
A Type System for Unstructured Locking that Guarantees
Deadlock Freedom without Imposing a Lock Ordering

Prodromos Gerakios Nikolaos Papaspyrou Konstantinos Sagonas
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{pgerakios,nickie,kostis }@softlab.ntua.gr

Abstract

Deadlocks occur in multi-threaded programs as a consequence of cyclic resource acquisition be-
tween threads. In this paper we present a novel type system that guarantees deadlock freedom for a
language with references, unstructured locking primitives, and locks which are implicitly associated
with references. The proposed type system does not impose a strict lock acquisition order and thus
increases programming language expressiveness.

1 Introduction

Lock-based synchronization may give rise to deadlocks. Two or more threads are deadlocked when each
of them is waiting for a lock that is acquired by another thread. Several type systems have been pro-
posed [5, 2, 8, 10, 11] that prevent deadlocks by imposing a strict (non-cyclic) lock-acquisition order that
must be respected throughout the entire program. This approach greatly limits programming language
expressiveness as many correct programs are rejected unnecessarily. Boudol has recently proposed a
type system that avoids deadlocks and is more permissive than existing approaches [1]. However, his
system can only deal with programs that use lexically-scoped locking primitives.

In this paper we sketch a simple language with functions, mutable references, explicit (de-)allocation
constructs and unstructured (i.e., non lexically-scoped) locking primitives. To avoid deadlocks, we pro-
pose a type system for this language based on Boudol’s idea. We argue that the addition of unstructured
locking primitives makes Boudol’s system unsound and show that it is possible to regain soundness by
preserving more information about the order of events both statically and dynamically.

Our work is part of a more general effort to design a language for systems programming [6, 7] that
guarantees memory safety, race freedom and definite release of resources such as memory and locks.

2 Deadlock Freedom and Related Work

We start by providing a concrete definition of deadlocks and compare our work with existing static
approaches to deadlock freedom. According to Coffman et al. [4], a set of threads reaches a deadlocked
state when the following conditions hold:

- Mutual exclusion: Threads claim exclusive control of the locks that they acquire.
- Hold and wait: Threads already holding locks may request (and wait for) new locks.
- No preemption: Locks cannot be forcibly removed from threads; they must be released explicitly

by the thread that acquired them.
- Circular wait: Two or more threads form a circular chain, where each thread waits for a lock held

by the next thread in the chain.

Therefore, deadlock freedom can be guaranteed by denying at least one of the above conditions before
or during program execution. Coffman has identified three strategies that guarantee deadlock-freedom:

- Deadlock prevention: At each point of execution, ensure that at least one of the above conditions
is not satisfied. Thus, programs that fall into this category are correct by design.

- Deadlock detection and recovery: A dedicated observer thread determines whether the above con-
ditions are satisfied and preempts some of the deadlocked threads, releasing (some of) their locks,
so that the remaining threads can make progress.

1

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

- Deadlock avoidance: Using advance information regarding thread resource allocation, determine
whether granting a lock will bring the program to an unsafe state, i.e. a state which can result in
deadlock, and only grant locks that lead to safe states.

The majority of literature for language-based deadlock freedom falls under the first two strategies.
In the deadlock prevention category, one finds type and effect systems [5, 2, 8, 10, 11] that guarantee
deadlock freedom by statically enforcing a global lock-acquisition ordering that must be respected by all
threads. In this setting, starting with the work of Flanagan and Abadi [5], lock handles are associated
with type-level lock names via the use of singleton types. Thus, handle lkı is of type lk(ı). The same
applies to lock handle variables. The effect system tracks the order of lock operations on handles or
variables and determines whether all threads acquire locks in the same order.

Using a strict lock acquisition order is a constraint we want to avoid. It is not hard to come up with
an example that shows that imposing a partial order on locks is too restrictive. The simplest of such
examples can be reduced to program fragments of the form:

(lock x in . . . lock y in . . .) || (lock y in . . . lock x in . . .)

In a few words, there are two parallel threads which acquire two different locks, x and y, in reverse order.
When trying to find a partial order ≤ on locks for this program, the type system or static analysis tool
will deduce that x ≤ y must be true, because of the first thread, and that y ≤ x must be true, because of
the second. Thus, the program will be rejected, both in the system of Flanagan and Abadi which requires
annotations [5] and in the system of Kobayashi which employs inference [8] as there is no single lock
order for both threads. Similar considerations apply to the more recent works of Suanaga [10] and
Vasconcelos et al. [11] dealing with non lexically-scoped locks.

Recently, Boudol developed a type and effect system for deadlock freedom [1], which is based on
deadlock avoidance. The effect system calculates for each expression the set of acquired locks and
annotates lock operations with the “future” lockset. The run-time system utilizes the inserted annotations
so that each lock operation can only proceed when its “future” lockset is unlocked. The main advantage
of Boudol’s type system is that it allows a larger class of programs to type check and thus increases the
programming language expressiveness as well as concurrency by allowing arbitrary locking schemes.

The previous example can be rewritten in Boudol’s language as follows, assuming that the only lock
operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type system which, in general, allows locks to be acquired in any
order. At run-time, the first lock operation of the first thread must ensure that y has not been acquired
by the second (or any other) thread, before granting x (and symmetrically for the second thread). The
second lock operations need not ensure anything special, as the “future” locksets are empty.

