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Abstract

Resumptions are a valuable tool in the analysis and design of semantic models for concurrent programming
languages, in which computations consist of sequences of atomic steps that may be interleaved. In this pa-
per we consider a general notion of resumption, parameterized by the kind of computations that take place
in the atomic steps. We define a monad transformer which, given a monad� that represents the atomic
computations, constructs a monad ���� for interleaved computations. Moreover, we use this monad trans-
former to define the denotational semantics of a simple imperative language supporting non-determinism
and concurrency.

1 Introduction

Modern computer architectures and operating systems have made it practical to execute different parts of a
program simultaneously. From the programmer’s point of view, it is often not important whether the parts of
a program are executed by different physical processors or by a single processor using a time-sharing strategy.
New tools are needed to define the semantics of concurrent programming languages, which allow the parts of
a program that execute simultaneously to interact with one another, typically using the same memory variables.

Resumptions have long been suggested as a model of interleaved computation in the semantics of concurrent
programming languages. In brief, a resumption is either a computed value of some domain � or an atomic
computation that results in a new resumption. An extensive treatment is offered in [dBak96] using the theory of
complete metric spaces as the mathematical framework for domains. Many variations of resumption domains
(also called branching domains) for specific instances of atomic computations are investigated there.

In this paper, we propose a structured generalization of this technique. We allow the atomic steps to perform
any type of computation, represented by an arbitrary monad � . Thus, we define the resumption monad trans-
former �, which transforms monad � to a new monad ���� representing interleaved computations. Domains
constructed by ���� satisfy the isomorphism

������� � � � ����������

which defines the essence of resumption domains. By introducing ���� we obtain a general framework for
reasoning about such domains. For example, the domain

�This technical report is based on work supported by the National Technical University of Athens, under the Programme for the
Support of Basic Research “Archimedes”. Project title “SynSemAL: Syntax and Semantics of Artificial Languages”.
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� � �� ��� �������

that is used in [dBak96] for defining the semantics of non-uniform parallelism (ignoring some complexities
related to the use of complete metric spaces) is exactly the same as the domain ���������� that we use in
Section 4 for the same purpose.

The rest of the paper is structured as follows. Section 2 contains brief introductions to category theory,
monads and domain theory, that provide the mathematical background for this paper. In Section 3 we define
the resumption monad transformer � and in Section 4 we use it to present the denotational semantics of a simple
imperative language featuring non-determinism and concurrency. We conclude with Section 5.

2 Mathematical background

In this section we define the mathematical background that is necessary for the rest of the paper. The reader is
referred to the related literature for a more informative introduction and the proofs of the theorems.

2.1 Category theory

Category theory was developed in an attempt to unify simple abstract concepts that were applicable in many
branches of mathematics. Excellent introductions to category theory and its application in Computer Science
can be found in [Pier90, Gogu91, Pier91, Aspe91, Barr96].

Definition 2.1 A category � is a collection of objects and a collection of arrows satisfying the following
properties:

� For each arrow � there is a domain object dom��� and a codomain object codom���, and by writing
� � � � � it is indicated that � � dom��� and � � codom���.

� For every pair of arrows � � � � � and � � � � � there is a composite arrow � Æ � � � � �.

� Composition of arrows is associative, i.e. for all arrows � � � � �, � � � � � and � � � � � it is
� Æ �� Æ �� � �� Æ �� Æ � .

� For each object � there is an identity arrow id� � � � �.

� Identity arrows are identities for arrow composition, i.e. for all arrows � � � � � it is � Æid� � id �Æ� �
� .

Definition 2.2 Two objects � and � of category � are isomorphic if there are arrows � � � � � and � � � � �

such that � Æ � � id� and � Æ � � id�. Arrows � and � are called isomorphisms.

Properties of categories are commonly presented using commuting diagrams. A diagram is a graph whose
nodes are objects and whose edges are arrows. A diagram commutes if for every pair of nodes and for every pair
of paths connecting these two nodes the composition of arrows along the first path is equal to the composition
of arrows along the second. An example of a commuting diagram, implying that � Æ � � �, is shown below.
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Definition 2.3 A functor � from category � to category �, written as � � � � �, is a pair of mappings.
Every object � in � is mapped to an object � ��� in � and every arrow � � � � � in � is mapped to an arrow
� ��� � � ��� � � ��� in �. Moreoever, the following properties must be satisfied:

� � �id�� � id� ��� for all objects � in �.

� � �� Æ �� � � ��� Æ � ��� for all arrows � � � � � and � � � � � in �.

Definition 2.4 An endofunctor on category � is a functor � � �� �.

Definition 2.5 If � � �� � and  � �� � are functors, then their composition is a functor  Æ � � �� �.
It is defined by taking � Æ � ���� � �� ���� and � Æ � ���� � �� ����.

Definition 2.6 For every category �, an identity functor Id� � � � � can be defined by taking Id���� � �

and Id���� � � .

Note that if � � �� � is an endofunctor and � is a positive natural number, the notation �� � �� � can
be used for the composition of � with itself � times. The notation can be extended so that �� � Id�.

Theorem 2.1 Functors preserve isomorphisms.

Theorem 2.2 Identity functors are identities for functor composition, that is, if � � � � � is a functor, then
� Æ Id� � Id� Æ � � �

Definition 2.7 If � � � � � and  � � � � are functors, then a natural transformation � between � and ,
written as � � � ��  is a family of arrows in �. In this family, an arrow �� � � ��� � ��� in � is defined for
every object � in �. Moreover, the following diagram must commute:

� � ���
��� ���

�

�

�
� ���

� ���

� ��� ���

���

�

2.2 Monads and monad transformers

The notion of monad, also called triple, is not new in the context of category theory. In Computer Science,
monads became very popular in the 1990s. The categorical properties of monads are discussed in most books
on category theory, e.g. in [Barr96]. For a comprehensive introductions to monads and their use in denotational
semantics the user is referred to [Mogg90]. A somehow different approach to the definition of monads is found
in [Wadl92], which expresses the current practice of monads in functional programming. The two approaches
are equivalent. In this paper, the categorical approach (presented here) is used for the definition of monads,
since it is much more elegant, and the functional approach (presented in Section 2.4) is used for describing the
semantics of programming languages.

Definition 2.8 A monad on a category � is a triple ����� ��, where � � � � � is an endofunctor, � �
Id� �� � and � � �� �� � are natural transformations. For all objects � in �, the following diagrams must
commute.
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The transformation � is called the unit of the monad, whereas the transformation � is called the multiplication
or join.

The commutativity of these two diagrams is equivalent to the following three equations, commonly called
the three monad laws:

�� Æ ����� � id���� (1st Monad Law)
�� Æ����� � id���� (2nd Monad Law)
�� Æ����� � �� Æ ����� (3rd Monad Law)

Definition 2.9 If � is a category, a monad transformer on � is a mapping between monads on �.1

2.3 Domain theory

The theory of domains was established by Scott and Strachey, in order to provide appropriate mathematical
spaces on which to define the denotational semantics of programming languages. Introductions of various sizes
and levels can be found in [Scot71, Scot82, Gunt90, Gunt92]. Various kinds of domains are commonly used in
denotational semantics, the majority of them based on complete partial orders (cpo’s). The variation used here
is one of the possible options.

Definition 2.10 A partial order, or poset, is a set � together with a binary relation � that is reflexive, anti-
symmetric and transitive.

Definition 2.11 A subset � � � of a poset � is bounded if there is a � � � such that � � � for all � � � . In
this case, � is an upper bound of � .

Definition 2.12 The least upper bound of a subset � � �, written as
�

� , is an upper bound of � such that,�
� � � for all upper bounds � of � .2

Definition 2.13 A subset � � � of a poset � is directed if every finite subset � � � has an upper bound
� � � .

Definition 2.14 A poset � is complete if every directed subset � � � has a least upper bound. A complete
partial order is also called a cpo.

Definition 2.15 A domain is a cpo � with a bottom element, written as 	. For all elements � � �, it must be
	 � �.

1Many options for the definition of monad transformers have been suggested in literature. Given a category �, monads on �

and monad morphisms (which have not been defined in this paper) form a category ������. Monad transformers can be defined as
mappings between objects in ������, as endofunctors on ������, as premonads on ������ (i.e. endofunctors with a unit), and as
monads on ������. In this paper we have selected the first option.

