# Algorithmic Game Theory Introduction to Mechanism Design

Makis Arsenis

National Technical University of Athens

April 2016

#### Outline

- Social Choice
  - Social Choice Theory
  - Voting Rules
  - Incentives
  - Impossibility Theorems
- Mechanism Design
  - Single-item Auctions
  - The revelation principle
  - Single-parameter environment
  - Welfare maximization and VCG
  - Revenue maximization

Makis Arsenis (NTUA) AGT April 2016 2 / 41

#### Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).
- Collective decision making, by voting, over anything:
  - Political representatives, award nominees, contest winners, allocation of tasks/resources, joint plans, meetings, food, . . .
  - ▶ Web-page ranking, preferences in multi-agent systems.

#### Formal Setting

- Set A, |A| = m, of possible **alternatives** (candidates).
- Set  $N = \{1, 2, ..., n\}$  of **agents** (voters).
- $\forall$  agent *i* has a (private) **linear order**  $\succ_i \in L$  over alternatives A.

#### Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).
- Collective decision making, by voting, over anything:
  - Political representatives, award nominees, contest winners, allocation of tasks/resources, joint plans, meetings, food, . . .
  - ► Web-page ranking, preferences in multi-agent systems.

#### Formal Setting

- Set A, |A| = m, of possible alternatives (candidates).
- Set  $N = \{1, 2, \dots, n\}$  of agents (voters).
- $\forall$  agent *i* has a (private) **linear order**  $\succ_i \in L$  over alternatives A.

#### Formal Setting

- Social choice function (or mechanism)  $F: L^n \to A$  mapping the agent's preferences to an alternative.
- Social welfare function  $W: L^n \to L$  mapping the agent's preferences to a total order on the alternatives.

4 / 41

#### Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

- 12 boys: Green ≻ Red ≻ Blue
- 10 boys: Red ≻ Green ≻ Blue
- 3 girls:Blue ≻ Red ≻ Green

Voting Rule allocating (2, 1, 0).

Outcome:  $Red(35) \succ Green(34) \succ Blue(6)$ .

With plurality voting (1, 0, 0): Green $(12) \succ Red(10) \succ Blue(3)$ .

Which voting rule should we use? Is there a notion of a "perfect" rule?

#### Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

- 12 boys: Green ≻ Red ≻ Blue
- 10 boys: Red ≻ Green ≻ Blue
- 3 girls:Blue ≻ Red ≻ Green

Voting Rule allocating (2, 1, 0).

Outcome:  $Red(35) \succ Green(34) \succ Blue(6)$ .

With plurality voting (1, 0, 0): Green $(12) \succ Red(10) \succ Blue(3)$ .

Which voting rule should we use? Is there a notion of a "perfect" rule?

#### Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

- 12 boys: Green ≻ Red ≻ Blue
- 10 boys: Red ≻ Green ≻ Blue
- 3 girls:Blue ≻ Red ≻ Green

Voting Rule allocating (2, 1, 0).

Outcome:  $Red(35) \succ Green(34) \succ Blue(6)$ .

With **plurality** voting (1, 0, 0): Green $(12) \succ Red(10) \succ Blue(3)$ .

Which voting rule should we use? Is there a notion of a "perfect" rule?

5 / 41

#### Example (Colors of the local football club)

Preferences of the founders about the colors of the local club:

- 12 boys: Green ≻ Red ≻ Blue
- 10 boys: Red ≻ Green ≻ Blue
- 3 girls:Blue ≻ Red ≻ Green

Voting Rule allocating (2, 1, 0).

Outcome:  $Red(35) \succ Green(34) \succ Blue(6)$ .

With plurality voting (1, 0, 0): Green $(12) \succ \text{Red}(10) \succ \text{Blue}(3)$ .

Which voting rule should we use? Is there a notion of a "perfect" rule?

Makis Arsenis (NTUA)

5 / 41

#### Definition (Condorcet Winner)

Condorcet Winner is the alternative beating every other alternative in pairwise election.

## Example (continued . . .)

```
• 12 boys: Green ≻ Red ≻ Blue
```

```
(Green, Red): (12, 13), (Green, Blue): (22, 3), (Red, Blue): (22, 3)
```

Therefore: Red is a Condorcet Winner!

#### **Condorcet Paradox**: Condorcet Winner may **not exist**:

- $a \succ b \succ c$
- $\bullet$   $b \succ c \succ a$
- $\bullet$   $c \succ a \succ b$
- (a,b):(2,1),(a,c):(1,2),(b,c):(2,1)

## Definition (Condorcet Winner)

Condorcet Winner is the alternative beating every other alternative in pairwise election.

