Approximate Mechanism Design without Money

Dimitris Fotakis

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE

IEEE NTUA Student Branch Talk, May 2013

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).

Formal Setting

- Set A, |A| = m, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).

Formal Setting

- Set A, |A| = m, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**, or **voting rule**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).
- Collective decision making, by **voting**, over anything:
 - Political representatives, award nominees, contest winners, allocation of tasks/resources, joint plans, meetings, food, ...
 - Web-page ranking, preferences in multiagent systems.

Formal Setting

- Set A, |A| = m, of possible alternatives (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**, or **voting rule**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0).

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: Pink \succ Red \succ Green

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: $Pink \succ Red \succ Green$

With **plurality** voting (1, 0, 0): Green $(12) \succ \text{Red}(10) \succ \text{Pink}(3)$

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: $Pink \succ Red \succ Green$

With **plurality** voting (1,0,0): Green $(12) \succ \text{Red}(10) \succ \text{Pink}(3)$ Probably it would have been $\text{Red}(13) \succ \text{Green}(12) \succ \text{Pink}(0)$

Positional Scoring Voting Rules

- Vector (a₁,..., a_m), a₁ ≥ ··· ≥ a_m ≥ 0, of points allocated to each position in the preference list.
- Winner is the alternative getting most points.

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.
- **Plurality** is defined by (1, 0, ..., 0).
 - Extensively used in elections of political representatives.

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.
- **Plurality** is defined by (1, 0, ..., 0).
 - Extensively used in elections of political representatives.

Borda Count (1770): (m - 1, m - 2, ..., 1, 0)

"Intended only for honest men."

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.
- **Plurality** is defined by (1, 0, ..., 0).
 - Extensively used in elections of political representatives.

Borda Count (1770): (m - 1, m - 2, ..., 1, 0)

"Intended only for honest men."

Condorcet Winner

• Winner is the alternative beating every other alternative in pairwise election.

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- Condorcet paradox: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - (*a*, *b*): (2, 1), (*a*, *c*): (1, 2), (*b*, *c*): (2, 1)

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- Condorcet paradox: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - (*a*, *b*): (2, 1), (*a*, *c*): (1, 2), (*b*, *c*): (2, 1)
- Condorcet criterion : select the Condorcet winner, if exists.
 - Plurality satisfies the Condorcet criterion? Borda count?

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- Condorcet paradox: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - (*a*, *b*): (2, 1), (*a*, *c*): (1, 2), (*b*, *c*): (2, 1)
- Condorcet criterion : select the Condorcet winner, if exists.
 - Plurality satisfies the Condorcet criterion? Borda count?
- "Approximation" of the Condorcet winner: Dodgson (NP-hard to approximate!), Copeland, MiniMax, ...

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, ..., n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous: If *a* is the top alternative in all \succ_1, \ldots, \succ_n , then

 $F(\succ_1,\ldots,\succ_n)=a$

• Not dictatorial: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1,\ldots,\succ_n) \neq \text{agent's } i \text{ top alternative}$

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous : If *a* is the top alternative in all \succ_1, \ldots, \succ_n , then

 $F(\succ_1,\ldots,\succ_n)=a$

• Not dictatorial: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1,\ldots,\succ_n) \neq \text{agent's } i \text{ top alternative}$

• **Strategyproof** or **truthful** : $\forall \succ_1, \ldots, \succ_n, \forall$ agent $i, \forall \succ'_i$,

 $F(\succ_1,\ldots,\succ_i,\ldots,\succ_n) \succ_i F(\succ_1,\ldots,\succ_i,\ldots,\succ_n)$

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Escape Routes

- Randomization
- Monetary payments
- Voting systems **computationally hard** to manipulate.

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Escape Routes

- Randomization
- Monetary payments
- Voting systems **computationally hard** to manipulate.
- Restricted domain of preferences Approximation

Single Peaked Preferences and Medians

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. A = [0, 1]
- Each agent *i* has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:

$$b < a \le x_i^* \implies a \succ_i b$$

 $x_i^* \ge a > b \implies a \succ_i b$

Single Peaked Preferences and Medians

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. A = [0, 1]
- Each agent *i* has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:

$$b < a \le x_i^* \implies a \succ_i b$$
$$x_i^* > a > b \implies a \succ_i b$$

Median Voter Scheme [Moulin 80], [Sprum 91], [Barb Jackson 94]

A social choice function *F* on a single peaked preference domain is **strategyproof**, **onto**, and **anonymous** iff there exist $y_1, \ldots, y_{n-1} \in A$ such that for all (x_1^*, \ldots, x_n^*) ,

$$F(x_1^*,...,x_n^*) = median(x_1^*,...,x_n^*,y_1,...,y_{n-1})$$

k-Facility Location Game

Strategic Agents in a Metric Space

- Set of agents $N = \{1, \ldots, n\}$
- Each agent *i* **wants** a facility at *x_i*. Location *x_i* is agent *i*'s **private information**.

k-Facility Location Game

Strategic Agents in a Metric Space

- Set of agents $N = \{1, \ldots, n\}$
- Each agent *i* wants a facility at *x_i*. Location *x_i* is agent *i*'s **private information**.
- Each agent *i* **reports** that she wants a facility at *y_i*. Location *y_i* may be **different** from *x_i*.