2The notation � � � is used as an abbreviation of
�
� �� � �.
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Definition 2.16 Every set � defines a flat domain ��, whose underlying set is � 
�	 � and in which � � � iff
� � � or � � 	.

A number of useful domains can be defined at this point. The trivial domain � is the flat domain that
corresponds to the empty set; it contains a single element 	. A useful domain with a single ordinary element
is � � �u ��. The natural numbers under their usual ordering  form a poset � which is not a cpo, since it is
directed and does not have a least upper bound.

Definition 2.17 If � is a poset, an �-chain ������� in � is a set of elements �� � � such that �  � implies
�� � ��.

Definition 2.18 A function � � � � � between posets � and � is monotone if � � � implies ���� � ����.

Definition 2.19 A function � � � � � between posets � and � is continuous if it is monotone and ��
�

� � ��
� ���� � � � � � for all directed � � �.

Definition 2.20 A function � � � � � between domains � and � is strict if ��	� � 	.

Definition 2.21 A relation � can be defined for functions between domains � and � as follows. If �� � � � �
�, then � � � iff ���� � ���� for all � � �.

Theorem 2.3 The set of continuous functions between � and � under the relation of Definition 2.21 is a
domain. This domain is denoted by � � �.

Definition 2.22 An element � � � is a fixed point of a function � � � � � if � � ����.

Theorem 2.4 If � is a domain and � � � � � is continuous, then � has a least fixed point fix��� � �, i.e.
fix��� � ��fix���� and fix��� � � for all � such that � � ����. Furthermore, fix��� �

�
��� ���	�.

Theorem 2.5 For all � � �, let �� � � � �. Let � � �. Then
��

��� ��
�
��� �

�
��� ����� if the least

upper bounds on the left hand side exists.

Theorem 2.6 Domains and continuous functions form a category ���.

To simplify presentation, in category ��� we often omit the parentheses surrounding a function’s argu-
ment, i.e. we write � � instead of ����.

Definition 2.23 A functor � � ��� � ��� is locally monotone if � � � implies � ��� � � ���, for all
domains � and � and for all functions �� � � � � �.

Definition 2.24 A functor � � ��� � ��� is locally continuous if it is locally monotone and � �
�

� � ��
�� ��� � � � � � for all domains � and � and for all directed � � � � �.

Definition 2.25 If � and � are domains, then the product � � � is a domain. The elements of � � � are
the pairs ��� �� with � � � and � � �, and the ordering relation is defined as ���� ��� � ���� ��� � �� ��

�� � �� �� ��.

Definition 2.26 If � � � is a product domain, two continuous projection functions fst � � � � � � and
snd � � �� � � can be defined as fst ��� �� � � and snd ��� �� � �.
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Definition 2.27 If � and � are domains, then the separated sum � � � is a domain. The set of elements of
� � � is:

� ��� �� � � � � � 
 � ��� �� � � � � � 
 �	��� �

The ordering relation is defined separately for each kind of pairs, i.e. ���� �� � ���� �� � �� �� �� and
���� �� � ���� �� � �� �� ��. In addition, 	��� � � for all � � � � �.

Definition 2.28 If � � � is a sum domain, two continuous injection functions inl � � � � � � and
inr � � � � � � can be defined as inl � � ��� �� and inr � � ��� ��.

Definition 2.29 If �, � and � are domains and �� � � � � and �� � � � � are continuous functions, then
a continuous function � ��� �� 	 � � � � � � can be defined as:

� ��� �� 	��� �

��
�
	� � if � � 	���

����� � if � � ��� ��
����� � if � � ��� ��

Theorem 2.7 Let �, � and � be domains, � � � � � and � � � � � continuous functions. Then � �� � 	 Æ
inl � � and � �� � 	 Æ inr � �.

Theorem 2.8 Let � and � be domains. Then � inl � inr 	 � id	�
 .

Theorem 2.9 Let ��, ��, ��, ��, �� and �� be domains. Let �� � �� � ��, �� � �� � ��, �� � �� � ��

and �� � �� � �� be continuous functions. Then � �� Æ ��� �� Æ �� 	 � � ��� �� 	 Æ � inl Æ ��� inr Æ �� 	.

Theorem 2.10 Let �, �, � and � be domains, � � � � �, �� � � � � and �� � � � � continuous
functions. If � is strict, then � Æ � ��� �� 	 � � � Æ ��� � Æ �� 	.

Powerdomains are the domain-theoretic equivalent of powersets. They have been introduced as a tool
for modeling the semantics of non-deterministic programs and have been widely used for the semantics of
concurrency. In this paper we avoid a full definition of powerdomains; the reader is referred to [Gunt92] for a
detailed definition and a study of their categoric and domain-theoretic properties.3

Definition 2.30 Let � be a domain. We write �
� for the (convex) powerdomain of �.

Definition 2.31 Let � and � be domains and � � � � � a continuous function. We can define a continuous
function �

�
� �

�
� �

�.

Theorem 2.11 By taking � ��� � �
�

and � ��� � �
�

we can define an endofunctor � � ���� ���, which
is called the powerdomain functor.

Definition 2.32 Let � be a domain. We can define a continuous function �� � �� � � � �
�, which is called the

powerdomain singleton function.

Definition 2.33 Let � be a domain. We can define a continuous binary operation 
� � �
�
��

�
� �

�, which is
called the powerdomain union. Furthermore, this binary operation is associative, commutative and idempotent.

3We also ignore the fact that our category ��� of domains is not appropriate for the definition of powerdomains. The categories
��� (of sequences of finite posets) or 	
� (of bifinite domains) should be used instead. The reader is again referred to [Gunt92].
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Definition 2.34 Let � be a domain. We can define a continuous function
��

� �
��
� �

�, which is called the
powerdomain big union function.

Theorem 2.12 The powerdomain singleton is a natural transformation between the identity functor Id��� and
the powerdomain functor � .

Theorem 2.13 The powerdomain big union is a natural transformation between the functors �� and � .

Theorem 2.14 The powerdomain functor � with the powerdomain singleton as the unit and the powerdomain
big union as the join define a monad, which is called the powerdomain monad.

2.4 Monads and computations

An alternative approach to the definition of monads has become very popular in the functional programming
community. According to this, a monad on category ��� is defined as a triple ��� unit�� ���. In this triple
� is a domain constructor, unit� � � � ���� is a continuous function and �� � ����� �� � ����� �
���� is a binary operation.

In the semantics of programming languages, domains constructed by monad � typically denote computa-
tions, e.g. the domain ���� denotes computations returning values of the domain �. The result of unit� �

is simply a computation returning the value � and the result of � �� � is the combined computation of �,
returning �, followed by computation ����. Monad transformers are useful to transform between different types
of computations [Lian95, Lian98].

The following equations connect a monad ��� unit�� ��� defined using the functional approach with a
monad ����� �� defined using the categorical approach.

unit� � �

� �� � � �� Æ����� �

� � unit�
� � ��� � �� id
���� � ��� � �� �unit� Æ ��

In the functional approach, the three monad laws can be formulated as follows.

� �� unit� � �

�unit� �� �� � � � �

� �� �� �� �� �� �� �� � �� �� �� �� �

An interesting remark is that these three laws are enough to prove that the equivalent ����� ��, as defined
above, is indeed a monad, i.e. that � is a functor (preserves function identities and composition) and � and �

are natural transformations.
In this setting, it is useful to define two special classes of monads, equipped with additional operations that

are useful for modeling the semantics of concurrency in programming languages.

Definition 2.35 A multi-monad is a monad � with a binary operation �� � ��������� � ����, where
� is a domain.

Definition 2.36 A strong monad is a monad � with a binary operation ��� � ��������� � ������,
where � and � are domains.

The binary operation � of a multi-monad is used to express disjunction in computations. In other words,
if � is a multimonad, � is a domain and ����� � ���� are two computations, the computation �� � ��

indicates a (possibly non-deterministic) option between �� and ��. Moreover, the binary operation �� of
a strong monad is used to express conjunction in computations. Let � be a strong monad, let � and � be
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domains. If �� � ���� and �� � ���� are two computations, the computation �� �� �� indicates that
both �� and �� will be performed and their results will be combined. The option here relates to the order, if
any, in which the two computations will be performed.

