance x with a = xi < xj < xk and xk − p > ρ(p− xi), for which xj 6∈ F (x).
Therefore, xj does not belong to the image set Ij(xi, xk), and there is a xj-hole (l, r) in Ij(xi, xk). More-
over, xj < p and r ≤ p, because by Lemma 4.3, for any y ≥ p, y ∈ F (x−j , y). Since F is strategyproof,
for any point x′j in the right half of the hole (l, r), r ∈ F (x−j , x′j). By Proposition 2.1, F1(x−j , x

′
j) ≤ x′j ,

and thus r = F2(x−j , x
′
j). Therefore, xk is served by the facility at r, and cost[F (x−j , x

′
j)] ≥ xk − p. This

contradicts the hypothesis that the approximation ratio is ρ, since the optimal cost for (x−j , x′j) is at most
x′j − xi ≤ p− xi < (xk − p)/ρ. ut

Now, we are ready to show that the threshold p always falls in the two extremes.

Lemma 4.6. For any agent i and location a, χp(i, a) ∈ {a, ↑} and χ′p(i, a) ∈ {a, ↓}.

Proof. We show that χp(i, a) ∈ {a, ↑}. The claim that χ′p(i, a) ∈ {a, ↓} follows by a symmetric argument.
For sake of contradiction, let us assume that there exist an agent i and a location a, for which pi ≡ χp(i, a) ∈
(a,+∞), and let j = χ`(i, a). To reach a contradiction, we study the preferred agents of four appropriately
chosen well-separated instances x, y, z, and w. Intuitively, exploiting the properties of the instances x, y, z,
we show that in the last instance w, where the agents are arranged according to the permutation (i, j, k), the
preferred agent of (i, wi) on the right is j and the preferred agent of (k,wk) on the left is i. Moreover, w is
chosen to satisfy the conditions of Lemma 4.5 for i and her preferred agent j (see also Fig. 2). This implies a
facility allocation for w with an approximation ratio larger than F ’s approximation ratio ρ, a contradiction.

Formally, let the first instance x be any (i|j, k)-well-separated instance such that xj < pi < xk and
the instance (x−i, pi) is (j|i, k)-well-separated. Then, by Lemma 4.2, F2(x) = med(pi, xj , xk) = pi.
The second instance is y = (x−i, pi), which is (j|i, k)-well-separated, by the choice of x. Moreover,
F2(y) = pi = yi, due to F ’s strategyproofness. We let pj ≡ χp(j, yj). Then, by Corollary 4.1, χ`(j, yj) = i
and pj ≤ yi.

The third instance is z = (y−k, r), where r is chosen so that r − pi > ρ(pi − a), where ρ is the
approximation ratio of F . Therefore, z is a (j, i|k)-well-separated instance. Since yj = zj , χ(j, zj) =
(i, pj) and pj ≤ zi. Hence, we apply Lemma 4.3 to the instance z, and obtain that zi ∈ F (z). Therefore,
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instance x: 
(i | j, k)-well-
separated pi
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instance y: 
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instance z: 
(j, i | k)-well-
separated

wjwi

instance w: 
(i, j | k)-well-
separated pi

yi

r

zkzi

(i, a)

(j, yj)

pj

(j, yj)(k, r)

pk

wk

(i, a)

pk

(k, r)

Fig. 2. The four instances considered in the proof of Lemma 4.6 with the corresponding thresholds and preferred agents. A square
indicates that a facility is placed at the corresponding location. A star indicates that the corresponding agent is the preferred agent
of the agent-location pair appearing next to the star.

by (the symmetric of) Corollary 4.1 applied to the (j, i|k)-well-separated instance z, χ′`(k, r) = i and
χ′p(k, r) ≡ pk ≥ zi.

The fourth instance is w = (x−k, r). Since wi = a, we have that χ(i, wi) = (j, pi). Since the location
r of k in w is chosen so that r − pi > ρ(pi − wi), we apply Lemma 4.5 to w, and obtain that wj ∈ F (w).
Moreover, by the choice of r, w is an (i, j|k)-well-separated instance. Therefore, since χ′`(k, r) = i and
χ′p(k, r) ≥ zi ≥ wi, by (the symmetric of) Lemma 4.2 applied to the k-right-well-separated instance w,
F1(w) = wi. By the choice of r, the hypothesis that F ’s approximation ratio is ρ, since cost[F (w)] =
r − wj > r − pi, while the optimal cost for w is wj − wi < pi − a < (r − pi)/ρ. ut

4.4 On the Existence of a Partial Dictator

Having restricted the range of p to the two extremes, we can make some useful observations about the
preferred agents and the thresholds of the leftmost and the rightmost locations. We start with the following
consequence of Lemma 4.6 and Corollary 4.1.

Proposition 4.1. If there is an (i|j, k)-well-separated instance x, such that F2(x) = xj , then χ(i, xi) =
(j, xi). If there is an (i, j|k)-well-separated instance x, such that F1(x) = xj , then χ′(k, xk) = (j, xk).

The following lemma shows that the preferred agent and the threshold of an agent i can only depend on
her identity, and not on her location.

Lemma 4.7. Let i be an agent and a be a location such that χ(i, a) = (j, a) (resp. χ′(i, a) = (j, a)). Then,
for all locations b ∈ IR, χ(i, b) = (j, b) (resp. χ′(i, b) = (j, b)).

Proof. We only show that if χ(i, a) = (j, a), then χ(i, b) = (j, b), for all locations b. The other case follows
from a symmetric argument. Let i be an agent and a be a location such that χ(i, a) = (j, a), for some agent
j, and let b be any location. To show that χ(i, b) = (j, b), we consider two appropriate instances x and y.

The instance x is defined as xi = a, xj = a + 1, and xk = r > max{a + 1, b}, where r is chosen
large enough that x is an (i, j|k)-well-separated instance. Since xj ≥ χp(i, a), Lemma 4.3 implies that
xj ∈ F (x). Then, since x is an (i, j|k)-well-separated instance, by Proposition 4.1, χ′(k, r) = (j, r).

The instance y is defined as yi = b, yj = r − ε, and yk = r, where ε > 0 is chosen so small that y is
(i|j, k)-well-separated. Since yj ≤ χ′p(k, r), the symmetric version of Lemma 4.3 applied to y implies that
yj ∈ F (y). Then, since the instance y is (i|j, k)-well-separated, by Proposition 4.1, χ(i, b) = (j, b). ut
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Next, Lemma 4.8 shows that if an agent i imposes another agent j as a partial dictator, the third agent k
agrees with i not only on the existence of a partial dictator, but also on the partial dictator’s identity.

Lemma 4.8. If there exists an agent i and a location a such that χ(i, a) = (j, a) (resp. χ′(i, a) = (j, a)),
then for the third agent k and all locations b ∈ IR, it holds that χ′(k, b) = (j, b) (resp. χ(k, b) = (j, b)).

Proof. We only consider the case where χ(i, a) = (j, a), and show that χ′(k, b) = (j, b), for the third agent
k and all locations b. The symmetric case follows from a symmetric argument. Let i be an agent and a be a
location such that χ(i, a) = (j, a), for some agent j, and let b be any location of the third agent k. Without
loss of generality, we assume that a < b. Otherwise, we select a location a′ of i with a′ < b, and have that
χ(i, a′) = (j, a′), by Lemma 4.7. To establish the lemma, we consider an instance x defined as xi = a,
xk = b, and xj = a + ε, where ε > 0 is chosen small enough that x is an (i, j|k)-well-separated instance.
Since xj ≥ χp(i, a), Lemma 4.3 implies that xj ∈ F (x). Then, since x is an (i, j|k)-well-separated
instance, by Proposition 4.1, χ′(k, b) = (j, b). ut

Lemma 4.9 below shows that if there is an agent j imposed as a partial dictator by the leftmost and the
rightmost agent, then j is the only agent with this property. Thus, if j is located at the one extreme of the
instance, the other facility is placed at the other extreme.

Lemma 4.9. If there exists an agent i and a location a such that χ(i, a) = (j, a), then for all locations
b ∈ IR, it holds that χp(j, b) = ↑ and χ′(j, b) = ↓.

Proof. We only show that for all locations b, χ(j, b) = ↑. The claim that χ′(j, b) = ↓ follows from a sym-
metric argument. In the following, we let (i, a) be any agent-location pair with χp(i, a) = (j, a), and let k be
the third agent. We observe that for all locations a′ ∈ IR, χ(i, a′) = (j, a′), by Lemma 4.7, and χ′(k, a′) =
(j, a′), by Lemma 4.8. For sake of a contradiction, we assume that for some location b ∈ IR, χp(j, b) = b.
Therefore, there exists a (unique) preferred agent ` ∈ {i, k} such that χ(j, b) = (`, b), and by Lemma 4.7,
for all locations b′ ∈ IR, χ(j, b′) = (`, b′). Moreover, for all instances x with xj = b < min{xi, xk},
Lemma 4.3 implies that x` ∈ F (x). To reach a contradiction, we next show that χ`(j, b) 6= i and that
χ`(j, b) 6= k.

