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Social Choice

Social Choice Theory

Mathematical theory dealing with aggregation of preferences.

Founded by Condorcet, Borda (1700’s) and Dodgson (1800’s).

Axiomatic framework and impossibility result by Arrow (1951).

Collective decision making, by voting, over anything:
I

Political representatives, award nominees, contest winners, allocation of

tasks/resources, joint plans, meetings, food, . . .
I

Web-page ranking, preferences in multi-agent systems.

Formal Setting

Set A, |A| = m, of possible alternatives (candidates).

Set N = {1, 2, . . . , n} of agents (voters).

8 agent i has a (private) linear order �
i

2 L over alternatives A.
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Social Choice

Formal Setting

Social choice function (or mechanism) F : Ln ! A mapping the agent’s
preferences to an alternative.

Social welfare function W : Ln ! L mapping the agent’s preferences to a
total order on the alternatives.
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Social Choice

Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

12 boys: Green � Red � Blue

10 boys: Red � Green � Blue

3 girls:Blue � Red � Green

Voting Rule allocating (2, 1, 0).

Outcome: Red(35) � Green(34) � Blue(6).

With plurality voting (1, 0, 0): Green(12) � Red(10) � Blue(3).

Which voting rule should we use?
Is there a notion of a “perfect” rule?

Makis Arsenis (NTUA) AGT April 2016 5 / 41



Social Choice

Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

12 boys: Green � Red � Blue

10 boys: Red � Green � Blue

3 girls:Blue � Red � Green

Voting Rule allocating (2, 1, 0).

Outcome: Red(35) � Green(34) � Blue(6).

With plurality voting (1, 0, 0): Green(12) � Red(10) � Blue(3).

Which voting rule should we use?
Is there a notion of a “perfect” rule?

Makis Arsenis (NTUA) AGT April 2016 5 / 41



Social Choice

Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

12 boys: Green � Red � Blue

10 boys: Red � Green � Blue

3 girls:Blue � Red � Green

Voting Rule allocating (2, 1, 0).

Outcome: Red(35) � Green(34) � Blue(6).

With plurality voting (1, 0, 0): Green(12) � Red(10) � Blue(3).

Which voting rule should we use?
Is there a notion of a “perfect” rule?

Makis Arsenis (NTUA) AGT April 2016 5 / 41



Social Choice

Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

12 boys: Green � Red � Blue

10 boys: Red � Green � Blue

3 girls:Blue � Red � Green

Voting Rule allocating (2, 1, 0).

Outcome: Red(35) � Green(34) � Blue(6).

With plurality voting (1, 0, 0): Green(12) � Red(10) � Blue(3).

Which voting rule should we use?
Is there a notion of a “perfect” rule?

Makis Arsenis (NTUA) AGT April 2016 5 / 41



Social Choice
Definition (Condorcet Winner)

Condorcet Winner is the alternative beating every other alternative in
pairwise election.

Example (continued . . .)

12 boys: Green � Red � Blue

10 boys: Red � Green � Blue

3 girls:Blue � Red � Green

(Green,Red) : (12, 13), (Green,Blue) : (22, 3), (Red,Blue) : (22, 3)
Therefore: Red is a Condorcet Winner!

Condorcet Paradox: Condorcet Winner may not exist:

a � b � c

b � c � a

c � a � b

(a, b) : (2, 1), (a, c) : (1, 2), (b, c) : (2, 1)
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Social Choice

Popular Voting Rules:

Plurality voting: Each voter casts a single vote. The candidate with the
most votes is selected.

Cumulative voting: Each voter is given k votes, which can be cast
arbitrarily.

Approval voting: Each voter can cast a single vote for as many of the
candidates as he/she wishes.

Plurality with elimination: Each voter casts a single vote for their
most-preferable candidate. The candidate with the fewer votes is eliminated
etc.. until a single candidate remains.

Borda Count: Positional Scoring Rule (m � 1,m � 2, . . . , 0). (chooses a
Condorcet winner if one exists).
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Incentives

Example (continued . . .)

12 boys: Green � Red � Blue

10 boys: Red � Green � Blue

3 girls:Blue � Red � Green

Voting Rule allocating (2, 1, 0).
Expected Outcome: Red(35) � Green(34) � Blue(6).

What really happens:

12 boys: Green � Blue � Red

10 boys: Red � Blue � Green

3 girls:Blue � Red � Green

Outcome: Blue(28) � Green(24) � Red(23).
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Arrow’s Impossibility Theorem

Desirable Properties of Social Welfare Functions

Unanimity: 8 �2 L : W (�, . . . ,�) =�.