3 Resumption monad transformer

The notion of execution interleaving is a well known one in the theory of concurrency. In this context, computa-
tions are considered to be sequences of atomic steps the nature of which depends on our notion of computation.
In isolation, these atomic steps are performed one after another until the computation is complete. Given two
computations � and �, an interleaved computation of � and � consists of an arbitrary merging of the atomic
steps that constitute � and �. Interleaving easily extends to more than two computations. The atomic steps of
any computation must still be executed in the right order, but this process can be interrupted by the execution
of atomic steps belonging to other computations.

Our primary goal is to define a monad transformer � capable of modelling generic interleaved computations.
In this way, if we are given a monad � which models the computations taking place at the atomic steps, we can
obtain a monad ���� which models interleaved computations of such atomic steps. One possible solution to
this problem is to use the long suggested technique of resumptions, illustrated in [Schm86, dBak96] for specific
instances of � .

Generalizing this technique, the domain ������� of resumptions must satisfy the following isomorphism:

������� � � � ����������

In this domain, atomic steps are arbitrary computations defined by � . The left part of the sum represents
an already evaluated result, i.e. a computation that consists of zero atomic steps. The right part represents
a computation that requires at least one atomic step. The result of this atomic step is a new element of the
resumption domain.

We start by considering an arbitrary locally continuous monad � on ���. The rest of the section is
organized as follows. In Section 3.1 we define an endofunctor �� � ��� � ��� . In Section 3.2 we
define two natural transformations unit � Id �� �� and join � ��

� �� �� and in Section 3.3 we prove
that ��� � unit � join � satisfies the three monad laws. In this way we define the monad transformer �. Next,
in Section 3.4 we prove that ������� satisfies the aforementioned isomorphism by constructing the two
components �� and �� of the isomorphism. Finally, in Section 3.5 we define a few additional operations on
domains constructed by ����.

3.1 Functor ��

We start by defining for each domain � an endofunctor ��� � ��� � ���, and some auxiliary functions.
The domain ������� that we are trying to define is a fixed point of ���.

Definition 3.1 Let �, � and � be domains and � � � � � a continuous function. We define the following
mappings:

������ � � � ����
������ � � inl � inr Æ���� 	

Lemma 3.1 ������ Æ inr � inr Æ����

Proof Immediate from Definition 3.1. �

8



Theorem 3.1 ��� � ���� ��� is a functor.

Proof We must prove that ��� preserves identities and the composition of continuous functions.

1. Let � be a domain.

����id��
= � Definition of ��� (3.1) �

� inl � inr Æ��id�� 	
= � � is a functor �

� inl � inr Æ id���� 	
= � Composition with identity �

� inl � inr 	
= � Theorem 2.8 �

id�������

2. Let � and � be domains, � � � � � and � � � � � continuous functions.

����� Æ ��
= � Definition of ��� (3.1) �

� inl � inr Æ��� Æ �� 	
= � � is a functor �

� inl � inr Æ���� Æ���� 	
= � Theorem 2.9 �

� inl � inr Æ���� 	 Æ � inl � inr Æ���� 	
= � Definition of ��� (3.1) �
������ Æ ������ �

It is not hard to prove that the functor ��� is locally monotone and locally continuous. This result comes
easily, since monad � has these two properties and ��� is defined in terms of � , using only basic domain
operations which preserve monotonicity and continuity.

Lemma 3.2 Functor ��� � ���� ��� is locally monotone.

Proof Let � and � be domains, let �� � � � � � be continuous functions with � � �. We prove that
������ � ������. Let � � ������ � � � ����. By case analysis on �.

1. Case � � 	. Then

������ �

= � Assumption �
������ 	

= � Definition of ������ (3.1) �
� inl � inr Æ���� 	 	

= � Definition of selection �
	

= � Definition of selection �
� inl � inr Æ���� 	 	

= � Definition of ������ (3.1) �
������ 	

= � Assumption �
������ �
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2. Case � � inl  for some  � �. Then

������ �

= � Assumption �
������ �inl  �

= � Definition of ������ (3.1) �
� inl � inr Æ���� 	 �inl  �

= � Definition of selection �
inl  

= � Definition of selection �
� inl � inr Æ���� 	 �inl  �

= � Definition of ������ (3.1) �
������ �inl  �

= � Assumption �
������ �

3. Case � � inr � for some � � ����. Then

������ �

= � Assumption �
������ �inr ��

= � Definition of ������ (3.1) �
� inl � inr Æ���� 	 �inr ��

= � Definition of selection �
�inr Æ����� �

= � Composition �
inr ����� ��

� � � is locally monotone, monotonicity of inr �
inr ����� ��

= � Composition �
�inr Æ����� �

= � Definition of selection �
� inl � inr Æ���� 	 �inr ��

= � Definition of ������ (3.1) �
������ �inr ��

= � Assumption �
������ � �

Lemma 3.3 Functor ��� � ���� ��� is locally continuous.

Proof Let � and � be domains and let � � � � � be a directed subset. We need to prove that
����

�
� � �

�
������� � � � � �.

����
�

� �
= � Definition of ��� (3.1) �

� � ��
�

� �
= � � is locally continuous �

� �
�
����� � � � � �

= � Continuity of � domain operator, ����� � � � � � is directed �

10



�
� � inl � inr Æ � 	 � � � ����� � � � � � �

= � Simplification ��
� � inl � inr Æ���� 	 � � � � �

= � Definition of ��� (3.1) ��
������� � � � � � �

The two functions !� and !� are useful in the definition of �� ���. They define an embedding and a
projection between the domains � and ������.

Definition 3.2 Let � be a domain. We define the pair of functions !� � �� ������ and !� � ������ �
� to be equal to 	.

Lemma 3.4 !� Æ !� � id�
Proof Let � � �. Then

�!� Æ !�� �

= � Composition �
!� �!� ��

= � Definition of !� (3.2) �
	

= � � has only one element �
�

= � Identity �
id� � �

Lemma 3.5 !� Æ !� � id�������

Proof Let � � ������. Then

�!� Æ !�� �

= � Composition �
!� �!� ��

= � Definition of !� (3.2) �
	

� � Bottom element �
�

= � Identity �
id������� � �

We proceed by defining a mapping of objects and a mapping of functions, which will define the endofunctor
�� � ���� ��� at the end of this section. This is the key definition of our work.

Definition 3.3 Let � be a domain. The domain �� ��� is the set

�� ��� � � ������� � �� � �� �� � �
�
����� � �� � �����!�������� �

with its elements ordered pointwise:

������� ��� ��� ������� � �� � �� �� ��������� ��

11



The elements of the domain �� ��� are infinite sequences, indexed by the set of natural numbers �.
The �-th element of the sequence is an element of the domain �������. Such elements represent finite
approximations of resumption computations: if a given resumption computation terminates in less than � steps,
its �-th approximation is able to compute its result accurately; otherwise it produces 	. The condition �� �
�����!�������� states that the elements of the infinite sequence must indeed be approximations: the result of

projecting the �� � ��-th appoximation (an element of ����
�����) to an element of ������� must be equal to

the �-th approximation.
Before we can define the mapping of functions that corresponds to �� , it is necessary to define a few

families of auxiliary functions. The first is the family of functions ���� which map between different approxi-
mations of a resumption computation.

Definition 3.4 Let � be a domain. For all ��� � �, we define a function ���� � ������� � ������� by:

���� � id�������� , if � � �

������ � ���� Æ �
�
���!�� , if �  �

������ � �����!�� Æ ���� , if � � �

Lemma 3.6 For all ��� � �, ���� Æ �
�
���!�� � ������.

Proof

1. If �  �.

���� Æ �
�
���!��

= � Definition of ������ (3.4), �  � �

������

2. If � " �, by induction on �� �.

(a) Base case. If � � � � � then

���� Æ �
�
���!��

= � Assumption �
������ Æ �

���
���!��

= � Definition of ������ (3.4) �
����
���!�� Æ ���� Æ �

���
���!��

= � Definition of ���� (3.4) �
����
���!�� Æ id�������� Æ �

���
���!��

= � Composition with identity �
����
���!�� Æ ����

���!��

= � ����
�� is a functor (Theorem 3.1) �

����
���!� Æ !��

� � Lemma 3.4, ����
�� is locally monotone (Lemma 3.2) �

����
���id��

= � ����
�� is a functor (Theorem 3.1) �

id����������

= � Definition of �������� (3.4) �
��������

= � Assumption �
������

12



(b) Let us assume that it is true for � � � � # for some # " �. Then, for � � � � # � � we have

���� Æ �
�
���!��

= � Assumption �
�������� Æ �

�
���!��

= � Definition of �������� (3.4), � � # � � �

�������!�� Æ ������ Æ �
�
���!��

� � Inductive hypothesis �
�������!�� Æ ��������

= � Definition of ���������� (3.4), � � # � � � � �

����������

= � Assumption �
������ �

Lemma 3.7 For all ������� � �� ��� and for all ��� � �, ���� �� � ��.