# Example (continued . . .)

- 12 boys: Green  $\succ \mathsf{Red} \succ \mathsf{Blue}$
- 10 boys: Red ≻ Green ≻ Blue
- 3 girls:Blue  $\succ$  Red  $\succ$  Green

Therefore: Red is a Condorcet Winner!

#### Condorcet Paradox: Condorcet Winner may not exist:

- a > b > c
- $b \succ c \succ a$
- $c \succ a \succ b$
- (a,b):(2,1),(a,c):(1,2),(b,c):(2,1)

#### Popular Voting Rules:

- Plurality voting: Each voter casts a single vote. The candidate with the most votes is selected.
- **Cumulative voting**: Each voter is given *k* votes, which can be cast arbitrarily.
- Approval voting: Each voter can cast a single vote for as many of the candidates as he/she wishes.
- Plurality with elimination: Each voter casts a single vote for their most-preferable candidate. The candidate with the fewer votes is eliminated etc.. until a single candidate remains.
- Borda Count: Positional Scoring Rule  $(m-1, m-2, \ldots, 0)$ . (chooses a *Condorcet winner* if one exists).

7 / 41

Makis Arsenis (NTUA) AGT April 2016

#### Incentives

```
Example (continued . . .)
  • 12 boys: Green ≻ Red ≻ Blue
  • 10 boys: Red ≻ Green ≻ Blue
  • 3 girls:Blue ≻ Red ≻ Green
Voting Rule allocating (2, 1, 0).
Expected Outcome: Red(35) > Green(34) > Blue(6).
  • 12 boys: Green ≻ Blue ≻ Red
  • 10 boys: Red ≻ Blue ≻ Green
  • 3 girls:Blue ≻ Red ≻ Green
```

#### Incentives

# Example (continued ...)

- 12 boys: Green ≻ Red ≻ Blue
- 10 boys: Red ≻ Green ≻ Blue
- 3 girls:Blue ≻ Red ≻ Green

Voting Rule allocating (2, 1, 0).

Expected Outcome:  $Red(35) \succ Green(34) \succ Blue(6)$ .

#### What really happens:

- 12 boys: Green ≻ Blue ≻ Red
- 10 boys: Red ≻ Blue ≻ Green
- 3 girls:Blue ≻ Red ≻ Green

Outcome: Blue(28)  $\succ$  Green(24)  $\succ$  Red(23).

# Arrow's Impossibility Theorem

## Desirable Properties of Social Welfare Functions

- Unanimity:  $\forall \succ \in L : W(\succ, \ldots, \succ) = \succ$ .
- Non dictatorial: An agent  $i \in N$  is a dictator if:

$$\forall \succ_1, \ldots, \succ_n \in L : W(\succ_1, \ldots, \succ_n) = \succ_i$$

Independence of irrelevant alternatives (IIA):

 $\forall a, b \in A$ ,

$$\forall \succ_1, \ldots, \succ_n, \succ'_1, \ldots, \succ'_n \in L$$

if we denote  $\succ = W(\succ_1, \ldots, \succ_n), \succ' = W(\succ'_1, \ldots, \succ'_n)$  then:

$$(\forall i \ a \succ_i b \Leftrightarrow a \succ_i' b) \Rightarrow (a \succ b \Leftrightarrow a \succ_i' b)$$

## Theorem (Arrow, 1951)

If  $|A| \ge 3$ , any social welfare function W that satisfies unanimity and independence of irrelevant alternatives is dictatorial.



9 / 41

Makis Arsenis (NTUA) AGT April 2016

# Arrow's Impossibility Theorem

## Desirable Properties of Social Welfare Functions

- Unanimity:  $\forall \succ \in L : W(\succ, \ldots, \succ) = \succ$ .
- Non dictatorial: An agent  $i \in N$  is a dictator if:

$$\forall \succ_1, \ldots, \succ_n \in L : W(\succ_1, \ldots, \succ_n) = \succ_i$$

Independence of irrelevant alternatives (IIA):

 $\forall a, b \in A$ ,

$$\forall \succ_1, \ldots, \succ_n, \succ'_1, \ldots, \succ'_n \in L$$

if we denote  $\succ = W(\succ_1, \ldots, \succ_n), \succ' = W(\succ'_1, \ldots, \succ'_n)$  then:

$$(\forall i \ a \succ_i b \Leftrightarrow a \succ_i' b) \Rightarrow (a \succ b \Leftrightarrow a \succ_i' b)$$

## Theorem (Arrow, 1951)

If  $|A| \ge 3$ , any social welfare function W that satisfies unanimity and independence of irrelevant alternatives is dictatorial.