The main disadvantage of Boudol’s work is that locking operations have to be lexically-scoped. As
it will be shown, his type and effect system cannot guarantee deadlock freedom for unscoped locking
operations. In the section that follows, we discuss a novel type system for a simple language with
mutable references, that is intended to guard against deadlocks and, taking advantage of our previous
work [6], against race conditions and memory violations as well.

3 Type System Overview

In this section, we sketch a type system that guarantees absence of deadlocks in a language supporting
non lexically-scoped locking operations. As mentioned earlier, Boudol’s proposal does not support un-
structured locking; even if his language had lock/unlock constructs, instead of lock . . .in . . ., Boudol’s

2

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

let f = λ x.λy.λz. lock{y} x; x := x+1;
lock{z} y; y := y+ x;
unlock x;
lock∅ z; z := z+ y;
unlock z;
unlock y

in f a a b

(a)

lock{a} a; a := a+1;
lock{b} a; a := a+a;
unlock a;
lock∅ b; b := b+a;
unlock b;
unlock a

(b)

Figure 1: An example program, which is well typed before substitution (a) but not well typed after
substitution (b).

type system is not sufficient to guarantee deadlock freedom. The example program in Figure 1(a) will
help us see why: It updates the values of three shared variables, x, y and z, making sure at each step that
only the strictly necessary locks are held.

In our naı̈vely extended (and broken, as will be shown) version of Boudol’s type and effect system, the
program in Figure 1(a) will type check. The “future” lockset annotations of the three locking operations
in the body of f are {y}, {z} and ∅, respectively. (This can be easily verified by observing the lock
operations between a specific lock and unlock pair.) Now, function f is used by instantiating both
x and y with the same variable a, and instantiating z with a different variable b. The result of this
substitution is shown in Figure 1(b). The first thing to notice is that, if we want this program to work in
this case, locks have to be re-entrant. This roughly means that if a thread holds some lock, it can try to
acquire the same lock again; this will immediately succeed, but then the thread will have to release the
lock twice, before it is actually released.

Even with re-entrant locks, however, it is easy to see that the program in Figure 1(b) does not type
check with the present annotations. The first lock for a now matches with the last (and not the first)
unlock; this means that a will remain locked during the whole execution of the program. In the mean-
time b is locked, so the “future” lockset annotation of the first lock should contain b, but it does not.
(The annotation of the second lock contains b, but blocking there if lock b is not available does not
prevent a possible deadlock; lock a has already been acquired.) So, the technical failure of our naı̈vely
extended language is that the preservation lemma breaks. From a more pragmatic point of view, if a
thread running in parallel already holds b and, before releasing it, is about to acquire a, a deadlock can
occur. The naı̈ve extension also fails for another reason: Boudol’s system is based on the assumption
that calling a function cannot affect the set of locks that are held. This is obviously not true, if non
lexically-scoped locking operations are to be supported.

The type and effect system proposed in this paper supports unstructured locking, by preserving more
information at the effect level. Instead of calculating an unordered set of locks, the type system precisely
tracks the order of lock and unlock operations, without enforcing a strict lock-acquisition order. As in
Boudol’s system, lock operations are annotated with the “future” effect (our “ordered future” lockset).
Function application terms are explicitly annotated with a continuation effect, representing the effect of
the code succeeding the application term. At run-time, when a function application redex is evaluated, its
annotation is pushed on the stack. When a lock operation is evaluated, the “future” lockset is calculated
by inspecting the annotation and (if necessary) the lookup proceeds with the continuation effects of the
enclosing context that are found on the stack. The lock operation succeeds only when both the lock and
the “future” lockset are available.

Figure 2 illustrates the same program as in Figure 1, except that locking operations are now annotated
with the “ordered future” lockset. For example, the annotation [y+, x−, z+, z−, y−] at the first lock
operation means that in the future (i.e., after this lock operation) y will be acquired, then x will be

3

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

let f = λ x.λy.λz. lock[y+, x−,z+,z−,y−] x; x := x+1;
lock[x−,z+,z−,y−] y; y := y+ x;
unlock x;
lock[z−,y−] z; z := z+ y;
unlock z;
unlock y

in f a a b

(a)

lock[a+,a−,b+,b−,a−] a; a := a+1;
lock[a−,b+,b−,a−] a; a := a+a;
unlock a;
lock[b−,a−] b; b := b+a;
unlock b;
unlock a

(b)

Figure 2: The example program of Figure 1, with “ordered future” lockset annotations, now well typed
both before (a) and after substitution (b).

Expression e ::= x | c | f | (e e)ξ | (e) [r] | e := e
| deref e | let ρ, x = ref e in e
| sharee | releasee | lockγ e
| unlocke | () | popγ e | locı

Value v ::= f | c | locı

Function f ::= λx.e as τ
γ
−→τ | Λρ. f

Type τ ::= b | 〈〉 | τ
γ
−→τ | ∀ρ.τ | ref(τ,r)

Location r ::= ρ | ı@n

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n

Effect γ ::= ∅ | γ,rκ

Figure 3: Language syntax.

released, and so on. If x and y were different, the run-time system would deduce that between this
lock operation on x and the corresponding unlock operation, only y is locked, so the future lockset in
Boudol’s sense would be {y}. On the other hand, if x and y are instantiated with the same a, the annotation
becomes [a+, a−, b+, b−, a−] and the future lockset that is calculated is now the correct {a,b}. In a real
implementation, there are several optimizations that can be performed (e.g., pre-calculation of effects)
but we do not deal with them in this paper.