Proof

1. If � � � then

���� ��
= � Assumption �

���� ��

= � Definition of ���� (3.4) �
id�������� ��

= � Identity �
��

= � Assumption �
��

2. If � $ �, by induction on ���. Let us assume that it is true for � � � � # for some # � �. Then for
� � � � # � � we have

���� ��
= � Assumption �

�������� ������

= � Definition of �������� (3.4), �  � � # �

������� Æ �
���
�� �!��� ������

= � Composition �
������ �����

�� �!�� �������
= � ������� � �� ��� (Definition 3.3) �

������ ����

� � Inductive hypothesis �
��

3. If � " �, by induction on �� �. Let us assume that it is true for � � � � # for some # � �. Then for
� � � � # � � we have

���� ��
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= � Assumption �
�������� ��

= � Definition of �������� (3.4), � � # � � �

��������!�� Æ ������� ��
= � Composition �
�������!�� ������� ���

� � Inductive hypothesis, monotonicity �
�������!�� ����

= � ������� � �� ��� (Definition 3.3) �
�������!�� ��������!�� �������

= � Composition �
��������!�� Æ �������!�� ������

= � ������ is a functor (Theorem 3.1) �

�������!� Æ !� ������

� � Lemma 3.5, ������ is locally monotone (Lemma 3.2) �
id������� ������

= � Identity �
������

= � Assumption �
�� �

The families of ��� and �
�
� functions are also related with mappings between resumption computations and

their approximations. The former embeds an approximation requiring less than � steps to an element of the
domain �� ���, while the latter projects an element of the domain �� ��� to its �-th approximation.

Definition 3.5 Let � be a domain, � � �, � � ������� and ������� � �� ���. We define the pair of
functions ��� � ������� � �� ��� and �

�
� � �� ��� � ������� as follows:

��� � � ����� �����
�
�
� ������� � ��

We are now ready to define the mapping of functions required by the functor �� . Instead of defining this
mapping directly in terms of elements of the resumption domain �� ���, we use the family of functions %

	

�

and define it in terms of the finite approximations.

Definition 3.6 Let � and � be domains and � � � � � a continuous function. For all � � � we define a
continuous function %

	

� � � ���	��� � ���
��� by:

%
	

� � � 	

%
	

��� � � � inl Æ �� inr Æ��%	
� �� 	

Definition 3.7 Let � and � be domains and � � � � � a continuous function. We define a continuous
function �� ��� � �� ��� � �� ��� by:

�� ��� ������� � �%	
� � ������

The central result of this section is Theorem 3.2 in which we prove that �� is a functor. For doing so, we
make use of the following lemmata.

14



Lemma 3.8 For all � � �, ��� Æ �
�
���!�� � �����.

Proof Let � � ����
�����. Then

���� Æ �
�
���!��� �

= � Composition �
��� ������!�� ��

= � Definition of ��� (3.5) �
����� ������!�� ������

= � Composition �
������ Æ �

�
���!��� �����

� � Lemma 3.6 �
������� �����

= � Definition of ����� (3.5) �
����� � �

Lemma 3.9 Let � and � be domains, � � � � � a continuous function. Then for all � � �,

%
	

��� � Æ inr � inr Æ��%	
� ��

Proof Immediate from Definition 3.6. �

Lemma 3.10 For all � � �� ���, ���� ����� � �.

Proof Let us assume that � � ������� . Then

���� �����
= � Assumption �

���� �����������
= � Definition of �

�
� (3.5) �

�������
= � Assumption �

� �

Lemma 3.11 For all ��� � �, �
�
� Æ ��� � ����.

Proof Let ������� � �� ���. Then

���� Æ ���� �������
= � Composition �

�
�
� ���� ��������

= � Definition of ��� (3.5) �
�
�
� ������ ������������

= � Definition of �
�
� (3.5) �

���� ������� �

Lemma 3.12 For all � � �, �
�
� Æ ��� � id��������.

Proof Directly from Lemma 3.11. �
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Lemma 3.13 For all � � �, ��� Æ �
�
� � id�� ���.

Proof Let ������� � �� ���. Then

���� Æ �
�
�� �������

= � Composition �
��� ���� ��������

= � Definition of �
�
� (3.5) �

��� ��
= � Definition of ��� (3.5) �

����� ������
� � Lemma 3.7, definition of ��� ��� (3.3) �

�������
= � Identity �

id�� ��� ������� �

Lemma 3.14 Let � and � be domains, � � � � � a continuous function. Then for all � � �,

�
�
� Æ�� ��� � %

	

� � Æ �

�
�

Proof Let ������� � �� ���. Then

���� Æ�� ���� �������
= � Composition �

�
�
� ��� ��� ��������

= � Definition of�� (3.7) �
�
�
� �%	
� � ������

= � Definition of �
�
� (3.5) �

%
	

� � ��

= � Definition of �
�
� (3.5) �

%
	

� � ���� ��������

= � Composition �
�%	
� � Æ �

�
�� ������� �

Lemma 3.15 Let � be a domain. Then for all � � �, %
		
� id	 � id��������.

Proof By induction on �. If � � � then %
		
� id	 � 	 � id��������. Let us assume that it is true for some

� � �. Then

%
		
��� id	

= � Definition of % (3.6) �
� inl Æ id	� inr Æ��%		� id	� 	

= � Induction hypothesis �
� inl Æ id	� inr Æ��id��������� 	

= � � is a functor �
� inl Æ id	� inr Æ id����������� 	

= � Composition with identity �
� inl � inr 	

= � Theorem 2.8 �
id���������� �
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Lemma 3.16 Let �, � and � be domains, � � � � � and � � � � � continuous functions. Then for all
� � �, %

	�
� �� Æ �� � %


�
� � Æ %

	

� � .

Proof By induction on �. If � � � then %
	�
� �� Æ �� � 	 � 	 Æ	 � %


�
� � Æ %

	

� � . Let us assume that

it is true for some � � �. Then

%
	�
��� �� Æ ��

= � Definition of % (3.6) �
� inl Æ � Æ �� inr Æ��%	�� �� Æ ��� 	

= � Induction hypothesis �
� inl Æ � Æ �� inr Æ��%
�� � Æ %

	

� �� 	

= � � is a functor �
� inl Æ � Æ �� inr Æ��%
�� �� Æ��%	
� ��� 	

= � Theorem 2.9 �
� inl Æ �� inr Æ��%
�� �� 	 Æ � inl Æ �� inr Æ��%	
� �� 	

= � Definition of % (3.6) �
%

�
��� � Æ %

	

��� � �

We can now proceed with the proof of Theorem 3.2.

Theorem 3.2 �� � ���� ��� is a functor.

Proof We must prove that �� preserves identities and the composition of continuous functions.

1. Let � be a domain and ������� � �� ���.

�� �id�� �������
= � Definition of �� (3.7) �

�%��� id� ������
= � Lemma 3.15 �

�id�������� ������
= � Identity function �

�������
= � Identity function �

id�� ��� �������

2. Let � and � be domains, � � � � � and � � � � � continuous functions and ������� � �� ���.

�� �� Æ �� �������
= � Definition of �� (3.7) �

�%	�� �� Æ �� ������
= � Lemma 3.16 �

��%
�� � Æ %
	

� �� ������

= � Composition �
�%
�� � �%	
� � �������

= � Definition of �� (3.7) �
�� ��� �%	
� � ������

= � Definition of �� (3.7) �
�� ��� ��� ��� ��������

= � Composition �
��� ��� Æ�� ���� ������� �
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3.2 Unit and join

Having defined �� as a functor, we now define the two monad operations unit and join . For each one, we
prove that it is a natural transformation.

The unit function maps an element & � � to a resumption computation, using the family of auxiliary
functions �. All approximations in the resumption computation are equal to inl & (except for the trivial ap-
proximation of zero steps).

Definition 3.8 Let � be a domain. For all � � � we define a continuous function ��� � � � ������� by:

��� � 	
����� � inl

Definition 3.9 Let � be a domain and & � �. We define the function unit� � � � �� ��� by:

unit� & � ���� &����

The following lemma is useful in proving that unit is a natural transformation.