To this end, we first assume that χ`(j, b) = i, and consider an instance y with yj = 0, yk = 1, and yi = ε,
where ε > 0 is chosen small enough that y is an (j, i|k)-well-separated instance. Since χ(j, 0) = (i, 0),
since j is the leftmost agent, and since yi > 0, Lemma 4.3 implies that yi ∈ F (x). Moreover, since
χ′(k, 1) = (j, 1), k is the rightmost agent, and yj < 1, the symmetric version of Lemma 4.3 implies
that yj ∈ F (x). Therefore, the agent k is served by the facility at yi, which contradicts F ’s bounded
approximation ratio, because the instance y is (j, i|k)-well-separated.

We have also to consider the case where χ`(j, b) = k. In this case, we consider an instance z with
zi = 0, zj = 1, and zk = 1 + ε, where ε > 0 is chosen small enough that z is an (i|j, k)-well-separated
instance. Since χ(i, 0) = (j, 0), i is the leftmost agent in z, zj > 0, and the instance z is (i|j, k)-well-
separated, Lemma 4.2 implies that F2(z) = zj . Therefore, zk 6∈ F (z), and there is a zk-hole (l, r) in the
imageset Ik(zi, zj) with l = 1. We now consider the instance z′ = (z−{i,k}, r, r−δ), where δ > 0 is chosen
small enough that r− δ is in the right half of the hole (l, r) and z′ is an (j|k, i)-well-separated instance. We
observe that F (z′) = (r−δ, r). More specifically, r = z′i ∈ F (z′), due to F ’s strategyproofness. Otherwise,
the agent i could switch to location zi and have r ∈ F (z′−i, zi), since r is the closest point to z′k = r − δ
in the imageset Ik(zi, zj). Furthermore, since χ(j, 1) = (k, 1), since j is the leftmost agent in z′, and since
z′k > 1, Lemma 4.3 implies that r − δ = z′k ∈ F (z′). Therefore, the agent j is served by the facility at z′k,
which contradicts F ’s bounded approximation ratio, because the instance z′ is (j|k, i)-well-separated. ut

Now, we are are ready to conclude the proof of Theorem 3.2. We show that the behavior of any nice
mechanism F is essentially characterized by whether there are two agents that agree on imposing the third
agent as a partial dictator or not. Theorem 3.2 is an immediate consequence of the following lemma.
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Lemma 4.10. Either for all instances y, F (y) ∈ (miny,maxy), or there exists an instance x, with xi <
xj < xk, such that xj ∈ F (x). In the latter case:

– For all instances y with yi < yj < yk, yj ∈ F (y).
– Either for all instances y with yk < yj < yi, yj ∈ F (y), or for all instances y with yk < yj < yi,
F (y) = (miny,maxy)

– For all the remaining instances y, F (y) = (miny,maxy)

Proof. We distinguish between the case where for all agents i ∈ {1, 2, 3} and for all locations a ∈ IR,
χp(i, a) = ↑, and the case where there exists an agent i ∈ {1, 2, 3} and a location a ∈ IR such that χp(i, a) =
a. Lemma 4.6 implies that these two cases are indeed complementary to each other.

Case I: ∀i∀aχp(i, a) = ↑. We show that in this case, F always places the facilities at two extremes. To this
end, we let x be any instance, and let i be the leftmost agent and k be the rightmost agent in x. By hypothesis,
χp(i, xi) = ↑. Therefore, by Lemma 4.4, F2(x) = xk. Moreover, χ′p(k, xk) = ↓, since otherwise, it would be
χ′p(k, xk) = xk, by Lemma 4.6, and thus χp(i, xi) = xi, by Lemma 4.8, which contradicts the hypothesis.
Therefore, by the symmetric version of Lemma 4.4, F1(x) = xi.

Case II: ∃i∃aχp(i, a) = a. We let (i, a) be any agent-location pair with χp(i, a) = a, let j = χ`(i, a) be the
preferred agent of i, and let k be the third agent. Therefore, for all locations b, χp(j, b) = ↑ and χ′p(j, b) = ↓,
by Lemma 4.9. We next show that in this case, the agent j serves as a partial dictator, and satisfies the latter
case of the conclusion.

We first observe that for all locations a′ ∈ IR, χ(i, a′) = (j, a′), by Lemma 4.7, and χ′(k, a′) = (j, a′),
by Lemma 4.8. Therefore, for all instances x with xi < xk, xj ∈ F (x). More specifically, if xi < xj , this
follows from Lemma 4.3, while if xj < xk, this follows from the symmetric version of Lemma 4.3. Then,
using Lemma 4.4, we obtain the conclusion of the lemma for all instances x with xi < xk :

– For all instances x with xi < xj < xk, xj ∈ F (x).
– For all instances x with xj < xi < xk, F1(x) = xj and F2(x) = xk, by Lemma 4.4, because
χp(j, xj) = ↑. Therefore, F (x) = (minx,maxx).

– For all instances x with xi < xk < xj , F2(x) = xj and F1(x) = xi, by the symmetric version of
Lemma 4.4, because χ′p(j, xj) = ↓. Therefore, F (x) = (minx,maxx).

As for instances x with xk < xi, we first show that either χ(k, b) = (j, b) or χp(k, b) = ↑, for all
locations b (i.e., we exclude the possibility that for some b, χ(k, b) = (i, b)). In the former case, the facilities
are allocated as in the case where xi < xk. In the latter case, the facilities are placed at the two extremes.

To reach a contradiction, let us assume that for some location b, χ(k, b) = (i, b). Let y be any (k, i|j)-
well-separated instance with yk = b. Since χ(k, b) = (i, b), since k is the leftmost agent in y, and since
yi > b, Lemma 4.3 implies that yi ∈ F (y). Moreover, since χ′(j, yj) = ↓, and since j is the rightmost and
yk is the leftmost agent in y, the symmetric version of Lemma 4.4 implies that yk ∈ F (y). Therefore, the
agent j is served by the facility at yi, which contradicts F ’s bounded approximation ratio, because y is an
(k, i|j)-well-separated instance.

To conclude the proof, we distinguish between the case where there is a location b such that χ(k, b) =
(j, b), and the case where for all locations b, χp(k, b) = ↑. We recall that χp(j, b) = ↑ and χ′p(j, b) = ↓, for
all locations b, by Lemma 4.9, because χ(i, a) = (j, a).

If there is a location b such that χ(k, b) = (j, b), then for all locations b′ ∈ IR, χ(k, b′) = (j, b′), by
Lemma 4.7, and χ′(i, b′) = (j, b′), by Lemma 4.8. Therefore, for all instances x with xk < xi, xj ∈ F (x).
More specifically, if xk < xj , this follows from Lemma 4.3, while if xj < xi, this follows from the
symmetric version of Lemma 4.3. Then, we use Lemma 4.4, and obtain the conclusion of the lemma for all
instances x with xk < xi :
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– For all instances x with xk < xj < xi, xj ∈ F (x).
– For all instances x with xj < xk < xi, F1(x) = xj and F2(x) = xi, by Lemma 4.4, because
χp(j, xj) = ↑. Therefore, F (x) = (minx,maxx).

– For all instances x with xk < xi < xj , F2(x) = xj and F1(x) = xk, by the symmetric version of
Lemma 4.4, because χ′p(j, xj) = ↓. Therefore, F (x) = (minx,maxx).

Otherwise, for all locations b, χp(k, b) = ↑. We observe that for all locations b, χ′p(i, b) = ↓. Otherwise,
there would exist a location b′ with χ′p(i, b

′) = b′, by Lemma 4.6, and thus χp(k, b′) = b′, by Lemma 4.8, a
contradiction. As before, we now use Lemma 4.4, and obtain the conclusion of the lemma for all instances x
with xk < xi. More specifically, since xk < xi, the leftmost agent of x is either k or j. If the leftmost agent
is k (resp. j), F2(x) = maxx, by Lemma 4.4, because χp(k, xk) = ↑ (resp. χp(j, xj) = ↑). Similarly, the
rightmost agent of x is either j or i. If the rightmost agent is j (resp. i), F1(x) = minx, by the symmetric
version of Lemma 4.4, because χ′p(j, xj) = ↓ (resp. χ′p(i, xi) = ↓). Thus, if χp(k, b) = ↑, for all instances x
with xk < xi, F (x) = (minx,maxx). ut

5 Strategyproof Allocation of 2 Facilities to 3 Locations: The Proof of Theorem 3.3

The proof of Theorem 3.3 is based on the following extension of Theorem 3.2 to 3-location instances. In
fact, we can restate the whole proof of Theorem 3.2 with 3 coalitions of agents instead of 3 agents. Then,
using that any strategyproof mechanism is also partial group strategyproof [10, Lemma 2.1], we obtain that:

Corollary 5.1. Let F be any nice mechanism applied to 3-location instances with n ≥ 3 agents. Then,
there exist at most two permutations π1, π2 of the agent coalitions with π1(2) = π2(2) such that for all
instances x where the coalitions are arranged on the line according to π1 or π2, F (x) places a facility at
the location of the middle coalition. For any other permutation π and instance x, where the agent coalitions
are arranged on the line according to π, F (x) = (minx,maxx).

A central notion in the proof of Theorem 3.3 is that of a dictator coalition. A (non-empty) coalition
C ⊂ N , |C| ≤ |N | − 2, is called a dictator for 3-location instances, if for all partitions N1, N2 of N \ C
and all instances x = (x1:N1, x:C, x2:N2) ∈ I3(N), x ∈ F (x). The first key step of the proof is to show
that if there exists a 3-location instance where the middle coalition has at most n− 3 agents and is allocated
a facility, then any superset of the middle coalition is a dictator for 3-location instances.