9 / 41

Makis Arsenis (NTUA) AGT April 2016

# Muller-Satterthwaite Impossibility Theorem

## Desirable Properties of Social **Choice** Functions

• Weak Pareto efficiency: For all preference profiles:

$$(\forall i: a \succ_i b) \Leftrightarrow F(\succ_1, \ldots, \succ_n) \neq b$$

• Non dictatorial: For each agent  $i, \exists \succ_1, \dots, \succ_n \in L$ :

$$F(\succ_1,\ldots,\succ_n)\neq$$
 agent's *i* top alternative

Monotonicity:

$$\forall a, b \in A$$
,

$$\forall \succ_1, \dots, \succ_n, \succ_1', \dots, \succ_n' \in L \text{ such that } F(\succ_1, \dots, \succ_n) = a,$$

if 
$$(\forall i : a \succ_i b \Leftrightarrow a \succ_i' b)$$
 then  $F(\succ_1', \ldots, \succ_n') = a$ .

## Theorem (Muller-Satterthwaite, 1977)

If  $|A| \ge 3$ , any social choice function F that is weakly Pareto efficient and monotonic is dictatorial.

# Muller-Satterthwaite Impossibility Theorem

## Desirable Properties of Social **Choice** Functions

• Weak Pareto efficiency: For all preference profiles:

$$(\forall i: a \succ_i b) \Leftrightarrow F(\succ_1, \ldots, \succ_n) \neq b$$

• Non dictatorial: For each agent  $i, \exists \succ_1, \dots, \succ_n \in L$ :

$$F(\succ_1,\ldots,\succ_n)\neq$$
 agent's *i* top alternative

Monotonicity:

$$\forall a,b\in A$$
,

$$\forall \succ_1, \ldots, \succ_n, \succ_1', \ldots, \succ_n' \in L \text{ such that } F(\succ_1, \ldots, \succ_n) = a,$$

if 
$$(\forall i : a \succ_i b \Leftrightarrow a \succ_i' b)$$
 then  $F(\succ_1', \dots, \succ_n') = a$ .

## Theorem (Muller-Satterthwaite, 1977)

If  $|A| \ge 3$ , any social choice function F that is weakly Pareto efficient and monotonic is dictatorial.

Makis Arsenis (NTUA) AGT April 2016 10 / 41

◆□ > ◆圖 > ◆圖 > ◆圖 >

## Definition (Truthfulnes)

A social choice function F can be **strategically manipulated** by voter i if for some  $\succ_1, \ldots, \succ_n, \in L$  and some  $\succ_i' \in L$  we have:

$$F(\succ_1,\ldots,\succ_i',\ldots,\succ_n)\succ_i F(\succ_1,\ldots,\succ_i,\ldots,\succ_n)$$

A social choice function that *cannot* be *strategically manipulated* is called **incentive compatible** or **truthful** or **strategyproof**.

## Definition (Onto)

A social choice function F is said to be **onto** a set A if for every  $a \in A$  there exist  $\succ_1, \ldots, \succ_n \in L$  such that  $F(\succ_1, \ldots, \succ_n) = a$ .

## Theorem (Gibbard 1973, Satterthwaite 1975)

Let F be a **truthful** social choice function onto A, where  $|A| \ge 3$ , then F is a dictatorship.

Makis Arsenis (NTUA) AGT April 2016 11 / 41

《中》《圖》《意》《意》

#### Definition (Truthfulnes)

A social choice function F can be **strategically manipulated** by voter i if for some  $\succ_1, \ldots, \succ_n, \in L$  and some  $\succ_i' \in L$  we have:

$$F(\succ_1,\ldots,\succ_i',\ldots,\succ_n)\succ_i F(\succ_1,\ldots,\succ_i,\ldots,\succ_n)$$

A social choice function that *cannot* be *strategically manipulated* is called **incentive compatible** or **truthful** or **strategyproof**.

## Definition (Onto)

A social choice function F is said to be **onto** a set A if for every  $a \in A$  there exist  $\succ_1, \ldots, \succ_n \in L$  such that  $F(\succ_1, \ldots, \succ_n) = a$ .

## Theorem (Gibbard 1973, Satterthwaite 1975)

Let F be a **truthful** social choice function onto A, where  $|A| \ge 3$ , then F is a dictatorship.

Makis Arsenis (NTUA) AGT April 2016 11 / 41

(日) (원)(원)(원)

#### Definition (Truthfulnes)

A social choice function F can be **strategically manipulated** by voter i if for some  $\succ_1, \ldots, \succ_n, \in L$  and some  $\succ_i' \in L$  we have:

$$F(\succ_1,\ldots,\succ_i',\ldots,\succ_n)\succ_i F(\succ_1,\ldots,\succ_i,\ldots,\succ_n)$$

A social choice function that *cannot* be *strategically manipulated* is called **incentive compatible** or **truthful** or **strategyproof**.