Mechanisms and Agents' Preferences

(Randomized) Mechanism

A social choice **function** *F* that maps a location profile $y = (y_1, ..., y_n)$ to a (probability distribution over) set(s) of *k* **facilities**.

Mechanisms and Agents' Preferences

(Randomized) Mechanism

A social choice **function** *F* that maps a location profile $y = (y_1, ..., y_n)$ to a (probability distribution over) set(s) of *k* **facilities**.

Connection Cost

(Expected) distance of agent *i*'s **true location** to the **nearest** facility:

 $cost[x_i, F(\boldsymbol{y})] = d(x_i, F(\boldsymbol{y}))$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Efficiency

F(x) should optimize (or approximate) a given **objective function**.

- Social Cost: minimize $\sum_{i=1}^{n} \operatorname{cost}[x_i, F(x)]$
- Maximum Cost: minimize $\max{cost[x_i, F(x)]}$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Efficiency

F(x) should optimize (or approximate) a given **objective function**.

- Social Cost: minimize $\sum_{i=1}^{n} \operatorname{cost}[x_i, F(\mathbf{x})]$
- Maximum Cost: minimize $\max{cost[x_i, F(x)]}$
- Minimize *p*-norm of $(cost[x_1, F(x)], \ldots, cost[x_n, F(x)])$
The median of (x_1, \ldots, x_n) is strategyproof and optimal.

The median of (x_1, \ldots, x_n) is strategyproof and optimal.

The median of (x_1, \ldots, x_n) is strategyproof and optimal.

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof !

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is **not strategyproof**!
- Deterministic **dictatorship** has $cost \le (n-1)OPT$.
- Randomized dictatorship has $cost \le 2 OPT$ [Alon FPT 10]

2-Facility Location on the Line

The optimal solution is not strategyproof !

2-Facility Location on the Line

The optimal solution is not strategyproof !

2-Facility Location on the Line

The optimal solution is not strategyproof !

The optimal solution is not strategyproof !

Two Extremes Mechanism [Procacc Tennen 09]

- Facilities at the **leftmost** and at the **rightmost** location :
 - $F(x_1,\ldots,x_n)=(\min\{x_1,\ldots,x_n\},\max\{x_1,\ldots,x_n\})$
- Strategyproof and (n-2)-approximate.

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness.
- Best approximation ratio by strategyproof mechanisms?
- Variants of *k*-Facility Location, *k* = 1, 2, . . ., among the **central** problems in this research agenda.

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness.
- Best approximation ratio by strategyproof mechanisms?
- Variants of *k*-Facility Location, *k* = 1, 2, . . ., among the **central** problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

	Upper Bound	Lower Bound
Deterministic	<i>n</i> – 2 [PT09]	(n-1)/2 [LSWZ 10]

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness.
- Best approximation ratio by strategyproof mechanisms?
- Variants of *k*-Facility Location, *k* = 1, 2, . . ., among the **central** problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

	Upper Bound	Lower Bound
Deterministic	n-2 [PT09]	(n-1)/2 [LSWZ 10]
Randomized	4 [LSWZ10]	1.045 [LWZ09]

Deterministic 2-Facility Location on the Line

Nice mechanisms \equiv deterministic **strategyproof** mechanisms with a **bounded approximation** (function of *n* and *k*).

Niceness objective-independent and facilitates the characterization!

Deterministic 2-Facility Location on the Line

```
Nice mechanisms \equiv deterministic strategyproof mechanisms with a bounded approximation (function of n and k).
Niceness objective-independent and facilitates the characterization!
Any nice mechanism F for n \ge 5 agents:
```

- Either $F(x) = (\min x, \max x)$ for all x (Two Extremes).
- Or admits unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

Deterministic 2-Facility Location on the Line

Nice mechanisms \equiv deterministic **strategyproof** mechanisms with a **bounded approximation** (function of *n* and *k*).