Lemma 5.1. LetN be a set of n ≥ 4 agents. If there exists a 3-location instance x = (x1:N1, x2:N2, x3:N3)
with x1 < x2 < x3 and |N2| ≤ n − 3, such that x2 ∈ F (x), then any coalition N ′2 ⊇ N2 is a dictator for
3-location instances.

Proof. We consider any 3-location instance y = (y1 :N
′
1, y2 :N

′
2, y3 :N

′
3) with N ′2 ⊇ N2, and show that

y2 ∈ F (y). We start with the case where y1 < y3. By the hypothesis about the existence of x, and by
Corollary 5.1, F allocates a facility to the coalition N2 for any instance (y1:N1, y2:N2, y3:N3) with y1 < y3.
In particular, the existence of x, where the middle coalition N2 is allocated a facility, implies that N2 serves
as the partial dictator of Corollary 5.1. Therefore, F allocates a facility to N2 if either N2 is the middle
coalition and y1 < y3, or it is the left or the right coalition.

Therefore, we only need to show that F allocates a facility to the middle coalition N ′2 if N2 ⊂ N ′2, and
either N ′1 6= N1, or N ′3 6= N3 (or both). To this end, we show how to move agents between the left and
the right coalition and from the left and the right coalitions to the middle coalition, and obtain the desired
partition N ′1, N

′
2, N

′
3 of agents, while keeping a facility of F allocated to the middle coalition. Then, the

lemma follows from Corollary 5.1.
For simplicity, we assume that |N1| ≥ 2 and that N1 ∩N ′1 6= ∅. We show how to remove these assump-

tions later on. We first consider the instance y′ = (y1:N1, y1 + ε:N2, y3:N3), where ε > 0 is chosen small
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enough that due to F ’s bounded approximation ratio, the rightmost facility of F (y′) is placed on the right
of y1 + ε. Since F (x) allocates a facility to N2, Corollary 5.1 implies that y1 + ε ∈ F (y′). We observe that
as long as there are at least two agents at y1, we can move either some agent j ∈ N1 ∩N ′2 from y1 to y1 + ε
or some agent j ∈ N1 ∩N ′3 from y1 to y3, while keeping a facility of F to y1 + ε. More specifically, if an
agent j ∈ N1 ∩N ′2 moves from y1 to y1 + ε, it holds that y1 + ε ∈ F (y1:N1 \ {j}, y1 + ε:N2 ∪ {j}, y3:N3),
due to F ’s strategyproofness. Otherwise, agent j in instance (y1:N1 \ {j}, y1 + ε:N2 ∪ {j}, y3:N3) could
manipulate F by reporting y1 instead of y1 + ε. If an agent j ∈ N1 ∩N ′3 moves from y1 to y3, it holds that
y1 + ε ∈ F (y1:N1 \ {j}, y1 + ε:N2, y3:N3 ∪ {j}), by Corollary 5.1. In particular, if the middle coalition is
not allocated a facility in (y1:N1 \ {j}, y1 + ε:N2, y3:N3 ∪ y3:N3 ∪ {j}), Corollary 5.1 implies that the two
facilities are placed at y1 and y3. Therefore, agent j in instance (y1:N1, y1 + ε:N2, y3:N3) could manipulate
F by reporting y3 instead of y1. By repeatedly applying this argument, we move all agents in N1 ∩N ′2 from
the left to the middle coalition and all agents in N1∩N ′3 from the left to the right coalition, and keep at least
one agent at y1, since N1 ∩ N ′1 6= ∅. Thus, we obtain an instance z = (y1:Z1, y1 + ε:Z2, y3:Z3) such that
Z1 = N1 ∩N ′1 6= ∅, Z2 = N2 ∪ (N1 ∩N ′2), Z3 = N3 ∪ (N1 ∩N ′3), and y1 + ε ∈ F (z). Moreover, since
F allocates a facility to the middle coalition Z2 of z, by Corollary 5.1, F allocates a facility to the coalition
Z2 for all instances (y1:Z1, y:Z2, y3:Z3) with y1 < y3.

Next, we consider the instance z′ = (y1:Z1, y3 − ε′:Z2, y3:Z3), where ε′ > 0 is chosen small enough
that due to F ’s bounded approximation ratio, the leftmost facility of F (z′) is located on the left of y3 − ε′.
By Corollary 5.1, y3 − ε′ ∈ F (z′). By an argument symmetric to the argument above, we obtain that as
long as there are at least two agents at y3, we can move either some agent j ∈ Z3 ∩N ′2 from y3 to y3 − ε or
some agent j ∈ Z3 ∩ N ′1 from y3 to y1, while keeping a facility of F to y3 − ε′. As before, by repeatedly
applying this argument, we move all agents in Z3 ∩N ′2 from the right to the middle coalition and all agents
in Z3 ∩N ′1 from the right to the left coalition. Thus, we obtain the instance y′′ = (y1:N

′
1, y3 − ε:N ′2, y3:N ′3)

where y3 − ε ∈ F (y′′). Since F allocates a facility to the middle coalition N ′2 of y′′, by Corollary 5.1, F
allocates a facility to the coalition N ′2 for all instances y = (y1:N

′
1, y2:N

′
2, y3:N

′
3) with y1 < y3.

We are now ready to remove the assumptions that |N1| ≥ 2 and that N1 ∩ N ′1 6= ∅. If |N1| = 1, then
|N2| ≥ 2, because |N2| ≤ n − 3, and we start moving agents from N3 (i.e., we first consider the instance
z′ and then the instance y′). If N1 ∩N ′1 = ∅, we first apply two rounds of agent moves between the left and
the right coalition, so that every agent in N ′1 ∪ (N ′2 \N2) ends up in the left coalition and every agent in N ′2
ends up in the right coalition. In a final half-round of agent moves, where we consider only the instance y′,
every agent in N ′2 \ N2 moves from the left coalition to the middle coalition. This also deals with the case
where |N ′2| = n − 2. If y1 > y3, we first work as above and move all agents in N1 from y1 to y3 and all
agents in N3 from y3 and y1. Thus, we obtain an instance (y3:N1, y2:N2, y1:N3), with y3 < y1, and proceed
as above. ut

To conclude the proof of Theorem 3.3, we distinguish, for technical reasons, between instances where
the largest coalition has size at most n − 3, and instances where the largest coalition has size n − 2 and
the other two coalitions are singletons. Given a set N of agents, we let I−3 (N) denote the former class
and I+3 (N) denote the latter class of 3-location instances. We note that for all sets N of n ≥ 5 agents,
I−3 (N) and I+3 (N) form a partition of I3(N). The following pair of lemmas establish Theorem 3.3 first
for instances in I−3 (N), and then for all instances in I3(N). We first establish Theorem 3.3 for instances in
I−3 (N).

Lemma 5.2. Let N be a set of n ≥ 5 agents. If there is an instance x = (x1:N1, x2:N2, x3:N3) ∈ I−3 (N)
with x1 < x2 < x3, such that x2 ∈ F (x), then there exists a unique agent j ∈ N2 such that for all instances
y ∈ I−3 (N), yj ∈ F (y).

Proof. Let x = (x1 :N1, x2 :N2, x3 :N3) ∈ I−3 (N) with x1 < x2 < x3, such that x2 ∈ F (x). Then, by
Lemma 5.1, N2 is a dictator for 3-location instances. For sake of contradiction, we assume that there is a
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minimal (sub)coalition N ′2 ⊆ N2, |N ′2| ≥ 2, that violates the lemma. Namely, N ′2 is a dictator for 3-location
instances, while for every agent j ∈ N ′2, N ′2 \ {j} is not a dictator. The lemma follows from the observation
that if such a minimal dictator coalition N ′2 exists, then, for any agent j ∈ N ′2 and any agent i ∈ N \ N ′2,
{j, i} is a dictator for 3-location instances.

Before proving this claim, let us first show that it indeed implies the lemma. By the claim above, if we
let j1, j2 be any two agents in the minimal dictator coalition N ′2, for any pair of agents i1, i2 ∈ N \N ′2, the
coalitions {j1, i1} and {j2, i2} are both dictators for 3-location instances. But the existence of two disjoint
dictator coalitions contradicts the hypothesis that F has a bounded approximation ratio. To see this, we
consider the instance z = (0 :N \ {j1, i1, j2, i2}, 1 : {j1, i1}, 1 + ε : {j2, i2}), where ε > 0 is chosen
sufficiently small. Since both {j1, i1} and {j2, i2} are dictators for 3-location instances, F (z) = (1, 1 + ε),
which for a sufficiently small ε, contradicts that F has a bounded approximation ratio.

Therefore, there exists an agent j ∈ N2 such that for all instances y ∈ I−3 (N), yj ∈ F (y). The
uniqueness of such an agent j follows from an argument similar to the argument above, due to F ’s bounded
approximation ratio.