## Definition (Onto)

A social choice function F is said to be **onto** a set A if for every  $a \in A$  there exist  $\succ_1, \ldots, \succ_n \in L$  such that  $F(\succ_1, \ldots, \succ_n) = a$ .

## Theorem (Gibbard 1973, Satterthwaite 1975)

Let F be a **truthful** social choice function onto A, where  $|A| \ge 3$ , then F is a dictatorship.

Makis Arsenis (NTUA) AGT April 2016 11 / 41

◆□ > ◆圖 > ◆臺 > ◆臺 >

#### **Escape Routes**

- Randomization
- Monetary Payments
- Voting systems Computationally Hard to manipulate
- Restricted domain of preferences.
  - Approximation
  - Verification
  - **>**

#### Outline

- - Social Choice Theory
  - Voting Rules
  - Incentives
  - Impossibility Theorems
- Mechanism Design
  - Single-item Auctions
  - The revelation principle
  - Single-parameter environment
  - Welfare maximization and VCG
  - Revenue maximization

Makis Arsenis (NTUA)

13 / 41

# Example problem: Single-item Auctions

#### Sealed-bid Auction Format

- Each bidder i privately communicates a bid  $b_i$  in a sealed envelope.
- ② The auctioneer decides who gets the good (if anyone).
- The auctioneer decides on a selling price.

Mechanism: Defines how we implement steps (2), and (3).

# Mechanisms with Money

#### More formally:

## Redefining our model

- Set  $\Omega$ ,  $|\Omega| = m$ , of possible **outcomes**.
- Set  $N = \{1, 2, \dots, n\}$  of agents (players).
- Valuation vector  $\mathbf{v} = (v_1, \dots, v_n) \in V$  where  $v_i : \Omega \to \mathbb{R}$  is the (private) valuation function of each player.

#### Mechanism

- Outcome function:  $f: V^n \to \Omega$
- Payment vector:  $\mathbf{p} = (p_1, \dots, p_n)$  where  $p_i : V^n \to \mathbb{R}$ .

Players have **quasilinear utilities**. For  $\omega \in \Omega$ , player i tries to maximize her utility  $u_i(\omega) = v_i(\omega) - p$  where p is the monetary payment the player makes.

 ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > □
 ♦ □ > ✓ □ 

 Makis Arsenis (NTUA)
 AGT
 April 2016
 15 / 41

# Mechanisms with Money

#### Possible objectives:

- Design truthful mechanisms that maximize the Social Welfare.
- Design truthful mechanisms that maximize the expected revenue of the seller.

## Definition (Truthful)

A mechanism is **truthful** if for every agent *i* it is a *dominant strategy* to report her true valuation irrespective of the valuations of the other players.

**Social Welfare**:  $SW(\omega) = \sum_{i=1}^{n} v_i(\omega)$ .

**Revenue**: REV( $\mathbf{v}$ ) =  $\sum_{i=1}^{n} p_i(\mathbf{v})$ .

4□ > 4同 > 4 至 > 4 至 > 至 900

Makis Arsenis (NTUA)

#### First price auction?

- Give the item to the highest bidder.
- Charge him its bid.

#### Drawbacks

Hard to reason about

- Hard to figure out (as a participant) how to bid.
- As a **seller** or auction designer, it's hard to predict what will happen.

#### First price auction?

- Give the item to the highest bidder.
- Charge him its bid.

#### **Drawbacks**

Hard to reason about:

- Hard to figure out (as a participant) how to bid.
- As a seller or auction designer, it's hard to predict what will happen.

Makis Arsenis (NTUA)

## Second price auction

- Give the item to the **highest bidder**.
- Charge him the bid of the second highest bidder.

#### Theorem

The second price auction is truthful

#### Proof.

Fix a player i, its valuation  $v_i$  and the bids  $\mathbf{b}_{-i}$  of all the other players.

We need to show that  $u_i$  is maximized when  $b_i = v_i$ .

Let  $B = \max_{j \neq i} b_j$ 

- if  $b_i < B$ : player i loses the item and  $u_i = 0$ .
- if  $b_i > B$ : player i wins the item at price B and  $u_i = v_i B$ .
  - if  $v_i < B$  then player i has negative utility
  - if  $v_i \ge B$  then he would also win the item even if she reported  $b_i = v_i$  and she would have the same utility.

## Second price auction

- Give the item to the **highest bidder**.
- Charge him the bid of the second highest bidder.

#### **Theorem**

The second price auction is truthful.

#### Proof.

Fix a player i, its valuation  $v_i$  and the bids  $\mathbf{b}_{-i}$  of all the other players.

We need to show that  $u_i$  is maximized when  $b_i = v_i$ .