Niceness **objective-independent** and **facilitates** the characterization! Any **nice** mechanism *F* for $n \ge 5$ agents:

- Either $F(x) = (\min x, \max x)$ for all x (Two Extremes).
- Or admits unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

Dictatorial Mechanism with Dictator *j*

- Consider distances $d_l = x_j \min x$ and $d_r = \max x x_j$.
- Place the first facility at x_j and the second at $x_j \max\{d_l, 2d_r\}$, if $d_l > d_r$, and at $x_j + \max\{2d_l, d_r\}$, otherwise.
- Strategyproof and (n-1)-approximate.

Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to *n* ≥ 5 agents on the line.
- The **approximation ratio** for 2-Facility Location on the line by deterministic strategyproof mechanisms is n 2.

Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to *n* ≥ 5 agents on the line.
- The **approximation ratio** for 2-Facility Location on the line by deterministic strategyproof mechanisms is n 2.

Deterministic *k*-Facility Location, for all $k \ge 3$

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to *n* ≥ 5 agents on the line.
- The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is n 2.

Deterministic *k*-Facility Location, for all $k \ge 3$

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

Deterministic 2-Facility Location in General Metrics

There are **no nice** mechanisms for 2-Facility Location in metrics more general than the line and the cycle (even for 3 agents in a star).

Randomized 2-Facility Location [Lu Sun Wang Zhu 10]

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_i, x_i)}$

Randomized 2-Facility Location [Lu Sun Wang Zhu 10]

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_i, x_i)}$

Randomized 2-Facility Location [Lu Sun Wang Zhu 10]

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_i, x_i)}$

• Strategyproof and 4-approximate for general metrics.

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_\ell, x_i)}$

- Strategyproof and 4-approximate for general metrics.
- Not strategyproof for > 2 facilities! Profile $(0:many, 1:50, 1+10^5:4, 101+10^5:1), 1 \rightarrow 1+10^5$.

Randomized k-Facility Location for $k \ge 3$ [F. Tzamos 10]

Winner-Imposing Mechanisms

• Agents with a facility at their reported location connect to it. Otherwise, no restriction whatsoever.

Winner-Imposing Mechanisms

- Agents with a **facility** at their **reported** location **connect** to it. Otherwise, **no restriction** whatsoever.
- Winner-imposing version of the Proportional Mechanism is strategyproof and 4*k*-approximate in general metrics, for any *k*.

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an **end** of each interval. With prob. 1/2, facility at L - R - L - R - ... With prob. 1/2, facility at R - L - R - L - ...

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an **end** of each interval. With prob. 1/2, facility at L - R - L - R - ... With prob. 1/2, facility at R - L - R - L - ...

Agents' Cost and Approximation Ratio

• Agent *i* has expected $cost = (C - x_i)/2 + x_i/2 = C/2 = OPT$.

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an **end** of each interval. With prob. 1/2, facility at L - R - L - R - ... With prob. 1/2, facility at R - L - R - L - ...

Agents' Cost and Approximation Ratio

- Agent *i* has expected $cost = (C x_i)/2 + x_i/2 = C/2 = OPT$.
- Approx. ratio: 2 for the maximum cost, *n* for the social cost.

Equal-Cost Mechanism

- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent *i* declare y_i and decrease OPT to C'/2 < C/2.

Equal-Cost Mechanism

- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent *i* declare y_i and decrease OPT to C'/2 < C/2.
- Distance of x_i to **nearest** C'-interval $\geq C C'$.

Equal-Cost Mechanism

- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent *i* declare y_i and decrease OPT to C'/2 < C/2.
- Distance of x_i to **nearest** C'-interval $\geq C C'$.
- *i*'s expected $\cot 2 \ge (C C')/2 + C/2 = C C'/2 > C/2$

Equal-Cost Mechanism

- **Cover** all agents with *k* **disjoint intervals** of length *C*.
- Place a facility to an **end** of each interval.

Agents with Concave Costs

Generalized Equal-Cost Mechanism is **strategyproof** and has the **same approximation** ratio if agents' cost is a **concave function** of distance to the nearest facility.

Research Directions

Understanding the Power of Verification

• (Implicit or explicit) verification restricts agents' declarations.

Understanding the Power of Verification

- (Implicit or explicit) verification restricts agents' declarations.
 - ε -verification : agent *i* at x_i can only declare anything in $[x_i \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]

Understanding the Power of Verification

- (Implicit or explicit) verification restricts agents' declarations.
 - ε -verification : agent *i* at x_i can only declare anything in $[x_i \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]
- Non-symmetric verification: conditions under which the mechanism gets some advantage.
Understanding the Power of Verification

- (Implicit or explicit) verification restricts agents' declarations.
 - ε -verification : agent *i* at x_i can only declare anything in $[x_i \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]
- Non-symmetric verification: conditions under which the mechanism gets some advantage.

Voting and Social Networks

- How group of people vote for their leader in social networks?
- How social network affects the people's **votes** and the outcome? Relation to **opinion dynamics**?

Thank You!