To complete the proof of Lemma 5.2, we have also to show that if there is a minimal coalition N ′2,
|N ′2| ≥ 2, such that N ′2 is a dictator for 3-location instances, while for every agent j ∈ N ′2, N ′2 \ {j} is not
a dictator for 3-location instances, then for any agent j ∈ N ′2 and any agent i ∈ N \N ′2, the coalition {j, i}
is a dictator for 3-location instances. For sake of contradiction, we assume that there is an agent j ∈ N ′2 and
an agent i ∈ N \ N ′2, such that {i, j} is not a dictator for 3-location instances. For simplicity of notation,
we let C ′ = N ′2 \ {j}, Cj = {j, i}, and N ′ = N \ (C ′ ∪ Cj). Since the coalition Cj is not a dictator,
Lemma 5.1 implies that for all instances x = (x1:N

′, x2:Cj , x3:C
′) with x1 < x2 < x3, x2 6∈ F (x). To

reach a contradiction, we consider any such instance x, and choose a location r > 2|x3|+ |x2| large enough
that for the (4-location) instance x′ = (x−i, r), r ∈ F (x′). Such an r exists because F has a bounded
approximation ratio, and thus every hole in the image set Ii(x−i) is a bounded interval.

Let a be the location of the other facility of F (x′). We show that there is no choice of a compatible with
the assumption that F is strategyproof, thus obtaining a contradiction. More specifically, if a = x2, the agent
i in the instance x could manipulate F by reporting r instead of x2. If a ∈ (x2,+∞), the coalition N ′ in x
could manipulate F by reporting x2 instead of x1. Then, x1 = (x2:N

′ ∪ {j}, x3:C ′, r:{i}) is a 3-location
instance, and since the coalition C ′ is not a dictator for 3-location instances, F1(x1) = x2. Otherwise, by
Corollary 5.1, x3 ∈ F (x), and thus, by Lemma 5.1, C ′ would be a dictator. If a ∈ [−∞, x2), the coalition
C ′ in x could manipulate F by reporting x2 instead of x3. Then, x2 = (x1:N

′, x2:N
′
2, r:{i}) is a 3-location

instance, and since the coalition N ′2 is a dictator for 3-location instances, x2 ∈ F (x2).
Therefore, there is an instance x = (x1:N

′, x2:Cj , x3:C
′), with x1 < x2 < x3 and |Cj | ≤ n − 3, such

that x2 ∈ F (x). Thus, by Lemma 5.1, the coalition Cj is a dictator for 3-location instances. This concludes
the proof of the claim and the proof of the lemma. ut

The next lemma shows that that F behaves in the same way for all instances in I3(N), and concludes
the proof of Theorem 3.3. Interestingly, Lemma 5.3 shows that we can tell whether all instances in I3(N)
admit a dictator or not, by only checking whether instances in I−3 (N) admit a dictator.

Lemma 5.3. Let N be a set of n ≥ 5 agents. If there is an instance x = (x1:N1, x2:N2, x3:N3) ∈ I−3 (N)
with x1 < x2 < x3, such that x2 ∈ F (x), then there exists a unique agent j ∈ N2 such that for all instances
y ∈ I3(N), yj ∈ F (y). Otherwise, for all instances y ∈ I3(N), F (y) = (miny,maxy).

Proof. We distinguish between the case where for some x = (x1 :N1, x2 :N2, x3 :N3) ∈ I−3 (N), with
x1 < x2 < x3, x2 ∈ F (x), and the case where for all instances y ∈ I−3 (N), F (y) = (miny,maxy).

In the former case, Lemma 5.2 implies the existence of a unique agent j ∈ N2 such that for all instances
y ∈ I−3 (N), yj ∈ F (y). Let i, k ∈ N be any two agents different from j. Since the instance x′ =
(x1 :N \ {i, j, k}, x2 : {j}, x3 : {i, k}) is a 3-location instance in I−3 (N), x2 ∈ F (x′). Moreover, since
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x1 < x2 < x3 and the cardinality of the middle coalition of x′ is at most n− 3, Lemma 5.1 implies that any
coalition N ′2 that includes j is a dictator for 3-location instances. Therefore, for all instances y ∈ I3(N),
yj ∈ F (y). The uniqueness of such an agent j follows from the bounded approximation ratio of F , as in the
proof of Lemma 5.2.

In the latter case, for all instances y ∈ I−3 (N), F (y) = (miny,maxy), and thus instances in I−3 (N) do
not admit a dictator. We next show that for all y ∈ I+3 (N), it is also the case that F (y) = (miny,maxy).
For sake of contradiction, let us assume that there is an instance z = (z1 :N1, z2 :N2, z3 :N3) ∈ I+3 (N)
with z1 < z2 < z3, such that F (z) 6= (z1, z3). Thus, by Corollary 5.1, z2 ∈ F (z). Since z ∈ I+3 (N), a
coalition has size n− 2 and the other two coalitions are singletons. If the middle coalition N2 is a singleton,
by Lemma 5.1, the agent in N2 is a dictator for all 3-location instances. Otherwise, |N2| = n − 2, and
Claim 5.1 implies that for any agent j ∈ N2, the coalition N3 ∪ {j} is a dictator for 3-location instances. In
both cases, we reach a contradiction to the hypothesis that instances in I−3 (N) do not admit a dictator.

Claim 5.1 Let N be a set of n ≥ 5 agents. If for all instances y ∈ I−3 (N), F (y) = (miny,maxy), and
there exists an instance z = (z1 :N1, z2 :N2, z3 :N3), with z1 < z2 < z3 and N2 = |n − 2|, such that
z2 ∈ F (z), then for any agent j ∈ N2, the coalition N3 ∪ {j} is a dictator for 3-location instances.

Proof (of Claim 5.1). For simplicity of notation, we let j ∈ N2 be any agent, let C ′ = N2 \ {j}, let i be
the unique agent in N1 and k be the unique agent in N3, and let Cj = {j, k}. For sake of contradiction,
let us assume that the coalition Cj is not a dictator for 3-location instances. Therefore, since |Cj | ≤ n − 3,
by Lemma 5.1, for all instances x = (x1 :{i}, x2 :Cj , x3 :C ′), with x1 < x2 < x3, x2 6∈ F (x). To reach
a contradiction, we consider any such instance x, and choose a location r > 2|x3| + |x2| large enough
that for the (4-location) instance x′ = (x−k, r), r ∈ F (x′). Such an r exists because F has a bounded
approximation ratio, and thus every hole in the image set Ik(x−k) is a bounded interval.

Let a be the location of the other facility of F (x′). We show that there is no choice of a compatible
with the assumption that F is strategyproof, thus obtaining a contradiction. More specifically, if a = x2, the
agent k in the instance x could manipulate F by reporting r instead of x2. If a ∈ (x2,+∞), the agent i in
x could manipulate F by reporting x2 instead of x1. Then, x1 = (x2:{i, j}, x3:C ′, r:{k}) is a 3-location
instance in I−3 (N), and by the hypothesis of the claim, F (x1) = (x2, r). If a ∈ [−∞, x2), the coalition C ′

in x could manipulate F by reporting x2 instead of x3. Then, x2 = (x1:{i}, x2:N2, r:{k}) is a 3-location
instance whereN1 = {i} is the left coalition,N2 is the middle coalition, andN3 = {k} is the right coalition.
Therefore, by the hypothesis of the claim and Corollary 5.1, x2 ∈ F (x2).

Hence, there is an instance x = (x1:{i}, x2:Cj , x3:C ′), with x1 < x2 < x3 and |Cj | ≤ n− 3, such that
x2 ∈ F (x). Thus, by Lemma 5.1, the coalition Cj is a dictator for 3-location instances. ut

With the proof of Claim 5.1, we conclude the proof of the lemma. ut

6 Strategyproof Allocation of 2 Facilities: The Proof of Theorem 3.1

The final step is that we extend Theorem 3.3 to general instances with n ≥ 5 agents, and conclude the proof
of Theorem 3.1. The proof considers two different cases, depending on how the mechanism F behaves for
3-location instances, and proceeds by induction on the number of different locations.

We first consider the case where F admits a dictator j for 3-location instances, and show that agent j
is a dictator for all x ∈ I(N). For sake of contraction, we assume an instance x = (x1, . . . , xn) ∈ I(N)
for which xj 6∈ F (x). W.l.o.g., we let k 6= j be the rightmost agent of x (if j is the rightmost agent, the
argument is symmetric). Since xj 6∈ F (x), there is a xj-hole (l, r) in the imageset Ij(x−j). For a small
ε ∈ (0, (r − l)/2), we consider the instance x1 = (x−j , l + ε), where j moves from xj to l + ε. By
strategyproofness, and since l + ε is in the left half of the hole (l, r), l ∈ F (x1). Then, we iteratively move
all agents i ∈ N \ {j, k} from xi to l. By strategyproofness, if F has a facility at l before i moves from xi to
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l, F keeps its facility at l after i’s move. Otherwise, agent i with location l could manipulate F by reporting
xi. Thus, we obtain a 3-location instance x′ = (l:N \{j, k}, l+ε:{j}, xk:{k}) with l < l+ε < xk, such that
l ∈ F (x′). Moreover, since j is a dictator for 3-location instances, l+ε ∈ F (x′), and thus F (x′) = (l, l+ε).
For ε sufficiently smaller than xk − l, this contradicts the bounded approximation ration of F .

