
A Concurrent Language with a Uniform Treatment

of Regions and Locks

Prodromos Gerakios Nikolaos Papaspyrou Konstantinos Sagonas

School of Electrical and Computer Engineering

National Technical University of Athens, Greece

{pgerakios,nickie,kostis}@softlab.ntua.gr

Abstract

A challenge for programming language research is to design and implement multi-threaded low-

level languages providing static guarantees for memory safety and freedom from data races. Towards

this goal, we present a concurrent language employing safe region-based memory management and

hierarchical locking of regions. Both regions and locks are treated uniformly, and the language

supports ownership transfer, early deallocation of regions and early release of locks in a safe manner.

1 Introduction

Writing safe and robust code is a hard task; writing safe and robust multi-threaded low-level code is even

harder. In this paper we present a minimal, low-level concurrent language with advanced region-based

memory management and hierarchical lock-based synchronization primitives.

Region-based memory management achieves efficiency by bulk allocation and deallocation of objects

in segments of memory called regions. Similar to other approaches, our regions are organized in a

hierarchical manner such that each region is physically allocated within a single parent region and may

contain multiple child regions. This hierarchical structure imposes an ownership relation as well as

lifetime constraints over regions. Unlike other languages employing hierarchical regions, our language

allows early subtree deallocation in the presence of region sharing between threads. In addition, each

thread is obliged to release each region it owns by the end of its scope.

Multi-threaded programs that interact through shared memory generate random execution interleav-

ings. A data race occurs in a multi-threaded program when there exists an interleaving such that some

thread accesses a memory location while some other thread attempts to write to it. So far, type systems

and analyses that guarantee race freedom Flanagan and Abadi [1999] have mainly focused on lexically-

scoped constructs. The key idea in those systems is to statically track or infer the lockset held at each

program point. In the language presented in this paper, implicit reentrant locks are used to protect

regions from data races. Our locking primitives are non-lexically scoped. Locks also follow the hierar-

chical structure of regions so that each region is protected by its own lock as well as the locks of all its

ancestors.

Furthermore, our language allows regions and locks to be safely aliased, escape the lexical scope

when passed to a new thread, or become logically separated from the remaining hierarchy. These features

are invaluable for expressing numerous idioms of multi-threaded programming such as sharing, region

ownership or lock ownership transfers, thread-local regions and region migration.

1

2 Language Design

We briefly outline the main design goals for our language, as well as some of the main design decisions

that we made to serve these goals.

Low-level and concurrent. Our language must efficiently support systems programming. As such, it

should cater for memory management and concurrency. It also needs to be low-level: it is not intended

to be used by programmers but as a target language of higher-level systems programming languages.

Static safety guarantees. We define safety in terms of memory safety and absence of data races. A

static type system should guarantee that well-typed programs are safe, with minimal run-time overhead.

Safe region-based memory management. Similarly to other languages for safe systems program-

ming (e.g. Cyclone) our language employs region-based memory management, which achieves effi-

ciency by bulk allocation and deallocation of objects in segments of memory (regions). Statically typed

regions Tofte and Talpin [1994], Walker et al. [2000] guarantee the absence of dangling pointer derefer-

ences, multiple release operations of the same memory area, and memory leaks. Traditional stack-based

regions Tofte and Talpin [1994] are limiting as they cannot be deallocated early. Furthermore, the stack-

based discipline fails to model region lifetimes in concurrent languages, where the lifetime of a shared

region depends on the lifetime of the longest-lived thread accessing that region. In contrast, we want

regions that can be deallocated early and that can safely be shared between concurrent threads.

We opt for a hierarchical region Gay and Aiken [2001] organization: each region is physically

allocated within a single parent region and may contain multiple child regions. Early region deallocation

in our multi-level hierarchy automatically deallocates the immediate subtree of a region without having to

deallocate each region of the subtree recursively. The hierarchical region structure imposes the constraint

that a child region is live only when its ancestors are live. In order to allow a function to access a region

without having to pass all its ancestors explicitly, we allow ancestors to be abstracted (i.e., our language

supports hierarchy abstraction) for the duration of the function call. To maintain the liveness invariant

we require that the abstracted parents are live before and after the call. Regions whose parent information

has been abstracted cannot be passed to a new thread as this may be unsound.

Race freedom. To prevent data races we use lock-based mutual exclusion. Instead of having a separate

mechanism for locks, we opt for a uniform treatment of locks and regions: locks are placed in the same

hierarchy as regions and enjoy similar properties. Each region is protected by its own private lock and

by the locks of its ancestors. The semantics of region locking is that the entire subtree of a region

is atomically locked once the lock for that region has been acquired. Hierarchical locking can model

complex synchronization strategies and lifts the burden of having to deal with explicit acquisition of

multiple locks. Although deadlocks are possible, they can be avoided by acquiring a single lock for

a group of regions rather than acquiring multiple locks for each region separately. Additionally, our

language provides explicit locking primitives, which in turn allow a higher degree of concurrency than

lexically-scoped locking, as some locks can be released early.

Region polymorphism and aliasing. Our language supports region polymorphism: it is possible to

pass regions as parameters to functions or concurrent threads. This enables region aliasing: one actual

region could be passed in the place of two distinct formal region parameters. In the presence of mutual

exclusion and early region deallocation, aliasing is dangerous. Our language allows safe region aliasing

with minimal restrictions. The mechanism that we employ for this purpose also allows us to encode

numerous useful idioms of concurrent programming, such as region migration, lock ownership transfers,

region sharing, and thread-local regions.

2

3 Language Features through Examples

Our regions are lexically-scoped first-class citizens; they are manipulated via explicit handles. For in-

stance, a region handle can be used for releasing a region early, for allocating references and regions

within it, or for locking it. Our language uses a type and effect system to guarantee that regions and their

contents are properly used. The details will be made clear in Sections 4 and 6. Here, we present the

main features of our language through examples. We try to avoid technical issues as much as possible;

however, some characteristics of the type and effect system are revealed in this section and their presence

is justified. Furthermore, to simplify the presentation in this section, we use abbreviations for a few

language constructs that we expect the readers will find more intuitive.

Example 1 (Simple Region Usage) This example shows a typical region use. New regions are allocated

via the newrgn construct. This construct requires a handle to an existing region (heap in this case), in

which the new region will be allocated, and introduces a type-level name (ρ) and a fresh handle (h) for

the new region. The handle h is then used to allocate a new integer in region ρ; a reference to this integer

(z) is created. Finally, the region is deallocated before the end of its lexical scope.

newrgn ρ, h at heap in // {ρ1,1⊲ ρH}

let z = new 10 at h in

. . .

z := deref z + 5 ;

. . .

free h ; // { } — empty effect, ρ is no longer alive

. . .

The comments on the right-hand side of the example’s code show the current effect. An effect is roughly

a set of capabilities that are held at a given program point. Right after creation of region ρ, the entry

ρ1,1⊲ ρH is added to the effect; this means that a capability (“1, 1” — we will later explain what this

means) is held for region ρ, which resides in the heap region (ρH). Regions start their life as local to

a thread and their contents can be directly accessed. For instance, a reference z can be created in ρ,

dereferenced and assigned a new value, as long as the type system can verify that a proper capability for

ρ is present in the current effect. Deallocation of ρ removes the capability from the effect; once that is

done, the region’s contents become inaccessible.

Example 2 (Hierarchical Regions) In the previous example a trivial hierarchy was created by allocat-

ing region ρ within the heap region. It is possible to construct richer region hierarchies. As in the

previous example, the code below allocates a new region ρ1 within the heap. Other regions can be then

allocated within ρ1, e.g. ρ2; this can done by passing the handle of ρ1 to the region creation construct.

Similarly, regions ρ3 and ρ4 can be allocated within region ρ2.

newrgn ρ1, h at heap in // {ρ
1,1
1
⊲ ρH}

. . .

newrgn ρ2, h2 at h1 in // {ρ
1,1
1
⊲ ρH , ρ

1,1
2
⊲ ρ1}

. . .

newrgn ρ3, h3 at h2 in // {ρ
1,1
1
⊲ ρH , ρ

1,1
2
⊲ ρ1, ρ

1,1
3
⊲ ρ2}

newrgn ρ4, h4 at h2 in // {ρ
1,1
1
⊲ ρH , ρ

1,1
2
⊲ ρ1, ρ

1,1
3
⊲ ρ2, ρ

1,1
4
⊲ ρ2}

. . .

ρ
1,0
H

ρ
1,1
1

ρ
1,1
2

. . .

ρ
1,1
3

ρ
1,1
4

. . .

Our language allows regions to be allocated at any level of the hierarchy. For instance, it is possible to

allocate more regions within region ρ1, in the lexical scope of region ρ4.

3

Example 3 (Bulk Region Deallocation) In the first example a single region was deallocated. That re-

gion was a leaf node in the hierarchy; it contained no sub-regions. In the general case, when a region is

deallocated, the entire subtree below that region is also deallocated. This is what happens if, in the code

of the previous example, we deallocate region ρ2 within the innermost scope; regions ρ3 and ρ4 are also

deallocated. They are all removed from the current effect and thus are no longer accessible.

newrgn ρ1, h at heap in // {ρ
1,1
1
⊲ ρH}

. . .

newrgn ρ2, h2 at h1 in // {ρ
1,1
1
⊲ ρH , ρ

1,1
2
⊲ ρ1}

. . .

newrgn ρ3, h3 at h2 in // {ρ
1,1
1
⊲ ρH , ρ

1,1
2
⊲ ρ1, ρ

1,1
3
⊲ ρ2}

newrgn ρ4, h4 at h2 in // {ρ
1,1
1
⊲ ρH , ρ

1,1
2
⊲ ρ1, ρ

1,1
3
⊲ ρ2, ρ

1,1
4
⊲ ρ2}

. . .

free h2; // {ρ
1,1
1
⊲ ρH}

. . . // ρ2, ρ3 and ρ4 are no longer alive

ρ
1,0
H

ρ
1,1
1

ρ
1,1
2

. . .

ρ
1,1
3

ρ
1,1
4

. . .

Example 4 (Region Migration) A common multi-threaded programming idiom is to use thread-local

data. At any time, only one thread will have access to such data and therefore no locking is required.

A thread can transfer thread-local data to another thread but, doing so, it loses access to the data. This

idiom is known as migration. Our language encodes thread-local data and data migration. As we have

seen, newly created regions are considered thread-local; a capability for them is added to the current

effect. We support data migration by allowing such capabilities to be transferred to other threads.

The following example illustrates region migration. A server thread is defined, which executes an

infinite loop. In every iteration, a new region is created and is initialized with client data. The contents

of the region are then processed and finally transferred to a newly created (spawned) thread.

def server = ΛρH . λheap.

while (true) do

newrgn ρ, h at heap in // {ρ1,1⊲ ρH}

let z = wait data[ρ](h) in // region ρ is thread-local

process(z);

spawn output[ρ](h, z); // { } — empty effect, ρ migrates to output

. . . // ρ cannot be accessed here

The server thread accepts the heap region and its handle. Within the infinite loop, it allocates a new

region ρ in the heap. Its handle h is passed to function wait data, which is supposed to fill the region

ρ with client data (z). Function process is then called and works on the data. Until this point, region ρ

is thread-local and accessible to the server thread, so no explicit locking is required. Now, let us assume

that we want the processed data to be output by a different thread, e.g. to avoid an unnecessary delay on

the server thread. A new thread output is spawned and receives the region handle h and the reference z

to the client data. The capability ρ1,1⊲ ρH is removed from the effect of server and is added to the input

effect of thread output. Therefore, region ρ has now become thread-local to thread output, which can

access it directly, while it is no longer accessible to the server thread.

Example 5 (Region Sharing) In the previous examples, capabilities for all regions were “1, 1” which,

as we roughly explained, corresponds to thread-local. In general, a capability for a region consists of two

natural numbers; the first denotes the region count, whereas the second denotes the lock count. When the

region count is positive, the region is definitely alive. Similarly, when the lock count is positive, memory

accesses to this region’s contents are guaranteed to be race free. Capabilities with counts other than 1

can be used for sharing regions between threads.

Multithreaded programs often share data for communication purposes. In this example, a server

thread almost identical to that of the previous example is defined. The programmer’s intention here,

4

however, is to process the data and display it in parallel. Therefore, the output thread is spawned first

and then the server thread starts processing the data.

def server = ΛρH . λheap.

while (true) do

newrgn ρ, h at heap in // {ρ1,1⊲ ρH}

let z = wait data[ρ](h) in

share h; unlock h; // {ρ2,0⊲ ρH}

spawn output[ρ](h, z); // {ρ1,0⊲ ρH} — output consumes ρ1,0⊲ ρH

while (! finished) do

lock h; // {ρ1,1⊲ ρH}

process(z);

unlock h // {ρ1,0⊲ ρH}

Operator share increases the region count and operator unlock decreases the lock count. As a conse-

quence, starting with capability ρ1,1⊲ ρH , we end up with ρ2,0⊲ ρH . When output is spawned, it consumes

“half” of this capability (ρ1,0⊲ ρH); the remaining “half” (ρ1,0⊲ ρH) is still held by the server thread. Re-

gion ρ is now shared between the two threads; however, none of them can access its data directly, as

this may lead to a data race. The lock and unlock operators have to be used for explicitly locking

and unlocking the region, before safely accessing its contents. Processing is now performed iteratively;

the server thread avoids locking the region for long periods of time, thus allowing the output thread to

execute a similar loop and gain access to the region when needed.

Example 6 (Hierarchical Locking) In the previous example, locking and unlocking was performed on

a leaf region. In general, locking a region in the hierarchy has the effect of atomically locking its subre-

gions as well. A region is accessible when it has been locked by the current thread or when at least one

of its ancestors has been locked.

Hierarchical locking can be useful when a set of locks needs to be acquired atomically. In this

example, we assume that two hash tables (tbl1 and tbl2) are used. An object with a given key must be

removed from tbl1, which resides in region ρ1, and must be inserted in tbl2, which resides in region ρ2.

We can atomically acquire access to both regions ρ1 and ρ2, by locking a common ancestor of theirs.

lock h; // the handle of a common ancestor of ρ1 and ρ2

let ob j = hash remove[ρ1](tbl1, key) in

hash insert[ρ2](tbl2, key, ob j);

unlock h

Example 7 (Region Aliasing) An expressive language with regions will have to support region poly-

morphism, which invariably leads to region aliasing. This must be handled with caution, as a naı̈ve

approach may cause unsoundness. In the examples that follow, we discuss how region aliasing is used in

our language as well as the restrictions that we impose to guarantee safety.

Function swap accepts two integer references, residing in regions ρ1 and ρ2, and swaps their contents.

It assumes that both regions are already locked and remain locked when the function returns.

def swap = Λρ1. Λρ2. λ(x : ref(ρ1, int), y : ref(ρ2, int)).// ρ1 and ρ2 must be both locked

let z = deref x in // OK: ρ1 is locked

x := deref y; // OK: ρ1 and ρ2 are locked

y := z // OK: ρ2 is locked

In order to instantiate ρ1 and ρ2 with the same region ρ, we can create two lock capabilities by using

the lock operator twice on ρ’s handle h. Of course, the second use of lock will succeed immediately,

as the region has already been locked by the same thread.

5

. . . // {ρ2,0⊲ ρH}

lock h; lock h; // {ρ2,2⊲ ρH}

swap[ρ][ρ](a, b); // each ρ parameter requires ρ1,1⊲ ρH

unlock h; unlock h // {ρ2,0⊲ ρH}

Example 8 (Reentrant locks) Region aliasing introduces the need for reentrant locks. To see this, let

us change the swapping function of the previous example, so that it receives two references in unlocked

regions. For swapping their contents, it will have to acquire locks for the two regions (and release them,

when they are no longer needed).

def swap = Λρ1. Λρ2. λ(h1 : rgn(ρ1), h2 : rgn(ρ2).

x : ref(ρ1, int), y : ref(ρ2, int)).// ρ1 and ρ2 are unlocked

lock h1;

let z = deref x in // OK: ρ1 is locked

lock h2;

x := deref y; // OK: ρ1 and ρ2 are locked

unlock h1;

y := z; // OK: ρ2 is locked

unlock h2 // all locks can be released

Suppose again that we are to instantiate ρ1 and ρ2 with the same region ρ.

. . . // {ρ2,0⊲ ρH}

swap[ρ][ρ](h, h, a, b); // each ρ parameter requires ρ1,0⊲ ρH

We can easily see, however, that the run-time system cannot use binary locks; in that case, swap[ρ][ρ]

would either come to a deadlock, waiting to obtain once more the lock that it has already acquired, or

— worse — it might release the lock early (at unlock h1) and allow a data race to occur. To avoid

unsoundness, we use reentrant locks: lock counts are important both for static typing and for the run-

time system. A lock with a positive run-time count can immediately be acquired again, if it was held by

the same thread. Moreover, a lock is released only when its run-time count becomes zero.

Example 9 (Pure and Impure Capabilities) Unrestricted region aliasing leads to unsoundness. Con-

sider function bad, which accepts two integer references (x and y) in regions ρ1 and ρ2, which are both

locked. It lets ρ1 migrate to a new thread and passes x as a parameter. It then assigns a value to y.

def bad = Λρ1. Λρ2. λ(x : ref(ρ1, int), y : ref(ρ2, int)). // ρ1 and ρ2 must be both locked

spawn f[ρ1](x); // ρ1 migrates to f while locked

y := 7 // OK: ρ2 is still locked — WRONG!

A data race may occur if we call bad as follows; both threads have access to a, each holding a lock for ρ.

swap[ρ][ρ](a, a); // each ρ parameter requires ρ1,1⊲ ρH

The cause of the unsoundness is that, in this last call to swap[ρ][ρ], we allowed a single capability

ρ2,2⊲ ρH to be divided in two distinct capabilities ρ1,1⊲ ρH . More specifically, we divided the lock count in

two and created two distinct lock capabilities, one of which escaped to a different thread through region

migration. To resolve the unsoundness, we introduce the notion of pure (i.e., full) and impure (i.e.,

divided) capabilities. For instance, ρ2,2⊲ ρH is a pure capability; when we divide it we obtain two impure

halves, which we denote as ρ1,1⊲ ρH . Impure capabilities cannot be given to newly spawned threads

when their lock count is positive. In contrast with pure capabilities, they represent inexact knowledge of

a region’s counts.

6

Value v ::= f | c | rgnı | locl

Function f ::= λx. e as τ
γ→γ
−→ τ | Λρ. f

Expression e ::= x | c | f | (e e)ξ | e [r] | new e at eǫ | e := e | locl

| deref e | newrgn ρ, x at e in e | capη e | rgnı

Type τ ::= b | τ
γ→γ
−→ τ | ∀ρ. τ | ref(τ, r) | rgn(r)

Effect γ ::= ∅ | γ, rκ⊲ π

Calling mode ξ ::= seq | par(γ)

Capability op η ::= ψ + | ψ−

Capability kind ψ ::= rg | lk

Capability κ ::= n, n | n, n

Region parent π ::= r | ⊥ | ?

Region r ::= ρ | ı

Figure 1: Syntax.

4 Language Description

The syntax of the language is illustrated in Figure 1. The language core comprises of variables (x),

constants (c), functions, and function application. Functions can be region polymorphic (Λρ. f) and

region application is explicit (e[ρ]). Monomorphic functions (λx. e) must be annotated with their type.