Non dictatorial: An agent i 2 N is a dictator if:

8 �
1

, . . . ,�
n

2 L : W (�
1

, . . . ,�
n

) =�
i

Independence of irrelevant alternatives (IIA):
8a, b 2 A,
8 �

1

, . . . ,�
n

,�0
1

, . . . ,�0
n

2 L,
if we denote �= W (�

1

, . . . ,�
n

),�0= W (�0
1

, . . . ,�0
n

) then:

(8i a �
i

b , a �0
i

b) ) (a � b , a �0
b)

Theorem (Arrow, 1951)

If |A| � 3, any social welfare function W that satisfies unanimity and

independence of irrelevant alternatives is dictatorial.
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Muller-Satterthwaite Impossibility Theorem

Desirable Properties of Social Choice Functions

Weak Pareto e�ciency: For all preference profiles:

(8i : a �
i

b) , F (�
1

, . . . ,�
n

) 6= b

Non dictatorial: For each agent i , 9 �
1

, . . . ,�
n

2 L:

F (�
1

, . . . ,�
n

) 6= agent’s i top alternative

Monotonicity:
8a, b 2 A,
8 �

1

, . . . ,�
n

,�0
1

, . . . ,�0
n

2 L such that F (�
1

, . . . ,�
n

) = a,
if (8i : a �

i

b , a �0
i

b) then F (�0
1

, . . . ,�0
n

) = a.

Theorem (Muller-Satterthwaite, 1977)

If |A| � 3, any social choice function F that is weakly Pareto e�cient and

monotonic is dictatorial.

Makis Arsenis (NTUA) AGT April 2016 10 / 41



Muller-Satterthwaite Impossibility Theorem

Desirable Properties of Social Choice Functions

Weak Pareto e�ciency: For all preference profiles:

(8i : a �
i

b) , F (�
1

, . . . ,�
n

) 6= b

Non dictatorial: For each agent i , 9 �
1

, . . . ,�
n

2 L:

F (�
1

, . . . ,�
n

) 6= agent’s i top alternative

Monotonicity:
8a, b 2 A,
8 �

1

, . . . ,�
n

,�0
1

, . . . ,�0
n

2 L such that F (�
1

, . . . ,�
n

) = a,
if (8i : a �

i

b , a �0
i

b) then F (�0
1

, . . . ,�0
n

) = a.

Theorem (Muller-Satterthwaite, 1977)

If |A| � 3, any social choice function F that is weakly Pareto e�cient and

monotonic is dictatorial.

Makis Arsenis (NTUA) AGT April 2016 10 / 41



Gibbard-Satterthwaite Theorem

Definition (Truthfulnes)

A social choice function F can be strategically manipulated by voter i if for
some �

1

, . . . ,�
n

,2 L and some �0
i

2 L we have:

F (�
1

, . . . ,�0
i

, . . . ,�
n

) �
i

F (�
1

, . . . ,�
i

, . . . ,�
n

)

A social choice function that cannot be strategically manipulated is called
incentive compatible or truthful or strategyproof.

Definition (Onto)

A social choice function F is said to be onto a set A if for every a 2 A there exist
�

1

, . . . ,�
n

2 L such that F (�
1

, . . . ,�
n

) = a.

Theorem (Gibbard 1973, Satterthwaite 1975)

Let F be a truthful social choice function onto A, where |A| � 3, then F is a

dictatorship.
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Gibbard-Satterthwaite Theorem

Escape Routes

Randomization

Monetary Payments

Voting systems Computationally Hard to manipulate

Restricted domain of preferences.
I

Approximation

I
Verification

I
. . .
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Example problem: Single-item Auctions

Sealed-bid Auction Format
1 Each bidder i privately communicates a bid b

i

— in a sealed envelope.
2 The auctioneer decides who gets the good (if anyone).
3 The auctioneer decides on a selling price.

Mechanism: Defines how we implement steps (2), and (3).
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Mechanisms with Money

More formally:

Redefining our model

Set ⌦, |⌦| = m, of possible outcomes.

Set N = {1, 2, . . . , n} of agents (players).

Valuation vector v = (v
1

, . . . , v
n

) 2 V where v

i

: ⌦ ! R is the (private)
valuation function of each player.