If F does not admit a dictator for 3-location instances, by Theorem 3.3, F (x) = (minx,maxx) for all
instances x ∈ I3(N). Next, we show that in this case, F (x) = (minx,maxx) for all instances x ∈ I(N).
For sake of contradiction, we assume that there exists some instance x = (x1, . . . , xn) ∈ I(N), for which
F (x) 6= (minx,maxx). We let j be the leftmost and k be the rightmost agent of x. Since F (x) 6= (xj , xk),
there is a location a ∈ F (x) with a 6= xj and a 6= xk.

If xj < a < xk, we iteratively move all agents i ∈ N \ {j, k} from xi to a. As in the previous case,
since F is strategyproof, it keeps allocating a facility at a after each agent i moves to a. Thus, we obtain a
3-location instance x′ = (xj :{j}, a:N \ {j, k}, xk:{k}) for which F does not allocate the facilities to the
two extremes, a contradiction.

We proceed to consider the case where a < xj , (the case where a > xk is identical). Without loss of
generality, we assume that the selected instance x has the minimum number of distinct locations among all
instances for which F allocates a facility outside the two extremes. Since a < xj , either xj or xk is not
allocated a facility by F (x). Next, we assume that xj 6∈ F (x) (the case where xk 6∈ F (x) is symmetric).
Let Sj ⊆ N be the set of agents located at xj , and let b = minx−Sj be the second location from the left in
x. Since xj 6∈ F (x), there is a xj-hole (l, r) in the image set ISj (x−Sj ). We observe that r ≤ b, because
if all agents in Sj move from xj to b, we obtain the instance x′ = (x−Sj , (b, . . . , b)) that has less distinct
locations than x and b as its leftmost location. Since x has the minimum number of distinct locations among
all instances for which F allocates a facility outside the two extremes, F (x′) allocates a facility to b. We
now choose ε > 0 such that r − ε lies in the right half of the hole (l, r), and move all agents in Sj from xj
to r− ε. Thus, we obtain the instance x′′ = (x−Sj , (r− ε, . . . , r− ε)). Since F is strategyproof and r is the
closest location to r − ε in ISj (x−Sj ), F (x

′′) allocates a facility to r > r − ε (see also [10, Lemma 3.1]).
Therefore, F (x′′) allocates a facility inside the two extremes of x′′, which contradicts what we have shown
above: namely that if F does not admit a dictator for 3-location instances, then F never allocates a facility
inside the two extremes. ut

7 Inexistence of Anonymous Nice Mechanisms for More Than 2 Facilities

We next obtain an impossibility result for anomynous nice K-Facility Location mechanisms, for all K ≥ 3.

Theorem 7.1. For every K ≥ 3, any deterministic anonymous strategyproof mechanism for K-Facility
Location with n ≥ K + 1 agents on the real line has an unbounded approximation ratio.

Proof. We only consider the case where K = 3 and n = 4. It is straightforward to verify that the proof
generalizes to any K ≥ 3 and any n ≥ K + 1. For sake of contradiction, we let F be an anonymous nice
mechanism for 3-Facility Location, and let ρ be the approximation ratio of F for instances with 4 agents.
Next, we construct a family of instances for which the approximation ratio of F is greater than ρ.

Since F is anonymous, we assume that for any instance x, x1 < x2 < x3 < x4 (i.e. the agents are
arranged on the line in increasing order of their indices). For some sufficiently large λ > ρ, we consider
the instance x = (0, λ, 3λ2 + λ, 3λ2 + λ + 1), which is (1|2|3, 4)-well-separated. By Proposition 2.2,
F3(x) ∈ [x3, x4]. W.l.o.g., we assume that F3(x) ∈ {x3, x4}. Otherwise, if F3(x) = a and x3 < a < x4,
the instance (x−4, a) is also (1|2|3, 4)-well-separated and has F3(x−4, a) = a, due to F ’s strategyproofness.

We start with the case where F3(x) = x4. Since x is an (1|2|3, 4)-well-separated instance, both x3 and
x4 are served by the facility at x4. Hence, there is a x3-hole (l, r) in the image set I3(x−3). We note that
3λ2 + λ = x3 < r ≤ x4 = 3λ2 + λ+ 1, since x3 6∈ F (x) and x4 ∈ F (x), and that l ≥ λ2 + λ− 1. As for
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the latter, if l < λ2 + λ− 1, then y = 2λ2 + λ would lie in the right half of the hole (l, r). Thus, if agent 3
moves to y, by strategyproofness, the nearest facility to y in F (x−3, y) would be at r > 3λ2 + λ, and thus
cost[F (x−3, y)] > λ2. Since the optimal cost for (x−3, y) is λ, F ’s approximation ratio would be λ > ρ.

Let us now consider the instance x′ = (x−3, l + ε), where ε ∈ (0, 1] is chosen small enough that l + ε
lies in the left half of the hole (l, r) and the instance (0, λ, l, l + ε) is (1|2|3, 4)-well-separated. Since F is
strategyproof, and since l is the nearest point to l+ ε in I3(x−3), l ∈ F (x′). Then, we consider the instance
x′′ = (x′−4, l). Since F is anonymous4 and strategyproof, and since l ∈ F (x′), x′′3 = l ∈ F (x′′). Moreover,
by Proposition 2.4, x′′4 = l + ε ∈ F (x′′), because for the (1|2|3, 4)-well-separated instance x, F3(x) = x4,
and x′′ is an (1|2|3, 4)-well-separated instance with x′′4 ≤ x4. Since both x′′3, x

′′
4 ∈ F (x′′), either the agents

1 and 2 are served by the same facility of F (x′′) or the agent 2 is served by the facility at l. In both cases,
cost[F (x′′)] ≥ λ. But the optimal cost for x′′ is ε ≤ 1, and F ’s approximation ratio is at least λ > ρ.

Next, we consider the case where F3(x) = x3, which is symmetric to the case where F3(x) = x4.
As before, both x3 and x4 are served by the facility at x3, and there is a x4-hole (l, r) in the image set
I4(x−4). We note that 3λ2 + λ = x3 ≤ l < x4 = 3λ2 + λ+ 1, since x3 ∈ F (x) and x4 6∈ F (x), and that
r ≤ 5λ2 + λ+2. As for the latter, if r > 5λ2 + λ+2, then y = 4λ2 + λ+1 would lie in the left half of the
hole (l, r). Therefore, if agent 4 moves to y, by F ’s strategyproofness, the nearest facility to y in F (x−4, y)
would be at l < 3λ2 + λ+ 1, and thus cost[F (x−4, y)] > λ2. Since the optimal cost for instance (x−4, y)
is λ, the approximation ratio of F would be λ > ρ.

Let us now consider the instance x′ = (x−4, r − ε), where ε ∈ (0, 1] is chosen small enough that r − ε
lies in the right half of the hole (l, r) and the instance (0, λ, r− ε, r) is (1|2|3, 4)-well-separated. Since F is
strategyproof, and since r is the nearest point in I4(x−4) to r−ε, r ∈ F (x′). Then, we consider the instance
x′′ = (x′−3, r) (as before, since we require that the agents are arranged on the line in increasing order of
their indices, the agents 3 and 4 switch indices in x′ and x′′). Since F is anonymous and strategyproof,
and since r ∈ F (x′), x′′4 = r ∈ F (x′′). Moreover, by Proposition 2.3, x′′3 = r − ε ∈ F (x′′), because for
the (1|2|3, 4)-well-separated instance x, F3(x) = x3, and x′′ is an (1|2|3, 4)-well-separated instance with
x′′3 ≥ x3. Since both x′′3, x

′′
4 ∈ F (x′′), either the agents 1 and 2 are served by the same facility of F (x′′) or

the agent 2 is served by the facility at r− ε. In both cases, cost[F (x′′)] ≥ λ. On the other hand, the optimal
cost for x′′ is ε ≤ 1, and the approximation ratio of F is at least λ > ρ. ut

8 Inexistence of Nice Mechanisms for 2-Facility Location in More General Metrics

Throughout this section, we consider 3-location instances of 2-Facility Location with n ≥ 3 agents in a
metric space consisting of 3 half-lines [0,∞) with a common origin O. This is conceptually equivalent to
a continuous metric determined by a star with center O and 3 long branches starting at O. So, we refer
to this metric as S3, and to the 3 half-lines (or branches) of S3 as b1, b2, and b3. A location (x, b`) in S3
is determined by the distance x ≥ 0 to the center O and the corresponding branch b`, ` ∈ {1, 2, 3}. The
distance of two locations (x, b`) and (x′, b`′) in S3 is |x− x′|, if ` = `′ (i.e., if the locations are on the same
branch), and x + x′, otherwise. Given two locations (x, b`) and (x′, b`′) in S3, we let [(x, b`), (x′, b`′)] be
the interval of all points in the path from (x, b`) to (x′, b`′).