The application of monomorphic functions is annotated with a calling mode (ξ), which is seq for normal

(sequential) application and par(γ) for spawning a new thread.1 Parallel application is annotated with

the input effect of the new thread (γ); this annotation can be automatically inferred by the type checker.

The constructs for manipulating references are standard. A newly allocated memory cell is returned by

new e1 at e2, where e1 is the value that will be placed in the cell and e2 is a handle of the region in which

the new cell will be allocated. Standard assignment and dereference operators complete the picture.

The construct newrgn ρ, x at e1 in e2 allocates a new region ρ and binds x to the region handle. The

new region resides in a parent region, whose handle is given in e1. The scope of ρ and x is e2, which must

consume the new region by the end of its execution. A region can be consumed either by deallocation

or by transferring its ownership to another thread. At any given program point, each region is associated

with a capability (κ). Capabilities consist of two natural numbers, the capability counts: the region count

and lock count, which denote whether a region is live and locked respectively. When first allocated, a

region starts with capability (1, 1), meaning that it is live and locked, so that it can be exclusively accessed

by the thread that allocated it. As we have seen, this is our equivalent of a thread-local region.

By using the construct capη e, a thread can increment or decrement the capability counts of the region

whose handle is specified in e. The capability operator η can be, e.g., rg+ (meaning that the region count

is to be incremented) or lk− (meaning that the lock count is to be decremented).2 When a region count

reaches zero, the region may be physically deallocated and no subsequent operations can be performed

on it. When a lock count reaches zero, the region is unlocked. As we explained, capability counts

determine the validity of operations on regions and references. All memory-related operations require

that the involved regions are live, i.e., the region count is greater than zero. Assignment and dereference

can be performed only when the corresponding region is live and locked.

A capability of the form (n1, n2) is called a pure capability, whereas a capability of the form (n1, n2)

is called an impure capability. In both cases, it is implied that the current thread can decrement the

region count n1 times and the lock count n2 times. Impure capabilities are obtained by splitting pure or

other impure capabilities into several pieces, e.g., (3, 2) = (2, 1) + (1, 1), in the same spirit as fractional

capabilities Boyland [2003]. As we explained in Example 9 of Section 3, these pieces are useful for

region aliasing, when the same region is to be passed to a function in the place of two distinct region

parameters. An impure capability implies that our knowledge of the region and lock count is inexact.

The use of such capabilities must be restricted; e.g., an impure capability with a non-zero lock count

cannot be passed to another thread, as it is unsound to allow two threads to simultaneously hold the same

lock. Capability splitting takes place automatically with function application.

1In the examples of Section 3, we used more intuitive notation: we omitted seq and used the keyword spawn instead of par.
2The region manipulation operators used in Section 3 are simple abbreviations: share ≡ caprg+, unlock ≡ caplk−, etc.

7

Configuration C ::= S ; T

Threads T ::= ∅ | T, n : e

Store S ::= ∅ | S , ı : (θ,H, S)

Thread map θ ::= ∅ | θ, n1 7→ n2, n3

Memory heap H ::= ∅ | H, ℓ 7→ v

E ::= � | (E e)ξ | (v E)ξ | E [r]

| newrgn ρ, x at E in e | capη E

| new E at eǫ | new v at Eǫ

| deref E | E := e | v := E

Figure 2: Configurations, store, threads and evaluation contexts.

e′ ≡ ((λx. e as τ) v)par(γ1) e′′ ≡ ((λx. e as τ) v)seq

fresh n′ S ′ = transfer(S , n, n′, γ1)

S ; T, n : E[e′] { S ′; T, n : E[()], n′ : e′′
(E-SN)

S ; e→n S ′; e′

S ; T, n : E[e] { S ′; T, n : E[e′]
(E-S)

S ; T, n : () { S ; T
(E-T)

Figure 3: Thread evaluation relation C { C ′.

5 Operational Semantics

We define a small-step operational semantics for our language, using two evaluation relations, at the level

of threads and expressions (Figures 3 and 4 on the next page). The thread evaluation relation transforms

configurations. A configuration C (see Figure 2) consists of an abstract store S and a list of threads T .3

Each thread in T is of the form n : e, where n is a thread identifier and e is an expression. The store is

a list of regions of the form ı : (θ,H, S), where ı is a region identifier, θ is a thread map, H is a memory

heap and S is the list of subregions in the region hierarchy. The thread map associates thread identifiers

with capability counts for region ı, whereas the memory heap represents the region’s contents, mapping

locations to values.

A thread evaluation context E (Figure 2) is defined as an expression with a hole, represented as �.

The hole indicates the position where the next reduction step can take place. Our notion of evaluation

context imposes a call-by-value evaluation strategy to our language. Subexpressions are evaluated in a

left-to-right order.

We assume that concurrent reduction events can be totally ordered. At each step, a random thread

(n) is chosen from the thread list for evaluation (Figure 3). It should be noted that the thread evaluation

rules are the only non-deterministic rules in the operational semantics of our language; in the presence of

more than one active threads, our semantics does not specify which one will be selected for evaluation.

Threads that have completed their evaluation and have been reduced to unit values, represented as (),

are removed from the active thread list (rule E-T). Rule E-S reduces some thread n via the expression

evaluation relation. When a parallel function application redex is detected within the evaluation context

of a thread, a new thread is created (rule E-SN). The redex is replaced with a unit value in the cur-

rently executed thread and a new thread is added to the thread list, with a fresh thread identifier. The

partial function transfer(S , n, n′, γ1) updates the thread maps of all regions specified in γ1, transferring

capabilities between threads n and n′. It is undefined when this transfer is not possible.

The expression evaluation relation is defined in Figure 4. The rules for reducing function application

(E-A) and region application (E-RP) are standard. The remaining rules make use of five partial functions

that manipulate the store. These functions are undefined when their constraints are not met. All of them

require that some region is live. A region is live when the sum of all region counts in the thread map

associated with that region is positive and all ancestors of the region are live as well. In addition to

liveness, some of these functions require that some region is accessible to the currently executed thread.

Region r is accessible to some thread n (and inaccessible to all other threads) when r is live and the

3The order of elements in comma-separated lists, e.g. in a store S or in a list of threads T , is not important; we consider all

list permutations as equivalent.

8

S ; ((λx. e as τ) v)seq →n S ; e[v/x]
(E-A)

S ; (Λρ. f)[r]→n S ; f [r/ρ]
(E-RP)

(S ′, k) = newrgn(S , n, j)

S ; newrgn ρ, x at rgnj in e→n S ′; e[k/ρ][rgnk/x]
(E-NG)

S ′ = updcap(S , η, j, n)

S ; capη rgnj →n S ′; ()
(E-C)

(S ′, ℓ) = alloc(j, S , v)

S ; new v at rgnjǫ →n S ′; locℓ
(E-NR)

S ′ = update(S , ℓ, v, n)

S ; locℓ := v→n S ′; ()
(E-AS)

v = lookup(S , ℓ, n)

S ; deref locℓ →n S ; v
(E-D)

Figure 4: Expression evaluation relation S ; e→n S ′; e′.

thread map associated with r, or with some ancestor of r, maps n to a positive lock count.

• alloc(j, S , v) is used in rule E-NR for creating a new reference. It allocates a new object in S . The

object is placed in region j and is set to value v. Region jmust be live. Upon success, the function

returns a pair (S ′, ℓ) containing the new store and a fresh location for the new object.

• lookup(S , ℓ, n) is used in rule E-D to look up the value of location ℓ in S . The region in which ℓ

resides must be accessible to the currently executed thread n. Upon success, the function returns

the value v stored at ℓ.

• update(S , ℓ, v, n) is used in rule E-AS to assign the value v to location ℓ in S . The region in which

ℓ resides must be accessible to the currently executed thread n. Upon success, the function returns

the new store S ′.

• newrgn(S , n, j) is used in rule E-NR to create a new region in S . The new region is allocated

within j, which must be live. Its thread map is set to n 7→ 1, 1. Upon success, the function returns

a pair (S ′, k) containing the new store and a fresh region name for the new region.

• updcap(S , η, j, n) is used in rule E-C . This operation updates S by modifying the region or lock

count of thread n for region j. Upon success, the function returns the new store S ′. When a lock

update is requested and the lock is held by another thread, the result is undefined. In this case, rule

E-C cannot be applied and the operation will block, until the lock is available.

The operational semantics may get stuck when a deadlock occurs. Our semantics will also get stuck

when a thread attempts to access a memory location without having acquired an appropriate lock for this

location. In this case, update(S , ℓ, v, n) and lookup(S , ℓ, n) are undefined and it is impossible to perform

a single step via rules E-AS or E-D. The same is true in several other situations (e.g. when referring to a

non-existent region or location). Threads that may cause a data race will definitely get stuck.

We follow a different approach from related work, e.g. the work of Grossman Grossman [2003],

where a special kind of value junkv is often used as an intermediate step when assigning a value v to a

location, before the real assignment takes place, and type safety guarantees that no junk values are ever

used. As described above, we use a more direct approach by incorporating the locking mechanism in

the operational semantics. Our progress lemma in Section 7 guarantees that, at any time, all threads can

make progress and, therefore, a possible implementation does not need to check liveness or accessibility

at run-time.

6 Static Semantics

In this section we discuss the most interesting parts of our type system. As we sketched in Section 3, to

enforce our safety invariants, we use a type and effect system. Effects are used to statically track region

capabilities. An effect (γ) is a list of elements of the form rκ⊲ π, denoting that region r is associated with

capability κ and has parent π, which can be another region, ⊥, or ?. Regions whose parents are ⊥ or ?

9

R;∆ ⊢ τ τ ≡ τ1

γ1→γ2
−→ τ2

R; M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)

R; M;∆;Γ ⊢ λx. e as τ : τ& (γ;γ)
(T-F)

R; M;∆;Γ ⊢ e1 : τ1

γ1→γ2
−→ τ2 & (γ;γ′) ξ , seq⇒ τ2 = 〈〉

R; M;∆;Γ ⊢ e2 : τ1 & (γ′;γ′′) ξ ⊢ γ′′′ = γ2 ⊕ (γ′′ ⊖ γ1)

R; M;∆;Γ ⊢ (e1 e2)ξ : τ2 & (γ;γ′′′)
(T-AP)

R; M;∆;Γ ⊢ e : ref(τ, r) & (γ;γ′)

is accessible(γ′, r)

R; M;∆;Γ ⊢ deref e : τ& (γ;γ′)
(T-D)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′) r ∈ dom(γ′) R;∆ ⊢ τ

R; M;∆, ρ;Γ, x : rgn(ρ) ⊢ e2 : τ& (γ′, ρ1,1⊲ r;γ′′) ρ < dom(γ′′)

R; M;∆;Γ ⊢ newrgn ρ, x at e1 in e2 : τ& (γ;γ′′)
(T-NG)

R; M;∆;Γ ⊢ e1 : τ& (γ;γ′)

R; M;∆;Γ ⊢ e2 : rgn(r) & (γ′;γ′′) r ∈ dom(γ′′)

R; M;∆;Γ ⊢ new e1 at e2ǫ : ref(τ, ρ) & (γ;γ′′)
(T-NR)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′, rκ⊲ π)

κ′ =
[[

η
]]

(κ) γ′′ = live(γ′, rκ
′

⊲ π)

R; M;∆;Γ ⊢ capη e1 : 〈〉& (γ;γ′′)
(T-CP)

Figure 5: Selected typing rules.

ξ ⊢ γ = γ1 ⊕ γr ξ ⊢ γ′ = γ2 ⊕ γr γ′′ = live(γ′) consistent(γ; γ′′)

ξ = seq⇒ abs par(γ; γ1) ⊆ dom(γ′′) ξ = par(γ′′′)⇒ γ1 = γ
′′′ ∧ γ2 = ∅

ξ ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1)
(ESJ)

ξ ⊢ γ = ∅ ⊕ γ
(ES-N)

π′ ∈ {π, ?} ξ = par(γ′)⇒ π′ , ? ξ ⊢ κ = κ1 + κ2 ξ ⊢ γ = γ1 ⊕ γ2

ξ ⊢ γ, rκ⊲ π = γ1, r
κ1⊲ π′ ⊕ γ2, r

κ2⊲ π
(ES-C)

rg(κ) = rg(κ1) + rg(κ2) lk (κ) = lk (κ1) + lk (κ2) rg(κ1) > 0

is pure(κ1)⇔ is pure(κ2) is pure(κ1)⇒ κ = κ1 ξ , seq ∧ ¬is pure(κ1)⇒ lk (κ2) = 0

ξ ⊢ κ = κ1 + κ2

(CS)

Figure 6: Effect and capability splitting.

are considered as roots in our region hierarchy. We assume that there is an initial (physical) root region

corresponding to the entire heap, whose handle is available to the main program. The parent of the heap

region is ⊥. More (logical) root regions can be created using hierarchy abstraction. The abstract parent

of a region that is passed to a function is denoted by ?.

The syntax of types in Figure 1 (on page 7) is more or less standard. A collection of base types b is

assumed; the syntax of values belonging to these types and operations upon such values are omitted from

this paper. We assume the existence of a unit base type, which we denote by 〈〉. Region handle types

rgn(r) and reference types ref(τ, r) are associated with a type-level region r. Monomorphic function

types carry an input and an output effect. A well-typed expression e has a type τ under an input effect

γ and results in an output effect γ′. The typing relation (see Figure 5) is denoted by R; M;∆;Γ ⊢ e :

τ& (γ;γ′) and uses four typing contexts: a set of region literals (R), a mapping of locations to types (M),

a set of region variables (∆), and a mapping of term variables to types (Γ). The effects that appear in our

typing relation must satisfy a liveness invariant: all regions that appear in the effect are live, i.e., their

region counts and those of all their ancestors are positive. Thus, in order to check if a region r is live in

the effect γ, we only need to check that r ∈ dom(γ).

The typing rule for lambda abstraction (T-F) requires that the body e is well-typed with respect to the

effects ascribed on its type. The typing rule for function application (T-AP) splits the output effect of e2

(γ′′) by subtracting the function’s input effect (γ1). It then joins the remaining effect with the function’s

output effect (γ2). In the case of parallel application, rule T-AP also requires that the return type is unit.

The splitting and joining of effects is controlled by the judgement ξ ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1), which is

defined in Figure 6 (the auxiliary functions and predicates are defined in Figures 7 and 8). It enforces the

following properties:

• the liveness invariant for γ′′;

• the consistency of γ and γ′′, i.e., regions cannot change parent and capabilities cannot switch from

pure to impure or vice versa; the domain of γ′′ is a subset of the domain of γ;

10

(rκ⊲ π) ∈ γ rg(κ) > 0 π ∈ {⊥, ?}

is live(γ, r)

(rκ⊲ r′) ∈ γ rg(κ) > 0 is live(γ, r′)

is live(γ, r)

(rκ⊲ π) ∈ γ lk (κ) > 0

is accessible(γ, r)

(rκ⊲ r′) ∈ γ is accessible(γ, r′)

is accessible(γ, r)

Figure 7: Auxiliary predicates: region liveness and accessibility.

rg(κ) = n1 if κ = n1, n2 ∨ κ = n1, n2

lk (κ) = n2 if κ = n1, n2 ∨ κ = n1, n2

dom(γ) = { r | (rκ⊲ π) ∈ γ }

live(γ) = { rκ⊲ π | (rκ⊲ π) ∈ γ ∧ is live(γ, r) }

is pure(κ) = ∃n1. ∃n2. κ = n1, n2

consistent(γ1; γ2) = (∀(rκ⊲ π) ∈ γ1. ∀(rκ
′

⊲ π′) ∈ γ2. π = π
′ ∧ (is pure(κ)⇔ is pure(κ′)))

∧ dom(γ2) ⊆ dom(γ1) ∧ live(γ1) = γ1 ∧ live(γ2) = γ2

abs par(γ1; γ2) =
{

r | (rκ⊲ r′) ∈ γ1 ∧ (rκ
′

⊲ ?) ∈ γ2

}

Figure 8: Auxiliary functions and predicates.

• for sequential application, all parent regions that become abstracted for the duration of the function

call must be live after the function returns;

• for parallel application, the thread output effect must be empty, the thread input effect must not

contain impure capabilities with positive lock counts and hierarchy abstraction is disallowed.

The typing rules for references are standard. In Figure 5 we only show the rules for dereference

(T-D) and reference allocation (T-NR). The former checks that region r is accessible. The latter only

checks that the region r is live. The rule for creating new regions (T-NG) checks that e1 is a handle for

some live region r′. Expression e2 is type checked in an extended typing context (i.e., ρ and x : rgn(ρ)

are appended to ∆ and Γ respectively) and an extended input effect (i.e., a new effect is appended to the

input effect such that the new region is live and accessible to this thread). The rule also checks that the

type and the output effect of e2 do not contain any occurrence of region variable ρ. This implies that ρ

must be consumed by the end of the scope of e2. The capability manipulation rule (T-CP) checks that e

is a handle of a live region r. It then modifies the capability count of r as dictated by function
[[

η
]]

, which

increases or decreases the region or the lock count of its argument, according to the value of η. The

dynamic semantics ensures that an operational step is performed when the actual counts are consistent

with the desired output effect. For instance, if the lock of region r is held by some other executing

thread, the evaluation of caplk+ must be suspended until the lock can be obtained. On the other hand, the

evaluation of caprg− does not need to suspend but may not be able to physically deallocate a region, as it

may be used by other threads.

7 Type Safety

In this section we discuss the fundamental theorems that prove type safety of our language.4 The type

safety formulation is based on proving the preservation and progress lemmata. Informally, a program

written in our language is safe when for each thread of execution an evaluation step can be performed or

that thread is waiting for a lock (blocked). As discussed in Section 5, a thread may become stuck when it

accesses a region that is not live or accessible (these are obviously the interesting cases in our concurrent

setting; of course a thread may become stuck when it performs a non well-typed operation). Deadlocked

threads are not considered to be stuck.

Definition 1 (Thread Typing) Let T be a collection of threads. Let R; M; δ be a global typing context,

in which δ is a mapping from thread identifiers to effects, used only for metatheoretic purposes. For each

4Full proofs and a full formalization of our language are given in the Appendix.

11

thread n : e in T , we take δ(n) to be the input effect that corresponds to the evaluation of expression e.

The following rules define well-typed threads.

R; M; ∅ ⊢T ∅

R; M; δ ⊢T T R; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅) n < dom(δ)

R; M; δ, n 7→ γ ⊢T T, n : e

Definition 2 (Store Consistency) A store S is consistent with respect to an effect mapping δ when the

following conditions are met:

• Region consistency: the set of region names occurring in the co-domain of δ is a subset of the set

of region names in S .

• Static-dynamic count consistency: for each region, the dynamic region and lock counts of some

thread must be greater than or equal to the corresponding static counts of the same thread.

• Mutual exclusion: only one thread may have a positive lock count in δ for a particular region j.

Additionally, only this thread is allowed to access or lock sub-regions of j.

Definition 3 (Store Typing) A store S is well-typed with respect to R; M; δ (we denote this by

R; M; δ ⊢str S) when the following conditions are met:

• S is consistent with respect to δ,

• the set of region names in S is equal to R,

• the set of locations in M is equal to the set of locations in S , and

• for each location ℓ, the stored value S (ℓ) is closed and has type M(ℓ) with empty effects, i.e.,

R; M; ∅; ∅ ⊢ S (ℓ) : M(ℓ) & (∅;∅).