Mechanism
Outcome function: f : V n ! ⌦

Payment vector: p = (p
1

, . . . , p
n

) where p

i

: V n ! R.

Players have quasilinear utilities. For ! 2 ⌦, player i tries to maximize her utility
u

i

(!) = v

i

(!)� p where p is the monetary payment the player makes.
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Mechanisms with Money

Possible objectives:

Design truthful mechanisms that maximize the Social Welfare.

Design truthful mechanisms that maximize the expected revenue of the
seller.

Definition (Truthful)

A mechanism is truthful if for every agent i it is a dominant strategy to report
her true valuation irrespective of the valuations of the other players.

Social Welfare: SW(!) =
P

n

i=1

v

i

(!).

Revenue: REV(v) =
P

n

i=1

p

i

(v).
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Single-item auctions

First price auction ?

Give the item to the highest bidder.

Charge him its bid.

Drawbacks
Hard to reason about:

Hard to figure out (as a participant) how to bid.

As a seller or auction designer, it’s hard to predict what will happen.
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Single-item auctions
Second price auction

Give the item to the highest bidder.

Charge him the bid of the second highest bidder.

Theorem
The second price auction is truthful.

Proof.
Fix a player i , its valuation v

i

and the bids b�i

of all the other players.
We need to show that u

i

is maximized when b

i

= v

i

.
Let B = max

j 6=i

b

j

if b
i

< B : player i loses the item and u

i

= 0.

if b
i

> B : player i wins the item at price B and u

i

= v

i

� B .
I

if v

i

< B then player i has negative utility.

I
if v

i

� B then he would also win the item even if she reported b

i

= v

i

and she

would have the same utility.
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Single-item auctions

Some desirable characteristics of the second-price auction:

Strong incentive guarantees: truthful and individually rational (every
player has non-negative utility).

Strong performance guarantees: the auction maximizes the social
welfare.

Computational e�ciency: The auction can be implemented in polynomial
(indeed linear) time.
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Revelation Principle

Revisiting truthfulness:

truthfulness = (every player has a dominant strategy)

+ (this strategy is to tell the truth)

Are both conditions necessary?
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Revelation Principle

Revelation Principle

For every mechanism M in which every participant has a dominant strategy (no
matter what its private information), there is an equivalent truthful
direct-revelation mechanism M

0

Proof.
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Single-parameter environment

Single-parameter environment

A special case of the general mechanism design setting able to model simple
auction formats:

n bidders

Each bidder i has a valuation v

i

2 R which is her value “per unit of stu↵”
she gets.

A feasible set X . Each element of X is an n-vector (x
1

, . . . , x
n

), where x

i

denotes the “amount of stu↵” that player i gets.

For example:

In a single-item auction, X is the set of 0-1 vectors that have at most one 1
(i.e.

P
n

i=1

x

i

 1).

With k identical goods and the constraint the each customer gets at most
one, the feasible set is the 0-1 vectors satisfying

P
n

i=1

x

i

 k .
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Single-parameter environment

Sealed-bid auctions in the single-parameter environment

1

Collect bids b = (b

1

, . . . , b
n

).

2 Allocation rule: Choose a feasible allocation x(b) 2 X ⇢ Rn

.

3 Payment rule: Choose payments p(b) 2 Rn

.

The utility of bidder i is: u

i

(b) = v

i

· x
i

(b)� p

i

(b).

Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is implementable if there is a

payment rule p such the sealed-bid auction (x , p) is truthful and individually rational.

Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is monotone if for every bidder i

and bids b�i by the other bidders, the allocation x

i

(z , b�i) to i is nondecreasing in its bid

z .
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Myerson’s Lemma

Meyrson’s Lemma

Fix a single-parameter environment.
1 An allocation rule x is implementable i↵ it’s monotone.
2 If x is monotone, then there is a unique payment rule such that the

sealed-bid mechanism (x , p) is truthful (assuming the normalization that
b

i

= 0 implies p
i

(b) = 0).
3 The payment rule in (2) is given by an explicit formula:

p

i

(b
i

,b�i

) =

Z
b

i

0

z · d

dz

x

i

(z ,b�i

)dz
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Myerson’s Lemma

Proof:

implementable ) monotone, payments derived from (3).
Fix a bidder i and everybody else’s valuations b�i

.
Notation: x(z), p(z) instead of x

i

(z ,b�i

), p
i

(z ,b�i

).
Suppose (x,p) is a truthful mechanism and consider 0  y  z .