To show that there do not exist any nice mechanisms for 2-Facility Location in S3, we extend Theo-
rem 3.2 (and Corollary 5.1), so that we characterize nice mechanisms for 3-agent (and 3-location) instances
of 2-Facility Location in S3 when all agents are located on (at most) two fixed branches. As in Section 5, we
first extend the characterization to 3-agent instances, and then use partial group strategyproofness to further

4 We highlight that the agents 3 and 4 implicitly switch indices in x′ and x′′. More specifically, since we require that the agents
are arranged on the line in increasing order of their indices, the location of agent 3 is l+ ε in x′ and l in x′′, and the location of
agent 4 is 3λ2 + λ+ 1 in x′ and l+ ε in x′′. Therefore, to argue about the outcome of F (x′′) based on the outcome of F (x′),
we resort to the anonymity of F .
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extend it to 3-location instances. We first show that for collinear instances, nice mechanisms do not take any
essential advantage of the third branch.

Proposition 8.1. Let F be a nice mechanism for 2-Facility Location in S3, let x be any 3-agent instance
where all agents’ locations are on (at most) two branches, and let f be the facility of F (x) serving (at least)
two agents j and k located at (xj , b`j ) and (xk, b`k), respectively. Then, f ∈ [(xj , b`j ), (xk, b`k)].

Proof. Throughout the proof, we let i be the third agent located at (xi, b`i) in x. For sake of contradiction,
we assume that f is not located in [(xj , b`j ), (xk, b`k)]. We first obtain a contradiction in case where f ,
(xj , b`j ), and (xk, b`k) are collinear. If (xj , b`j ) is located in [(xk, b`k), f ], then agent k may report (xj , b`j )
and decrease her cost, since (xj , b`j ) ∈ F (x−k, (xj , b`j )), due to the bounded approximation ratio of F .
Similarly, we argue that (xk, b`k) cannot be located in [(xj , b`j ), f ]. Therefore, if f , (xj , b`j ), and (xk, b`k)
are collinear, then f ∈ [(xj , b`j ), (xk, b`k)].

We have also to exclude the possibility that the locations f , (xj , b`j ), and (xk, b`k) are on three dif-
ferent branches. Then, the center O is included in all three paths [(xj , b`j ), (xk, b`k)], [(xk, b`k), f ], and
[f, (xk, b`k)]. For convenience, we let (δ, b`) denote the location of the facility f serving j and k in F (x).

We first observe that xj ≥ δ. Otherwise, the distance xk + xj of agent k to agent j would be less than
the distance xk + δ of agent k to facility f , and agent k could report (xj , b`j ) and decrease her cost, since
(xj , b`j ) ∈ F (x−k, (xj , b`j )), due to the bounded approximation ratio of F . Similarly, we show that xk ≥ δ.

Since the locations of agents i, j, and k are collinear, we can assume, without loss of generality, that
agent i is located on the branch b`j of agent j (the case where i is located on the branch b`k of agent k is
symmetric). Moreover, we assume that xi > xj (otherwise, i is also served by f , and we can switch i and
j). For some ε > 0 much smaller than δ and xj , we let x′ = (x−j , (ε, b`)) be the instance obtained from
x if agent j moves on the branch b` (of f ) very close to the center O. Since F is strategyproof and agent j
moves closer to f , F (x′) must have a facility at f . More specifically, since F is strategyproof and f is the
facility of F (x) closest to (xj , b`j ), the image set Ij(x−j) has a hole around (xj , b`j ). This hole includes
[(xj , b`j ), (δ, b`)) and [(xj , b`j ), (δ, b`k)), since otherwise there must have been a facility closer to (xj , b`j )
in F (x). Therefore, the location in Ij(x−j) closest to (ε, b`) is f . Then, if agent k is served by f in F (x′),
she may report (ε, b`) and decrease her cost from δ + xk to ε + xk, since (ε, b`) ∈ F (x′−k, (ε, b`)), due to
the bounded approximation ratio of F . This contradicts the hypothesis that F is strategyproof.

So, let us assume that agent k is served by the second facility of F (x′). Since the hole around (xj , b`j )
in the image set Ij(x−j) includes [(xj , b`j ), (δ, b`k)), the second facility of F (x′), that serves agent k, must
be located in [(δ, b`k), (xk + ε, b`k)). Therefore, by the choice of ε, agent i is served by f in F (x′). Then,
agent i may report (ε, b`) and decrease her cost from δ+ xi to ε+ xi, since (ε, b`) ∈ F (x′−i, (ε, b`)), due to
the bounded approximation ratio of F . This contradicts the strategyproofness of F . ut

Proposition 8.1 implies that the characterization of Theorem 3.2 also applies to nice mechanisms for
3-agent instances of 2-Facility Location in S3 when all agents are located on (at most) two fixed branches.
More specifically, the crux of the proof of Theorem 3.2 is to argue about all possible strategyproof alloca-
tions of the facility serving a pair of agents j and k. All these arguments exploit carefully chosen (mostly
well-separated) instances of 3 agents on the line. Proposition 8.1 shows that for all these instances, a nice
mechanism for 2-Facility Location in S3 has to place the facility serving agents j and k in the closed line
interval between them, and thus the mechanism cannot take any advantage of the third branch. Therefore,
we can restate the whole proof of Theorem 3.2 with S3 as the underlying metric space, as soon as for all
instances considered in the proof, the 3 agents are located on (at most) two fixed branches. Moreover, using
that any strategyproof mechanism is also partial group strategyproof [10, Lemma 2.1], we generalize Corol-
lary 5.1 to 3-location collinear instances in S3. For convenience, for any pair of branches b`1 and b`2 , we let
IS3(b`1 , b`2) be the class of all 3-location instances in S3 where the agents are located on b`1 and b`2 . We
obtain that:
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Corollary 8.1. Let F be a nice mechanism for 2-Facility Location applied to 3-location instances in S3 with
n ≥ 3 agents, and let b`1 and b`2 be any two branches of S3. Then, there exist at most two permutations π1,
π2 of the agent coalitions with π1(2) = π2(2), such that for all instances x ∈ IS3(b`1 , b`2) where the agent
coalitions are arranged on the line b`1 − b`2 according to π1 or π2, F (x) places a facility at the location of
the middle coalition. For any other permutation π and instance x ∈ IS3(b`1 , b`2), where the agent coalitions
are arranged on the line b`1 − b`2 according to π, F (x) places the facilities at the locations of the leftmost
and the rightmost coalitions.

As in previous sections, well-separated instances play a crucial role in the proof of the impossibility
result for S3. Here we define well-separated instances in a slightly different way. Given a nice mechanism F
with approximation ratio ρ for 3 agents located in S3, we say that a 3-agent instance x is i-well-separated,
if for some agent i ∈ {1, 2, 3}, 2(ρ + 1) times the distance of the other two agents j and k is less than
the minimum of the distances of i to j and i to k. Therefore, due to the approximation ratio of F , for
any i-well-separated instance x, one facility of F (x) serves agent i alone and the other facility of F (x)
serves the nearby agents j and k. The following proposition is similar to Proposition 8.1, but also applies to
non-collinear well-separated instances. It can be regarded as the equivalent of Proposition 2.2 (and of [17,
Lemma 2]) for 3-agent instances in S3.

Proposition 8.2. Let F be a nice mechanism for 2-Facility Location with 3-agents in S3. For any i-well-
separated instance x, the facility of F (x) serving the two nearby agents j and k is in [(xj , b`j ), (xk, b`k)].

Proof. Let f be the facility of F (x) that serves the two nearby agents j and k, and let ρ be the approximation
ratio of F . For sake of contradiction, we assume that f is not located in [(xj , b`j ), (xk, b`k)]. In case where
f , (xj , b`j ), and (xk, b`k) are collinear, we obtain a contradiction as in the corresponding case in the proof
of Proposition 8.1. We have also to exclude the possibility that the locations f , (xj , b`j ), and (xk, b`k) are on
three different branches. Then, the center O is included in all three paths [(xj , b`j ), (xk, b`k)], [(xk, b`k), f ],
and [f, (xk, b`k)]. For convenience, we let (δ, b`) be the location of the facility f serving j and k in F (x).

For some ε > 0 much smaller than δ and xj , we let x′ = (x−j , (ε, b`)) be the instance obtained from x
if agent j moves on the branch b` and very close toO. As in the proof of Proposition 8.1, we show that F (x′)
has a facility at f . Moreover, due to the hypothesis that F has an approximation ratio of at most ρ, the facility
at f serves both agents j and k. In particular, if agent i is located either on b`j or on b`k , this holds because
the instance x′ is i-well-separated because the distance of i to the nearest of j and k does not decrease when
j moves to (ε, b`), while the distance of j to k decreases. On the other hand, if i is located on b`, we have
that 2(ρ+1)(xj+xj) < xi+xj+xk, because the instance x is i-well-separated, and the distance of i to the
nearest of j and k in x′ is xi−ε and the distance of j to k is xk+ε. Using 2(ρ+1)(xj+xj) ≤ xi+xj+xk
and ε < xj , we obtain that 2ρ(xk + ε) < xi − ε. Therefore, by the hypothesis that F has an approximation
ratio of at most ρ, the facility at f serves agents j and k and the other facility of F (x′) serves i alone. Then,
agent k may report (ε, b`) and decrease her cost from δ + xk to ε+ xk, since (ε, b`) ∈ F (x′−k, (ε, b`)), due
to the bounded approximation ratio of F . This contradicts the strategyproofness of F . ut

We also need the following proposition, which can be regarded as the equivalent of Proposition A.1 and
Proposition A.5 for well-separated instances in S3.