4 Formalism

4.1 Language Description

The syntax of our language is illustrated in Figure 3, where x and ρ range over term and “region” vari-
ables, respectively. Similarly to our previous work [6, 7], a region is thought of as a memory unit that
can be shared between threads and whose contents can be atomically locked. In this paper, we make the
simplistic assumption that there is a one-to-one correspondence between regions and memory cells, but
this is of course not necessary.

The language core comprises of variables (x), constants (c), functions, and function application.
Functions can be region polymorphic (Λρ. f) and region application is explicit (e[ρ]). Monomorphic
functions (λx.e) must be annotated with their type. The application of monomorphic functions is anno-
tated with a calling mode (ξ), which is seq(γ) for normal (sequential) application and par for parallel
application. Notice that sequential application terms are annotated with γ, the continuation effect as
mentioned earlier. The semantics of parallel application is that once the application term is evaluated
to a redex, then it is moved to a new thread of execution and the spawning thread can proceed with the
remaining computation in parallel with the new thread. Term popγ e encloses a function body e and
can only appear during evaluation. The same applies to constant regions ı@n, which cannot exist at the
source-level. The construct let ρ, x = ref e1 in e2 allocates a fresh cell, initializes it to e1, and asso-
ciates it with variables ρ and x within expression e2. As in other approaches, we use ρ as the type-level

4

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

representation of the new cell. The type of reference variables x is the singleton type ref(ρ,τ), where
τ is the type of the cell’s contents. This allows the type system to connect x and ρ and thus to statically
track uses of the new cell. As will be explained later, the cell can be consumed either by deallocation or
by transferring its ownership to another thread. Assignment and dereference operators are standard. The
value locı represents a reference to a location ı and is introduced during evaluation. Source programs
cannot contain locı.

At any given program point, each cell is associated with a capability (κ). Capabilities consist of
two natural numbers, the capability counts: the cell reference count, which denotes whether the cell is
live, and the lock count, which denotes whether the cell has been locked to provide the current thread
with exclusive access to its contents. When first allocated, a cell starts with capability (1,1), meaning
that it is live and locked, which provides exclusive access to the thread which allocated it. (This our
equivalent of thread-local data.) Capabilities can be either pure (n1,n2) or impure (n1,n2). In both cases,
it is implied that the current thread can decrement the cell reference count n1 times and the lock count
n2 times. Capability counts determine the validity of operations on cells. Similarly with fractional
permissions [3], impure capabilities denote that a location may be aliased. Our type system requires
aliasing information so as to determine whether it is safe to pass lock capabilities to new threads.

The remaining language constructs sharee, releasee, lockγ e and unlocke operate on reference
e. The first two constructs increment and decrement the cell reference count of e respectively. Similarly,
the latter two constructs increment and decrement the lock count of e. As mentioned earlier, the run-time
system inspects the lock annotation γ to determine whether it is safe to lock e.

4.2 Operational Semantics

We define a small-step operational semantics for our language in Figure 5.1 The evaluation relation
transforms configurations. A configuration C (see Figure 4) consists of an abstract store S and a thread
map T .2 A store S maps constant locations (ı) to values (v). A thread map T associates thread identifiers
to expressions (i.e., threads) and access lists. An access list θ, maps location identifiers to reference and
lock counts.

A frame F, (Figure 4) is an expression with a hole, represented as �. The hole indicates the position
where the next reduction step can take place. A thread evaluation context E, (Figure 4) is defined as a list
of frames. Our notion of evaluation context imposes a call-by-value evaluation strategy to our language.
Subexpressions are evaluated in a left-to-right order. We assume that concurrent reduction events can
be totally ordered [9]. At each step, a random thread (n) is chosen from the thread list for evaluation
(Figure 5). Therefore, the evaluation rules are non-deterministic.

When a parallel function application redex is detected within the evaluation context of a thread, a
new thread is created (rule E-SN). The redex is replaced with a unit value in the currently executed
thread and a new thread is added to the thread list, with a fresh thread identifier. The calling mode of the
application term is changed from parallel to sequential. Notice, that θ is divided into two lists θ1 and θ2
using the new thread’s effect γa as a reference for consuming the correct number of counts from θ.

The sequential function application (E-A) rule reduces an application redex to an pop expression,
which contains the body of the function and is annotated with the same effect as the application term.
Rule E-AS requires that the location (`) being accessed, is both live and accessible and no other thread
has access to `. Rule E-NG appends a fresh location ı (with initial value v) and the dynamic count 1,1 to
S and θ respectively.

1A full formalization and the semantics of our language are given in the Appendix.
2The order of elements in comma-separated lists, e.g. in a store S or in a list of threads T , is unimportant; we consider all

list permutations as equivalent.