Let  $B = \max_{j \neq i} b_j$ 

- if  $b_i < B$ : player i loses the item and  $u_i = 0$ .
- if  $b_i > B$ : player i wins the item at price B and  $u_i = v_i B$ .
  - if  $v_i < B$  then player i has negative utility
  - if  $v_i \ge B$  then he would also win the item even if she reported  $b_i = v_i$  and she would have the same utility.

## Second price auction

- Give the item to the **highest bidder**.
- Charge him the bid of the second highest bidder.

#### **Theorem**

The second price auction is truthful.

#### Proof.

Fix a player i, its valuation  $v_i$  and the bids  $\mathbf{b}_{-i}$  of all the other players.

We need to show that  $u_i$  is maximized when  $b_i = v_i$ .

Let  $B = \max_{j \neq i} b_j$ 

- if  $b_i < B$ : player i loses the item and  $u_i = 0$ .
- if  $b_i > B$ : player i wins the item at price B and  $u_i = v_i B$ .
  - if  $v_i < B$  then player i has negative utility.
  - if  $v_i \ge B$  then he would also win the item even if she reported  $b_i = v_i$  and she would have the same utility.

Some desirable characteristics of the second-price auction:

- Strong incentive guarantees: truthful and individually rational (every player has non-negative utility).
- Strong performance guarantees: the auction maximizes the social welfare.
- Computational efficiency: The auction can be implemented in polynomial (indeed linear) time.

Some desirable characteristics of the second-price auction:

- Strong incentive guarantees: truthful and individually rational (every player has non-negative utility).
- Strong performance guarantees: the auction maximizes the social welfare.
- Computational efficiency: The auction can be implemented in polynomial (indeed linear) time.

Some desirable characteristics of the second-price auction:

- Strong incentive guarantees: truthful and individually rational (every player has non-negative utility).
- Strong performance guarantees: the auction maximizes the social welfare.
- Computational efficiency: The auction can be implemented in polynomial (indeed linear) time.

19 / 41

# Revelation Principle

#### Revisiting truthfulness:

Are both conditions necessary?

# Revelation Principle

#### Revisiting truthfulness:

Are both conditions necessary?

20 / 41

# Revelation Principle

# Revelation Principle

For every mechanism M in which every participant has a **dominant strategy** (no matter what its private information), there is an equivalent **truthful** direct-revelation mechanism M'

### Proof.



# Single-parameter environment

# Single-parameter environment

A special case of the general mechanism design setting able to model simple auction formats:

- n bidders
- Each bidder i has a **valuation**  $v_i \in \mathbb{R}$  which is her value "per unit of stuff" she gets.
- A feasible set  $\mathcal{X}$ . Each element of  $\mathcal{X}$  is an *n*-vector  $(x_1, \ldots, x_n)$ , where  $x_i$  denotes the "amount of stuff" that player i gets.

### For example:

- In a single-item auction,  $\mathcal{X}$  is the set of 0-1 vectors that have at most one 1 (i.e.  $\sum_{i=1}^{n} x_i \leq 1$ ).
- With k identical goods and the constraint the each customer gets at most one, the feasible set is the 0-1 vectors satisfying  $\sum_{i=1}^{n} x_i \leq k$ .

4D> 4B> 4B> 4B> B 990

 Makis Arsenis (NTUA)
 AGT
 April 2016
 22 / 41

# Single-parameter environment

## Sealed-bid auctions in the single-parameter environment

- ① Collect bids  $\mathbf{b} = (b_1, \dots, b_n)$ .
- **2** Allocation rule: Choose a feasible allocation  $\mathbf{x}(\mathbf{b}) \in \mathcal{X} \subset \mathbb{R}^n$ .
- **3** Payment rule: Choose payments  $p(b) \in \mathbb{R}^n$ .

The **utility** of bidder *i* is:  $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) - p_i(\mathbf{b})$ .

# Definition (Implementable Allocation Rule)

An allocation rule x for a single-parameter environment is **implementable** if there is a payment rule p such the sealed-bid auction (x, p) is **truthful** and **individually rational**.

# Definition (Monotone Allocation Rule)

An allocation rule x for a single-parameter environment is **monotone** if for every bidder i and bids  $\mathbf{b}_{-i}$  by the other bidders, the allocation  $x_i(z, \mathbf{b}_{-i})$  to i is nondecreasing in its bid z.

### Meyrson's Lemma

Fix a single-parameter environment.