Definition 4 (Configuration Typing) A configuration S ; T is well-typed with respect to R; M; δ (we

denote this by R; M; δ ⊢C S ; T) when the collection of threads T is well-typed with respect to R; M; δ

and the store S is well-typed with respect to R; M; δ.

Definition 5 (Not stuck) A configuration S ; T is not stuck when each thread in T can take one of the

evaluation steps in Figure 3 (E-S, E-T or E-SN) or it is waiting for a lock held by some other thread.

Given these definitions, we can now present the main results of this paper. The progress and preser-

vation lemmata are first formalized at the program level, i.e., for all concurrently executed threads.

Lemma 1 (Progress — Program) Let S ; T be a closed well-typed configuration with R; M; δ ⊢C S ; T .

Then S ; T is not stuck.

Lemma 2 (Preservation — Program) Let S ; T be a well-typed configuration with R; M; δ ⊢C S ; T . If

the operational semantics takes a step S ; T { S ′; T ′, then there exist R′ ⊇ R, M′ ⊇ M and δ′ such that

the resulting configuration is well-typed with R′; M′; δ′ ⊢C S ′; T ′.

An expression-level version for each of these two lemmata is required, in order to prove the above.

At the expression level, progress and preservation are defined as follows.

Lemma 3 (Progress — Expression) Let S be a well-typed store with R; M; δ, n 7→ γ ⊢str S and let e be

a closed well-typed redex with R; M; ∅; ∅ ⊢ e : τ& (γ;γ′). Then exactly one of the following is true:

• e is of the form caplk+ rgnj and j is a live but inaccessible region to thread n, or

12

• e is of the form (λx. e1 as τ v)par(γ) or

• there exist S ′ and e′ such that S ; e →n S ′; e′.

Lemma 4 (Preservation — Expression) Let e be a well-typed expression with R; M; ∅; ∅ ⊢ e : τ& (γ;γ′′)

and let S be a well-typed store with R; M; δ, n 7→ γ ⊢str S . If the operational semantics takes a step

S ; e →n S ′; e′, then there exist R′ ⊇ R, M′ ⊇ M and γ′ such that the resulting expression and the

resulting store are well-typed with R′; M′; ∅; ∅ ⊢ e′ : τ& (γ′;γ′′) and R′; M′; δ[n 7→ γ′] ⊢str S ′.

The type safety theorem is a direct consequence of Lemmata 1 and 2. Let function main be the initial

program, let ιH be global heap region and let the initial typing contexts R0 and δ0 and the initial program

configuration S 0; T0 be defined by the following singleton lists:

R0 = {ιH}

δ0 = {1 7→ ι
1,0
H
⊲⊥}

θ0 = {1 7→ 1, 0}

S 0 = {ιH : (θ0, ∅, ∅)}

T0 = {1 : (main[ιH] rgnιH)seq}

Theorem 1 (Type Safety) If the initial configuration S 0; T0 is well-typed with R0; ∅; δ0 ⊢C S 0; T0 and

the operational semantics takes any number of steps S 0; T0 {
n S n; Tn, then the resulting configuration

S n; Tn is not stuck.

The empty (except for R0 that contains only ιH) contexts that are used when typechecking the initial

configuration S 0; T0 guarantee that all functions in the program are closed and that no explicit region

values (rgnı) or location values (locℓ) are used in the source of the original program.

8 Related Work

The first statically checked stack-based region system was developed by Tofte and Talpin Tofte and

Talpin [1994]. Since then, several memory-safe systems that enabled early region deallocation for a se-

quential language were proposed Aiken et al. [1995], Henglein et al. [2001], Walker and Watkins [2001],

Fluet et al. [2006]. Cyclone Grossman et al. [2002] and RC Gay and Aiken [2001] were the first im-

perative languages to allow safe region-based management with explicit constructs. Both allowed early

region deallocation and RC also introduced the notion of multi-level region hierarchies. RC programs

may throw region-related exceptions, whereas our approach is purely static. Both Cyclone and RC make

no claims of memory safety or race freedom for concurrent programs. Grossman proposed a type sys-

tem for safe multi-threading in Cyclone Grossman [2003]. Race freedom is guaranteed by statically

tracking locksets within lexically-scoped synchronization constructs. Grossman’s proposal allows for

fine-grained locking, but only deals with stack-based regions and does not enable early release of regions

and locks. In contrast, we support hierarchical locking, as opposed to just primitive locking, and bulk

region deallocation.

Statically checked region systems have also been proposed Boyapati et al. [2003], Zhao et al. [2004,

2008] for real-time Java to rule out dynamic checks imposed by the language specification. Boyapati et

al. Boyapati et al. [2003] introduce hierarchical regions in ownership types but the approach suffers from

the same disadvantages as Grossman’s work. Additionally, their type system only allows sub-regions

for shared regions, whereas we do not have this limitation. Boyapati also proposed an ownership-based

type system that prevents deadlocks and data races Boyapati et al. [2002]; in contrast to his system, we

support locking of arbitrary nodes in the region hierarchy. Static region hierarchies (depth-wise) have

been used by Zhao Zhao et al. [2004]. Their main advantage is that programs require fewer annotations

compared to programs with explicit region constructs. In the same track, Zhao et al. Zhao et al. [2008]

13

proposed implicit ownership annotations for regions. Thus, classes that have no explicit owner can be

allocated in any static region. This is a form of existential ownership. In contrast, we allow a region to

completely abstract its owner/ancestor information by using the hierarchy abstraction mechanism. None

of the above approaches allow full ownership abstraction for region subtrees.

Cunningham et al. Cunningham et al. [2007] proposed a universe type system to guarantee race free-

dom in a calculus of objects. Similarly to our system, object hierachies can be atomically locked at any

level. Unlike our system, they do not support early lock releases and lock ownership transfers between

threads. Consequently, their system cannot encode two important aspects of multi-threaded program-

ming: thread-locality and data migration. Finally, our system provides explicit memory management

and supports separate compilation.

The main limitation of our work is that we require explicit annotations regarding ownership and

region capabilities. Moreover, our locking system offers coarser-grained locking than most other related

works. The use of hierarchical locking avoids some, though not all, deadlocks.

9 Concluding Remarks

In this paper, we have presented a concurrent language emloying region-based memory management

and locking primitives. Regions and locks are organized in a common hierarchy and treated uniformly.

Our language allows atomic deallocation and locking of entire subtrees at any level of the hierarchy;

it also allows region and lock capabilities to be transferred between threads, encoding useful idioms of

concurrent programming such as thread-local data and data migration. The type system guarantees the

absence of memory access violations and data races in the presence of region aliasing.

We are currently integrating our system in Cyclone. In the future, we are planning to extend our type

system to achieve an exact correspondence between static and dynamic capability counts, and provide

deadlock freedom guarantees.

References

A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: Improving region-based

analysis of higher-order languages. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 174–185, New York, NY, USA, June 1995. ACM

Press.

C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races

and deadlocks. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 211–230, New York, NY, USA, Nov. 2002. ACM Press.

C. Boyapati, A. Salcianu, W. S. Beebee, and M. Rinard. Ownership types for safe region-based memory

management in real-time Java. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 324–337, New York, NY, USA, June 2003. ACM Press.

J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis:

Proceedings of the 10th International Symposium, volume 2694 of LNCS, pages 55–72. Springer,

June 2003.

D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race Safety. In VAMP 07,

pages 20–51, September 2007. URL http://pubs.doc.ic.ac.uk/universes-races/.

C. Flanagan and M. Abadi. Object types against races. In J. C. M. Baeten and S. Mauw, editors,

Concurrency Theory: Proceedings of the 10th International Conference, volume 1664 of LNCS, pages

288–303. Springer, 1999.

14

http://pubs.doc.ic.ac.uk/universes-races/

M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In P. Sestoft, editor, Programming

Language and Systems: Proceedings of the European Symposium on Programming, volume 3924 of

LNCS, pages 7–21. Springer, Mar. 2006.

D. Gay and A. Aiken. Language support for regions. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 70–80, New York, NY, USA, May

2001. ACM Press.

D. Grossman. Type-safe multithreading in Cyclone. In Proceedings of the ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation, pages 13–25, New York, NY, USA,

Jan. 2003. ACM Press.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory man-

agement in Cyclone. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 282–293, New York, NY, USA, June 2002. ACM Press.

F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow sensitive region-based memory

management. In Proceedings of the 3rd ACM SIGPLAN international conference on Principles and

practice of declarative programming, pages 175–186, New York, NY, USA, 2001. ACM. ISBN 1-

58113-388-X.

M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value λ-calculus using a stack of regions.

In Conference Record of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 188–201, New York, NY, USA, Jan. 1994. ACM Press.

D. Walker and K. Watkins. On regions and linear types. In Proceedings of the ACM SIGPLAN Inter-

national Conference on Functional Programming, pages 181–192, New York, NY, USA, Oct. 2001.

ACM Press.

D. Walker, K. Crary, and G. Morrisett. Typed memory management via static capabilities. ACM Trans.

Prog. Lang. Syst., 22(4):701–771, July 2000.

T. Zhao, J. Noble, and J. Vitek. Scoped types for real-time Java. In Proceedings of the 25th IEEE

International Real-Time Systems Symposium, pages 241–251. IEEE Computer Society, 2004. ISBN

0-7695-2247-5.

T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek. Implicit ownership types for memory management.

Sci. Comput. Program., 71(3):213–241, 2008.

15

Appendix

Language Syntax & Substitution Relation

Value v ::= f | c | rgnı | locl

Expression e ::= x | c | f | (e e)ξ | e [r] | new e at eǫ | e := e | locl

| deref e | newrgn ρ, x at e in e | capη e | rgnı

Capability kind ψ ::= rg | lk

Capability op η ::= ψ+ | ψ−

Region r ::= ρ | ı

Capability κ ::= n, n | n, n

Region parent π ::= r | ⊥ | ?

Region r ::= ρ | ı

Effect γ ::= ∅ | γ, rκ⊲ π

Type τ ::= b | τ
γ→γ
−→ τ | ∀ρ. τ | ref(τ, r) | rgn(r)

Value v ::= f | c | rgnı | locl

Function f ::= λx. e as τ
γ→γ
−→ τ | Λρ. f

Calling mode ξ ::= seq | par(γ)

x1[v/x] = v x1 ≡ x

| x1 otherwise

r1[r/ρ] = r r1 ≡ ρ

| r1 otherwise

π[r1/r2] = ⊥ | ? | r[r1/r2]

e[v/x] = x[v/x] | c | rgnı | capη e1[v/x]

| new e1[v/x] at e2[v/x]ǫ | deref e1[v/x] | e1[v/x] := e2[v/x]

| locl | f | (e1[v/x] e2[v/x])ξ | (e1[v/x])[r]

| newrgn ρ, y at e1[v/x] in e2[v/x] y . x

f = λx. e[r/ρ] as τ1[r/ρ]
γ1[r/ρ]→γ2[r/ρ]
−→ τ2[r/ρ] | Λρ′. f [r/ρ] ρ′ . ρ

e[r/ρ] = x | c | rgnı | capη e1[r/ρ]

| new e1[r/ρ] at e2[r/ρ]ǫ[r/ρ] | deref e1[r/ρ] | e1[r/ρ] := e2[r/ρ]

| locl | f [r/ρ] | (e1[r/ρ] e2[r/ρ])ξ | (e1[r/ρ])[r1[r/ρ]]

| newrgn ρ′, x at e1[r/ρ] in e2[r/ρ] ρ′ . ρ

τ[r1/ρ] = b | rgn(r[r1/ρ]) | ref(τ[r1/ρ], r1[r1/ρ])

| τ1[r1/ρ]
γ1[r1/ρ]→γ2[r1/ρ]
−→ τ2[r1/ρ]

| ∀ρ′. τ[r1/ρ] ρ′ . ρ

Γ[r/ρ] = ∅ | Γ1[r/ρ], x : τ[r/ρ]

γ[r1/ρ] = ∅ | γ1[r1/ρ], r[r1/ρ]κ⊲ π[r1/ρ]

Operational Semantics

bflatten(S) ≡

{

∅ if S ≡ ∅

ı : (θ,H, S ′), bflatten(S′), bflatten(S′′) if S = ı : (θ,H, S ′), S ′′

thread live(S , ı,m) ≡ ∀  : (θ,H, S ′) ∈ bflatten(S).ı ∈ { } ∪ dom(S ′)⇒ ∃n1.∃n2.(m 7→ n1, n2) ∈ θ ∧ n1 > 0

live(S , ı) ≡ ∃m.thread live(S , ı,m)

domℓ(S , ı) ≡ {ℓ | (ℓ 7→ v) ∈ H ∧ ( : (θ,H, S ′)) ∈ bflatten(S)}

dom(S) ≡ {ı | (ı : (θ,H, S 1)) ∈ bflatten(S)}

flatten(S) ≡ {(ı : (θ′,H′, S ′)) | (ı : (θ′,H′, S ′)) ∈ bflatten(S ′) ∧ live(S , ı)}

S (ı, θ,H, S ′) ≡

{

S 1, ı : (θ,H, S ′), S 3 if S = S 1, ı : (θ1,H2, S 2), S 3

S 2,  : (θ1,H1, S 1(ı, θ,H, S ′)) if ı ∈ dom(S 1) ∧ S = S 2,  : (θ1,H1, S 1)

newrgn(S , n, ) ≡ S (, θ,H, S ′, k : (n 7→ 1, 1, ∅, ∅)) if k < dom(S) ∧  : (θ,H, S ′) ∈ flatten(S)

alloc(, S , v) ≡ S (, θ,H, ℓ 7→ v, S ′) if ℓ < domℓ(S) ∧  : (θ,H, S ′) ∈ flatten(S)

canlk(S , ı, n) ≡ ∀m : (θ,H, S ′) ∈ flatten(S).ı ∈ dom(S ′) ∨ (ı : (θ′,H′, S ′′) ∈ flatten(S) ∧ m ∈ {ı} ∪ dom(S ′′))⇒

∀(p 7→ n1, n2) ∈ θ.p , n⇒ n2 = 0

lookup(S , ℓ, n) ≡ v if ı : (θ,H, ℓ 7→ v, S ′) ∈ flatten(S) ∧ canlk(S , ı, n) ∧ ∀n′ , n.¬canlk(S , ı, n′)

update(S , ℓ, x, n) ≡ S (ı, θ,H, ℓ 7→ x, S ′) if ı : (θ,H, ℓ 7→ lookup(S , ℓ, n), S ′) ∈ flatten(S)

transfer(S , s, d, γ) ≡























































S if γ = ∅

transfer(S (ı, θ, d 7→ n3, n4,H, S
′), s, d, γ′) if γ = γ′, ın1 ,n2⊲ π ∧ ı : (∅, θ, s 7→ n3, n4,H, S

′) ∈ flatten(S)

∧n1 ≤ n3 ∧ n2 ≤ n4

transfer(S (ı, θ′,H, S ′), s, d, γ′) if γ = γ′, ın1 ,0⊲ π ∧ ı : (θ, s 7→ n1 + n2, n3,H, S
′) ∈ flatten(S)∧

(n ∈ dom(θ)⇒ θ′ = θ, s 7→ n2, n3, d 7→ rg(θ(d)) + n1, 0)∧

(n < dom(θ)⇒ θ′ = θ, s 7→ n2, n3, d 7→ n1, 0)

updcnt(n1, n2, η) ≡

{

n1 ± 1, n2 if η = rg±

n1, n2 ± 1 if η = lk±

updcap(S , ψ, ı, n) ≡ S ′ if ı : (θ,H, S ′′) ∈ flatten(S) ∧ θ′ = θ[n 7→ updcnt(θ(n), η)] ∧ S ′ = S (ı, θ′,H, S ′′) ∧ (η = lk± ⇒ canlk(S , ı, n))

16

Thread map θ ::= ∅ | θ, n1 7→ n2, n3

Memory heap H ::= ∅ | H, ℓ 7→ v

Store S ::= ∅ | S , ı : (θ,H, S)

Threads T ::= ∅ | T, n : e

Configuration C ::= S ; T

E ::= � | (E e)ξ | (v E)ξ | E [r]

| newrgn ρ, x at E in e | capη E

| new E at eǫ | new v at Eǫ

| deref E | E := e | v := E

S ; e→n S ′; e′

S ; T, n : E[e] { S ′; T, n : E[e′]
(E-S)

e′ ≡ ((λx. e as τ) v)par(γ1) e′′ ≡ ((λx. e as τ) v)seq

fresh n′ S ′ = transfer(S , n, n′, γ1)

S ; T, n : E[e′] { S ′; T, n : E[()], n′ : e′′
(E-SN)

S ′ = updcap(S , η, j, n)

S ; capη rgnj →n S ′; ()
(E-C)

S ; T, n : () { S ; T
(E-T)

S ; ((λx. e as τ) v)seq →n S ; e[v/x]
(E-A)

S ; (Λρ. f)[r]→n S ; f [r/ρ]
(E-RP)

v = lookup(S , ℓ, n)

S ; deref locℓ →n S ; v
(E-D)

(S ′, ℓ) = alloc(j, S , v)

S ; new v at rgnjǫ →n S ′; locℓ
(E-NR)

S ′ = update(S , ℓ, v, n)

S ; locℓ := v→n S ′; ()
(E-AS)

(S ′, k) = newrgn(S , n, j)

S ; newrgn ρ, x at rgnj in e→n S ′; e[k/ρ][rgnk/x]
(E-NG)

Static Semantics

(rκ⊲ π) ∈ γ rg(κ) > 0 π ∈ {⊥, ?}

is live(γ, r)

(rκ⊲ r′) ∈ γ rg(κ) > 0 is live(γ, r′)

is live(γ, r)

(rκ⊲ π) ∈ γ lk(κ) > 0

is accessible(γ, r)

(rκ⊲ r′) ∈ γ is accessible(γ, r′)

is accessible(γ, r)

rg(κ) = n1 if κ = n1, n2 ∨ κ = n1, n2

lk(κ) = n2 if κ = n1, n2 ∨ κ = n1, n2

dom(γ) = { r | (rκ⊲ π) ∈ γ }

live(γ) = { rκ⊲ π | (rκ⊲ π) ∈ γ ∧ is live(γ, r) }

is pure(κ) = ∃n1. ∃n2. κ = n1, n2

consistent(γ1; γ2) = (∀(rκ⊲ π) ∈ γ1. ∀(rκ
′

⊲ π′) ∈ γ2. π = π
′ ∧ (is pure(κ)⇔ is pure(κ′)))

∧ dom(γ2) ⊆ dom(γ1) ∧ live(γ1) = γ1 ∧ live(γ2) = γ2

abs par(γ1; γ2) =
{

r | (rκ⊲ r′) ∈ γ1 ∧ (rκ
′

⊲ ?) ∈ γ2

}

[[

η
]]

(κ) =

κ′ if η ≡ ψ ± ∧is pure(κ)⇔ is pure(κ′)∧

(ψ = rg⇒ rg(κ′) = rg ± 1 ∧ lk(κ′) = lk(κ))∧

(ψ = lk⇒ lk(κ′) = lk ± 1 ∧ rg(κ′) = rg(κ))

Region List R ::= ∅ | R, ı

Type variable list ∆ ::= ∅ | ∆, ρ

Memory List M ::= ∅ | M, ℓ 7→ (τ, ı)