I
Bidder i has real valuation y but instead bids z . Truthfulness implies:

y · x(y)� p(y)

| {z }
utility of bidding y

� y · x(z)� p(z)

| {z }
utility of bidding z

(1)

I
Bidder i has real valuation z but instead bids y . Truthfulness implies:

z · x(z)� p(z)

| {z }
utility of bidding z

� z · x(y)� p(y)

| {z }
utility of bidding y

(2)
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Myerson’s Lemma

Proof (cont.):

Combining (1), (2):

y · [x(z)� x(y)]  p(z)� p(y)  z · [x(z)� x(y)] (3)

(3) ) (z � y) · [x(z)� x(y)] � 0 ) x

i

(·, b�i

) "

Thus the allocation rule is monotone.

(3) ) y · x(z)� x(y)

z � y

 p(z)� p(y)

z � y

 z · x(z)� x(y)

z � y
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Myerson’s Lemma

Proof (cont.):

Taking the limit as y ! z :

z · x 0(z)  p

0(z)  z · x 0(z) ) p

0(z) = z · x 0(z)

)
Z

b

i

0

p

0(z) dz =

Z
b

i

0

z · x 0(z) dz

) p(z) = p(0) +

Z
b

i

0

z · x 0(z) dz

Assuming normalization p(0) = 0 and reverting back to the formal notation:

p

i

(b
i

,b�i

) =

Z
b

i

0

z

d

dz

x(z) dz
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Myerson’s Lemma
Proof (cont.):

monotone ) implementable with payments from (3).

Proof by pictures (and whiteboard):
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Welfare maximization in multi-parameter environment

The model

Set ⌦, |⌦| = m, of possible outcomes.

Set N = {1, 2, . . . , n} of agents (players).

Valuation vector v = (v
1

, . . . , v
n

) 2 V where v

i

: ⌦ ! R is the (private)
valuation function of each player.

Mechanism
Allocation Rule: x : V n ! ⌦.

Payment vector: p = (p
1

, . . . , p
n

) where p

i

: V n ! R.

We are interested in the following welfare maximizing allocation rule:

x(b) = argmax
!2⌦

nX

i=1

b

i

(!)
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VCG

Idea: Each player tries to maximize u

i

(b) = v

i

(!⇤)� p(b) where !⇤ = x(b). If
we could design the payments in a way that maximizing one’s utility is equivalent
to trying to maximize the social welfare then we are done!

Notice that

SW(!⇤) = b

i

(!⇤) +
X

j 6=i

b

j

(!⇤) = b

i

(!⇤)�

2

4�
X

j 6=i

b

j

(!⇤)

3

5

| {z }
p(b)

= u

i

(!⇤)
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VCG

Idea: Each player tries to maximize u

i

(b) = v

i

(!⇤)� p(b) where !⇤ = x(b). If
we could design the payments in a way that maximizing one’s utility is equivalent
to trying to maximize the social welfare then we are done!

Notice that

SW(!⇤)� h(b�i

) = b

i

(!⇤) +
X

j 6=i

b

j

(!⇤)� h(b�i

)

= b

i

(!⇤)�

2

4
h(b�i

)�
X

j 6=i

b

j

(!⇤)

3

5

| {z }
p(b)

= u

i

(!⇤)
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VCG

Groves Mechanisms
Every mechanism of the following form is truthful:

x(b) = argmax
!2⌦

nX

i=1

b

i

(b)

p(b) = h(b�i

)�
X

j 6=i

b

j

(x(b))

Clarke tax:

h(b�i

) = max
!2⌦

X

j 6=i

b

j

(!)
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VCG

The VCG mechanism
The Vickrey-Clarke-Grooves mechanism is truthful, individually rational and exhibits no positive transfers
(8i : p

i

(b) � 0):

x(b) = argmax

!2⌦

nX

i=1

b

i

(b)

p(b) = max

!2⌦

X

j 6=i

b

j

(!) �
X

j 6=i

b

j

(x(b))

Proof.
Truthfulness: Follows from the general Groove mechanism.

Individual rationality:

u

i

(b) = . . . = SW(!⇤
) � max

!2⌦

X

j 6=i

b

j

(!) � SW(!⇤
) � max

!2⌦

nX

j=1

b

j

(!) = 0

No positive transfers: max!2⌦

P
j 6=i

b

j

(!) �
P

j 6=i

b

j

(x(b)).
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Revenue maximization

As opposed to welfare maximization, maximizing revenue is impossible to achieve
ex-post (without knowing v

i

’s beforehand). For example: One item and one
bidder with valuation v

i

.