- **1** An allocation rule *x* is **implementable** iff it's **monotone**.
- ② If x is **monotone**, then there is a *unique* payment rule such that the sealed-bid mechanism (x, p) is **truthful** (assuming the normalization that  $b_i = 0$  implies  $p_i(b) = 0$ ).
- 3 The payment rule in (2) is given by an explicit formula:

$$p_i(b_i, \mathbf{b}_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z, \mathbf{b}_{-i}) dz$$

Makis Arsenis (NTUA)

#### Proof:

- **implementable**  $\Rightarrow$  **monotone**, payments derived from (3). Fix a bidder i and everybody else's valuations  $\mathbf{b}_{-i}$ . **Notation**: x(z), p(z) instead of  $x_i(z, \mathbf{b}_{-i}), p_i(z, \mathbf{b}_{-i})$ . Suppose  $(\mathbf{x}, \mathbf{p})$  is a truthful mechanism and consider 0 < y < z.
  - ▶ Bidder *i* has real valuation *y* but instead bids *z*. Truthfulness implies:

$$\underbrace{y \cdot x(y) - p(y)}_{\text{utility of bidding } y} \ge \underbrace{y \cdot x(z) - p(z)}_{\text{utility of bidding } z} \tag{1}$$

▶ Bidder *i* has real valuation *z* but instead bids *y*. Truthfulness implies:

$$\underbrace{z \cdot x(z) - p(z)}_{\text{utility of bidding } z} \ge \underbrace{z \cdot x(y) - p(y)}_{\text{utility of bidding } y} \tag{2}$$

Makis Arsenis (NTUA) AGT April 2016 25 / 41

### Proof (cont.):

Combining (1), (2):

$$y \cdot [x(z) - x(y)] \le p(z) - p(y) \le z \cdot [x(z) - x(y)]$$
 (3)

$$(3) \Rightarrow (z-y) \cdot [x(z)-x(y)] \geq 0 \Rightarrow x_i(\cdot,b_{-i}) \uparrow$$

Thus the allocation rule is **monotone**.

$$(3) \Rightarrow y \cdot \frac{x(z) - x(y)}{z - y} \le \frac{p(z) - p(y)}{z - y} \le z \cdot \frac{x(z) - x(y)}{z - y}$$

Makis Arsenis (NTUA)

### Proof (cont.):

Taking the limit as  $y \rightarrow z$ :

$$z \cdot x'(z) \le p'(z) \le z \cdot x'(z) \Rightarrow p'(z) = z \cdot x'(z)$$

$$\Rightarrow \int_0^{b_i} p'(z) dz = \int_0^{b_i} z \cdot x'(z) dz$$

$$\Rightarrow p(z) = p(0) + \int_0^{b_i} z \cdot x'(z) dz$$

Assuming normalization p(0) = 0 and reverting back to the formal notation:

$$p_i(b_i, \mathbf{b}_{-i}) = \int_0^{b_i} z \frac{d}{dz} x(z) dz$$



#### Proof (cont.):

monotone ⇒ implementable with payments from (3).

Proof by pictures (and whiteboard):



# Welfare maximization in multi-parameter environment

### The model

- Set  $\Omega$ ,  $|\Omega| = m$ , of possible **outcomes**.
- Set  $N = \{1, 2, \dots, n\}$  of agents (players).
- Valuation vector  $\mathbf{v} = (v_1, \dots, v_n) \in V$  where  $v_i : \Omega \to \mathbb{R}$  is the (private) valuation function of each player.

### Mechanism

- Allocation Rule:  $x: V^n \to \Omega$ .
- Payment vector:  $\mathbf{p} = (p_1, \dots, p_n)$  where  $p_i : V^n \to \mathbb{R}$ .

We are interested in the following welfare maximizing allocation rule:

$$x(\mathbf{b}) = \underset{\omega \in \Omega}{\operatorname{argmax}} \sum_{i=1}^{n} b_i(\omega)$$

←□ → ←□ → ← = → ← = → へ

**Idea**: Each player tries to maximize  $u_i(\mathbf{b}) = v_i(\omega^*) - p(\mathbf{b})$  where  $\omega^* = x(\mathbf{b})$ . If we could design the payments in a way that maximizing one's utility is equivalent to trying to maximize the social welfare then we are done!

Notice that

$$SW(\omega^*) = b_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*) = b_i(\omega^*) - \underbrace{\left[ - \sum_{j \neq i} b_j(\omega^*) \right]}_{p(\mathbf{b})} = u_i(\omega^*)$$

Makis Arsenis (NTUA) AGT April 2016 30 / 41

**Idea**: Each player tries to maximize  $u_i(\mathbf{b}) = v_i(\omega^*) - p(\mathbf{b})$  where  $\omega^* = x(\mathbf{b})$ . If we could design the payments in a way that maximizing one's utility is equivalent to trying to maximize the social welfare then we are done!