Variable list Γ ::= ∅ | Γ, x : τ

Constraint Well-formedness Region Well-formedness

R;∆ ⊢γ ∅

R;∆ ⊢γ γ1 R;∆ ⊢R r1 π = r2 ⇒ r2 , r1 ∧ R;∆ ⊢R r2

R;∆ ⊢γ γ1, r
κ
1
⊲ π

r ∈ ∆ ∪ R

R;∆ ⊢R r

Type Well-formedness

R;∆ ⊢ b

R;∆ ⊢R r

R;∆ ⊢ rgn(r)

R;∆, ρ ⊢ τ

R;∆ ⊢ ∀ρ. τ

R;∆ ⊢ τ

R;∆ ⊢R r

R;∆ ⊢ ref(τ, r)

R;∆ ⊢ τ1 R;∆ ⊢γ γ1

R;∆ ⊢ τ2 R;∆ ⊢γ γ2

consistent(γ1; γ2)

R;∆ ⊢ τ1

γ1→γ2
−→ τ2

R;∆ ⊢ 〈〉

Variable Context Well-formedness Memory Location Well-formedness Program Typing Context Well-formedness

R;∆ ⊢Γ ∅

R;∆ ⊢ τ1 x < dom(Γ1)

R;∆ ⊢Γ Γ1

R;∆ ⊢Γ Γ1, x : τ1 R ⊢M ∅

R ⊢M M1 ℓ < dom(M1)

R; ∅ ⊢T ref(τ1, ı)

R ⊢M M1, ℓ 7→ (τ1, ı)

R ⊢M M R;∆ ⊢Γ Γ

R;∆ ⊢γ γ R;∆ ⊢γ γ
′

consistent(γ1; γ2)

⊢ R; M;∆;Γ; γ; γ′

17

⊢ R; M;∆;Γ; γ; γ

(x : τ) ∈ Γ

R; M;∆;Γ ⊢ x : τ& (γ;γ)
(T-V)

⊢ R; M;∆;Γ; γ; γ

R; M;∆;Γ ⊢ n : b & (γ;γ)
(T-I)

⊢ R; M;∆;Γ; γ; γ

R; M;∆;Γ ⊢ () : 〈〉& (γ;γ)
(T-U)

⊢ R; M;∆;Γ; γ; γ

R;∆ ⊢R ı

R; M;∆;Γ ⊢ rgnı : rgn(ı) & (γ;γ)
(T-R)

⊢ R; M;∆;Γ; γ; γ

(ℓ 7→ (τ, ı)) ∈ M

R; M;∆;Γ ⊢ locl : ref(τ, ı) & (γ;γ)
(T-L)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′, rκ⊲ π)

κ′ =
[[

η
]]

(κ) γ′′ = live(γ′, rκ
′

⊲ π)

R; M;∆;Γ ⊢ capη e1 : 〈〉& (γ;γ′′)
(T-CP)

R;∆ ⊢ τ τ ≡ τ1

γ1→γ2
−→ τ2

R; M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)

R; M;∆;Γ ⊢ λx. e as τ : τ& (γ;γ)
(T-F)

R; M;∆, ρ;Γ ⊢ f : τ& (γ;γ)

R; M;∆;Γ ⊢ Λρ. f : ∀ρ. τ& (γ;γ)
(T-RF)

R;∆ ⊢R r

R; M;∆;Γ ⊢ e : ∀ρ. τ& (γ;γ′)

R; M;∆;Γ ⊢ e [r] : τ[r/ρ] & (γ;γ′)
(T-RP)

R; M;∆;Γ ⊢ e1 : τ1

γ1→γ2
−→ τ2 & (γ;γ′) ξ , seq⇒ τ2 = 〈〉

R; M;∆;Γ ⊢ e2 : τ1 & (γ′;γ′′) ξ ⊢ γ′′′ = γ2 ⊕ (γ′′ ⊖ γ1)

R; M;∆;Γ ⊢ (e1 e2)ξ : τ2 & (γ;γ′′′)
(T-AP)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′) r ∈ dom(γ′) R;∆ ⊢ τ

R; M;∆, ρ;Γ, x : rgn(ρ) ⊢ e2 : τ& (γ′, ρ1,1⊲ r;γ′′) ρ < dom(γ′′)

R; M;∆;Γ ⊢ newrgn ρ, x at e1 in e2 : τ& (γ;γ′′)
(T-NG)

R; M;∆;Γ ⊢ e1 : τ& (γ;γ′)

R; M;∆;Γ ⊢ e2 : rgn(r) & (γ′;γ′′) r ∈ dom(γ′′)

R; M;∆;Γ ⊢ new e1 at e2ǫ : ref(τ, ρ) & (γ;γ′′)
(T-NR)

R; M;∆;Γ ⊢ e1 : ref(τ1, r) & (γ;γ′)

R; M;∆;Γ ⊢ e2 : τ& (γ′;γ′′)

is accessible(γ′′, r)

R; M;∆;Γ ⊢ e1 := e2 : 〈〉& (γ;γ′′)
(T-A)

R; M;∆;Γ ⊢ e : ref(τ, r) & (γ;γ′)

is accessible(γ′, r)

R; M;∆;Γ ⊢ deref e : τ& (γ;γ′)
(T-D)

ξ ⊢ γ = γ1 ⊕ γr ξ ⊢ γ′ = γ2 ⊕ γr γ′′ = live(γ′) consistent(γ; γ′′)

ξ = seq⇒ abs par(γ; γ1) ⊆ dom(γ′′) ξ = par(γ′′′)⇒ γ1 = γ
′′′ ∧ γ2 = ∅

ξ ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1)
(ESJ)

ξ ⊢ γ = ∅ ⊕ γ
(ES-N)

π′ ∈ {π, ?} ξ = par(γ′)⇒ π′ , ? ξ ⊢ κ = κ1 + κ2 ξ ⊢ γ = γ1 ⊕ γ2

ξ ⊢ γ, rκ⊲ π = γ1, r
κ1⊲ π′ ⊕ γ2, r

κ2⊲ π
(ES-C)

rg(κ) = rg(κ1) + rg(κ2) lk(κ) = lk(κ1) + lk(κ2) rg(κ1) > 0

is pure(κ1)⇔ is pure(κ2) is pure(κ1)⇒ κ = κ1 ξ , seq ∧ ¬is pure(κ1)⇒ lk(κ2) = 0

ξ ⊢ κ = κ1 + κ2

(CS)

Type Safety Judgements

Program effect δ ::= ∅ | δ, n 7→ γ

redex(e) = (∃ S , S ′, e′, n. S ; e→n S ′; e′) ∨ (∃v1, v2, γ1.(v1 v2)par(γ1))

S(ℓ) ≡ v if (ı : (θ,H, ℓ 7→ v, S ′)) ∈ flatten(S)

dom(Γ) ≡ {x | (x : τ) ∈ Γ}

dom(M) ≡ {ℓ | (ℓ 7→ (τ, ı)) ∈ M}

dom(δ) ≡ {n | (n 7→ γ) ∈ δ}

pure once(γ) = ∀ı ∈ dom(γ).∃γ′, n1, n2, π.γ1 = γ
′, ın1 ,n2⊲ π⇒ ı < dom(γ′)

cap(S , i,m) ≡ n1, n2 if (ı : (θ,m 7→ n1, n2,H, S
′)) ∈ flatten(S)

cap(γ, ı) =



















rg(κ) + n1, lk(κ) + n2 if γ = γ′, ıκ⊲ π ∧ n1, n2 = cap(γ′, ı)

cap(γ′, ı) if γ = γ′, κ⊲ π ∧ ı , 

0, 0 if γ = ∅

(n1, n2) ≥ (n3, n4) = n1 ≥ n3 ∧ n2 ≥ n4

counts ok(δ, ı, S) ≡ ∀(m 7→ γ, ıκ⊲ π) ∈ δ.thread live(S , ı,m) ∧ cap(S , ı,m) ≥ cap(γ, ıκ⊲ π, ı) ∧ (is pure(κ)⇒ ı < dom(γ))

mutex ok(δ, ı, S) ≡ δ = δ1 ⊎ m 7→ γ, ıκ⊲ π ∧ lk(κ) > 0⇒ canlk(S , ı,m) ∧ (∀(n′ 7→ γ′) ∈ δ1.γ
′
, ∅ ⇒ ¬canlk(S , ı, n′))

store ok(δ, S) ≡ ∀ı ∈
⋃

(n7→γ)∈δ dom(γ).counts ok(δ, ı, S) ∧mutex ok(δ, ı, S)

block(S , n, e, δ) ≡ e ≡ E[cap+lk
rgnj] ∧ δ = δ1, n 7→ γ ∧ ¬is accessible(γ, j) ∧ ¬canlk(S , , n)

Store Typing Not Stuck
R = dom(S) store ok(δ, S) domℓ(S) = dom(M)

∀ℓ ∈ dom(M).R; M; ∅; ∅ ⊢ S (ℓ) : M(ℓ) & (∅;∅)

R; M; δ ⊢str S

∀(n : e) ∈ T. (S ; T { S ′; T ′ ∧ (n : e) < T ′) ∨ block(S , n, e, δ)

δ ⊢ns S ; T
Threads Typing Configuration Typing

R; M; ∅ ⊢T ∅

R; M; δ ⊢T T R; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅) n < dom(δ)

R; M; δ, n 7→ γ ⊢T T, n : e

R; M; δ ⊢T T R; M; δ ⊢str S

R; M; δ ⊢C S ; T

18

n > 0 δ; S ; T {n−1 δn−1; S n−1; Tn−1

δn−1; S n−1; Tn−1 { δn; S n; Tn

δ; S ; T {n δn; S n; Tn

(E-M1)
δ; S ; T {0 δ; S ; T

(E-M2)

Progress: R; M; δ ⊢C S ; T ⇒ δ ⊢ns S ; T

Preservation: R; M; δ ⊢C S ; T ∧ S ; T { S ′; T ′ ⇒ ∃R′ ⊇ R,M′ ⊇ M, δ′. R′; M′; δ′ ⊢C S ′; T ′

Safety: S 0; T0 ≡ ı0 : (1 7→ 1, 0, ∅, ∅); 1 : ((f) [ı0] rgnı0)seq ∧ ı0; ∅; 1 7→ ∅, ı1,0
0
⊲⊥ ⊢C S 0; T0 ∧ S 0; T0 {

n S ′; T ′ ⇒ ∃δ′.δ′ ⊢ns S ′; T ′

Expression Progress redex(e) ∧ R; M; ∅; ∅ ⊢ e : τ& (δ(n);γ′) ∧ R; M; δ ⊢ S ⇒ block(S , n, e, δ) ∨ (∃ S ′, e′. S ; e →n S ′; e′)

∨(∃e1, τ, v, γ
′′. e ≡ (λx. e1 as τ v)par(γ′′))

Expression Preservation R; M; ∅; ∅ ⊢ e : τ& (δ(n);γ′) ∧ S ; e→n S ′; e′ ∧ R; M; δ ⊢str S ⇒ ∃R1,M1, γ1.R1 ⊇ R ∧ M1 ⊇ M∧

R1; M1; ∅; ∅ ⊢ e′ : τ& (δ[n 7→ γ1];γ′) ∧ R1; M1; δ[n 7→ γ1] ⊢str S ′

1 Type Safety Proof

Theorem 1 (Type safety) Let R0, δ0, S 0 and T0 be defined as in page 13. If the initial configuration S 0; T0 is well-typed with

R0; ∅; δ0 ⊢C S 0; T0 and the operational semantics takes any number of steps S 0; T0 {
n S n; Tn, then the resulting configuration

S n; Tn is not stuck.

Proof. The proof is trivial: Lemma 1 is applied on the assumptions that S ; T is well-typed and that the operational

semantics performs n steps, to obtain that S n; Tn is well-typed for some Rn; Mn. Then, we apply lemma 41 to the

latter fact to prove that S n; Tn is not stuck.

Lemma 1 (Multi-step Program Preservation) Let S;T be a closed well-typed configuration such that R; M; δ ⊢C S ; T for

some R;M. If the operational semantics evaluates S ; T to S ′; T ′ in n steps then there exists a closed well-typed configuration

such that R′; M′; δ′ ⊢C S ′; T ′, where R′ and M′ are supersets of R and M respectively.

Proof. Proof by induction on the number of steps n. When no steps are performed the proof is immediate from the assumption.

If n steps are performed we have that S ; T {
n S ′; T ′ or S ; T {

n−1 S n−1; Tn−1 and S n−1; Tn−1 { S ′; T ′. By applying

the induction hypothesis on the fact that S ; T is well-typed and that n − 1 steps are performed we obtain that there exists a

configuration context Rn−1; Mn−1; δ′ such that Rn−1; Mn−1; δ′ ⊢C S n−1; Tn−1. We complete the proof by applying lemma 2 on the

latter fact and S n−1; Tn−1 { S ′; T ′.

Lemma 2 (Preservation - Program) Let S ; T be a well-typed configuration with R; M; δ ⊢C S ; T. If the operational semantics

takes a step S ; T { S ′; T ′ for some thread identifier ı, then there exist R′ ⊇ R, M′ ⊇ M and δ′ such that the resulting

configuration is well-typed with R′; M′δ′ ⊢C S ′; T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : By inversion of the configuration typing assumption we obtain the typing derivation of the store (R; M; δ, n 7→

∅ ⊢str S), and the thread context (R; M; δ, n 7→ ∅ ⊢T T, n : ()). By inversion of the thread typing derivation, we have that

T (R; M; δ ⊢T T) is well-typed. Lemma 4 is applied to the store typing derivation to obtain that store S is well-typed

in the strengthened context δ (R; M; δ ⊢str S). The new store and thread typing derivation give us that the resulting

configuration (S ; T) is well-typed in the strengthened context δ (R; M; δ ⊢C S ; T).

Case E-S : By applying inversion twice to the configuration typing judgement we obtain that the input effect of thread n : e

is γ (δ, n 7→ γ), e is well-typed (R; M; ∅; ∅ ⊢ E[e] : 〈〉&(γ; ∅)) and that the initial store S is well-typed (R; M; δ ⊢str S).

The program evaluation assumption suggests that e ≡ E[e′] for some e′. By applying Lemma 5 to the typing derivation

of e we obtain that e′ is well-typed (R; M; ∅; ∅ ⊢ e′ : τ&(γ, γ′) for some γ′ and τ). By applying Lemma 22 to the typing

derivation of e′, the expression evaluation step (S ; e′ →n S ′; e′′, obtained from the inversion of rule E-S) and the store

S typing derivation, we obtain that e′′ is also well-typed (R′; M′; ∅; ∅ ⊢ e′′ : τ&(γ′′, γ′) for some R ⊆ R′, M ⊆ M′, γ′′),

and the resulting store S ′ is also well-typed (R′; M′; δ, n 7→ γ′′ ⊢str S ′). By applying lemma 6 to the typing derivation of

e′ we have that ⊢ R′; M′; ∅; ∅; γ′′; γ′. By inversion of the latter derivation we have that R′ ⊢ M′. By applying lemma 3

to R; M; δ ⊢ T, n : E[e], R ⊆ R′, M ⊆ M′ and R′ ⊢ M′, we have that R′; M′; δ ⊢ T, n : E[e] holds. By lemma 17 we

can substitute e′′ for e′ in the evaluation context E (all well-typed in R′; M′) to obtain R′; M′; ∅; ∅ ⊢ E[e′′] : 〈〉&(γ′′; ∅).

We can combine the latter fact with the typing of T , to derive R′; M′; δ, n 7→ γ′′ ⊢T T, n : E[e′′]. We have shown that

R′; M′; δ[n 7→ γ′′] ⊢str S ′, thus the latter two facts imply that the configuration S ′; T, n : E[e′′] is well-typed in the typing

context R′; M′; δ, n 7→ γ′′.

Case E-SN : The program evaluation assumption implies that e ≡ E[e′], such that e′ is a parallel application redex, and its

premise asserts that e′ is moved to a new thread as a local application redex e′′. The resulting store S ′ is a function of

the old store S and the regions whose ownership is transferred to the new thread (transfer(S , n, n′, γ1)). By inversion of

19

the configuration typing anssumption, R; M; δ, n 7→ γ ⊢T T, n : E[e′] and R; M; δ, n 7→ γ ⊢str S hold. By inversion of the

thread typing assumption, E[e′] is well-typed in the typing context R; M; ∅; ∅ with effect (γ; ∅). By applying lemma 5

to the typing derivation of E[e′] we obtain that e′ is well-typed in the context R; M; ∅; ∅ with effect (γ; γ′). By inversion

of the latter derivation par(γ1) ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) holds, where γ1 is the new thread’s input effect. It suffices to prove

that R; M; δ′ ⊢str S ′ and R; M; δ′ ⊢T T, n : E[()], n′ : e′′ hold, where δ′ = δ[n 7→ γ′], n′ 7→ γ1. The proof of the former

obligation is immediate by the application of lemma 21 to the fact that S is a well-typed store, S ′ is derived from S

(S ′ = transfer(S , n, n′, γ1)), and par(γ1) ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) holds.

The latter obligation can be eliminated by proving that E[()] and e′′ are well-typed with effects (γ′; ∅) and (γ1; ∅)

respectively (R; M; ∅; ∅ is fixed). The application of lemma 6 to the typing derivation of e′ yields ⊢ R; M; ∅; ∅; γ; γ′.

Thus, ⊢ R; M; ∅; ∅; γ′; γ′ and R; M; ∅; ∅ ⊢ () : 〈〉&(γ′; γ′) hold. The application of lemma 17 to the typing derivation of

E[()], e′ and () implies that E[()] is well-typed in the typing context R; M; ∅; ∅ with effect (γ′; ∅). Finally, the application

of lemma 18 to the typing derivation of e′ yields that e′′ is well-typed in the context R; M; ∅; ∅ with effect (γ1; ∅).

Lemma 3 (Thread Weakening) R; M; δ ⊢ T ∧ R ⊆ R′ ∧ M ⊆ M′ ∧ R′ ⊢ M′ ⇒ R′; M′; δ ⊢ T

Proof. Proof by induction on the shape of T .

- ∅: R′; M′; δ ⊢ ∅ trivially holds.

- T ′, n : e: By inversion of this derivation we have that

– R; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅): The application of lemma 15 to R ⊆ R′ and the typing derivation of e gives us

R′; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅). The application of lemma 16 to the latter derivation, M ⊆ M′ and R′ ⊢ M′ gives us

R′; M′; ∅; ∅ ⊢ e : 〈〉& (γ;∅).

– R; M; δ′ ⊢ T ′: by the induction hypothesis R′; M′; δ′ ⊢ T ′ holds.

We can use the above facts to derive R′; M′; δ ⊢ T ′, n : e holds.

Lemma 4 (Store Strengthening - Empty γ) If store S is well-typed in the context M; R; δ, n 7→ ∅, then it is also well-typed

in the context M; R; δ.