Lemma 3.17 Let � and � be domains, � � � � � a continuous function. Then, for all � � �,

%
	

� � Æ �	� � �
� Æ �

Proof By induction on �. If � � � then %
	

� � Æ �	� � 	 Æ 	 � 	 � 	 Æ � � �
� Æ � . Let us assume that

it is true for some � � �. Then

%
	

��� � Æ �	���

= � Definitions of % (3.6) and � (3.8) �
� inl Æ �� inr Æ��%	
� � 	 Æ inl

= � Theorem 2.7 �
inl Æ �

= � Definition of � (3.8) �
�
� Æ � �

Theorem 3.3 unit � Id ���� is a natural transformation.

Proof Let � and � be domains and � � � � � a continuous function. We must show that unit
 Æ � �
�� ��� Æ unit	. Let 	 � �.

�unit
 Æ �� 	

= � Composition �
unit
 �� 	�

= � Definition of unit (3.9) �
���� �� 	�����

= � Composition �
����� Æ �� 	����

= � Lemma 3.17 �
��%	
� Æ �	� � 	����

= � Composition �
�%	
� ��	� 	�����

= � Definition of�� (3.7) �
�� ��� ��	� 	����

= � Definition of unit (3.9) �
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�� ��� �unit	 	�
= � Composition �

��� ��� Æ unit	� 	 �

The definition of the join function requires the family of functions ' which associates corresponding ap-
proximations in the domains �� ��� and �.

Definition 3.10 Let � be a domain. For all � � � we define a continuous function '�� � ��
��� ������ �

������� by:

'�� � 	
'����� � ������� inr Æ��'�� � 	

Definition 3.11 Let � be a domain and ������� � ��
� ���. We define the function join� � ��

� ��� �
�� ��� by:

join� ������� � �'�� ������

For proving that join is a natural transformation, we need the following lemmata.

Lemma 3.18 Let � be a domain. Then for all � � �, '���� Æ inr � inr Æ��'�� �.

Proof Immediate from Definition 3.10. �

Lemma 3.19 Let � and � be domains, � � � � � a continuous function. Then for all � � �,

'
� Æ %
�� �	��� �
�
� ��� ���� � %

	

� � Æ '	�

Proof By induction on �. If � � � then '
� Æ %
���	��� �
�
� ��� ���� � 	 Æ 	 � %

	

� � Æ '	� . Let us

assume that it is true for some � � �. Then

'
��� Æ %
�� �	��� �
�
��� ��� ����

= � Definitions of ' (3.10) and % (3.6) �

������� inr Æ��'
� � 	 Æ � inl Æ�� ���� inr Æ��%
�� �	��� �
�
� ��� ����� 	

= � Theorem 2.9 �
������ Æ�� ���� inr Æ��'
� � Æ��%

�� �	��� �
�
� ��� ����� 	

= � � is a functor �

������ Æ�� ���� inr Æ��'
� Æ %
�� �	��� �
�
� ��� ����� 	

= � Induction hypothesis �
������ Æ�� ���� inr Æ��%	
� � Æ '	� � 	

= � � is a functor �
������ Æ�� ���� inr Æ��%	
� �� Æ��'	� � 	

= � Lemma 3.9 �
������ Æ�� ���� %	
��� � Æ inr Æ��'	� � 	

= � Lemma 3.14 �
� %	
��� � Æ �

�
���� %

	

��� � Æ inr Æ��'	� � 	

= � Theorem 2.10, %	
��� � is strict [!!!] �
%
	

��� � Æ ������� inr Æ��'	� � 	

= � Definition of ' (3.10) �
%
	

��� � Æ '	��� �
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Theorem 3.4 join � ��
� ���� is a natural transformation.

Proof Let � and � be domains and � � � � � a continuous function. We must show that join
 Æ
�� ��� ���� � �� ��� Æ join	. Let ������� � ��

� ���.

�join
 Æ�� ��� ����� �������
= � Composition �

join
 ��� ��� ���� ��������
= � Definition of�� (3.7) �

join
 �%
�� �	��� �
�
� ��� ���� ������

= � Definition of join (3.11) �

�'
� �%
�� �	��� �
�
� ��� ���� �������

= � Composition �

��'
� Æ %
���	��� �
�
� ��� ����� ������

= � Lemma 3.19 �
��%	
� � Æ '	� � ������

= � Composition �
�%	
� � �'	� �������

= � Definition of�� ��� (3.7) �
�� ��� �'	� ������

= � Definition of join (3.11) �
�� ��� �join	 ��������

= � Composition �
��� ��� Æ join	� ������� �

3.3 Monad ����

In this section we prove that functor �� together with the natural transformations unit and join defines a
monad. The three theorems of this section verify the three monad laws and the following lemmata are necessary
for proving them. Let � be a domain.

Lemma 3.20 For all � � �, '�� Æ �
�� ���
� � �

�
�.

Proof By a degenerate induction on �. If � � � then '�� Æ �
�� ���
� � 	 Æ 	 � 	 � �

�
�. Also

'���� Æ �
�� ���
���

= � Definition of ' (3.10) �

������� inr Æ��'�� � 	 Æ �
�� ���
���

= � Definition of � (3.8) �
������� inr Æ��'�� � 	 Æ inl

= � Theorem 2.7 �
�
�
��� �

Lemma 3.21 For all � � �, �
�
��� Æ unit� � inl .

Proof Let & � �. Then

������ Æ unit�� &

= � Composition �
�
�
��� �unit� &�
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= � Definition of unit (3.9) �
�
�
��� ���� &����

= � Definition of �
�
��� (3.5) �

����� &

= � Definition of � (3.8) �
inl & �

Lemma 3.22 For all � � �, '�� Æ %
������
� unit� � id��������.

Proof By induction on �. If � � � then '�� Æ%
������
� unit� � 	Æ	 � 	 � id��������. Let us assume

that it is true for some � � �. Then

'���� Æ %
������
��� unit�

= � Definitions of % (3.6) and ' (3.10) �

������� inr Æ��'�� � 	 Æ � inl Æ unit�� inr Æ��%
��� ���
� unit�� 	

= � Theorem 2.9 �
������ Æ unit�� inr Æ��'�� � Æ��%

��� ���
� unit�� 	

= � � is functor �

������ Æ unit�� inr Æ��'�� Æ %
������
� unit�� 	

= � Induction hypothesis �
������ Æ unit�� inr Æ��id��������� 	

= � � is functor �
������ Æ unit�� inr Æ id����������� 	

= � Composition with identity �
������ Æ unit�� inr 	

= � Lemma 3.21 �
� inl � inr 	

= � Theorem 2.8 �
id���������� �

Lemma 3.23 For all � � �, �
�
� Æ join� � '�� Æ �

�
�.

Proof Let ������� � ��
� ���. Then

���� Æ join�� �������
= � Composition �

�
�
� �join� ��������

= � Definition of join (3.11) �
�
�
� �'�� ������

= � Definition of �
�
� (3.5) �

'�� ��
= � Definition of �

�
� (3.5) �

'�� ������������
= � Composition �

�'�� Æ �
�
�� ������� �
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Lemma 3.24 For all & � �, '�� Æ %
��
� ����� ���

� join� � '�� Æ '
�� ���
� .

Proof By induction on �. If � � � then '�� Æ %
��
������ ���

� join� � 	 Æ 	 � '�� Æ '
�� ���
� . Let us

assume that it is true for some � � �. Then

'���� Æ %
��
� ����� ���

��� join�

= � Definitions of ' (3.10) and % (3.6) �

������� inr Æ��'�� � 	 Æ � inl Æ join�� inr Æ��%
��
� ����� ���

� join�� 	
= � Theorem 2.9 �

������ Æ join�� inr Æ��'�� � Æ��%
��
� ����� ���

� join�� 	
= � � is functor �

������ Æ join�� inr Æ��'�� Æ %
��
������ ���

� join�� 	
= � Inductive hypothesis �

������ Æ join�� inr Æ��'�� Æ '
�� ���
� � 	

= � � is functor �
������ Æ join�� inr Æ��'�� � Æ��'

�� ���
� � 	

= � Lemma 3.18 �

������ Æ join�� '���� Æ inr Æ��'
�� ���
� � 	

= � Lemma 3.23 �

� '���� Æ �
�
���� '

�
��� Æ inr Æ��'

�� ���
� � 	

= � Theorem 2.10, '���� is strict [!!!] �

'���� Æ ������� inr Æ��'
�� ���
� � 	

= � Definition of ' (3.10) �

'���� Æ '
�� ���
��� �

We can now proceed by proving the three monad laws.