Notice that

$$SW(\omega^*) - h(\mathbf{b}_{-i}) = b_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*) - h(\mathbf{b}_{-i})$$

$$= b_i(\omega^*) - \underbrace{\left[h(\mathbf{b}_{-i}) - \sum_{j \neq i} b_j(\omega^*)\right]}_{p(\mathbf{b})} = u_i(\omega^*)$$

Makis Arsenis (NTUA)

### Groves Mechanisms

Every mechanism of the following form is truthful:

$$egin{aligned} x(\mathbf{b}) &= rgmax \sum_{\omega \in \Omega}^n b_i(\mathbf{b}) \ p(\mathbf{b}) &= h(\mathbf{b}_{-i}) - \sum_{j \neq i} b_j(x(\mathbf{b})) \end{aligned}$$

#### Clarke tax:

$$h(\mathbf{b}_{-i}) = \max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)$$



Makis Arsenis (NTUA)

### The VCG mechanism

The Vickrey-Clarke-Grooves mechanism is truthful, individually rational and exhibits no positive transfers  $(\forall i : p_i(\mathbf{b}) \geq 0)$ :

$$\begin{aligned} x(\mathbf{b}) &= \operatorname*{argmax}_{\omega \in \Omega} \sum_{i=1}^n b_i(\mathbf{b}) \\ p(\mathbf{b}) &= \max_{\omega \in \Omega} \sum_{i \neq i} b_j(\omega) - \sum_{i \neq i} b_j(x(\mathbf{b})) \end{aligned}$$

#### Proof.

- Truthfulness: Follows from the general Groove mechanism.
- Individual rationality:

$$u_i(\mathbf{b}) = \ldots = \mathsf{SW}(\omega^*) - \max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega) \ge \mathsf{SW}(\omega^*) - \max_{\omega \in \Omega} \sum_{j=1}^n b_j(\omega) = 0$$

• No positive transfers:  $\max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega) \ge \sum_{j \neq i} b_j(x(\mathbf{b}))$ .

4日 > 4回 > 4 至 > 4 至 >

Makis Arsenis (NTUA) AGT April 2016 33 / 41

As opposed to welfare maximization, maximizing revenue is impossible to achieve **ex-post** (without knowing  $v_i$ 's beforehand). For example: One item and one bidder with valuation  $v_i$ .

## Bayesian Model

- A single-parameter environment.
- The private valuation  $v_i$  of participant i is assumed to be drawn from a distribution  $F_i$  with density function  $f_i$  with support contained in  $[0, v_{\text{max}}]$ . We also assume the  $F_i$ 's are independent.
- The distributions  $F_1, \ldots, F_n$  are known in advance to the mechanism designer.

**Note**: The realizations  $v_1, \ldots, v_n$  of bidders' valuations are private, as usual.

We are interested in designing **truthful** mechanisms that maximize the **expected revenue** of the seller.

## Single-bidder, single-item auction

- The space of direct-revelation truthful mechanisms is small: they are precisely the "posted prices", or take-it-or-leave-it offers (because it has to be monotone!)
- Suppose we sell at price *r*. Then:

$$\mathbb{E}[ \text{ Revenue } ] = \underbrace{r}_{\text{revenue of a sale}} \cdot \underbrace{\left(1 - F(r)\right)}_{\text{probability of a sale}}$$

• We chose the price *r* that maximizes the above quantity.

## Example

If *F* is the **uniform** distribution on [0,1] then F(x) = x and so:

$$\mathbb{E}[ \text{ Revenue } ] = r \cdot (1 - r)$$

which is maximized by setting r=1/2, achieving an expected revenue of 1/4.

Makis Arsenis (NTUA) AGT April 2016 35 / 41

◆□ > ◆圖 > ◆圖 > ◆圖 >

## Single-bidder, single-item auction

- The space of direct-revelation truthful mechanisms is small: they are precisely the "posted prices", or take-it-or-leave-it offers (because it has to be monotone!)
- Suppose we sell at price *r*. Then:

$$\mathbb{E}[ \text{ Revenue } ] = \underbrace{r}_{\text{revenue of a sale}} \cdot \underbrace{\left(1 - F(r)\right)}_{\text{probability of a sale}}$$

• We chose the price *r* that maximizes the above quantity.

### Example

If F is the **uniform** distribution on [0,1] then F(x)=x and so:

$$\mathbb{E}[\mathsf{Revenue}] = r \cdot (1-r)$$

which is maximized by setting r = 1/2, achieving an expected revenue of 1/4.

Makis Arsenis (NTUA) AGT April 2016 35 / 41

4 D > 4 P > 4 P > 4 P >

### General setting of multi-player single-parameter environment:

Theorem (Myerson, 1981)

$$\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[ \sum_{i=1}^{n} p_i(\mathbf{v}) \right] = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[ \sum_{i=1}^{n} \phi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i) \right]$$

where:

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

is called virtual welfare.