Proof. It suffices to prove that store ok(δ, S). By inversion of the assumption we have that store ok(δ, n 7→ ∅, S) holds. We

unfold the definition of store ok: for all ı in
⋃

(n7→γ)∈δ,n7→∅ dom(γ) counts ok(δ, n 7→ ∅, ı, S) and mutex ok(δ, n 7→ ∅, ı, S). Thus,

it suffices to show that for all ı in
⋃

(n7→γ)∈δ dom(γ) counts ok(δ, ı, S) and mutex ok(δ, ı, S) also holds. Both predicates counts ok

and mutex ok depend on threads with non-empty effects. Thus, counts ok(δ, ı, S) and mutex ok(δ, ı, S) immediately follow

from counts ok(δ, n 7→ ∅, ı, S), mutex ok(δ, n 7→ ∅, ı, S) and the latter fact.

Lemma 5 (Context Inversion) If E[e] is a well-typed expression in the typing context R; M;∆;Γ with effect (γ1; γ2), then e is

also a well-typed expression for some type τ, in the same typing context with effect (γ1; γ3) for some γ3.

Proof. By straightforward induction on the shape of the evaluation context. The

Case �[e] then proof is immediate.

Case ((E′ e2)ξ)[e]: An equivalent expression for this case is (E′[e] e2)ξ. By the assumption, (E′[e] e2)ξ is a well-typed

application term. By inversion of the typing derivation of (E′[e] e2)ξ, E[e] is well-typed in the same typing context with

effect (γ1; γ′), where γ′ is its output effect. The application of the induction hypothesis to the the latter typing derivation

yields that e is a well-typed term in the same typing context with effect (γ1; γ′′) for some γ′′.

Case ((v1 E′)ξ)[e]: An equivalent expression for this case is (v1 E′[e])ξ. By inversion of the typing derivation of (v1 E′[e])ξ,

E′[e] and v1 are well-typed. In addition, v1 is a value with effect (γ1; γ1) (this is immediate by performing a case analysis

on v and applying inversion). Thus, the input effect of E′[e] is γ1. The application of the induction hypothesis to the

latter fact implies that e is well-typed for some type τ with effect (γ1; γ3), for some γ3.

Case (capη E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], (new v at E′))[e],(E′ [r])[e], (newrgn ρ, x at E′ in e2)[e]:

Similar to the above proof structure.

Lemma 6 (Well-Formedness) If an expression e is well-typed in the typing context R; M;∆;Γ, with effect (γ; γ′), then ⊢

R; M;∆;Γ; γ; γ′ holds.

20

Proof. Straightforward proof by induction on the expression typing derivation. The most interesting case is the one of rule

T-AP :

- T-A : By inversion of the typing derivation of e we have that e1 is well-typed with effect (γ; γx), e2 is well-typed

with effect (γx; γy) and ξ ⊢ γ′ = γ2 ⊕ (γ ⊖ γy). By applying the induction hypothesis to e1 and e2 we obtain that

⊢ R; M;∆;Γ; γ; γx and ⊢ R; M;∆;Γ; γx; γy respectively. It suffices to prove the following obligations:

– R ⊢ M: immediate by inversion of ⊢ R; M;∆;Γ; γ; γx.

– R;∆ ⊢ Γ: immediate by inversion of ⊢ R; M;∆;Γ; γ; γx.

– R;∆ ⊢ γ: immediate by inversion of ⊢ R; M;∆;Γ; γ; γx.

– R;∆ ⊢ γ′: the effect addition assumption implies that the regions of γ′ is a subset of the regions of γ. Thus,

R;∆ ⊢ γ′ follows from the fact that R;∆ ⊢ γ holds as shown earlier.

– consistent(γ; γ′): by inversion of the effect addition assumption, consistent(γ; γ′) holds.

Lemma 7 (Value-Effect — Using well-formedness) If value v is well-typed in the typing context R; M;∆;Γ, with effect (γ; γ)

and ⊢ R; M;∆;Γ; γ1; γ2, then v is well-typed in the same typing context with effect (γ1; γ1) and (γ2; γ2).

Proof. The proof is trivial, but we provide the key steps behind the proof. The assumption implies that ⊢ R; M;∆;Γ; γ1; γ1 and

also ⊢ R; M;∆;Γ; γ2; γ2 hold (trivial). By inversion of the value typing derivation we obtain the well-formedness derivation as

well as some other premises (in the case of rules T-L,T-R,T-V,T-F). We may use the latter premises of value typing, which still

hold (same typing context), along with the latter two well-formedness derivations to formulate the new value typing derivations

with effect (γ1; γ1) and (γ2; γ2) respectively. The case for rule T-RF can be shown trivially by induction (the base case is the

same as for rule T-F).

Lemma 8 (Value-Effect) If value v is well-typed in the typing context R; M;∆;Γ, with effect (γ; γ), and e is well-typed in the

same typing context with effect (γ′; γ′′), then v is well-typed in the same typing context with effect (γ′′; γ′′) and (γ′; γ′).

Proof. By inversion of the typing derivation of v, ⊢ R; M;∆;Γ; γ; γ holds. Similarly, the application of lemma 6 to the typing

derivation of e implies that ⊢ R; M;∆;Γ; γ′; γ′′. The proof is completed by applying lemma 7.

Lemma 9 (R Well-Formedness Weakening) R;∆ ⊢ r ∧ R ⊆ R′ ⇒ R′;∆ ⊢ r

Proof. By inversion of the assumption, r ∈ R ∪ ∆ and thus r ∈ R′ ∪ ∆ holds as R ⊆ R′. Therefore, R′;∆ ⊢ r holds.

Lemma 10 (Effect Well-formedness Weakening) R;∆ ⊢ γ ∧ R ⊆ R′ ⇒ R′;∆ ⊢ γ

Proof. We proceed by performing a case analysis on γ:

- ∅: R′;∆ ⊢ ∅ trivially holds.

R;∆ ⊢ γ′, rκ⊲ π: R′;∆ ⊢ γ′ holds by the induction hypothesis. R′;∆ ⊢ r holds by lemma 9. If π = r′, then R′;∆ ⊢ r′ holds

by lemma 9.

Lemma 11 (Type Context Well-formedness Weakening) R;∆ ⊢ τ ∧ R ⊆ R′ ⇒ R′;∆ ⊢ τ

Proof. We proceed by performing a case analysis on τ:

- b: R′;∆ ⊢ b trivially holds.

- 〈〉: R′;∆ ⊢ 〈〉 trivially holds.

- rgn(r): R′;∆ ⊢ r holds by lemma 9.

- ref(τ′, r): R′;∆ ⊢ r holds by lemma 9. R′;∆ ⊢ τ′ holds by the induction hypothesis.

- ∀ρ. τ′: R′;∆, ρ ⊢ τ′ holds by the induction hypothesis.

- τ′
γ1→γ2
−→ τ′′: R′;∆ ⊢ τ′ holds by the induction hypothesis. R′;∆ ⊢ τ′′ holds by the induction hypothesis. R′;∆ ⊢ γ1 holds

by lemma 10. R′;∆ ⊢ γ2 holds by lemma 10.

21

Lemma 12 (Variable Context Well-formedness Weakening) R;∆ ⊢ Γ ∧ R ⊆ R′ ⇒ R′;∆ ⊢ Γ

Proof. We proceed by performing a case analysis on Γ:

- ∅: R′;∆ ⊢ ∅ trivially holds.

R;∆ ⊢ Γ′, x : τ: R′;∆ ⊢ Γ′ holds by the induction hypothesis. R′;∆ ⊢ τ holds by lemma 11.

Lemma 13 (Memory Context Well-formedness Weakening — R) R ⊢ M ∧ R ⊆ R′ ⇒ R′ ⊢ M

Proof. We proceed by performing a case analysis on M:

- ∅: R′ ⊢ ∅ trivially holds.

R ⊢ M′, ℓ 7→ (τ, ı): R′ ⊢ M′ holds by the induction hypothesis. R′; ∅ ⊢ ref(τ, ı) holds by lemma 11.

Lemma 14 (Typing Context Well-formedness Weakening) ⊢ R; M;∆;Γ; γ1; γ2 ∧ R ⊆ R′ ⇒⊢ R′; M;∆;Γ; γ1; γ2

Proof. Immediate by lemmas 13, 12, 10.

Lemma 15 (Typing Context Weakening — R) If expression e is well-typed in the typing context R; M;∆;Γ and R′ is a super-

set of R, then e is well-typed in the context R′; M;∆;Γ with the same type and effect.

Proof. By applying lemma 6 to the typing derivation of e we have that ⊢ R; M;∆;Γ; γ1; γ2. Lemma 14 implies that ⊢

R′; M;∆;Γ; γ1; γ2 holds.

- T-I : Immediate by applying rule T-I to ⊢ R′; M;∆;Γ; γ1; γ2.

- T-U : Immediate by applying rule T-U to ⊢ R′; M;∆;Γ; γ1; γ2.

- T-R : By inversion of this derivation we have that R;∆ ⊢ ı. Lemma 9 implies that R′;∆ ⊢ ı holds. Thus, we can apply

rule T-R to the latter fact and ⊢ R′; M;∆;Γ; γ1; γ2 to complete the proof.

- T-L : By inversion of this derivation we have that (ℓ 7→ (τ′, ı)) ∈ M. Thus, we can apply rule T-L to ⊢ R′; M;∆;Γ; γ1; γ2

and (ℓ 7→ (τ′, ı)) ∈ M to to complete the proof.

- T-V : By inversion of this derivation we have that (x : τ′) ∈ Γ. Thus, we can apply rule T-V to ⊢ R′; M;∆;Γ; γ1; γ2 and

(x : τ′) ∈ Γ to complete the proof.

- T-F : By inversion of this derivation we have that

– ⊢ R; M;∆;Γ; γ; γ: We have shown that ⊢ R′; M;∆;Γ; γ1; γ2 holds.

– R;∆ ⊢ τ: R′;∆ ⊢ τ holds by lemma 11.

– τ ≡ τ1

γ1→γ2
−→ τ2

– R; M;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2): the induction hypothesis is applied to the derivation of e′ to derive that

R′; M;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2).

We then apply rule T-F to the above facts to derive R′; M;∆;Γ ⊢ λx. e′ as τ : τ′& (γ;γ).

Case T-AP , T-CP , T-RP , T-NG , T-NR , T-D, T-RF, T-A : similar reasoning is performed to prove the remaining cases.

Lemmas 9 and 11 can be used for premises of the form R;∆ ⊢ r and R;∆ ⊢ τ respectively.

Lemma 16 (Memory Context Weakening) If expression e is well-typed in the typing context R; M;∆;Γ, R ⊢ M′ holds, and

M′ is a superset of M, then e is well-typed in the context R; M′;∆;Γ withthe same type and effect.

Proof. By applying lemma 6 to the typing derivation of v we have that ⊢ R; M;∆;Γ; γ1; γ2. Thus, we can substitute premise

R ⊢ M with R ⊢ M′ to obtain ⊢ R; M′;∆;Γ; γ1; γ2.

22

- T-I : Immediate by applying rule T-I to ⊢ R; M′;∆;Γ; γ1; γ2.

- T-U : Immediate by applying rule T-U to ⊢ R; M′;∆;Γ; γ1; γ2.

- T-R : By inversion of this derivation we have that R;∆ ⊢ ı. The proof is completed by applying rule T-R to R;∆ ⊢ ı. and

⊢ R; M′;∆;Γ; γ1; γ2.

- T-L : By inversion to this derivation we have that (ℓ 7→ (τ′, ı)) ∈ M. Thus, (ℓ 7→ (τ′, ı)) ∈ M′ also holds as M ⊆ M′. We

can apply rule T-L to ⊢ R; M′;∆;Γ; γ1; γ2 and (ℓ 7→ (τ′, ı)) ∈ M′ to complete the proof.

- T-V : By inversion of this derivation we have that (x : τ′) ∈ Γ. Thus, we can apply rule T-V to ⊢ R; M′;∆;Γ; γ1; γ2 and

(x : τ′) ∈ Γ to complete the proof.

- T-F : By inversion of this derivation we have that

– ⊢ R; M;∆;Γ; γ; γ: We have shown that ⊢ R; M′;∆;Γ; γ1; γ2 holds.

– R;∆ ⊢ τ

– τ ≡ τ1

γ1→γ2
−→ τ2

– R; M;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2): the application of the induction hypothesis to this derivation yields

R; M′;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2) holds.

We can apply rule T-F to the above facts to derive R; M′;∆;Γ ⊢ λx. e′ as τ : τ′& (γ;γ).

Case T-AP , T-CP , T-RP , T-NG , T-NR , T-D, T-RF, T-A : We can perform similar reasoning to prove the remaining cases.

Lemma 17 (Replacement) If expressions E[e1], e1 and e2 are well-typed in the typing context R; M;∆;Γ, with effects (γ1; γ2),(γ1; γ3)

and (γ4; γ3) respectively, then expression E[e2] is also well-typed in the same typing context with effect (γ4; γ2).

Proof. By straightforward induction on the shape of the evaluation context. The intuition behind this proof is that the substi-

tution of e2 for e1 in the evaluation context E will not surpise its environment as both e1 and e2 yield the same output effect. In

regards to the input effect, we know that the environment will not be surprised as the expressions preceding e1 will definitely

be values and can be given the input effect of e2 (by lemma 8).

Case �[e] then proof is immediate.

Case (new v at E′)[e]: by inversion of the typing derivation of (new v at E′)[e], we have that that R; M;∆;Γ ⊢ v : τ1&(γ1; γ1).

The application of lemma 8 to the latter judgement and the fact e2 is well-typed with effect (γ4; γ3) yields R; M;∆;Γ ⊢

v : τ1&(γ4; γ4). By inverson of the memory allocation construct typing derivation we have that is live(γ3, r) and

R; M;∆;Γ ⊢ E′[e] : rgn(r)&(γ1; γ2). The application of the induction hypothesis on the derivation of E′[e2] and the

derivation of e2 (assumption) yields R; M;∆;Γ ⊢ E′[e2] : τ1 & (γ4;γ2). Now, T-NR can be applied to the latter judgment,

the new derivation of v, and the fact that is live(γ3, r) to obtain R; M;∆;Γ ⊢ new v at E′[e2] : ref(τ1, r) & (γ4;γ2) or

equivalently R; M;∆;Γ ⊢ (new v at E′)[e2] : ref(τ1, r) & (γ4;γ2) .

Case ((E′ e2)ξ)[e], ((v E′)ξ)[e], (capη E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], ,(E′ [r])[e],

(newrgn ρ, x at E′ in e2)[e]: Similar to the above proof structure.

Lemma 18 (Parallel-Sequential typing implication) If a parallel application term is well-typed (R; M;∆;Γ ⊢ (v1 v2)par(γ1) :

〈〉&(γ; γ′)), where v1 ≡ λγ1. x as eτ1

γ1→∅

−→ 〈〉, then the corresponding sequential application term ((v1 v2)seq) is also well-typed

in the same typing context, with effect (γ1; ∅).

Proof. By inversion of the parallel application typing derivation, v1 and v2 are well typed in the same typing context R; M;∆;Γ,

with effects (γ; γ) and (γ; γ) respectively. It also implies that R; M;∆;Γ, x : τ1 ⊢ e : 〈〉&(γ1; ∅). By applying lemma 8 to the

typing derivations of v1,v2, and the fact that e is well-typed with effect (γ1; ∅), we obtain that v1 and v2 are well-typed in the

same typing context with effect (γ1; γ1). We can derive seq ⊢ ∅ = ∅ ⊕ (γ1 ⊖ γ1). By applying T-AP to the latter facts, we have

that R; M;∆;Γ ⊢ (v1 v2)seq : 〈〉&(γ1; ∅) holds.

Lemma 19 (Store Typing Preservation — Spawn Helper 2) γ1 = γ′
1
, ıκ⊲ π ∧ S ′ = transfer(S , n, n′, γ1) ∧ live(γ1) = γ1 ⇒

thread live(S ′, ı, n′) ∧ cap(S ′, ı, n′) ≥ cap(γ1, ı)

Proof. Proof by induction on the height of γ1 (the fact that γ1 = live(γ1) implies that the tree formed by the elements of γ1 is

finite). We perform a case analysis on κ:

23

- κ = n1, n2: assumption trans f er implies that if ı : (∅, θ, n 7→ n3, n4,H, S
′′) ∈ flatten(S), n1 ≤ n3, n2 ≤ n4 hold, then

ı : (∅, θ, n′ 7→ n3, n4,H, S
′′) ∈ flatten(S ′) holds. The assumption that live(γ1) = γ1 implies that n1 is positive and thus

n3 is positive. If π is ⊥ then thread live(S ′, ı, n′) trivially holds from the latter facts. Otherwise, π is equal to some .

The fact that γ1 = live(γ1) implies that γ1 = γ
′′
1
, κ

′

⊲ π′ and thus we can apply the induction hypothesis to derive that

thread live(S ′, , n′). The previous facts imply that thread live(S ′, ı, n′) and cap(S ′, ı, n′) ≥ cap(γ1, ı).

- κ = n1, n2: similar to the previous case.

Lemma 20 (Store Typing Preservation — Spawn Helper 1) counts ok(δ, n 7→ γ, ı, S)∧par(γ1) ⊢ γ′ = ∅⊕(γ⊖γ1)∧live(γ1) =

γ1 ∧ S ′ = transfer(S , n, n′, γ1)⇒ counts ok(δ, n 7→ γ′, n′ 7→ γ1, ı, S
′)

Proof. If ı does not belong in the domain of γ1, then counts ok(δ, n 7→ γ′, n′ 7→ γ1, ı, S
′) trivially holds from the fact that

its counts of in S ′ are identical to the ones in S and the assumption that counts ok(δ, n 7→ γ, ı, S) holds. If ı does belong in

the domain of γ1, then it suffices to prove that for all threads m that belong in the domain of δ, n 7→ γ′, n′ 7→ γ1, such that

their effect equals to γx, ı
κ′⊲ π for some κ′,π and γx, then the following conditions must hold: (is pure(κ′) ⇒ ı < dom(γx)),

thread live(S ′, ı,m) and cap(S ′, ı,m) ≥ cap(γx, ı
κ′⊲ π, ı). The first proof obligation can be trivially shown by using the first and

the second assumption. The remaining proof obligation can be shown by performing a case analysis on m:

- m = n′: it can be trivially shown that counts ok(δ, n 7→ γ, ı, S) implies that pure once(γ) holds and thus if κ is pure then

ı is not contained in dom(γx). The effect addition assumption and the latter fact implies that pure once(γ1) holds. The

application of lemma 19 completes the proof for this case.

- m = n: if κ′ is pure then ı is not contained in γ′ (the effect of thread n). This is immediate by the effect addition

assumption. Otherwise, ı is impure and is contained in the domain of γ′. Thus, ı is also impure in γ1, by the effect

addition assumption. Function trans f er does not modify the lock counts of thread n when κ′ is impure. Additionally,

the effect addition assumption and the fact that ı belongs in the domain of γ′ implies that function trans f er will remove

at most rg(κ) − 1 counts from region ı, where κ is the capability of ı in effect γ. Thus, the region count for ı for thread

n in S ′ will be positive, by the latter fact and the assumption that counts ok(δ, n 7→ γ, ı, S). Therefore, cap(S ′, ı, n) ≥

cap(γx, ı
κ′⊲ π, ı) holds. The same consideration can be applied inductively for all ancestors of ı so as to derive that

thread live(S ′, ı, n) (if there would exist an ancestor of ı that is not live, then ı would not belong in the domain of γ′;

this is a contradiction). The effect addition assumption implies that γ′ is a subset of γ. Thus, the assumption that

counts ok(δ, n 7→ γ, ı, S) and the latter fact imply that is pure(κ)⇒ ı < dom(γx).