5

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Dynamic Counts θ ::= ∅ | θ, ı 7→ n1,n2

Store S ::= ∅ | S , ı 7→ v

Threads T ::= ∅ | T,n :θ;e

Configuration C ::= S ;T

Locations ε ::= ∅ | ε, ı

E ::= � | E[F]

F ::= (� e)ξ | (v �)ξ | (�) [r] | let ρ, x = ref � in e
| deref � | � := e | v :=� | share� | release�
| lockγ1 � | unlock� | popγ �

Figure 4: Operational semantics syntax and evaluation context.

v′ ≡ λx.e1 as τ1
γa
−→τ2 fresh n′ γa ` θ = θ1 ⊕ θ2

S ;T,n :θ; E[(v′ v)par] { S ;T,n :θ1; E[()],n′ :θ2;�[(v′ v)seq(∅)]
(E-SN)

v′ ≡ λx.e1 as τ1
γa
−→τ2

S ;T,n :θ; E[(v′ v)seq(γb)] { S ;T,n :θ; E[popγb e1[v/x]]
(E-A)

θ(ı) ≥ (1,1) ı < locked(T)
S ;T,n :θ; E[locı := v] { S [ı 7→ v];T,n :θ; E[()]

(E-AS)

fresh ı@n1 S ′ = S , ı 7→ v θ′ = θ, ı 7→ 1,1

S ;T,n :θ; E[let ρ, x = ref v in e2] { S ′;T,n :θ′; E[e2[ı@n1/ρ][locı/x]]
(E-NG)

θ′ = θ[ı 7→ (n1,n2 +1)] E[popγ1 �]; ı;1 ` ε
θ(ı) = (n1,n2) n1 ≥ 1 n2 = 0⇒ locked(T)∩ (ε ∪{ı}) = ∅

S ;T,n :θ; E[lockγ1 locı] { S ;T,n :θ′; E[()]
(E-LK)

Figure 5: Selected operational rules.

The most interesting rule is E-LK that dynamically computes the “future” lockset (ε) by inspecting
the preceding stack frames (E) as well as the lock annotation (γ1). The lockset is a list of locations (and
thus locks). E-LK requires that the reference being locked (ı) is live and checks that no other thread
holds ı nor the references specified in ε. If it succeeds, the lock count of ı is incremented by one. Notice,
that this check occurs only when ı is unlocked.

4.3 Static Semantics

We briefly discuss the most interesting parts of our type and effect system. Effects are used to statically
track the capability of each cell. An effect (γ) is an ordered list of elements of the form rκ, denoting that
cell r is associated with capability κ.

The syntax of types in Figure 3 (on page 4) is more or less standard. Atomic types consist of the
base (b) and the unit (〈〉) type. The reference type ref(τ,r) is associated with a type-level cell name
r. Monomorphic function types carry an effect. The input to the typing relation is an expression e, the
typing context M;∆;Γ and an input effect γ. M is a mapping of constant locations to types. ∆ is a set
of cell variables. Γ is a mapping of term variables to types. The output of the typing relation is the type
τ assigned to expression e as well as an output effect γ′. We denote this by M;∆;Γ ` e : τ&(γ;γ′). As
mentioned, each lock operation must be annotated with the “future” lockset. This requirement imposes
the restriction that effects must flow backwards. Thus, the input effect to an expression e represents the
operations that follow after e is evaluated. Another requirement is that effects must reflect the exact order
of cell operations. Thus, the typing relation does not modify the input effect, but rather appends to it.
Therefore, the input effect is always a prefix of the output effect.

A few selected typing rules are given in Figure 6. The typing rule for function application (T-A)
splits and joins capabilities to input effect γ by utilizing information from the function effect (γa). No-
tice, that γa contains the entire history of events occurring in the function body. Thus, it contains the

6

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

M;∆;Γ ` e1 : τ1
γa
−→τ2 &(γ3;γ′) ξ ` γa γ2 = γ⊕γa

M;∆;Γ ` e2 : τ1 &(γ2;γ3) ξ = seq(γ)∨ (ξ = par∧τ2 = 〈〉)

M;∆;Γ ` (e1 e2)ξ : τ2 &(γ;γ′)
(T-A)

M;∆;Γ ` e1 : ref(τ,r)&(γ1;γ′)
M;∆;Γ ` e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ` e1 := e2 : 〈〉&(γ;γ′)
(T-AS)

M;∆;Γ ` e1 : τ1 &(γ2 \ρ;γ′) γ1 = γ2,ρ
1,1

M;∆ ` τ M;∆,ρ;Γ, x : ref(τ1,ρ) ` e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ` let ρ, x = ref e1 in e2 : τ&(γ;γ′)
(T-NG)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(0,1);γ′)
κ ≥ (1,1) γ(r) = κ

M;∆;Γ ` lockγ e : 〈〉&(γ;γ′)
(T-LK)

Figure 6: Selected typing rules.

effects expected by the environment (precondition) as well as the effect returned to the environment
(postcondition). γ2 = γ⊕γa subtracts the effects specified in the precondition of γa from γ and adds the
resulting effect back to the postcondition of γa. The resulting effect γ2 is passed as the input to e2 and
similarly, the output effect of e2, γ3, is passed as the input effect to e3. The effect for the application term
is γ′. In the case of parallel application par, rule T-A also requires that the return type is unit, whereas for
sequential application seq(γ′), the input effect γ must be equal to γ′. ξ ` γa ensures that pure capabilities
are not aliased. It also enforces the invariant that all impure capabilities that appear in the postcondition
of γa have a zero lock count and all regions and locks must be released, when parallel application takes
place.