Makis Arsenis (NTUA)

AGT

### **Proof**:

**Step 1**: Fix i,  $\mathbf{v}_{-i}$ . By Myerson's payment formula:

$$\mathbb{E}_{v_i \sim F_i}\left[p_i(\mathbf{v})\right] = \int_0^{v_{\text{max}}} p_i(\mathbf{v}) f_i(v_i) dv_i = \int_0^{v_{\text{max}}} \left[\int_0^{v_i} z \cdot x_i'(z, \mathbf{v}_{-i}) dz\right] f_i(v_i) dv_i$$

Step 2: Reverse integration order:

$$\begin{split} \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, \mathbf{v}_{-i}) \, dz \right] f_i(v_i) \, dv_i &= \int_0^{v_{\text{max}}} \left[ \int_z^{v_{\text{max}}} f_i(v_i) \, dv_i \right] z \cdot x_i'(z, \mathbf{v}_{-i}) \, dz \\ &= \int_0^{v_{\text{max}}} (1 - F_i(z)) \cdot z \cdot x_i'(z, \mathbf{v}_{-i}) \, dz \end{split}$$

Makis Arsenis (NTUA)

### Proof (cont.):

Step 3: Integration by parts:

$$\int_{0}^{V_{\text{max}}} \underbrace{\left(1 - F_{i}(z)\right) \cdot z}_{f} \cdot \underbrace{x_{i}'(z, \mathbf{v}_{-i})}_{g'} dz$$

$$= \underbrace{\left(1 - F_{i}(z)\right) \cdot z \cdot x_{i}(z, \mathbf{v}_{-i})|_{0}^{V_{\text{max}}}}_{=0 - 0} - \int_{0}^{V_{\text{max}}} x_{i}(z, \mathbf{v}_{-i}) \cdot \left(1 - F_{i}(z) - zf_{i}(z)\right) dz$$

$$= \int_{0}^{V_{\text{max}}} \underbrace{\left(z - \frac{1 - F_{i}(z)}{f_{i}(z)}\right)}_{:=\varphi_{i}(z)} x_{i}(z, \mathbf{v}_{-i}) f_{i}(z) dz$$

Makis Arsenis (NTUA)

### Proof (cont.):

**Step 4**: To *simplify* and help *interpret* the expression we introduce the **virtual** valuation  $\varphi_i(v_i)$ :

$$\varphi(v_i) = \underbrace{v_i}_{\text{what you'd like to charge } i} - \underbrace{\frac{1 - F_i(v_i)}{f_i(v_i)}}_{\text{"information rent" earned by bidder } i}$$

Summary:

$$\mathbb{E}_{v_i \sim F_i}[p_i(\mathbf{v})] = \mathbb{E}_{v_i \sim F_i}[\varphi(v_i) \cdot x_i(\mathbf{v})]$$
(4)

Makis Arsenis (NTUA) AGT April 2016 39 / 41

### Proof (cont.):

**Step 5**: Take the expectation, with respect to  $\mathbf{v}_{-i}$  of both sides of (4):

$$\mathbb{E}_{\mathbf{v}}[p_i(\mathbf{v})] = \mathbb{E}_{\mathbf{v}}[\varphi_i(v_i) \cdot x_i(\mathbf{v})]$$

Step 6: Apply linearity of expectation twice:

$$\mathbb{E}_{\mathbf{v}}\left[\sum_{i=1}^{n}p_{i}(\mathbf{v})\right] = \sum_{i=1}^{n}\mathbb{E}_{\mathbf{v}}[p_{i}(\mathbf{v})] = \sum_{i=1}^{n}\mathbb{E}_{\mathbf{v}}[\varphi_{i}(v_{i})\cdot x_{i}(\mathbf{v})] = \mathbb{E}_{\mathbf{v}}\left[\sum_{i=1}^{n}\varphi_{i}(v_{i})\cdot x_{i}(\mathbf{v})\right]$$

### Conclusion

#### 

## Example: Single-item auction with i.i.d. bidders

Assuming that the distributions  $F_i$  are such that  $\phi_i(v_i)$  is monotone (such distributions are called **regular**) then a **second-price** auction on *virtual valuations* with reserve price  $\phi^{-1}(0)$  maximizes the revenue.

#### Conclusion

## Example: Single-item auction with i.i.d. bidders

Assuming that the distributions  $F_i$  are such that  $\phi_i(v_i)$  is monotone (such distributions are called **regular**) then a **second-price** auction on *virtual valuations* with reserve price  $\phi^{-1}(0)$  maximizes the revenue.