Bayesian Model

A single-parameter environment.

The private valuation v

i

of participant i is assumed to be drawn from a
distribution F

i

with density function f

i

with support contained in [0, v
max

].
We also assume the F

i

’s are independent.

The distributions F
1

, . . . ,F
n

are known in advance to the mechanism
designer.

Note: The realizations v
1

, . . . , v
n

of bidders’ valuations are private, as usual.

We are interested in designing truthful mechanisms that maximize the expected
revenue of the seller.
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Revenue maximization

Single-bidder, single-item auction

The space of direct-revelation truthful mechanisms is small: they are precisely
the “posted prices”, or take-it-or-leave-it o↵ers (because it has to be
monotone!)

Suppose we sell at price r . Then:

E[ Revenue ] = r|{z}
revenue of a sale

· (1� F (r))| {z }
probability of a sale

We chose the price r that maximizes the above quantity.

Example

If F is the uniform distribution on [0, 1] then F (x) = x and so:

E[ Revenue ] = r · (1� r)

which is maximized by setting r = 1/2, achieving an expected revenue of 1/4.
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Revenue maximization

General setting of multi-player single-parameter environment:

Theorem (Myerson, 1981)

Ev⇠F

"
nX

i=1

p

i

(v)

#
= Ev⇠F

"
nX

i=1

�
i

(v
i

) · x
i

(v
i

)

#

where:

�
i

(v
i

) = v

i

� 1� F

i

(v
i

)

f

i

(v
i

)

is called virtual welfare.
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Revenue maximization

Proof:

Step 1: Fix i , v�i

. By Myerson’s payment formula:

E
v

i

⇠F

i

[p
i

(v)] =
Z

v

max

0

p

i

(v)f
i

(v
i

) dv
i

=

Z
v

max

0

Z
v

i

0

z · x 0
i

(z , v�i

) dz

�
f

i

(v
i

) dv
i

Step 2: Reverse integration order:

Z
v

max

0

Z
v

i

0

z · x 0
i

(z , v�i

) dz

�
f

i

(v
i

) dv
i

=

Z
v

max

0

Z
v

max

z

f

i

(v
i

) dv
i

�
z · x 0

i

(z , v�i

) dz

=

Z
v

max

0

(1� F

i

(z)) · z · x 0
i

(z , v�i

) dz
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Revenue Maximization

Proof (cont.):

Step 3: Integration by parts:

Z
v

max

0

(1� F

i

(z)) · z| {z }
f

· x 0
i

(z , v�i

)| {z }
g

0

dz

= (1� F

i

(z)) · z · x
i

(z , v�i

)|vmax

0| {z }
=0�0

�
Z

v

max

0

x

i

(z , v�i

) · (1� F

i

(z)� zf

i

(z)) dz

=

Z
v

max

0

✓
z � 1� F

i

(z)

f

i

(z)

◆

| {z }
:='

i

(z)

x

i

(z , v�i

)f
i

(z) dz
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Revenue Maximization

Proof (cont.):

Step 4: To simplify and help interpret the expression we introduce the virtual
valuation '

i

(v
i

):

'(v
i

) = v

i|{z}
what you’d like to charge i

� 1� F

i

(v
i

)

f

i

(v
i

)| {z }
“information rent” earned by bidder i

Summary:

E
v

i

⇠F

i

[p
i

(v)] = E
v

i

⇠F

i

['(v
i

) · x
i

(v)] (4)
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Revenue Maximization

Proof (cont.):

Step 5: Take the expectation, with respect to v�i

of both sides of (4):

Ev[pi (v)] = Ev['i

(v
i

) · x
i

(v)]

Step 6: Apply linearity of expectation twice:

Ev

"
nX

i=1

p

i

(v)

#
=

nX

i=1

Ev[pi (v)] =
nX

i=1

Ev['i

(v
i

) · x
i

(v)] = Ev

"
nX

i=1

'
i

(v
i

) · x
i

(v)

#
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Revenue Maximization

Conclusion
MAXIMIZING REVENUE , MAXIMIZING VIRTUAL WELFARE

Example: Single-item auction with i.i.d. bidders

Assuming that the distributions F
i

are such that �
i

(v
i

) is monotone (such
distributions are called regular) then a second-price auction on virtual valuations

with reserve price ��1(0) maximizes the revenue.
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