Similar considerations apply to rule T-AS, where the input effect γ becomes γ1 once e2 is type
checked and γ1 becomes γ′ after e1 is type checked. Notice that r is type-level name of the cell referenced
by e1. T-A checks that the capability assigned to the most recent operation on r in effect γ (i.e., γ(r)) has a
positive reference and lock count. In other words, r must be live and locked once e1 and e2 are evaluated.
Rule T-LK type checks the locking operator. The annotation γ must match the input effect. The rule also
tells us that if r is the type-level name, then γ(r) must be live and locked. The input effect to e1 extends
γ with rκ−(0,1), which implies that just after e1 is evaluated the lock count of r gets incremented by one.
The rule for creating new cells (T-NG) passes the input effect γ to the body of let and appends ρ0,0 to
γ. This tells us that ρ must be consumed within e2. The output effect of e2 is γ2,ρ

1,1, which implies that
when e2 is evaluated for the first time, ρ is live and locked and there is no other event preceding ρ1,1. The
ρ is removed from remaining effect γ2 and is passed to e1, the initializer expression of the new cell. The
output effect of e1 is the output effect of let.

4.4 Type Safety

In this section we discuss the fundamental theorems that prove type safety of our language.3 The type
safety formulation is based on proving the preservation and progress lemmata. Informally, a program
written in our language is safe when for each thread of execution an evaluation step can be performed
or that thread is waiting for a lock (blocked). In addition, there must be at least one thread that is not
blocked for all execution states. As discussed in Section 4.2, a thread may become stuck when it accesses
a location that is not live or accessible. Of course, a thread may become stuck when it performs a non
well-typed operation.

Definition 1 (Thread Typing). Let T be a collection of threads. Let M be a mapping from location iden-
tifiers to types. The relation M;∆;Γ `t θ; E[e] : 〈〉&(γ;γ′), types the evaluation context E, the expression
e and establishes a correspondence between the access list θ and the static effect γ′. That is, for each
thread m and for each location ı owned by m, the dynamic reference and lock counts of ı are identical

3A proof sketch and a full formalization of our language are given in the Appendix.

7

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

to the static counts of ı deduced by the type system for the evaluation context of m. The following rules
define well-typed threads.

M;∅ ` ∅

M;∅;∅ `t θ; E[e] : 〈〉&(γ;γ′)
M ` T n < dom(T)

M ` T,n :θ; E[e]

Definition 2 (Store Typing). A store S is well-typed with respect to M (we denote this by M ` S) when
the following conditions are met:

- the domain of S equals the domain of M and
- for each location ı, the stored value S (ı) is closed and has type M(ı) with empty effects, i.e.,

M;∅;∅ ` S (ı) : M(ı)&(∅;∅).

Definition 3 (Configuration Typing). A configuration S ;T is well-typed with respect to M (we denote
this by M ` S ;T) when the collection of threads T and the store S are well-typed with respect to M, and
locks are acquired by at most one thread (i.e., mutex(T) holds).

Definition 4 (Deadlocked State). A set of threads n0, . . . ,nk, where k is greater than zero, has reached a
deadlocked state, when each thread nı, has acquired the lock of the succeeding thread `(ı+1)modk+1 and is
waiting for lock `ı.

Definition 5 (Not stuck). A configuration S ;T is not stuck when each thread in T can take one of the
evaluation steps in Figure 5 or it is waiting for a lock held by some other thread. Additionally, threads in
T must not have reached a deadlocked state.

Given these definitions, we can now present the main results of this paper. The progress and preser-
vation lemmata are formalized at the program level, i.e., for all concurrently executed threads.

Lemma 1 (Progress — Program). Let S ;T be a closed well-typed configuration with M ` S ;T such that
threads in T are not deadlocked. Then S ;T is not stuck.

Lemma 2 (Preservation — Program). Let S ;T be a well-typed configuration with M ` S ;T . If the opera-
tional semantics takes a step S ;T { S ′;T ′, then there exist M′ ⊇ M such that the resulting configuration
is well-typed with M′ ` S ′;T ′.

The type safety theorem is a direct consequence of Lemmata 1 and 2. Let expression e be the initial
program and let the initial typing context M0 and the initial program configuration S 0;T0 be defined as
follows: M0 = ∅, S 0 = ∅, and T0 = {0 : ∅;e}.

Theorem 1 (Type Safety). If the initial configuration S 0;T0 is well-typed with ∅ ` S 0;T0 and the oper-
ational semantics takes any number of steps S 0;T0 {

n S n;Tn, then the resulting configuration S n;Tn is
not stuck.

Typing the initial configuration S 0;T0 with an empty typing context M guarantees that all functions
in the program are closed and that no explicit location values (locı) are used in the source of the original
program.

References
[1] G. Boudol. A deadlock-free semantics for shared memory concurrency. In M. Leucker and C. Morgan,

editors, Proceedings of the International Colloquium on Theoretical Aspects of Computing, volume 5684 of
LNCS, pages 140–154. Springer, 2009.

8

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races and
deadlocks. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 211–230, New York, NY, USA, Nov. 2002. ACM Press.

[3] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis: Pro-
ceedings of the 10th International Symposium, volume 2694 of LNCS, pages 55–72. Springer, 2003.

[4] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Comput. Surv., 3(2):67–78, 1971.
[5] C. Flanagan and M. Abadi. Object types against races. In J. C. M. Baeten and S. Mauw, editors, Concurrency

Theory: Proceedings of the 10th International Conference, volume 1664 of LNCS, pages 288–303. Springer,
1999.