- m < {n, n′}: function trans f er modifies the counts of threads n and n′ only. Therefore, the counts of thread m in S ′ are

identical to the counts of m in S . Thus, thread live(S ′, ı,m) and cap(S ′, ı,m) ≥ cap(γx, ı
κ′⊲ π, ı) trivially hold from the

latter fact and the assumption that counts ok(δ, n 7→ γ, ı, S).

Lemma 21 (Store Typing Preservation — Spawn) If S is a well-typed store in respect to R; M; δ, n 7→ γ, par(γ2) ⊢ γ′ =

∅ ⊕ (γ ⊖ γ2) holds, and S ′ is derived from S by changing the ownership of each region that is contained in γ2 (S ′ =

transfer(S , n, n′, γ2)), then S ′ is well-typed in respect to R; M and the effect map δ, n 7→ γ′, n′ 7→ γ1 for some fresh thread

identifier n′.

Proof. It suffices to prove that for all regions ı of δ, n 7→ γ′, n′ 7→ γ1 store ok(δ, n 7→ γ′, n′ 7→ γ1, ı, S
′) and mutex ok(δ, n 7→

γ′, n′ 7→ γ1, ı, S
′) hold. The first obligation is immediate by lemma 20. The second obligation can be shown by perfoming a

case analysis as follows:

- ı does not belong in the domain of γ1: the lock capability of region ı is unmodified for all threads, thus mutex ok(δ, n 7→

γ′, n′ 7→ γ1, ı, S
′) is immediate by the the assumption that mutex ok(δ, n 7→ γ, S).

- ı belongs in the domain of γ1 and is impure: the lock capability of region ı is unmodified for all threads except for n′

that receives a zero lock capability (by the trans f er assumption), thus, mutex ok(δ, n 7→ γ′, n′ 7→ γ1, ı, S
′) is immediate

by the the assumption that mutex ok(δ, n 7→ γ, S).

- ı belongs in the domain of γ1 and is pure: if the lock capability of ı is zero then the proof is similar to the previous

case. Otherwise, ı is locked by thread n and no other thread may hold a lock to the ancestors of ı (R; M; δ, n 7→ γ ⊢str S

assumption). The lock capability of region ı is unmodified for all threads except for n′ and n. In particular, the lock and

region capability of ı is moved from thread n to n′ (by the trans f er assumption) and ı is no longer live nor locked for

thread n. The above facts imply that mutex ok(δ, n 7→ γ′, n′ 7→ γ1, ı, S
′) holds.

Lemma 22 (Preservation — Expressions) Let e be a well-typed expression with R; M; ∅; ∅ ⊢ e : τ& (δ(n);γ′′) and R; M; δ ⊢

S . If the operational semantics takes a step S ; e →n S ′; e′, then there exist R′ ⊇ R and M′ ⊇ M, such that the resulting

expression and the resulting store are well-typed with R′; M′; ∅; ∅ ⊢ e′ : τ& (γ′;γ′′), R; M; δ[n 7→ γ′] ⊢ S ′

24

Proof. By induction on the typing derivation. It is worth noting that e is a redex, which is immediate by the definition of

evaluation relation. Henceforth, we use u where e should be used to stress that u is a redex.

Case T-I , T-U , T-F , T-L , T-R , T-V , T-RF : the proof is immediate as u is a value and the assumption that we perform a single

operational step does not hold.

Case T-RP : The typing derivation of T-RP gives us that u is of the form (ex) [ı]. The operational rule that matches the shape

of u is E-RP . Thus, u is of the form (Λρ. f) [ı]. By inversion of the latter derivation we obtain that R; M; ∅, ρ; ∅ ⊢ f :

τ&(γ; γ), where γ equals δ(n). The premise R; ∅ ⊢ ı of rule T-RP implies that ı ∈ R. The application of lemma 24 to

the latter facts, and R; ∅ ⊢ γ (premise of ⊢ R; M; ∅; ∅; γ; γ; the well-formedness fact is immediate by the application of

lemma 6 to the typing derivation of type application) gives us that R; M; ∅; ∅ ⊢ f [ı/ρ] : τ[ı/ρ]&(γ; γ). Therefore, typing

is preserved. The resulting store is identical to the input store, thus it is also well-typed by the assumption of this lemma.

Case T-CP : Expression typing: The application of lemma 6 to the typing derivation of the assumption gives us that ⊢

R; M; ∅; ∅; γ; γ′′, where γ is the equal to δ(n). Thus, ⊢ R; M; ∅; ∅; γ′′; γ′′ also holds. The application of rule T-U to the

latter fact gives us R; M; ∅; ∅ ⊢ () : 〈〉&(γ′′; γ′′).

Store typing: The operational rule E-C matches the shape of u. Thus, we need to prove that R; M; δ[n 7→ γ′′] ⊢ S ′

holds, where S ′ equals updcap(S , η, , n). It suffices to show that store ok(δ[n 7→ γ′′], S ′) holds. Consequently, for all

regions ı contained in δ[n 7→ γ′′] we must show that:

– counts ok(δ[n 7→ γ′′], ı, S ′): the store typing assumption implies that counts ok(δ, ı, S) holds. Given that,

δ[n 7→ γ′′] = δ′′,m 7→ γx, ı
κ⊲ π for some m, δ′′, γx, κ and π, then it suffices to show that when κ is pure

then ı appears once in γx, thread live(S ′, ı,m) and cap(S ′, ı,m) ≥ cap(γx, ı
κ⊲ π, ı). The first obligation is imme-

diate by counts ok(δ, ı, S), the fact that γ′′ is a subset of γ (premise of rule T-CP) in the case where m = n,

and the fact that δ[n 7→ γ′′](m) = δ(m) in all other cases where m , n. The remaining obligations can

be shown as follows: assume that ı equals  and m equals n. Let us assume that the capability of j before

the cap operation was κ′, then κ =
[[

η
]]

(κ′) holds (premise of rule T-CP). The updcap premise of rule E-C

implies that cap(S ′, j, n) = updcnt(cap(S , j, n), η). Function updcnt is the run-time equivalent of function

[[]]. Thus, the region/lock count is incremented/decremented by one both statically and dynamically. The as-

sumption that counts ok(δ, j, S) implies that thread live(S , j, n), cap(S , j, n) ≥ cap(γ, j). The above facts im-

ply cap(S ′, j, n) ≥ cap(γ′′, j). The premise of rule T-CP that γ′′ is live implies that the region capability

of κ is positive. Thus, thread live(S ′, j, n) holds. Otherwise, if ı is unequal to  or m is unequal to n, then

counts ok(δ[n 7→ γ′′], ı, S ′) trivially follows from counts ok(δ, ı, S) and the fact that thread live(S ′, j, n) holds.

– mutex ok(δ[n 7→ γ′′], ı, S ′): if η is unequal to lk±, then the proof is immediate as the lock capabilities and the

corresponding counts of ı are unmodified and mutex ok(δ, ı, S ′) trivially holds. If there exists no thread that

contains ı in its effect or the lock capability of ı for that thread is zero, then mutex ok(δ, ı, S ′) trivially holds.

Otherwise, there exists some thread m in δ such that it contains region ı with capability κ such that lk(κ) is

positive. We also have that if m equals n, and ı equals  then κ =
[[

η
]]

(κ′) holds (premise of rule T-CP), where

κ′ is the initial capability of  for thread n. The store typing assumption implies that mutex ok(δ, ı, S) holds. It

suffices to show canlk(S ′, ı,m) and for all other threads m′ other than m ¬canlk(S ′, ı,m′).

If ı does not belong in a path starting from the root and ending at any leaf such that its ancestor is  (i.e. ı

is in the locking path), then the proof is immediate as canlk(S , ı,m) and for all other threads m′ other than m

¬canlk(S , ı,m′) hold, the capability of ı is unmodified from S to S ′, and ı is not in the locking path. Let us

assume that ı is the locking path.

If ı is an ancestor of  then if m is unequal to n, then this a contradiction as updcap would be undefined (premise

of rule E-C) as we have assumed that lk(κ) is positive for thread m. If ı is an ancestor of  locked by thread n,

then all regions in the locking path of  are already protected by ı thus canlk(S ′, ı, n) and for all other threads m′

other than n ¬canlk(S ′, ı,m′) as they hold for S .

If ı is equal to , then updcap implies that m = n and canlk(S ′, , n). If lk(κ′) is positive then the store typing

implies that for all other threads m′ other than n ¬canlk(S ′, ,m′). Otherwise, the updcap asssumption implies

that canlk(S , , n) holds. Thus, canlk(S ′, , n) also holds. Additionally, for all other threads m′ other than n

¬canlk(S ′, ,m′) holds as canlk(S , ı, n) holds, and if θ is the thread map of S ′ for region , then lk(θ(n)) is

positive.

If ı is a descendant of , then m can only be equal to n as in any other case this would lead to a contradiction (see

above). Both canlk(S ′, ı,m) and for all other threads m′ other than m ¬canlk(S ′, ı,m′) hold as they hold for S , ı

is assumed to be locked (lk(κ) > 0) and the capability of ı is unmodified.

Case T-NG : Rule E-NG matches the shape of u. This rule implies that S ; newrgn ρ, x at rgn  in e →n S ′; e[ı/ρ][rgnı/x],

(S ′, ı) = newrgn(S , n, j) hold.

Store typing: We must prove that R, ı; M; δ[n 7→ γ, ı1,1⊲ ] ⊢ S ′ hold given that R; M; δ ⊢ S holds. It suffices to

prove the following:

– R, ı = dom(S ′): this is immediate by R = dom(S), which can be obtained by inversion of R; M; δ ⊢ S , and the

definition of function newrgn.

25

– store ok(δ[n 7→ γ, ı1,1⊲ ], S ′): this is immediate by the fact that store ok(δ, S), which can be obtained by inversion

of R; M; δ ⊢ S , and the fact that no other thread has access/owns region ı (ı is fresh).

Expression typing: the store typing derivation of S ′ implies that ı < R. By inversion of the typing derivation of

u we have that R; M; ∅, ρ; ∅, x : rgn(ρ) ⊢ e2 : τ&(γ, ρ1,1⊲ ; γ′′), such that ρ < dom(γ′′). The application of lemma 15 to

the typing derivation of e2 and the fact that ı < R yields R, ı; M; ∅, ρ; ∅, x : rgn(ρ) ⊢ e2 : τ&(γ, ρ1,1⊲ ; γ′′). We then apply

lemma 33 on the derivation of e2 to obtain R, ı; M; ∅; ∅, x : rgn([ı/ρ]) ⊢ e2[ı/ρ] : τ[ı/ρ]&(γ[ı/ρ], ı1,1⊲ ; γ′′[ı/ρ]). By

applying lemma 6 to the original typing derivation of newrgn construct we have that the typing the context (including

γ and γ′′) is not defined in terms of ρ (i.e. ρ is fresh). Further, the premise of newrgn derivation suggests that τ

is also independent of ρ (i.e. R; ∅ ⊢ τ). Hence, the above facts and the definition of the substitution relation imply

that the typing derivation of e2 becomes R, ı; M; ∅; ∅, x : rgn(ı) ⊢ e2[ı/ρ] : τ&(γ, ı1,1⊲ ; γ′′). By the application of

lemma 6 to the fact that e2 is well-typed, we have that ⊢ R, ı; M; ∅; ∅; γ, ρ1,1⊲ ; γ′′ is well formed. By the definition

of well-formedness, ⊢ R, ı; M; ∅; ∅; ∅; ∅ also holds. The definition of the typing rule T-R , the latter fact and the fact

that R, ı; ∅ ⊢ ı holds imply that rgnı is well-typed (with type rgn(ı)) in the context R, ı; M; ∅; ∅ with effect (∅; ∅). By

applying lemma 34 to the latter derivation and the fact that R, ı; M; ∅; ∅, x : rgn(ı) ⊢ e2[ı/ρ] : τ&(γ, ı1,1⊲ ; γ′′) we obtain

R, ı; M; ∅; ∅ ⊢ e2[ı/ρ][rgnı/x] : τ&(γ, ı1,1⊲ ; γ′′).

Case T-D: Rule E-D matches the shape of u. Its premises imply that the value read from the store is equal to S (ℓ). The store

typing assumption yields that R; M; ∅; ∅ ⊢ v : τ&(∅; ∅), where v = S (ℓ) and M(ℓ) = (τ, ı).

The application of lemma 6 to the typing derivation of dere f gives us ⊢ R; M; ∅; ∅; γ; γ, where γ is equal to δ(n). By

applying lemma 7 to the latter derivation and R; M; ∅; ∅ ⊢ v : τ&(∅; ∅) gives us that R; M; ∅; ∅ ⊢ v : τ&(γ; γ). The output

store is identical to the input store hence it is also well-typed.

Case T-A :

Expression typing: the application of lemma 6 to the typing derivation of e yields that R; M; ∅; ∅; γ; γ′ holds, where

γ and γ′ are equal to δ(n). Thus, R; M; ∅; ∅; γ′; γ′ holds. The application of rule T-U to the latter fact yields that

R; M; ∅; ∅ ⊢ () : 〈〉&(γ′; γ′).

Store typing: the store preservation proof is as follows: By invesion of the typing derivation of e the following hold:

R; M; ∅; ∅ ⊢ locℓ : ref(τ, ı)&(γ; γ), where γ is equal to δ(n), R; M; ∅; ∅ ⊢ v : τ&(γ; γ) and The application of lemma 6

to the latter derivation implies ⊢ R; M; ∅; ∅; γ; γ. Thus, ⊢ R; M; ∅; ∅; ∅; ∅ also holds. The application of lemma 7 to the

latter fact and R; M; ∅; ∅ ⊢ v : τ&(γ; γ) gives us R; M; ∅; ∅ ⊢ v : τ&(∅; ∅).

The premise of the operational rule E-AS implies that if the input store is S , then the output store is defined as follows

S ′ = update(S , ℓ, v, n). It suffices to show that the new value v stored in S is well-typed in the empty context. This has

been shown above.

Case T-NR : the rule that matches this case is rule E-NR . This rules implies that the new store (S ′, ℓ) = alloc(j, S , v), where

v is the new value that is stored in S ′, and ℓ is a fresh location (i.e. ℓ does not exist in S). Therefore, the store typing

assumption (R; M; δ ⊢ S) implies that ℓ does not belong in the domain of M.

By inversion of the typing derivation of construct new we have that:

– R; M; ∅; ∅ ⊢ v : τ&(γ; γ)

– R; M; ∅; ∅ ⊢ rgnı : rgn(r′)&(γ; γ)

The application of lemma 23 to the typing derivation of v tells us that R; ∅ ⊢ τ holds. By inversion of the typing

derivation of rgnı gives us that R; ∅ ⊢ ı. Thefore, R; ∅ ⊢ ref(τ, ı) holds. By applying lemma 6 to the typing derivation

of v we have that ⊢ R; M; ∅; ∅; γ; γ. By inversion of the latter derivation R ⊢ M holds. Location ℓ is fresh so it does not

belong to the domain of M. Consequently, we can combine the latter facts to derive that R ⊢ M, ℓ 7→ (τ, ı).

Expression typing: the latter derivation is substituted for R ⊢ M in the premises of ⊢ R; M; ∅; ∅; γ; γ to derive that

⊢ R; M, ℓ 7→ (τ, ı); ∅; ∅; γ; γ holds. By applying rule T-L to the latter fact, M, ℓ 7→ (τ, ı) we obtain that R; M, ℓ 7→

(τ, ı); ∅; ∅ ⊢ locℓ : ref(τ, ı)&(γ; γ).

Store typing: by applying lemma 6 to the typing derivation of construct new we have that ⊢ R; M; ∅; ∅; γ; γ′′, where

γ′′ equals γ. Thus, ⊢ R; M; ∅; ∅; ∅; ∅ also holds. By applying lemma 7 to the latter fact and R; M; ∅; ∅ ⊢ v : τ&(γ; γ)

we have that R; M; ∅; ∅ ⊢ v : τ&(∅; ∅) holds. By applying lemma 16 to the latter derivation R ⊢ M, ℓ 7→ (τ, ı) and

M ⊆ M, ℓ 7→ (τ, ı) we have that R; M, ℓ 7→ (τ, ı); ∅; ∅ ⊢ v : τ&(∅; ∅).

By inversion of the store typing assumption we have that dom(M) = domℓ(S) and ∀(ℓ′ 7→ (τ, )) ∈ M.R; M; ∅; ∅ ⊢

S (ℓ′) : τ& (∅;∅). We must show that both hold in the extended memory typing context and the new store. It suffices to

show that the following hold:

– dom(M, ℓ 7→ (τ, ı)) = domℓ(S
′): The locations contained in store S ′ are equal to the location contained in S

except for an additional location ℓ. Thus, the latter fact and M ⊢ S imply that M, ℓ 7→ (τ, ı) ⊢ S ′ holds.

– ∀(ℓ′ 7→ (τ, )) ∈ M, ℓ 7→ (τ, ı).R; M; ∅; ∅ ⊢ S ′(ℓ′) : τ& (∅;∅): immediate by ∀(ℓ′ 7→ (τ, )) ∈ M.R; M; ∅; ∅ ⊢ S (ℓ′) :

τ& (∅;∅) and R; M, ℓ 7→ (τ, ı); ∅; ∅ ⊢ v : τ&(∅; ∅).

Case T-AP : we only need to consider the case where ξ = seq, as only rule E-A matches the shape of u. The store preservation

proof is immediate as the output store is identical to the input store. The proof for the typing preservation is similar to

26

the previous proofs. Briefly, the function application typing derivation is inverted twice, so as to obtain R; M; ∅; ∅, x :

τ1 ⊢ e : τ2&(γ1; γ2). By inversion of the application derivation we have that R; M; ∅; ∅ ⊢ v : τ1&(γ; γ) and seq ⊢ γ′′ =

γ2⊕ (γ⊖γ1). The application of lemma 35 to the typing derivation of v yields: R; M; ∅; ∅ ⊢ v : τ1&(∅; ∅). Now lemma 34

is applied to the typing derivation of v and e to obtain: R; M; ∅; ∅ ⊢ e[v/x] : τ2&(γ1; γ2). Finally, lemma 36 is applied to

R; M; ∅; ∅ ⊢ e[v/x] : τ2&(γ1; γ2), ⊢ R; M; ∅; ∅; γ; γ′′ (obtained by lemma 6 applied to the typing derivation of value v),

and seq ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1) to obtain R; M; ∅; ∅ ⊢ e[v/x] : τ2&(γ; γ′′).

Lemma 23 (Type Well-formedness) R; M;∆;Γ ⊢ e : τ&(γ; γ′)⇒ R;∆ ⊢ τ

Proof. Straightforward induction on the typing rules.

Lemma 24 (Polymorphic value substitution) R, ı; ∅ ⊢ γ ∧ R, ı; M;∆, ρ; ∅ ⊢ f : τ&(γ; γ)∧ ⇒ R, ı; M;∆; ∅ ⊢ f [ı/ρ] :

τ[ı/ρ]&(γ; γ)

Proof. We proceed by performing a case analysis on the shape of f :

Case f ≡ λx. e as τ: by inversion of the assumption typing derivation we have that R, ı; M;∆, ρ; ∅ ⊢ λx. e as τ : τ&(γ; γ)

holds. The application of lemma 33 to the latter derivation, gives us R, ı; M;∆; ∅ ⊢ (λx. e as τ)[ı/ρ] : τ[ı/ρ]&(γ[ı/ρ]; γ[ı/ρ]).