Proposition 8.3. Let F be any nice mechanism for 2-Facility Location with 3-agents in S3, let x be any
i-well-separated instance where the nearby agents j and k are located on different branches b`j and b`k ,
and 2(ρ + 1)(xj + xk) < xi, with ρ denoting the approximation ratio of F . If (xj , b`j ) ∈ F (x), then for
every location (x′j , b`j ), with x′j ∈ [0, xj ], it holds that (x′j , b`j ) ∈ F (x−j , (x′j , b`j )).

Proof. For sake of contradiction, we assume that there is a y ∈ [0, xj) such that (y, b`j ) 6∈ F (x−j , (y, b`j )).
Hence (y, b`j ) 6∈ Ij(x−j), and there is a hole in the image set Ij(x−j). Let (z, b`j ), z > y, be the location
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in Ij(x−j) on the branch b`j closest to (y, b`j ). Such a location exists because (xj , b`j ) ∈ F (x). For some
very small ε ∈ (0, z), we let x′ = (x−j , (z − ε, b`j )) be the instance obtained from x if agent j moves
on the branch b`j just before z. Since F is strategyproof, (z, b`j ) ∈ F (x′). Moreover, the hypothesis that
2(ρ + 1)(xj + xk) < xi implies that the instance x′ is i-well separated. Therefore, due to the bounded
approximation ratio of F , the facility at (z, b`j ) serves both agents j and k in F (x′). Thus, we obtain a
contradiction, since by Proposition 8.2, the facility at (z, b`j ) must be located in [(xk, b`k), (z− ε, b`j )]. ut

Using Corollary 8.1, Proposition 8.2, and Proposition 8.3, we next show that there are no nice mecha-
nisms for 2-Facility Location with 3 agents in S3.

Theorem 8.1. Any deterministic strategyproof mechanism for 2-Facility Location with 3 agents in S3 has
an unbounded approximation ratio.

Proof. For sake of contradiction, we let F be a nice mechanism for 2-Facility Location with 3 agents in S3.
Applying Corollary 8.1 to F and all instances with 3 agents located on the branches b1 and b2, we obtain
that there exists an agent i, such that for all instances x ∈ IS3(b1, b2), if i is located at the one extreme,
F (x) places the facilities at the two extreme locations of x (if F does not admit a partial dictator on the
line b1 − b2, i can be any agent). Similarly, there exists an agent k, which may be the same as or different
from i, such that for all 3-agent instances x ∈ IS3(b1, b3), if k is located at the one extreme, F (x) places
the facilities at the two extreme locations of x.

In the following, we let i be the partial dictator of F on the line b1−b2 (or any agent, if F does not admit
a partial dictator on b1 − b2), let k be the partial dictator of F on the line b1 − b3, if this agent is different
from i, or any agent different from i otherwise, and let j be the third agent. For some δ > 0, we consider an
instance x where the locations of agents j and k are (δ, b2) and (δ, b3), respectively, and the location of agent
i is (a, b1), where a > 4(ρ + 1)δ is chosen so that x is i-well-separated and we can apply Proposition 8.3.
Therefore, there is a facility f ∈ F (x) that serves both j and k, and by Proposition 8.2, f ∈ [(δ, b2), (δ, b3)].

Let us first assume that f ∈ [(δ, b2), (0, b2)] (note that the location (0, b2) coincides with the center O
of S3). Then, we use Proposition 8.3 and show that for the instance x′ = (x−j , (0, b2)), where all agents
are located on the line b1 − b3, (0, b2) ∈ F (x′), i.e. F (x′) does not place the facilities at the two extreme
locations of x′. This is a contradiction, since by the choice of k as the (possible) partial dictator of F on the
line b1 − b3, for all instances y ∈ IS3(b1, b3), F (y) must place the facilities at the two extreme locations of
y. More specifically, if f is located at (δ, b2), i.e., at the location of agent j in x, Proposition 8.3 immediately
implies that (0, b2) ∈ F (x−j , (0, b2)). Otherwise, we let (δ′, b2), with δ′ ∈ (0, δ), be the location of f , and
consider the instance x′′ = (x−j , (δ

′, b2)), which is also i-well-separated and satisfies the hypothesis of
Proposition 8.3, due to the choice of a. Since F is strategyproof, F (x′′) has a facility at (δ′, b2). Then,
Proposition 8.3 implies that (0, b2) ∈ F (x′′−j , (0, b2)).

Therefore, the facility of F (x) serving j and k cannot be located in [(δ, b2), (0, b2)]. By the same ar-
gument, but with agent k in place of agent j, and agent i as the (possible) partial dictator of F on the line
b1 − b2, we show that the facility of F (x) serving j and k cannot be located in [(δ, b3), (0, b3)]. Thus, we
obtain a contradiction, and conclude the proof of the theorem. ut

We can generalize the proof of Theorem 8.1 to instances with n ≥ 3 agents. To this end, we start with
a 3-location instance x with n ≥ 3 agents, where a coalition of n − 2 agents, including the partial dictator
of F on the line b1 − b2, plays the role of agent i, and the remaining 2 agents play the role of agents j and
k in the proof of Theorem 8.1. Then, using Corollary 8.1 for 3-location instances in S3 and the fact that any
strategyproof mechanism is also partial group strategyproof, we can restate the proofs of Proposition 8.2,
Proposition 8.3, and Theorem 8.1 for such 3-location instances in S3, and obtain that:

Corollary 8.2. Any deterministic strategyproof mechanism for 2-Facility Location with n ≥ 3 agents in S3
has an unbounded approximation ratio.

25



9 Discussion and Open Problems

An open problem is whether one can use the techniques in the proof of Theorem 3.2, and extend the impos-
sibility result of Theorem 7.1 to non-anonymous mechanisms. Two other intriguing directions for research
have to do with the approximability of K-Facility Location, for K ≥ 4, by randomized and deterministic
imposing mechanisms. For 3-Facility Location on the line, there are both a randomized and a deterministic
imposing mechanism with approximation ratio n− 1. Therefore, it is very interesting to obtain a determin-
istic imposing (resp. randomized) mechanism with a bounded approximation ratio for K-Facility Location,
for all K ≥ 4 (resp. and all n ≥ K +2), or to show that no such mechanism exists. Moreover, we are aware
of a deterministic imposing mechanism for 2-Facility Location on the line that escapes the characterization
of Theorem 3.1, albeit with an approximation ratio of n − 1. However, this raises the question about the
approximability of 2-Facility and 3-Facility Location on the line by deterministic imposing mechanisms.
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A Appendix A: Dealing with Well-Separated Instances

A.1 Pushing the Pair of the Rightmost Agents to the Right: The Proof of Proposition 2.3

For simplicity and clarity, we explicitly prove Proposition 2.3 only for 2-Facility Location and well-separated
instances with 3 agents (see Proposition A.4). It is not difficult to verify that all the technical arguments only
depend on the fact that the two nearby agents stay well-separated from and on the right of the third agent.
Therefore, the following propositions generalize to the K-Facility Location game and well-separated in-
stances with K + 1 agents.

In the following, we let F be a nice mechanism for the 2-Facility Location game with an approximation
ratio of at most ρ for instances with 3 agents. As in Section 4, we use the indices i, j, k to implicitly define
a permutation of the agents. We use the convention that i denotes the leftmost agent, j denotes the middle
agent, and k denotes the rightmost agent. We recall that given a nice mechanism F with an approximation
ratio of at most ρ for 3-agent instances, a 3-agent instance x is (i|j, k)-well-separated if xi < xj < xk and
ρ(xk − xj) < xj − xi.

The following propositions show that if for some nice mechanism F , there is an (i|j, k)-well-separated
instance x such that F2(x) = xj , then as long as we “push” the locations of agents j and k to the right, while
keeping the instance (i|j, k)-well-separated, the rightmost facility of F stays with the location of agent j.
Intuitively, if for some (i|j, k)-well-separated instance x, F2(x) = xj , then agent j serves as a dictator for
all (i|j, k)-well-separated instances x′ = (x−{j,k}, x

′
j , x
′
k) with xj ≤ x′j .

Proposition A.1. Let x be any (i|j, k)-well-separated instance with F2(x) = xj . Then for every instance
x′ = (x−j , x

′
j) with xj < x′j < xk, it holds that F2(x

′) = x′j .

Proof. We first observe that any instance x′ = (x−j , x
′
j), with xj < x′j < xk, is also (i|j, k)-well-separated.

To reach a contradiction, we assume that there is a point y ∈ (xj , xk) such that y 6= F2(x−j , y). Hence
y 6∈ Ij(xi, xk), and there is a y-hole (l, r) in the image set Ij(xi, xk). Let y′ be any point in the left half of
(l, r), e.g. let y′ = (2l+ r)/3. Then l ∈ F (x−j , y′). By Proposition 2.1, F2(x−j , y

′) > y′. This contradicts
F ’s bounded approximation ratio, since both xi and y′ are served by the facility at l, and cost[F (x−j , y

′)] ≥
y′ − xi, while the optimal cost is xk − y′ > ρ(y′ − xi), because the instance (x−j , y

′) is (i|j, k)-well-
separated. ut

Proposition A.2. Let x be any (i|j, k)-well-separated instance with F2(x) = xj . Then for every (i|j, k)-
well-separated instance x′ = (x−k, x

′
k), F2(x

′) = xj .