[6] P. Gerakios, N. Papaspyrou, and K. Sagonas. A concurrent language with a uniform treatment of regions
and locks. In Proceedings of the Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, 2009. An extended version will appear in the post-proceedings published
by Electronic Proceedings in Theoretical Computer Science, 2010.

[7] P. Gerakios, N. Papaspyrou, and K. Sagonas. Race-free and memory-safe multithreading: Design and imple-
mentation in Cyclone. In Proceedings of the ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, pages 15–26, New York, NY, USA, 2010. ACM Press.

[8] N. Kobayashi. A new type system for deadlock-free processes. In C. Baier and H. Hermanns, editors,
CONCUR 2006, volume 4137 of LNCS, pages 233–247. Springer, 2006.

[9] L. Lamport. A new approach to proving the correctness of multiprocess programs. ACM Trans. Prog. Lang.
Syst., 1(1):84–97, 1979.

[10] K. Suenaga. Type-based deadlock-freedom verification for non-block-structured lock primitives and mutable
references. In G. Ramalingam, editor, Asian Symposium on Programming Languages and Systems, volume
5356 of LNCS, pages 155–170. Springer, 2008.

[11] V. Vasconcelos, F. Martin, and T. Cogumbreiro. Type inference for deadlock detection in a multithreaded
polymorphic typed assembly language. In Proceedings of the Workshop on Programming Language Ap-
proaches to Concurrency and Communication-cEntric Software, 2009. An extended version will appear in
the post-proceedings published by Electronic Proceedings in Theoretical Computer Science, 2010.

9

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Appendix

Language Syntax & Substitution Relation

Value v ::= f | c | locı

Expression e ::= x | c | f | (e e)ξ | (e) [r] | e := e
| deref e | let ρ, x = ref e in e
| sharee | releasee | lockγ e
| unlocke | () | popγ e | locı

Function f ::= λx.e as τ
γ
−→τ | Λρ. f

Type τ ::= b | 〈〉 | τ
γ
−→τ | ∀ρ.τ | ref(τ,r)

Location r ::= ρ | ı@n

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n

Effect γ ::= ∅ | γ,rκ

x1[v/x] = v x1 ≡ x
| x1 otherwise

e[v/x] = x1[v/x] | c | locı | popγ e[v/x]
| sharee[v/x] | releasee[v/x] | lockγ1 e[v/x]
| unlocke[v/x] | deref e1[v/x]
| e1[v/x] := e2[v/x] | f [v/x] | (e1[v/x] e2[v/x])ξ

| (e1[v/x])[r] | let ρ,y= ref e1[v/x] in e2[v/x] y . x

f [v/x] = λy.e[x/v] as τ
γ1
−→τ | Λρ. f [x/v]

r1[r/ρ] = r r1 ≡ ρ

| r1 otherwise

f [r/ρ] = λx.e[r/ρ] as τ1[r/ρ]
γ1[r/ρ]
−→ τ2[r/ρ]

| Λρ′. f [r/ρ]

e[r/ρ] = x | c | popγ[r/ρ] e[r/ρ] | sharee[r/ρ]
| releasee[r/ρ] | lockγ1[r/ρ] e[r/ρ]
| unlocke[r/ρ] | (e1[r/ρ] e2[r/ρ])ξ[r/ρ]

| deref e1[r/ρ] | e1[r/ρ] := e2[r/ρ] | locı
| (f) [r/ρ] | (e1[r/ρ]) [r1[r/ρ]]
| let ρ′, x = ref e1[r/ρ] in e2[r/ρ]

τ[r/ρ] = b | 〈〉 | ref(τ[r/ρ],r[r/ρ])

| τ1[r/ρ]
γ[r/ρ]
−→ τ2[r/ρ]

| ∀ρ′. τ[r/ρ]

ξ[r/ρ] = seq(γ[r/ρ]) | par

γ[r/ρ] = ∅ | γ1[r/ρ],r1[r/ρ]κ

Operational Semantics

Syntax & Evaluation Context

Dynamic Counts θ ::= ∅ | θ, ı 7→ n1,n2

Store S ::= ∅ | S , ı 7→ v

Threads T ::= ∅ | T,n :θ;e

Configuration C ::= S ;T

Locations ε ::= ∅ | ε, ı

E ::= � | E[F]

F ::= (� e)ξ | (v �)ξ | (�) [r] | let ρ, x = ref � in e
| deref � | � := e | v := � | share� | release�
| lockγ1 � | unlock� | popγ �

Redex u ::= (v′ v)ξ | (f) [r] | lockγ1 locı | unlocklocı | sharelocı

| releaselocı | deref locı | locı := v | let ρ, x = ref v in e2

| popγ v

Helper Rules & Predicates

locked(T) = {ı | θ(ı) ≥ (1,1)∧ (n :θ;e) ∈ T }
locked(γ) = {ı | γ = (γ1, ı@n1

κ′) :: (γ2, ı@n2
κ) :: γ3∧ (∀n3.(ı@n3)κ1 ∈ γ2⇒ κ− κ1 = (n1,0))∧ κ− κ′ = (n1,−1)}

10

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

γb ⊆max γa γb = θ1 + θ2

γa = θ1 ⊕ θ2
(B0)

γ ` θ = θ1 + θ2 n5 = n1 +n3
n6 = n2 +n4 κ1 = (n3,n4)