The assumption implies that γ is defined independently of ρ (R, ı; ∅ ⊢ γ). Thus, R, ı; M;∆; ∅ ⊢ (λx. e as τ)[ı/ρ] :

τ[ı/ρ]&(γ; γ) also holds.

Case f ≡ Λρ′. f ′: by inversion of the typing derivation of the assumption we have that R, ı; M;∆, ρ, ρ′; ∅ ⊢ f ′ : τ&(γ; γ). We

can use the induction hypothesis to derive that R, ı; M;∆, ρ′; ∅ ⊢ f ′[ı/ρ] : τ[r′/ρ]&(γ; γ). The application of rule T-RF

to the latter derivation yields R, ı; M;∆; ∅ ⊢ Λρ′. f ′[ı/ρ] : ∀ρ′. τ[r′/ρ]&(γ; γ).

Lemma 25 (Region substitution preserves ⊕) ξ ⊢ γ3 = γ2 ⊕ γ1 ⇒ ξ[r/ρ] ⊢ γ3[r/ρ] = γ2[r/ρ] ⊕ γ1[r/ρ]

Proof. If γ1 is empty then rule ES-N implies that γ3 equals γ1. Thefore, ξ[r/ρ] ⊢ γ1[r/ρ] = ∅⊕γ1[r/ρ] holds. It can be trivially

shown that if ξ ⊢ κ = κ1 + κ2, then for any r, ρ, ξ[r/ρ] ⊢ κ = κ1 + κ2 also holds. If γ1 is not empty then rule ES-C applies. By

inversion of this rule we have that the following hold:

- γ3 = γ31, r
κ⊲ π: γ3[r/ρ] = (γ31, r

κ⊲ π)[r/ρ] is immediate.

- γ1 = γ12, r
κ1⊲ π′: γ1[r/ρ] = (γ12, r

κ1⊲ π′)[r/ρ] is immediate.

- γ2 = γ22, r
κ2⊲ π: γ2[r/ρ] = (γ22, r

κ2⊲ π)[r/ρ] is immediate.

- π′ ∈ {π, ?}: π′[r/ρ] ∈ {π[r/ρ], ?[r/ρ]} is immediate.

- ξ = par(γx)⇒ π , ?: ξ[r/ρ] = par(γx[r/ρ])⇒ π[r/ρ] , ?[r/ρ] is immediate.

- ξ ⊢ γ31 = γ12 ⊕ γ22: ξ[r/ρ] ⊢ (γ31)[r/ρ] = γ12[r/ρ] ⊕ γ22[r/ρ] holds by the induction hypothesis.

By using rule ES-C we obtain that: ξ[r/ρ] ⊢ γ31[r/ρ], r[r/ρ]κ⊲ π[r/ρ] = γ12[r/ρ], r[r/ρ]κ1⊲ π′[r/ρ]⊕γ22[r/ρ], r[r/ρ]κ2⊲ π[r/ρ]

Lemma 26 (Region substitution preserves ⊕/⊖) ξ ⊢ γ3 = γ2 ⊕ (γ ⊖ γ1) ⇒ ξ ⊢ γ3[r/ρ] = γ2[r/ρ] ⊕ (γ[r/ρ] ⊖ γ1[r/ρ])

Proof. By inversion of the first assumption we obtain the following facts:

(a) ⊢ γ = γ1 ⊕ γr (b) ⊢ γa = γ2 ⊕ γr (c) γ3 = live(γa)

(d) ξ = seq⇒ abs par(γ, γ1) ⊆ dom(γ3) (e) ξ , seq⇒ ξ = par(γ1) ∧ γ2 = ∅

We can apply lemma 25 to (a) to derive that ξ ⊢ γ[r/ρ] = γ1[r/ρ] ⊕ γr[r/ρ]. We can apply the same reasoning to on (b) to

derive ξ ⊢ γa[r/ρ] = γ2[r/ρ] ⊕ γr[r/ρ]. We can trivially to show that abs par(γ[r/ρ], γ1[r/ρ]) ⊆ dom(γ3[r/ρ]) holds, by using

(d) and by observing that the live parents substituted in γ1[r/ρ] correspond to the live parents substituted in γ3[r/ρ].

Lemma 27 (R Well-formedness Substitution) R, ı;∆, ρ ⊢ r ⇒ R, ı;∆ ⊢ r[ı/ρ]

Proof. The assumption implies that r belongs in (R, ı)∪(∆, ρ). If r is ρ then ρ[ı/ρ] belongs in (R, ı)∪∆. Otherwise, r ∈ (R, ı)∪∆

trivially holds.

27

Lemma 28 (Effect Well-formedness Substitution) R, ı;∆, ρ ⊢ γ ⇒ R, ı;∆ ⊢ γ[ı/ρ]

Proof. We proceed by performing a case analysis on γ:

- ∅: R, ı;∆ ⊢ ∅ trivially holds.

R, ı;∆, ρ ⊢ γ′, rκ⊲ π: R, ı;∆ ⊢ γ′[ı/ρ] holds by the induction hypothesis. R, ı;∆ ⊢ r[ı/ρ] holds by lemma 27. If π = r′,

then R, ı;∆ ⊢ r′[ı/ρ] holds by lemma 27.

Lemma 29 (Consistent Substitution) consistent(γ1; γ2)⇒ consistent(γ1[ı/ρ]; γ2[ı/ρ])

Proof. It suffices to show that:

- if (r[ı/ρ]κ⊲ π[ı/ρ]) ∈ γ1[ı/ρ] and (r[ı/ρ]κ
′

⊲ π′[ı/ρ]) ∈ γ2[ı/ρ] for some r, then π = π′ ∧ (is pure(κ) ⇔ is pure(κ′)): this

is immediate by (rκ⊲ π) ∈ γ1 and (rκ
′

⊲ π′) ∈ γ2, then π = π′ ∧ (is pure(κ) ⇔ is pure(κ′)), which can be obtained by

inversion of consistent(γ1; γ2).

- live(γ1[ı/ρ]) = γ1[ı/ρ] and live(γ2[ı/ρ]) = γ2[ı/ρ]: immediate by inversion of consistent(γ1; γ2) and the definition of

substitution.

- dom(γ2) ⊆ dom(γ1): dom(γ2[ı/ρ]) ⊆ dom(γ1[ı/ρ]) is immediate.

Lemma 30 (Type Context Well-formedness Substitution) R, ı;∆, ρ ⊢ τ⇒ R, ı;∆ ⊢ τ[ı/ρ]

Proof. We proceed by performing a case analysis on τ:

- b: R, ı;∆ ⊢ b trivially holds.

- 〈〉: R, ı;∆ ⊢ 〈〉 trivially holds.

- rgn(r): R, ı;∆ ⊢ r[ı/ρ] holds by lemma 27.

- ref(τ′, r): R, ı;∆ ⊢ r[ı/ρ] holds by lemma 27. R, ı;∆ ⊢ τ′[ı/ρ] holds by the induction hypothesis.

- ∀ρ′. τ′: R, ı;∆, ρ′ ⊢ τ′[ı/ρ] holds by the induction hypothesis.

- τ′
γ1→γ2
−→ τ′′: R, ı;∆ ⊢ τ′[ı/ρ] holds by the induction hypothesis. R, ı;∆ ⊢ τ′′[ı/ρ] holds by the induction hypothesis.

R, ı;∆ ⊢ γ1[ı/ρ] holds by lemma 28. R, ı;∆ ⊢ γ2[ı/ρ] holds by lemma 28. We have that consistent(γ1; γ2) and we must

prove that consistent(γ1[ı/ρ]; γ2[ı/ρ]) holds. This is immediate by lemma 29.

Lemma 31 (Variable Context Well-formedness Substitution) R, ı;∆, ρ ⊢ Γ⇒ R, ı;∆ ⊢ Γ[ı/ρ]

Proof. We proceed by performing a case analysis on Γ:

- ∅: R, ı;∆ ⊢ ∅ trivially holds.

R, ı;∆ ⊢ Γ′, x : τ: R, ı;∆ ⊢ Γ′[ı/ρ] holds by the induction hypothesis. R, ı;∆ ⊢ τ[ı/ρ] holds by lemma 30.

Lemma 32 (Well-formedness Substitution) R, ı; M;∆, ρ;Γ; γ1; γ2 ⇒ R, ı; M;∆;Γ[ı/ρ]; γ1[ı/ρ]; γ2[ı/ρ]

Proof. By inversion of the first typing context and effect well-formedness assumption we have that

- R, ı ⊢ M

- R, ı;∆, ρ ⊢ Γ: R, ı;∆ ⊢ Γ[ı/ρ] immediate by lemma 31.

- R, ı;∆, ρ ⊢ γ1: R, ı;∆ ⊢ γ1[ı/ρ] immediate by lemma 28.

- R, ı;∆, ρ ⊢ γ2: R, ı;∆ ⊢ γ2[ı/ρ] immediate by lemma 28.

- consistent(γ1; γ2): the proof for consistent(γ1[ı/ρ]; γ2[ı/ρ]) is immediate by the application of lemma 29.

28

Lemma 33 (Region Substitution) R, ı; M;∆, ρ;Γ ⊢ e : τ& (γ1;γ2)⇒ R, ı; M;∆;Γ[ı/ρ] ⊢ e[ı/ρ] : τ[ı/ρ] & (γ1[ı/ρ];γ2[ı/ρ])

Proof. Proof by induction on the expression typing derivation.

Case T-I : by inversion of the derivation of e we have that γ1 = γ2. The application of lemma 32 to the well-formedness

premise, implies that ⊢ R, ı; M;∆;Γ[ı/ρ]; γ1[ı/ρ]; γ2[ı/ρ] holds. The proof for this case is completed by applying

rule T-I .

Case T-U , by inversion of the derivation of e we have that γ1 = γ2. The application of lemma 32 to the well-formedness

premise, implies that ⊢ R, ı; M;∆;Γ[ı/ρ]; γ1[ı/ρ]; γ2[ı/ρ] holds. The proof for this case is completed by applying

rule T-U .

Case T-R : by inversion of the derivation of e

– ⊢ R, ı; M;∆, ρ,Γ; γ1; γ2: the application of lemma 32 to the well-formedness premise implies that ⊢ R, ı; M;∆;Γ[ı/ρ];

γ1[ı/ρ]; γ2[ı/ρ] holds.

– R;∆ ⊢ : R, ı;∆ ⊢ [ı/ρ] holds by lemma 27.

The proof for this case is completed by applying rule T-R to the derived facts.

Case T-L : by inversion of the derivation of e we have that:

– ⊢ R, ı; M;∆, ρ,Γ; γ1; γ2: the application of lemma 32 to the well-formedness premise implies that ⊢ R, ı; M;∆;Γ[ı/ρ];

γ1[ı/ρ]; γ2[ı/ρ] holds.

– (ℓ 7→ (τ, )) ∈ M

The proof for this case is completed by applying rule T-L to the derived facts.

Case T-V : by inversion of the derivation of e we have that:

– ⊢ R, ı; M;∆, ρ,Γ; γ1; γ2: the application of lemma 32 to the well-formedness premise implies that ⊢ R, ı; M;∆;Γ[ı/ρ];

γ1[ı/ρ]; γ2[ı/ρ] holds.

– (x : τ) ∈ Γ: (x : τ[ı/ρ]) ∈ Γ[ı/ρ] trivially holds.

The proof for this case is completed by applying rule T-V to the derived facts.

Case T-F : by inversion of the abstraction typing derivation we have that:

– ⊢ R, ı; M;∆, ρ,Γ; γ; γ: the application of lemma 32 well-formedness premise implies that ⊢ R, ı; M;∆;Γ[ı/ρ];

γ1[ı/ρ]; γ2[ı/ρ] holds.

– R, ı;∆, ρ ⊢ τ: lemma 30 implies that R, ı;∆ ⊢ τ[ı/ρ] holds.

– τ ≡ τ1

γa→γb
−→ τ2: the function type after substitution is τ[ı/ρ] ≡ τ1[ı/ρ]

γa[ı/ρ]→γb[ı/ρ]
−→ τ2[ı/ρ].

– R, ı; M;∆, ρ;Γ, x : τ1 ⊢ e : τ2 & (γa;γb): R, ı; M;∆; (Γ, x : τ1)[ı/ρ] ⊢ e[ı/ρ] : τ2[ı/ρ] & (γa[ı/ρ];γb[ı/ρ]) holds by

the induction hypothesis.

The proof for this case is completed by applying rule T-F to the derived facts.

Case T-AP : by inversion of the application derivation we have that:

– R, ı; M;∆, ρ;Γ ⊢ e1 : τ1

γa→γb
−→ τ2 & (γ1;γ3): By applying lemma 23 to the derivation of e1 we obtain that R, ı;∆, ρ ⊢

τ1

γa→γb
−→ τ2. By inversion of the latter fact valid(γa; γb) holds.

R, ı; M;∆;Γ[ı/ρ] ⊢ e1[ı/ρ] : (τ1

γa→γb
−→ τ2)[ı/ρ] & (γ1[ı/ρ];γ3[ı/ρ]) holds by the induction hypothesis.

– ξ = par(γ1)⇒ τ2 = 〈〉: ξ[r/ρ] = par(γ1)[ı/ρ]⇒ τ2[ı/ρ] = 〈〉 trivially holds.

– R, ı; M;∆, ρ;Γ ⊢ e2 : τ1 & (γ3;γ4): R, ı; M;∆;Γ[ı/ρ] ⊢ e2[ı/ρ] : τ1[ı/ρ] & (γ3[ı/ρ];γ4[ı/ρ]) holds by the induction

hypothesis.

– ξ ⊢ γ2 = γb ⊕ (γ4 ⊖ γa): ξ ⊢ γ2[ı/ρ] = γb[ı/ρ] ⊕ (γ4[ı/ρ] ⊖ γa[ı/ρ]) is immediate by the application of lemma 26.

Case T-CP , T-RP , T-NG , T-NR , T-D, T-RF, T-E, T-A : We can perform similar reasoning to prove the remaining cases. The

key point is to prove in the remaining cases that (live(γx))[ı/ρ] = live(γx[ı/ρ]), where γx is the effect of interest. The

proof can be summarized as follows:

– ρ is a leaf element in γx: liveness for this regions is unaffected as its parents are unaffected.

– ρ is an intermediate node in γx: assuming that there exist an immediate and live descendant r′, then its parent

annotation is ρ. Thus after substitution r′ will still be live.

29

Lemma 34 (Variable Substitution) R; M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2) ∧ R; M; ∅; ∅ ⊢ v : τ1 & (∅;∅) ⇒ R; M;∆;Γ ⊢ e[v/x] :

τ2 & (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma 35 (Value Strengthening) R; M;∆;Γ ⊢ v : τ& (γ1;γ1)⇒ R; M; ∅; ∅ ⊢ v : τ& (∅;∅)

Proof. By case analysis on the value typing derivations. The proof is trivial as it suffices to prove well-formedness effect

strenghening, which is immediate from the definition of well-formedness: ⊢ R; M;∆;Γ; γ1; γ1 can be immediately be strength-

ened to ⊢ R; M;∆;Γ; ∅; ∅. We can then combine the strengthened well-formedness derivation with the remaining premises of

each value derivation, which remain intact, to obtain R; M; ∅; ∅ ⊢ v : τ& (∅;∅).

Lemma 36 (Context Weakening) R; M;∆;Γ ⊢ e : τ1 & (γ1;γ2)∧ ⊢ R; M;∆;Γ; γ; γ′′∧seq ⊢ γ′′ = γ2⊕ (γ⊖γ1)⇒ R; M;∆;Γ ⊢

e : τ1 & (γ;γ′′)

Proof. By induction on the structure of e.

Case T-R ,T-L ,T-F , T-V ,T-I and T-U : Immediate by the second assumption.

Case T-AP : by inversion of the typing rule we have that e1 and e2 are well-typed in the typing context R; M;∆;Γ with effects

(γ1; γ3) and (γ3; γ4) respectively. By applying lemma 6 to the typing derivation of e1 we have that consistent(γ1; γ3)

holds. By applying lemma 40 to the latter fact and the assumption that seq ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1) we obtain that

seq ⊢ γx = γ3 ⊕ (γ ⊖ γ1) and seq ⊢ γ′′ = γ2 ⊕ (γx ⊖ γ3) for some γx. By applying lemma 6 to the typing of e2 we

obtain that consistent(γ3; γ4) holds. By applying lemma 40 to the latter facts we have that seq ⊢ γy = γ4 ⊕ (γx ⊖ γ3)

and seq ⊢ γ′′ = γ2 ⊕ (γy ⊖ γ4) for some γy. The above facts (⊕ judgements) and the well-formedness assumption tell us

that ⊢ R; M;∆;Γ; γ; γx and ⊢ R; M;∆;Γ; γx; γy hold. We can apply the induction hypothesis to derive that e1 and e2 are

well-typed in the same typing context with effects (γ; γx) and (γx; γy) respectively. The next step is to apply 37 to the fact

obtain that seq ⊢ γ′′ = γ2⊕ (γy⊖γ4) and the application premise ξ ⊢ γ2 = γb⊕ (γ4⊖γa) to derive ξ ⊢ γ′′ = γb⊕ (γy⊖γa).

Case T-NG ,T-NR , T-A , T-CP : T-RF , T-RP , T-D: Similar reasoning to the previous case applies to the remaining rules. It is

worth mentioning that the domain of γ′′ and γ is a superset of the domain of γ1 and γ2 respectively. In addition, it can

be easily shown that the capability count of each region in the first two effects is greater than or equal to the counts of

the last two effects respectively. Hence, premises which are related to dom, accessible, or
[[

η
]]

(κ) that hold for γ1 and

γ2 also hold for γ′′ and γ.

Lemma 37 (Context Weakening — ⊕/⊖) seq ⊢ γ′ = γ2 ⊕ (γ⊖γ1)∧ ξ ⊢ γ2 = γ4 ⊕ (γ1 ⊖γ3)∧ live(γ4)⇒ ξ ⊢ γ′ = γ4 ⊕ (γ⊖γ3)

Proof. The assumptions yield the following facts:

(a) seq ⊢ γ = γ1 ⊕ γr1 (b) seq ⊢ γa = γ2 ⊕ γr1 (c) γ′ = live(γa) (d) abs par(γ, γ1) ⊆ dom(γ′)

(e) ξ ⊢ γ1 = γ3 ⊕ γr2 (f) ξ ⊢ γb = γ4 ⊕ γr2 (g) abs par(γ1, γ3) ⊆ dom(γ2) (h) γ2 = live(γb)

(i) ξ , seq⇒ ξ = par(γ3) ∧ γ2 = ∅

By applying lemma 38 to (a) and (e) we obtain that ∃γ′′r .ξ ⊢ γ = γ3 ⊕ γ
′′
r ∧ ∀rκ⊲ π ∈ γ′′r .∃rκ1⊲ π′ ∈ γr1, r

κ2⊲ π′′ ∈ γr2.rg(κ) =

rg(κ1) + rg(κ2) ∧ lk(κ) = lk(κ1) + lk(κ2). Facts (f) and (h) as well as the third assumption imply that ξ ⊢ γ2 = γ4 ⊕ γ
′
r2

, where

γ′
r2

is a subset of γr2 such that dom(γ′
r2

) = dom(γ2) holds. By applying lemma 38 to the latter derivation and (b) we obtain

that ∃γ′′′r .ξ ⊢ γa = γ4 ⊕ γ
′′′
r ∧ ∀rκ⊲ π ∈ γ′′′r .∃rκ1⊲ π′ ∈ γr1, r

κ2⊲ π′′ ∈ γ′
r2
.rg(κ) = rg(κ1) + rg(κ2) ∧ lk(κ) = lk(κ1) + lk(κ2). Given

the above facts we can deduce that γ′′′ = γ′′. To complete the proof we need to show that abs par(γ, γ3) ⊆ dom(γ′). This is

immediate by facts (d), (g), (b) and (c): abs par(γ, γ3) = abs par(γ1, γ3) ⊆ dom(γ2) ⊆ dom(γ′) (by simple observation of the

definition of abs par).