Theorem 3.5 (1st Monad Law) join� Æ unit�� ��� � id�� ���

Proof Let ������� � �� ���. Then

�join� Æ unit�� ���� �������
= � Composition �

join� �unit�� ��� ��������
= � Definition of unit (3.9) �

join� ��
�� ���
� �����������

= � Definition of join (3.11) �
�'�� ��

�� ���
� ������������

= � Composition �

��'�� Æ �
�� ���
� � �����������

= � Lemma 3.20 �
���� �����������

= � Definition of �
�
� (3.5) �

�������
= � Identity �

id�� ��� ������� �
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Theorem 3.6 (2nd Monad Law) join� Æ�� �unit�� � id�� ���

Proof Let ������� � �� ���. Then

�join� Æ�� �unit��� �������
= � Composition �

join� ��� �unit�� ��������
= � Definition of�� (3.7) �

join� �%
������
� unit� ������

= � Definition of join (3.11) �

�'�� �%
��� ���
� unit� �������

= � Composition �

��'�� Æ %
������
� unit�� ������

= � Lemma 3.22 �
�id�������� ������

= � Identity �
�������

= � Identity �
id�� ��� ������� �

Theorem 3.7 (3rd Monad Law) join� Æ�� �join�� � join� Æ join�� ���

Proof Let ������� � ��
� ���. Then

�join� Æ�� �join��� �������
= � Composition �

join� ��� �join�� ��������
= � Definition of�� (3.7) �

join� �%
��
� ����� ���

� join� ������
= � Definition of join (3.11) �

�'�� �%
��
� ����� ���

� join� �������
= � Composition �

��'�� Æ %
��
� ����� ���

� join�� ������
= � Lemma 3.24 �

��'�� Æ '
�� ���
� � ������

= � Composition �

�'�� �'
�� ���
� �������

= � Definition of join (3.11) �

join� �'
�� ���
� ������

= � Definition of join (3.11) �
join� �join�� ��� ��������

= � Composition �
�join� Æ join�� ���� ������� �

Having established that �� satisfies the three monad laws, we can now conclude the definition of the
resumption monad transformer �.

Definition 3.12 The resumption monad transformer � is defined by the mapping ���� � �� .
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3.4 Isomorphism

Let � be a domain. In this section, we define the pair of functions �� and �� that establish the isomorphism
between domains�� ��� and ������ ����. Using these functions, it is possible to define an operation in
one of these two domains and obtain the corresponding operation on the other domain by applying �� and ��

appropriately.
The definition of the embedding function �� is straightforward. We make use of a family of auxiliary

functions (, which construct the necessary approximations.

Definition 3.13 For all � � � we define a function (�� � ������ ���� � ������� by:

(�� � 	
(���� � � inl � inr Æ������ 	

Definition 3.14 Let � � ������ ����. We define the function �� � ������ ���� � �� ��� by:

�� � � �(�� �����

On the other hand, the definition of the projection function �� is more complicated. It first requires the
definition of an additional domain �� ��� whose elements are infinite sequences of computations yielding
approximations (we will call them approximate computations for short). We also find it helpful to define a
family of auxiliary functions ) for associating elements of ����� with approximations in �� ���.

Definition 3.15 The domain �� ��� is the set

����� � � ������� � �� � �� �� � ���������� � �� � �������!��������� �

with its elements ordered pointwise:

������� ��� ��� ������� � �� � �� �� ������������ ��

Definition 3.16 Let ������� � �� ���. For all � � �, we define a function )�� � ����� � ������� by:

)�� ������� � 	
)���� ������� � inr ��

Furthermore, the definition of �� requires the proof of Lemma 3.25, which states that elements of�� ���
come in three distinct forms. This lemma is crucial in the definition of �� and in the proofs of several theorems
that follow.

Lemma 3.25 Let ������� � �� ���. Then exactly one of the following is true:

1. For all � � �, �� � 	.
2. There exists a  � � such that for all � � �, �� � ���  .
3. There exists a ������� � ����� such that for all � � �, �� � )�� ������� .

Proof It is obvious that the three alternatives are mutually exclusive, so it suffices to show that one of them
is true. We know that �� � �

�
����� � �, and therefore �� � 	. Also, �� � ������ � � � ����. If

� " �, we notice that

��
= � Definition of�� ��� (3.3) �
�����!��������
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= � Composition �
�����������!���������

= � Definition of ��� (3.1) �
� inl � inr Æ���������!��� 	 ����

We proceed by case analysis on ��.

1. Case �� � 	. We will show that the first alternative is true, i.e. for all � � �, �� � 	. We already know
it for � � � and � � �. Let us assume that it is true for some � " �. Then, from the previous remark
we obtain 	 � � inl � inr Æ ���������!��� 	 ����. If ���� � inl & for some & � �, then we obtain
	 � inl & which is a contradiction. Similarly, if ���� � inr � for some � � ����������, then we

obtain 	 � inr ����������!��� ��. It follows that ���� � 	.

2. Case �� � inl  for some  � �. We will show that the second alternative is true, i.e. for all � � �,
�� � ���  . For � � �, we know that �� � 	 � ���  . Also for � � �, we know that �� �
inl  � ���  . Let us assume that it is true for some � " �. Then, from the previous remark we
obtain inl  � � inl � inr Æ ���������!��� 	 ����. If ���� � 	, then we obtain inl  � 	 which is
a contradiction. Similarly, if ���� � inr � for some � � ����������, then we obtain inl  �

inr ����������!��� ��. Finally, if ���� � inl  � for some  � � �, then we obtain inl  � inl  �.
Therefore  � �  and ���� � inl  .

3. Case �� � inr � for some � � ����. We will show that the third alternative is true by constructing a
������� � ����� such that for all � � �, �� � )�� ������� . For � � �, we know that �� � inr �.
Let us take �� � �. Furthermore, let us assume that for some � " � we have �� � inr ����. Then,
from the previous remark we obtain inr ���� � � inl � inr Æ���������!��� 	 ����. If ���� � 	, then
we obtain inr ���� � 	 which is a contradiction. Similarly, if ���� � inl & for some & � �, then
we obtain inr ���� � inl &. Finally, if ���� � inr �� for some �� � ����������, then we obtain

inr ���� � inr ����������!��� ��� and therefore ���� � ���������!��� ��. It suffices therefore to

take �� � �� and by definition we obtain that ���� � inr �� and ���� � ���������!��� ��. In this way

we can construct a ������� � �� ��� such that for all � " �, �� � inr ���� � )�� ������� . And
obviously, for � � � we know that �� � 	 � )�� ������� . �

We can now proceed with the definition of ��, based on the three cases of Lemma 3.25. For the first two
cases, the definition is easy. In the third case, each approximate computation �� is mapped to a computation
������ �� � ���� ���� and the least upper bound of this infinite series of computations is taken.

Definition 3.17 We define the function �� � �� ��� � ������ ���� by case analysis on its argument
������� based on Lemma 3.25:

1. If for all � � �, �� � 	, then

�� ������� � 	

2. If there exists a  � � such that for all � � �, �� � ���  , then

�� ������� � inl  

3. If there exists a ������� � ����� such that for all � � �, �� � )�� ������� , then

�� ������� � inr

��
���

������ ��

	

In order to ensure that the least upper bound in the third case of the previous definition exists, we prove
Lemma 3.26 which states that ������ �� form an �-chain.
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Lemma 3.26 Let ������� � �����. For all � � �, ������ �� � �������� ����.

Proof We have:

������ ��
= � Definition of�� ��� (3.15) �

������ ��������!��� �����
= � Composition �

������� Æ�������!���� ����

= � � is a functor �
����� Æ �

�
���!��� ����

= � Lemma 3.8, � is locally monotone �
�������� ���� �

The following lemmata are necessary for proving the central theorems of this section.

Lemma 3.27 For all  � �, for all � � �, (�� �inl  � � ���  .