γ, (ı@n5)κ1 ` θ, ı 7→ n5,n6 = θ1, ı 7→ n1,n2 + θ2, ı 7→ n3,n4
(A1)

∅ ` θ = θ+∅
(A2)

ı;0;γ ` ∅;0
(W1)

n1 > 0 γ = γ2, (ı@n2)κ ε = locked(γ2)
∀(ı@n2)κ1 ∈ γ2. κ− κ1 = (n1,0)

ı;n1;γ ` ε;n1
(W2)

n1 > 0 r = ı@n4 γ = (γ1,rκ
′

) :: (γ2,rκ) ε = locked(γ2) n2 > 0
∀rκ1 ∈ γ2. κ− κ1 = (n1,0) κ− κ′ = (0,n2) ı;n1 −n2;γ1,rκ1 ` ε′;n3

ı;n1;γ ` ε ∪ ε′;n3
(W3)

E; ı;0 ` ∅
(L0)

n1 > 0 E; ı;n2 ` ε
′ ı;n1;γ ` ε;n2

E[popγ �]; ı;n1 ` ε ∪ ε
′

(L2)
F , popγ � E; ı;n1 ` ε n1 > 0

E[F]; ı;n1 ` ε
(L3)

Operational Rules

v′ ≡ λx.e1 as τ1
γa
−→τ2 fresh n′ γa ` θ = θ1 ⊕ θ2

S ;T,n :θ; E[(v′ v)par] { S ;T,n :θ1; E[()],n′ :θ2;�[(v′ v)seq(∅)]
(E-SN)

∀(ı 7→ n1,n2) ∈ θ.n1 = n2 = 0
S ;T,n :θ; () { S ;T

(E-T)
v′ ≡ λx.e1 as τ1

γa
−→τ2

S ;T,n :θ; E[(v′ v)seq(γb)] { S ;T,n :θ; E[popγb e1[v/x]]
(E-A)

θ(ı) ≥ (1,1) ı < locked(T)
S ;T,n :θ; E[locı := v] { S [ı 7→ v];T,n :θ; E[()]

(E-AS)
θ(ı) ≥ (1,1) ı < locked(T)

S ;T,n :θ; E[deref locı] { S ;T,n :θ; E[S (ı)]
(E-D)

fresh ı@n1 S ′ = S , ı 7→ v θ′ = θ, ı 7→ 1,1

S ;T,n :θ; E[let ρ, x = ref v in e2] { S ′;T,n :θ′; E[e2[ı@n1/ρ][locı/x]]
(E-NG)

θ(ı) ≥ (1,0) θ′ = θ[ı 7→ θ(ı)+ (1,0)]

S ;T,n :θ; E[sharelocı] { S ;T,n :θ′; E[()]
(E-SH)

θ(ı) ≥ (1,0) θ(ı) = (n1,n2)
n1 = 1⇒ n2 = 0 θ′ = θ[ı 7→ n1 −1,n2]

S ;T,n :θ; E[releaselocı] { S ;T,n :θ′; E[()]
(E-RL)

θ′ = θ[ı 7→ (n1,n2 +1)] E[popγ1 �]; ı;1 ` ε
θ(ı) = (n1,n2) n1 ≥ 1 n2 = 0⇒ locked(T)∩ (ε ∪{ı}) = ∅

S ;T,n :θ; E[lockγ1 locı] { S ;T,n :θ′; E[()]
(E-LK)

θ(ı) ≥ (1,1) θ′ = θ[ı 7→ θ(ı)− (0,1)]

S ;T,n :θ; E[unlocklocı] { S ;T,n :θ′; E[()]
(E-UL)

fresh n2

S ;T,n :θ; E[(Λρ. f)[ı@n1]] { S ;T,n :θ; E[f [ı@n2/ρ]]
(E-RP)

S ;T,n :θ; E[popγ v] { S ;T,n :θ; E[v]
(E-PP)

Static Semantics

Syntax

Type variable list ∆ ::= ∅ | ∆,ρ

Memory List M ::= ∅ | M, ı 7→ τ

Variable list Γ ::= ∅ | Γ, x : τ

Typing Context Substitution Relation
Γ[r/ρ] ::= ∅ | Γ1[r/ρ], x : τ[r/ρ]

Typing Context Well-formedness Judgements
Constraint Well-formedness Region Well-formedness Program Typing Context Well-formedness

M;∆ ` ∅

M;∆ ` r M;∆ ` γ1

M;∆ ` γ1,rκ
r ∈ ∆∪dom(M)

M;∆ ` r
M;∆ ` ı

M;∆ ` ı@n

` M M;∆ ` Γ M;∆ ` γ1 M;∆ ` γ2
γ1 Cγ2 seq(∅) ` γ2

` M;∆;Γ;γ1;γ2

11

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Type Well-formedness

M;∆ ` b

M;∆,ρ ` τ
M;∆ ` ∀ρ.τ

M;∆ ` τ M;∆ ` r
M;∆ ` ref(τ,r)

γ2 ⊆min γ1
M;∆ ` τ1 M;∆ ` γ1 M;∆ ` τ2

M;∆ ` τ1
γ1
−→τ2

M;∆ ` 〈〉

ΓWell-formedness M Well-formedness

M;∆ ` ∅

M;∆ ` τ1 x < dom(Γ1)
M;∆ ` Γ1

M;∆ ` Γ1, x : τ1 ` ∅

` M ı < dom(M) M;∅ ` τ
` M, ı 7→ τ

Predicates

is pure(κ) = ∃n1. ∃n2. κ = n1,n2 set(γ) = ∀rκ, γ1, γ2.γ = (γ1,rκ) :: γ2⇒ r < dom(γ1)∪dom(γ2)