Proof. Since F2(x) < xk, xk does not belong to the image set Ik(xi, xj), and there is a xk-hole (l, r)
in Ik(xi, xj). Since F2(x) = xj , the left endpoint of the xk-hole is l = xj and the right endpoint is
r ≥ 2xk − xj . Therefore, for all (i|j, k)-well-separated instances x′ = (x−k, x

′
k) with x′k < (r + l)/2,

F2(x
′) = xj .

To conclude the proof, we show that there are no (i|j, k)-well-separated instances x′ = (x−k, x
′
k) with

x′k ≥ (r+ l)/2 and F2(x
′) 6= xj . To reach a contradiction, we assume that there exists a point y ≥ (r+ l)/2

such that (x−k, y) is an (i|j, k)-well-separated instance and F2(x−k, y) 6= xj . The existence of such a point
y implies the existence of a point x′k ∈ [(r + l)/2, r) (x′k may coincide with y) for which x′ = (x−k, x

′
k)

is an (i|j, k)-well-separated instance. Then, F2(x
′) = r > x′k, because the distance of x′k to r ∈ Ik(xi, xj)

is no greater than the distance of x′k to l. Since x′ is an (i|j, k)-well-separated instance, this contradicts
Proposition 2.2, according to which F2(x) ∈ [x′j , x

′
k]. ut

Proposition A.3. Let x be any (i|j, k)-well-separated instance with F2(x) = xj . For every (i|j, k)-well-
separated instance x′ = (x−{j,k}, x

′
j , x
′
k) with xj < x′j ≤ (xj + xk)/2, it holds that F2(x

′) = x′j .
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Proof. Since x′j ≤ (xj + xk)/2 < xk, by Proposition A.1, F2(x−j , x
′
j) = x′j . Since the distance of x′j to

xk is smaller than the distance of xj to xk, the new instance (x−j , x
′
j) is (i|j, k)-well-separated. Therefore,

by Proposition A.2, for any (i|j, k)-well-separated instance x′ = (x−{j,k}, x
′
j , x
′
k), F2(x

′) = x′j . ut

Proposition A.4. Let x be any (i|j, k)-well-separated instance with F2(x) = xj . Then for every (i|j, k)-
well-separated instance x′ = (x−{j,k}, x

′
j , x
′
k) with xj ≤ x′j , it holds that F2(x

′) = x′j .

Proof. The proof follows by an inductive application of Proposition A.3. More specifically, by repeated
applications of Proposition A.3, we keep moving the locations of agents j and k to the right, while keeping
the resulting instance (i|j, k)-well-separated, and thus maintaining the location of the rightmost facility at
the location of agent j.

Formally, let d = x′j−xj , let δ = (xk−xj)/2, and let κ = dd/δe. For every λ = 1, . . . , κ, we inductively
consider the instance xλ = (x−{j,k}, xj + (λ − 1)δ, xk + (λ − 1)δ). We observe that the instance xλ is
(i|j, k)-well-separated, because the distance of the locations of agents j and k is 2δ, while the distance of the
locations of agents i and j is at least their distance in x. By inductively applying Proposition A.3 to xλ, we
obtain that for every (i|j, k)-well-separated instance (x−{j,k}, yj , yk) with xj + (λ− 1)δ ≤ yj ≤ xj + λδ,
F2(x−{j,k}, yj , yk) = yj . For λ = κ, we conclude that F2(x−{j,k}, x

′
j , x
′
k) = x′j . ut

A.2 Pushing the Pair of the Rightmost Agents to the Left: The Proof of Proposition 2.4

As in Section A.1, we explicitly prove Proposition 2.4 only for 2-Facility Location and well-separated
instances with 3 agents (see also Proposition A.8). As before, it is not difficult to verify that the following
propositions generalize to the K-Facility Location game and well-separated instances with K + 1 agents.

Next, we use the same notation as in Section A.1. The following propositions show that if for some nice
mechanism F , there is an (i|j, k)-well-separated instance x such that F2(x) = xk, then as long as we “push”
the locations of agents j and k to the left, while keeping the instance (i|j, k)-well-separated, the rightmost
facility of F stays with the location of agent k. Intuitively, if for some (i|j, k)-well-separated instance x,
F2(x) = xk, then agent k serves as a dictator for all (i|j, k)-well-separated instances x′ = (x−{j,k}, x

′
j , x
′
k)

with x′k ≤ xk.

Proposition A.5. Let x be any (i|j, k)-well-separated instance with F2(x) = xk. Then for every instance
x′ = (x−k, x

′
k) with xj < x′k < xk, it holds that F2(x

′) = x′k.

Proof. To reach a contradiction, we assume that there is a point x′k ∈ (xj , xk) such that x′k 6= F2(x−k, x
′
k).

Therefore, x′k 6∈ Ik(xi, xj), and there is a x′k-hole (l, r) in the image set Ik(xi, xj). We observe that xj ≤ l,
since xj ∈ F (x−k, xj), due to the bounded approximation ratio of F , and that r ≤ xk, since F2(x) = xk.
Let yk be any point in the right half of (l, r) different from r, e.g. let yk = (l + 2r)/3. We consider the
instance y = (x−k, yk), for which F2(y) = r, due to the strategyproofness of F . Since xj < yk < xk, y
is an (i|j, k)-well-separated instance. Therefore, F2(y) = r > yk contradicts Proposition 2.2, according to
which F2(y) ∈ [yj , yk]. ut

Proposition A.6. Let x be any (i|j, k)-well-separated instance with F2(x) = xk. Then for every (i|j, k)-
well-separated instance x′ = (x−j , x

′
j), F2(x

′) = xk.

Proof. Since x is (i|j, k)-well-separated, F1(x) < xj due to F ’s bounded approximation ratio. Therefore,
xj does not belong to the image set Ij(xi, xk), and there is a xj-hole (l, r) in Ij(xi, xk). Since F2(x) = xk,
the right endpoint of the xk-hole is r = xk and the left endpoint is l ≤ 2xj − xk. Therefore, for all (i|j, k)-
well-separated instances x′ = (x−j , x

′
j) with x′j > (r + l)/2, F2(x

′) = xk.
Next, we show that there are no (i|j, k)-well-separated instances x′ = (x−j , x

′
j) with x′j ≤ (r+l)/2 and

F2(x
′) 6= xk. To reach a contradiction, we assume that there exists a point y ≤ (r+ l)/2 such that (x−j , y)
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is (i|j, k)-well-separated and F2(x−j , y) 6= xk. The existence of such a point y implies the existence of a
point x′j ∈ (l, (r + l)/2] (x′j may coincide with y) for which x′ = (x−j , x

′
j) is an (i|j, k)-well-separated

instance. Therefore, l ∈ F (x′), because the distance of x′j to l ∈ Ij(xi, xk) is no greater than the distance
of x′j to r. By Proposition 2.1, F2(x

′) ≥ x′j , which implies that F2(x
′) ≥ xk. Since x′j lies in the left half

of (l, r), both xi and x′j are served by the facility at l, which contradicts F ’s bounded approximation ratio,
because cost[F (x′)] ≥ x′j − xi, while the optimal cost is xk − x′j < (x′j − xi)/ρ, because the instance x′

is (i|j, k)-well-separated. ut

Proposition A.7. Let x be any (i|j, k)-well-separated instance with F2(x) = xk. Then for every (i|j, k)-
well-separated instance x′ = (x−{j,k}, x

′
j , x
′
k) with (xk + xj)/2 ≤ x′k < xk, it holds that F2(x

′) = x′k.

Proof. Since xj < x′k < xk, by Proposition A.5, F2(x−k, x
′
k) = x′k. Since the distance of x′k to xj is

smaller than the distance of xk to xj , the new instance (x−k, x
′
k) is (i|j, k)-well-separated. Therefore, by

Proposition A.6, for any (i|j, k)-well-separated instance x′ = (x−{j,k}, x
′
j , x
′
k), F2(x

′) = x′k. ut

Proposition A.8. Let x be any (i|j, k)-well-separated instance with F2(x) = xk. Then for every (i|j, k)-
well-separated instance x′ = (x−{j,k}, x

′
j , x
′
k) with x′k ≤ xk, it holds that F2(x

′) = x′k.

Proof. The proof follows by an inductive application of Proposition A.7. Let d = x′k − xk, let δ = (x′k −
x′j)/2, and let κ = dd/δe. We first observe that F2(x−j , xk − 2δ) = xk, by Proposition A.6, since the
instance (x−j , xk − 2δ) is (i|j, k)-well-separated. Next, for every λ = 1, . . . , κ, we inductively consider
the instance xλ = (x−{j,k}, xk − (λ + 1)δ, xk − (λ − 1)δ). We observe that the instance xλ is (i|j, k)-
well-separated, because the distance of the locations of agents j and k is 2δ, while the distance of the
locations of agents i and j is at least their distance in x′. By inductively applying Proposition A.7 to xλ, we
obtain that for every (i|j, k)-well-separated instance (x−{j,k}, yj , yk) with xk − λδ ≤ yk ≤ xk − (λ− 1)δ,
F2(x−{j,k}, yj , yk) = yk. For λ = κ, we obtain that F2(x−{j,k}, x

′
j , x
′
k) = x′k. ut
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