Proof By a degenerate induction on �. If � � � then (�� �inl  � � 	 �inl  � � 	 � 	  � ���  . Also

(���� �inl  �
= � Definition of ( (3.13) �

� inl � inr Æ������ 	 �inl  �
= � Definition of selection �

inl  

= � Definition of � (3.8) �
�����  �

Lemma 3.28 For all � � ���� ����, for all � � �, (�� �inr �� � )�� ������� ����� .

Proof By a degenerate induction on �. If � � � then (�� �inr �� � 	 �inr �� � 	 � 	 ������� ����� �
)�� ������� ����� . Also

(���� �inr ��
= � Definition of ( (3.13) �

� inl � inr Æ������ 	 �inr ��
= � Definition of selection �

�inr Æ������� �

= � Composition �
inr ������� ��

= � Definition of ) (3.16) �
)���� ������� ����� �

Lemma 3.29
�
���

��� Æ ��� � id�� ���

Proof We must first show that for all � � �, ��� Æ �
�
� � id�� ���. This follows immediately from

Lemma 3.13. Then we must show that for all � � �� ��� � �� ���, if for all � � �, ��� Æ �
�
� � �

then id�� ��� � � . Let ������� � �� ���. We have

id�� ��� �������
= � Identity �

�������
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= � Identity �
�id�������� ������

= � Lemma 3.12 �
����� Æ ���� ������

= � Composition �
���� ���� �������

= � Definition of �
�
� (3.5) �

���� ���� ���� �������������
= � Composition �

����� Æ ��� Æ �
�
�� �����������

� � Assumption, monotonicity, definition of�� ��� (3.3) �
����� Æ �� �����������

= � Composition �
���� �� ������������

= � Lemma 3.10 �
� ������� �

Lemma 3.30 For all � � ���� ����,
�
���

����� Æ ���� � � �.

Proof�
���

����� Æ ���� �

= � Theorem 2.5 ���
���

����� Æ ����

	
�

= � � is locally continuous �

�

��
���

��� Æ ����

	
�

= � Lemma 3.29 �
��id�� ���� �

= � � is a functor �
id���� ���� �

= � Identity �
� �

Lemma 3.31 Let ������� � �� ���. For all � � �,
�
���

������� �� � ��.

Proof We must first show that for all � � �, ������� �� � ��.

1. If � � � then

������� ��
= � Assumption �

������� ��

= � Definition of ���� (3.4) �
��id��������� ��
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= � � is a functor �
id����������� ��

= � Identity �
��

= � Assumption �
��

2. If � $ �, by induction on ���. Let us assume that it is true for � � � � # for some # � �. Then for
� � � � # � � we have

������� ��
= � Assumption �

����������� ������

= � Definition of �������� (3.4), �  � � # �

�������� Æ �
���
�� �!��� ������

= � � is a functor �
���������� Æ������

�� �!���� ������

= � Composition �
��������� �������

�� �!��� �������
= � ������� � �� ��� �

��������� ����

= � Inductive hypothesis �
��

3. If � " �, by induction on �� �. Let us assume that it is true for � � � � # for some # � �. Then for
� � � � # � � we have

������� ��
= � Assumption �

����������� ��

= � Definition of �������� (3.4), � � # � � �

���������!�� Æ ������� ��
= � � is a functor �

����������!��� Æ���������� ��
= � Composition �

���������!��� ���������� ���
� � Inductive hypothesis, monotonicity �

���������!��� ����
= � ������� � �� ��� �

���������!��� ���������!��� �������
= � Composition �

����������!��� Æ��������!���� ������

= � � is a functor �
���������!�� Æ ������!��� ������

= � ������ is a functor (Theorem 3.1) �

���������!� Æ !��� ������

� � Lemma 3.5, � , ������ are locally monotone �

���������id��������� ������

28



= � ������ is a functor (Theorem 3.1) �
��id

������
���

���� ������

= � � is a functor �
id

����������� ���� ������

= � Identity �
������

= � Assumption �
�� �

At this point, we can proceed to Theorem 3.8 and Theorem 3.9, our central results in this section. These
two theorems conclude that functions �� and �� define indeed an isomorphism between the domains �� ���
and � � ���� ����.

Theorem 3.8 �� Æ �� � id������� ����

Proof Let � � ������ ���� � � � ���� ����. By case analysis on �.

1. Case � � 	. Then

��� Æ ��� �

= � Assumption �
��� Æ ��� 	

= � Composition �
�� ��� 	�

= � Definition of �� (3.14) �
�� �	����

= � Definition of �� (3.17) �
	

= � Assumption �
�

2. Case � � inl  for some  � �. Then

��� Æ ��� �

= � Assumption �
��� Æ ��� �inl  �

= � Composition �
�� ��� �inl  ��

= � Definition of �� (3.14) �
�� �(�� �inl  �����

= � Lemma 3.27 �
�� ����  ����

= � Definition of �� (3.17) �
inl  

= � Assumption �
�

3. Case � � inr � for some � � ���� ����. Then

��� Æ ��� �
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= � Assumption �
��� Æ ��� �inr ��

= � Composition �
�� ��� �inr ���

= � Definition of �� (3.14) �
�� �(�� �inr ������

= � Lemma 3.28 �
�� �)�� ������� ���������

= � Definition of �� (3.17) �

inr

��
���

������ ������� ��

	

= � Composition �

inr

��
���

������� Æ������� �

	

= � � is a functor �

inr

��
���

����� Æ ���� �

	

= � Lemma 3.30 �
inr �

= � Assumption �
� �

Theorem 3.9 �� Æ �� � id�� ���

Proof Let ������� � �� ���. By case analysis on ������� based on Lemma 3.25:

1. If for all � � �, �� � 	, then

��� Æ ��� �������
= � Assumption �

��� Æ ��� �	����
= � Composition �

�� ��� �	�����
= � Definition of �� (3.17) �

�� 	
= � Definition of �� (3.14) �

�(�� 	����
= � Definition of ( (3.13) �

�	����
= � Assumption �

�������
= � Identity �

id�� ��� �������

2. If there exists a  � � such that for all � � �, �� � ���  , then

��� Æ ��� �������
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= � Assumption �
��� Æ ��� ����  ����

= � Composition �
�� ��� ����  �����

= � Definition of �� (3.17) �
�� �inl  �

= � Definition of �� (3.14) �
�(�� �inl  �����

= � Lemma 3.27 �
����  ����

= � Assumption �
�������

= � Identity �
id�� ��� �������

3. If there exists a ������� � ����� such that for all � � �, �� � )�� ������� , then

��� Æ ��� �������
= � Assumption �

��� Æ ��� �)�� �����������
= � Composition �

�� ��� �)�� ������������
= � Definition of �� (3.17) �

��

�
inr

��
���

������ ��

		

= � Definition of �� (3.14) ��
(��

�
inr

��
���

������ ��

			
���

= � Lemma 3.28 �

�)��

�
������

� �
����

������� ���

		
���

�

���

= � ������ is continuous �

�)��

� �
����

������ �������� ����

	
���

�

���
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= � Lemma 3.31 �
�)�� �����������

= � Assumption �
�������

= � Identity �
id�� ��� ������� �

3.5 Additional operations

In this section we define two functions, step and run , which convert a non interleaved computation of type
���� to an interleaved computation of type ������� and vice-versa. The names of these functions indicate
their behaviour. The first converts a whole computation to a single atomic step in an interleaved computation.
The second runs the whole sequence of atomic steps of an interleaved computation without allowing other
computations to intervene.

In the rest of this section, we assume that ����� �� is a monad and that � is a domain.

Definition 3.18 step� � ���� � ������� is the continuous function defined by:

step� � �� Æ inr Æ���� Æ inl�

Definition 3.19 run� � ������� � ���� is the continuous function defined by:

run� � fix �� �� � ��� �� Æ���� 	 Æ ���

The following theorem states that the composition of run and step , in this order, yields identity. The
reverse composition does not yield identity, since it forces an interleaved computation to be executed in one
atomic step (it will be used in Section 4 for defining the semantics of ���).