Lemma 38 (Context Weakening — ⊕) seq ⊢ γ = γ1 ⊕γr2 ∧ ξ ⊢ γ1 = γ2 ⊕γr1 ⇒ ∃γ
′′
r .ξ ⊢ γ = γ2 ⊕γ

′′
r ∧∀rκ⊲ π ∈ γ′′r .∃rκ1⊲ π′ ∈

γr1, r
κ2⊲ π′′ ∈ γr2.rg(κ) = rg(κ1) + rg(κ2) ∧ lk(κ) = lk(κ1) + lk(κ2)

Proof. Proof by induction on the structure of γ2:

Case γ2 = ∅: The conclusion trivially holds for γ′′r = γ.

Case γ2 = γ
′
2
, rκ⊲ π′: The assumptions yield the following facts:

30

(a) γr1 = γ
′
r1
, rκ1⊲ π (b) γ1 = γ

′
1
, rκ3⊲ π (c) γr2 = γ

′
r2
, rκ4⊲ π′′ (d) γ = γ′, rκ5⊲ π′′

(e) π′ ∈ {?, π} (f) ξ , seq⇒ π′ , ? (g) π ∈ {?, π′′} (h) ξ , seq⇒ π , ?

(i) seq ⊢ κ5 = κ3 + κ4 (j) seq ⊢ κ3 = κ + κ1 (k) seq ⊢ γ′ = γ′
1
⊕ γ′

r2
(l) ξ ⊢ γ1 = γ

′
2
⊕ γ′

r1

By applying the induction hypothesis on (k) and (l) we have that ∃γx.ξ ⊢ γ
′ = γ1 + γx. By the definition of rule CS, and

facts (i) and (j) it is trivial to show that there exists a κx such that ξ ⊢ κ3 = κ + κx and rg(κx) = rg(κ4) + rg(κ1),

lk(κx) = lk(κ4)+ lk(κ1) hold . By (e) and (g) we can deduce that π ∈ {?, π′′}. Now we can apply rule ES-C to the derived

facts as well as fact (h) to conclude that ξ ⊢ γ = γ′, rκ5⊲ π′′γ2 = γ
′
2
, rκ⊲ π′ ⊕ γx, r

κx⊲ π′′ holds.

Lemma 39 (⊕ Implication) seq ⊢ γ = γ1 ⊕ γr ∧ consistent(γ1, γ2)⇒ ∃γ′.seq ⊢ γ′ = γ2 ⊕ γr

Proof. By induction on the structure of γ2:

Case γ2 = ∅: Then the conclusion trivially holds for γ′ = γr.

Case γ2 = γ
′
2
, rn1 ,n2⊲ π′: The second assumption yields that there exists a γ′

1
such that γ1 = γ

′
1
, rn3 ,n4⊲ π′. Consequently, the

first assumption becomes (rule E-SC): seq ⊢ γ′, rn5 ,n6⊲ π = γ′
1
, rn3 ,n4⊲ π′ ⊕ γ′r, r

n7 ,n8⊲ π for some γ′ and γ′r. By inversion

of the latter derivation we obtain that seq ⊢ γ′ = γ′
1
⊕ γ′r holds. The second assumption and the above facts imply that

consistent(γ′
1
, γ′

2
) also holds. By induction hypothesis we have that there exists a γ′′ such that seq ⊢ γ′′ = γ′

2
⊕ γ′r. We

can construct a fresh κ such that seq ⊢ κ = n1, n2 + n7, n8 by using facts from predicate consistent. The above facts and

rule ES-C imply that seq ⊢ γ′′, rκ⊲ π = γ2, r
n1 ,n2⊲ π′ ⊕ γ′r, r

n7 ,n8⊲ π holds.

Case γ2 = γ
′
2
, rn1 ,n2⊲ π′: Similar to the previous case.

Lemma 40 (⊕/⊖ Implication) seq ⊢ γ′ = γ2 ⊕ (γ ⊖ γ1) ∧ consistent(γ1, γ
′
1
) ⇒ ∃γ′′.seq ⊢ γ′′ = γ′

1
⊕ (γ ⊖ γ1) ∧ seq ⊢ γ′ =

γ2 ⊕ (γ′′ ⊖ γ′
1
)

Proof. By inversion of the first assumption we obtain: seq ⊢ γ = γ1 ⊕ γr and seq ⊢ γa = γ2 ⊕ γr, for some γr, γ
′ = live(γa),

and abs par(γ, γ1) ⊆ dom(γ′). By the application of lemma 39 to seq ⊢ γ = γ1 ⊕ γr we have that seq ⊢ γb = γ
′
1
⊕ γr holds for

some γb.

To prove the left term of the conjuction of the conclusion it suffices to show that abs par(γ, γ1) ⊆ dom(live(γb)). This can

be shown by proving that dom(live(γa)) ⊆ dom(live(γb)). This is immediate by the second assumption, which implies that the

domain of γ′
1

is a subset of the domain of γ1, which contains positive region counts (γ1 is live by assumption consistent). Thus,

γb contains at least as many live regions as γa.

To prove the right term of the conjuction it suffices to show that abs par(γb, γ
′
1
) ⊆ dom(γ′′). As mentioned earlier, γ′

1

is a subset of γ1 so it contains at most as many abstracted parents as γ1. Therefore, abs par(γb, γ
′
1
) ⊆ abs par(γ, γ1). Thus,

abs par(γb, γ
′
1
) ⊆ dom(γ′′) holds.

Lemma 41 (Progress — Program) Let S ; T be a closed well-typed configuration with R; M; δ ⊢C S ; T. Then S ; T is not stuck.

Proof. In order to prove that the configuration is not stuck, we need to prove that each of the executing threads can either

perform a step or block predicate holds for it. Without loss of generality, we choose a random thread from the thread list,

namely n : E[e] and show that it is not stuck. By case analysis on the structure of n : E[e] we have the following cases:

Case n :�[()] then proof is immediate by rule E-T .

Case n : E[(λx. e′ as τ v)par(γ1)]): it suffices to prove that there exists an S ′, such that S ′ is equal to trans f er(S , n, n′, γ1).

This is immediate by applying lemma 43 to the assumption that the store is well-typed (obtained by inversion of

the configuration typing assumption), n′ is a fresh thread identifier (obtained by E-SN) and that γ3 = γ2 ⊕ (γ ⊖ γ1)

(obtained by performing inversion on the configuration typing derivation, then a subsequent inversion on the thread

typing derivation and then lemma 5 applied so as to extract the application typing derivation. Finally, an inversion on

the application typing derivation is performed).

Case n : e By applying inversion twice to the configuration typing judgement we have that R; M; ∅; ∅ ⊢ e : τ&(δ(n); ∅). If e

is a value then lemma 46 tells us that e is (). We already have that T = T1, n : e for some T1. Thus, a single step can

be performed via rule E-T . Otherwise, e is not a value. The application of lemma 45 to the latter fact and the typing

derivation of e implies that ∃e1, E. E[e1] = e and redex(e1). Thus, R; M; ∅; ∅ ⊢ E[e1] : 〈〉&(γ; ∅) is also well-typed. The

application of lemma 44 to redex(e1), the typing derivation of e1 and the store typing assumption (M; R; δ ⊢str S) yields

∃S 2, e2.S 1, e1.S ; e1 →n S 2; e2 or block(S , n, e1, δ) or ∃v, γ1, e2, τ.e1 ≡ (λx. e2 as τ v)par(γ1). If the first case holds, then a

single operational step can be performed by rule E-S and thus the configuration is not stuck. If the second case holds,

then the configuration is also not stuck (by the definition of not-stuck ns). The last case cannot has already been dealt

with in the second case of this proof.

31

Definition 1 Let z be defined as a metavariable representing maps from region identifiers (e.g. ı) to binary tuples of natural

numbers.

- sum(γ) = z if (∀ı ∈ dom(γ).z(ı) = cap(γ, ı)) ∧ (∀ı < dom(γ).z(ı) = 0, 0)

- z ≤ z′ = ∀ı ∈ dom(z) ∪ dom(z′).z(ı) ≤ z′(ı)

- cnt(S , n) = z if (∀ı.thread live(S , ı, n)⇒ z(ı) = cap(S , ı, n)) ∧ (∀ı.¬thread live(S , ı, n)⇒ z(ı) = 0, 0)

- owns(S , γ, n) = ∀ı ∈ dom(γ).(ı : (θ,H, S ′) ∈ bflatten(S)) ∧ n ∈ dom(θ)

Lemma 42 (Progress — Spawn Helper 1) sum(γ1) ≤ cnt(S , n)∧owns(S , γ1, n)∧pure once(γ1)⇒ transfer(S , n, n′, γ1) definable.

Proof. Proof by induction on the structure of γ1.

- γ1 = ∅: Then trans f er trivially holds.

- γ1 = γ
′, ın1 ,n2⊲ π: it suffices to prove that

– ı : (∅, θ, s 7→ n3, n4,H, S
′) ∈ flatten(S): this is immediate by the assumption that owns(S , γ1, n).

– n1 ≤ n3 and n2 ≤ n4: this is immediate by the assumption that sum(γ1) ≤ cnt(S , n).

– transfer(S (ı, θ, n′ 7→ n3, n4,H, S
′), n, n′, γ′): pure once(γ1) implies pure once(γ′). pure once(γ1) and sum(γ1) ≤

cnt(S , n) imply that sum(γ′) ≤ cnt(S (ı, θ, n′ 7→ n3, n4,H, S
′), n). The assumption that owns(S , γ1, n) and pure once(γ1)

imply owns(S (ı, θ, n′ 7→ n3, n4,H, S
′), γ′, n). The application of the induction hypothesis to the latter facts com-

pletes the proof.

Case γ1 = γ
′, ın1+n2 ,n3⊲ π: Similar proof to the previous case.

Lemma 43 (Progress — Spawn) M; R; δ, n 7→ γ ⊢ S ∧ ξ ⊢ γ3 = γ2 ⊕ (γ ⊖ γ1) ∧ n′ fresh thread identifier ⇒ S ′ =

transfer(S , n, n′, γ1)

Proof. The store typing assumption implies (trivial) that owns(S , n, γ), sum(γ) ≤ cnt(S , n) and pure once(γ). The capability

addition assumption implies that sum(γ1) ≤ sum(γ) and dom(γ1) ⊆ dom(γ). Therefore, sum(γ1) ≤ cnt(S , n), owns(S , n, γ1) and

pure once(γ1) hold. The proof is completed by applying lemma 42 to owns(S , n, γ1), pure once(γ1) and sum(γ1) ≤ cnt(S , n).

Lemma 44 (Progress — Expressions) redex(e)∧R; M; ∅; ∅ ⊢ e : τ& (δ(n);γ′)∧R; M; δ ⊢ S ⇒ block(S , n, e′, δ)∨(∃ S ′, e′. S ; e →n

S ′; e′) ∨ (∃e1, τ, v, γ
′′. e ≡ (λx. e1 as τ v)par(γ′′))

Proof. We proceed by performing a case analysis on the typing derivation of e:

Case T-I , T-U , T-F , T-L , T-R , T-RF ,T-V : the proof is immediate as e is a value and this contradicts the assumption that

redex(e).

Case T-AP ,T-RP : The proof is a straightforward application of canonical forms lemma and the operational rules E-A , E-RP

respectively. In the case of T-AP we may have that e is equal to a parallel application term. In that case the second case

of the conclusion holds.

Case T-NRG : The application of lemma 46 to the typing derivation of v1, which is obtained by inverting T-NG , yields that

v1 ≡ rgnm. It suffices to show that the premise of E-NR , namely (S 1, ) = newrgn(S , n,m) is satisfied. This can be

shown by applying lemma 48 to store typing derivation M; R; δ ⊢str S , which is obtained by the assumption of the

progress theorem, and the fact that δ = δ, n 7→ γ′,mκ⊲ π, which is obtained by the premise of rule T-NRG that requires

that m belongs in the domain of γ.

Case T-NR :The application of lemma 46 to the typing derivation of v2, which is obtained by inverting T-NR , yields that

v1 ≡ rgnk. To perform a single step, we need to prove that E-NR applies. We already have that the term has the

appropriate form, thus it suffices to prove the premise of E-NRG , which is (S 1, ℓ) = alloc(, S , v1). By inversion of

T-NR we have that R; M; ∅; ∅ ⊢ v1 : τ&(γ; γ), and  ∈ dom(γ). By applying lemma lemma 35 on the derivation of v1

we obtain R; M; ∅; ∅ ⊢ v1 : τ&(∅; ∅). By applying lemma 47 to the latter derivation as well as  ∈ dom(γ) and the store

typing M; R; δ,  7→ γ ⊢str S we have that (ℓ, S 1) = alloc(, S , v1).

Case T-D: The application of lemma 46 to the typing derivation of v, which is obtained by inverting T-D, yields v ≡ locℓ.

Further, inversion of the typing derivation of locℓ yields that ℓ ∈ dom(M) and ⊢ R; M; ∅; ∅; γ; γ, where γ is the effect

of thread ı. By applying lemma 49 to the store typing assumption, where ℓ ∈ dom(M) and δ(ı) = γ, and the fact that

ı belongs in accessible(γ), we have that ∃v′ = lookup(S , ℓ, ı). Therefore, rule E-D can be applied to perform a single

step.

32

Case T-A : Similar to the proof of T-D. (i.e., use lemma 49 to prove premise of E-AS).

Case T-CP : The application of lemma 46 to the typing derivation of v1, which is obtained by inverting T-NR , yields that

v1 ≡ rgnı. By inversion of rule T-CP we have that region ı is live. It suffices to prove that the operational semantics

performs a step or block(S , ı, e, δ) holds. We proceed by examining all possible values of η:

– rg±: block predicate does not hold in this case and thus it must be shown that the semantics performs a

step. The store typing assumption and the fact that ı is live (as shown earlier) tells us that region ı imply that

thread live(S , ı, n). Thus, it possible to decrement or increment its region count once. The liveness fact also

satisifes the only precondition of updcap premise of the operational rule E-C , thus the semantics performs a

single step.

– lk−: the premise of typing rule T-CP tells us that region ı is live and accessible (positive lock capability). As

in the previous case the store typing implies that thread live(S , ı, n). The canlk premise of updcap function is

trivially satisfied by the store typing premise mutex ok and the fact that ı is accessible.

– lk+ and the lock capability of region ı in thread ı is positive: Similar to the previous case.

– lk+ and ı is inaccessible: As in the previous case the store typing implies that thread live(S , ı, n) as a consequence

of the fact that ı is live in the effect of thread n. If canlk(S , ı, n) does hold then a single step can be performed via

rule E-C . Otherwise, block(S , n, e, δ) holds as a consequence of the aboce facts and the proof is completed.

Lemma 45 (Expression — Redex) R; M;∆;Γ ⊢ e : τ1 & (γ1;γ2) ∧ e . v1 ⇒ ∃ e′, E.E[u] ≡ e ∧ redex(e)

Proof. Straightforward proof by induction on the typing derivation.

- T-I , T-U , T-F , T-L , T-R , T-RF then the proof is immediate as e is a value.

- T-V : Immediate as it holds for E ≡ � and u ≡ x . v.

- T-NR : By observing the shape of the expression of T-NR typing derivation, e ≡ new e1 at e2. If e1 and e2 are both values

then the proof is immediate (E ≡ � and u ≡ new e1 at e2). Otherwise, if e1 is not a value the application of the induction

hypothesis on the typing derivation of e1 (obtained from T-NR inversion) yields that ∃ E[u].E[u] ≡ e1 ∧ u . v2.

Consequently, ∃ E.new E[u] at e2 ≡ e ∧ u . v2 or equivalently, ∃ E.(new E at e2)[u] ≡ e ∧ u . v2. The last case is

that e1 is a value and e2 is not. By applying similar reasoning we can prove that ∃ E.(new e1 at E)[u] ≡ e ∧ u . v2.

- T-AP , T-RP , T-NG , T-CP , T-D, T-A : We can perform similar reasoning to prove the remaining cases.

Lemma 46 (Cannonical Forms) R; M;∆;Γ ⊢ v : τ& (γ1;γ2)⇒

τ ≡ 〈〉 ⇒ v ≡ () ∧

τ ≡ rgn(ı)⇒ (v ≡ rgnı ∧ ı ∈ R) ∧

τ ≡ ref(τ, ı)⇒ (v ≡ locℓ ∧ ℓ 7→ (τ, ı) ∈ M) ∧

τ ≡ b⇒ v ≡ n ∧

τ ≡ τ1

γ1→γ2
−→ τ2 ⇒ v ≡ λx. e as τ1

γ1→γ2
−→ τ2 ∧

τ ≡ ∀ρ. τ⇒ v ≡ Λρ. f ∧

Proof. Straightforward proof by observation of the value typing derivations.

Lemma 47 (Progress — Add Location) M; R; δ, k 7→ γ, κ⊲ π ⊢str S ∧ R; M; ∅; ∅ ⊢ v : τ& (∅;∅)∧ ⇒ ∃S 1, ℓ.(S 1, ℓ) =

alloc(, S , v) ∧ ℓ < dom(M)

Proof. To prove that alloc is defined we only need to show that region  is live. This is immediate by inversion of the first

assumption.

Lemma 48 (Progress — Add Region) M; R; δ, ı 7→ γ,mκ⊲ π ⊢str S ∧ ⇒ ∃S 1, .(, S 1) = newrgn(S , ı,m) ∧  < R

Proof. To prove that newrgn is defined we only need to show that region  is live. This is immediate by inversion of the first

assumption.

Lemma 49 (Progress — Lookup Value) M, ℓ 7→ (τ, ); R; δ, n 7→ γ ⊢str S ∧  ∈ accessible(γ)⇒ ∃v.v = lookup(S , ℓ, n)

Proof. To prove that newrgn is defined we need to show that region  is live, where  is the region that contains ℓ in its heap,

canlk(S , , n) only holds for thread n, and ℓ and  exist in store S . The first and last obligations are trivial by store typing

assumption. In particular, the first obligation is satisfied by the premise counts ok of the store typing assumption, whereas the

last obligation is immediate by the store typing premise that all locations in M, ℓ 7→ (τ, ) exist in S . The last obligation is

immediate by the store typing premise mutex ok and the assumption that  is accessible in the effect of thread n.

33

	Introduction
	Language Design
	Language Features through Examples
	Language Description
	Operational Semantics
	Static Semantics
	Type Safety
	Related Work
	Concluding Remarks