Theorem 3.10 run� Æ step� � id����

Proof

run� Æ step�
= � Unfolding fix in the definition of run� (3.19) �

� ��� �� Æ��run�� 	 Æ �� Æ step�
= � Definition of step� (3.18) �

� ��� �� Æ��run�� 	 Æ �� Æ �� Æ inr Æ���� Æ inl�
= � Theorem 3.8 �

� ��� �� Æ��run�� 	 Æ id������� ���� Æ inr Æ���� Æ inl�
= � Composition with identity �

� ��� �� Æ��run�� 	 Æ inr Æ���� Æ inl�
= � Theorem 2.7 �

�� Æ��run�� Æ���� Æ inl�
= � � is a functor �

�� Æ��run� Æ �� Æ inl�
= � Unfolding fix in the definition of run� (3.19) �

�� Æ��� ��� �� Æ��run�� 	 Æ �� Æ �� Æ inl�
= � Theorem 3.8 �

�� Æ��� ��� �� Æ��run�� 	 Æ id������� ���� Æ inl�
= � Composition with identity �
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�� Æ��� ��� �� Æ��run�� 	 Æ inl�
= � Theorem 2.7 �

�� Æ�����
= � � is a monad, 2nd Monad Law �

id���� �

Function prom , which lifts a computation of type ������� to a computation of type ����������, is
useful in the rest of this section where we establish that ������� can be defined as a multi-monad and a
strong-monad. These two properties of ������� will also be used in Section 4.

Definition 3.20 prom� � ������� � ���������� is the continuous function defined by:

prom� � � ��� ��� Æ inl � id���� ���� 	 Æ ��

Let us now assume that � is a multi-monad and that �� is a non-deterministic option operator for com-
putations represented by monad � . It is easy to extend this behaviour to the monad ����.

Definition 3.21 Let � be a multi-monad. Let � be a domain. We define the binary operation ����� �
������� � ������� � ������� by:

� ����� � � �� �inr �prom � �� prom ���

Monad ���� with ����� is a multi-monad.

Furthermore, we can introduce a way to create a new interleaved computation of type ��������� given
two existing computations of types ������� and �������. Here we prefer to use monads � and ����
in the functional way. If one of the two computations does not require the execution of any atomic step, i.e.
if one of the two computations has already been completed, then the other computation is executed and the
two results are combined. Otherwise, if both computations require at least one atomic step, we choose non-
deterministically which computation will start executing.

Definition 3.22 Let � be a multi-monad. Let � and � be domains. We define the binary operation ������ �
������� � ������� � ��������� by:

������ � fix �� �� � ��� ���

�� ��� � ����� �� ��� unit���� ���� ����� ����

�� ��� � ����� �� ��� unit���� ���� ����� ����

�� �inr ��� �� ����� unit� �� ���� ���� ��
�� �� �� ��� unit� �� ��� ������� 	 ��� �� 	 ��� ���

Monad ���� with ������ is a strong monad.

4 Semantics of concurrency

Consider the simple imperative language whose abstract syntax is given below.

� ��� skip � � := � � � ; � � if � then � else � � while � do �

It features an empty statement, assignment, sequential composition of statements, a structure for conditional
and one more for while loops. The symbol � � ��	 represents a variable. The language of expressions * is not
important for the purpose of this paper and has therefore been omitted.

33



We define the denotational semantics of this language, assuming that the values of expressions are elements
of the semantic domain �. The program state, mapping variables to their current values, is an element of the
domain � � ��	� �.

As a provision for what will follow, we define a monad transformer � implementing the direct semantics
approach.4 If � is a monad, we define the monad ���� as:

������� � �� ��� � ��
unit���� � � � +� unit� ��� +�

� ����� � � � +� � + �� �� ��� +��� � � +��

State computations created by the direct semantics monad transformer are functions (elements of �������)
that take the initial program state (an element of �) and return a stateless computation that yields the computed
value (an element of �) and the final program state (an element of �). The implementations of unit���� and
����� carry out the propagation of the program state.

We also define an operation for the assignment of values to variables.5

store� � ��	� �� �������
store� � � � � +� unit� �u� +�� �� ���

By taking the identity monad �� as the argument of �, we obtain the monad 	 that models our simple
notion of computation (ordinary direct semantics).

	 � �����

The meaning of a statement + is a computation ��+ 		 of type 	���. Non-termination is represented by the
bottom element. We also assume that the meaning of an expression * is a computation ��* 		 of type 	���. The
semantic function for the statements of our simple imperative language is completely straightforward.

��skip 		 � unit u
��� := � 		 � ��* 		 � �store ��
���� ; �� 		 � ���� 		 � ��,� ���� 		�
�� if � then �� else �� 		 � ��* 		 � �� 
� 
� 
 ��� ���� 		 ���� ���� 		�
��while � do � 		 � fix �� �� ��* 		 � �� 
� 
� 
 ��� ��� 		 � ��,� �� ���� unit u��

Let us now introduce non-determinism and concurrency in our language, by extending it with three new
constructs.

� ��� . . . � � � � � � � � � ���

Operator � executes exactly one of the statements that are given as its operands. The selection is non-
deterministic. On the other hand, operator � executes both statements that are given as its operands in an
interleaved way. Finally, the construct ��� executes the statement + in a single atomic step, with no interleaving
permitted during its execution.

Before we proceed with the semantics of our extended language, we have to modify the definition of 	.
By giving the powerdomain monad � as the argument of �, we obtain a multi-monad that can support non-
determinism.

	 � ����

4This is the state monad transformer, as defined in [Lian95, Lian98].
5If � and � are domains, � � � � �, � � � and � � �, we use the notation ��� �� �� to denote a function �� � � � � such

that � ���� � � and, for all � �� �, � ���� � ����.
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x:=0

�

��x �� ��

x:=2x:=1

��x �� �� ��x �� ��

x:=1x:=2

x:=0

�

��x �� ��

x:=2x:=1

��x �� �� ��x �� ��

��x �� �� ��x �� ��

x:=0

�

��x �� ��

y:=0

��x �� ���y �� ��

x:=x+1 y:=1

��x �� ���y �� ��

��x �� ���y �� ����x �� ���y �� ��

x:=x+1 y:=1

��x �� ���y �� ��� � �

x:=x+1 y:=1

��x �� ���y �� ��

(a) (b) (c)

(a) x:=0; (x:=1 � x:=2)
(b) x:=0; (x:=1 � x:=2)
(c) x:=0; y:=0; while y=0 do (x:=x+1 � y:=1)

Figure 1: Three examples of interleaved computations.

The option operator �� is defined as:

�� �� �� � � +� ��� +� 

�
��� +�

where 

� is the union operation on powerdomains.

In the semantics of the extended language, we use the monad ��	� to model interleaved computations.
According to Definition 3.21, ��	� is a multi-monad equiped with a non-deterministic option operator ����� .
Also, according to Definition 3.22, ��	� is a strong monad and operator ������ can be used to model the
interleaving of computations. Furthermore, the store operation can easily be lifted to the new domain of
computations.

store� � ��	� �� ����������
store� � � � step �store� � ��

The equations defining the meaning of existing language constructs do not require any changes, except for
the implicit change that the meanings of statements and expressions are now elements of the semantic domains
��	���� and ��	���� respectively. On the other hand, the semantics of the additional constructs can be
easily expressed in terms of ��	� operations.

���� � �� 		 � ���� 		 ����� ���� 		

���� � �� 		 � ���� 		 ������ ���� 		 � �� -� unit u�

����� 		 � step �run ��� 		�

Figure 1 shows three examples of resumption computations, in the form of directed graphs. Nodes in the
graph represent program states, where + denotes an arbitrary initial state. Edges are labeled with the atomic
computations (assignments) which transform one program state to another. The non-deterministic behaviour
of operators � and � leads to the presence of branches in the graphs. Also notice the while statement in
example (c), which may lead to an infinitely long sequence of program states. The terminal nodes in the graph
that corresponds to the denotation of program ���� , i.e. those with no departing edges, represent the final
program states: if function run is applied to the resumption computation ������ 		 +, the resulting element of
the powerdomain ���� �� will contain just these program states.
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5 Conclusion

This paper defines a general theoretical framework for formalizing the semantics of interleaved computation
in concurrent programming languages. The atomic steps in an interleaved computation may themselves be
arbitrary computations represented by a given monad � . Furthermore, it is argued that the use of monads
enhances the modularity and elegance of the semantics and facilitates the introduction of additional features in
a principled way.

Apart from its application in the semantics of concurrency, the resumption monad transformer can be used
in the semantics of deterministic languages with unspecified evaluation order, such as Algol and C. The present
research was motivated by problems encountered in the formalization of ANSI C [Papa98, Papa01]. A Haskell
implementation of the resumption monad transformer, based on the isomorphism between ������� and � �
����������, has been used in [Papa00] to define the denotational semantics of an expression language with
side effects under a variety of possible evaluation strategies.
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