γ1 ⊆min γ γ2 ⊆max γ
ξ = par⇒∀rκ.(rκ ∈ γ1⇒ κ = (0,0))∧ (rκ ∈ γ2∧ κ = n1,n2⇒ n2 = 0)
∀rn1,n2 γa γb.γ = (γa,rn1,n2) :: γb⇒¬∃r′.r′ , r∧ rκ ∈ (γa∪γb)∧ r ' r′

ξ ` γ
(OK)

γ1 ⊆max γ γ1 = (γ2,rκ) :: γ3

γ(r) = κ

∅ ⊆max ∅

γ1 ⊆max (γ2 \u r)

γ1,rκ ⊆max γ2,rκ
γ2 = γ1 :: γ3 dom(γ2) = dom(γ1) set(γ1)

γ1 ⊆min γ2

γ1 = γ2 :: γ3
γ2 Cγ1

r′ ' r γ′ = γ \ r′

γ′ = γ,rκ \ r′
(M0)

¬(r′ ' r) γ′ = γ \ r′

γ′,rκ = γ,rκ \ r′
(M1)

∅ = ∅\ r
(M2)

γ′ = γ \ r

γ′ = γ,rκ \u r
(N0)

r′ , r γ′ = γ \u r′

γ′,rκ = γ,rκ \u r′
(N1)

∅ = ∅\u r
(N2)

γ2 = (γ3,rκ) :: γ4
γ1 � (γ3 :: γ4)

γ1,rκ � γ2
(G0)

∅ � ∅
(G1)

Capability Manipulation Rules

γ1b ⊆min γ1 γ1a ⊆max γ1 γa ⊆max γ
γc = γ1b +γr1 γa � γc γb = γ1a +γr1

γ :: γb = γ⊕γ1
(D0)

γ = ∅+γ
(ES1)

γ,rκ2 = γ1 +γ2 κ = κ2 + κ1
is pure(κ1)⇒ κ2 = (0,0) r ' r′

γ,rκ = γ1,r′κ1 +γ2
(ES2)

Type Equivalence

r ' r (S0) r′ ' r
r ' r′

(S1) r ' r′

r ' r′@n2
(S2)

∅ ' ∅
(S3)

r1 ' r2 γ1 ' γ2

γ1,r1
κ ' γ2,r2

κ
(S4)

τ ' τ
(S6)

τ3 ' τ4 r1 ' r2

ref(τ3,r1) ' ref(τ4,r2)
(S7)

fresh ρ1@n
τ1[ρ1@n/ρ] ' τ2[ρ1@n/ρ′]

∀ρ.τ1 ' ∀ρ
′. τ2

(S8)

τ1 ' τ3 τ2 ' τ4
γ1 ' γ3 γ2 ' γ4

τ1
γ1
−→τ2 ' τ3

γ3
−→τ4

(S9)

Typing Rules
` M;∆;Γ;γ;γ

(x : τ′) ∈ Γ τ ' τ′

M;∆;Γ ` x : τ&(γ;γ)
(T-V)

` M;∆;Γ;γ;γ
M;∆;Γ ` c : b&(γ;γ)

(T-I)
M;∆,ρ;Γ ` f : τ&(γ;γ)

M;∆;Γ ` Λρ. f : ∀ρ.τ&(γ;γ)
(T-RF)

`= M;∆;Γ;γ;γ

M;∆;Γ ` () : 〈〉&(γ;γ)
(T-U)

M;∆;Γ ` e1 : ∀ρ.τ&(γ;γ′)

M;∆;Γ ` (e1) [r] : τ′&(γ;γ′)
(T-RP)

M;∆;Γ ` e : τ&(γ1;γ2) γ2 Cγ3
M;∆ ` γ3 ` M;∆;Γ;γ;γ′ γ′ = γ⊕γ3

M;∆;Γ ` popγ e : τ&(γ;γ′)
(T-PP)

12

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

` M;∆;Γ;γ;γ
(ı 7→ τ′) ∈ M τ′ ' τ

M;∆;Γ ` locı : ref(τ, ı)&(γ;γ)
(T-L)

`= M;∆;Γ;γ;γ τ′ ≡ τ1
γb
−→τ2 M;∆ ` τ′ τ ' τ′

seq(∅) ` γb⇒ M;∆;Γ, x : τ1 ` e1 : τ2 &(γa;γb)∧γa ⊆min γb

M;∆;Γ ` λx.e1 as τ
′ : τ&(γ;γ)

(T-F)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(1,0);γ′)
κ ≥ (2,0) γ(r) = κ

M;∆;Γ ` sharee : 〈〉&(γ;γ′)
(T-SH)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ+(1,0);γ′)
κ = (n1,n2) n1 = 0⇒ n2 = 0 γ(r) = κ

M;∆;Γ ` releasee : 〈〉&(γ;γ′)
(T-RL)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(0,1);γ′)
κ ≥ (1,1) γ(r) = κ

M;∆;Γ ` lockγ e : 〈〉&(γ;γ′)
(T-LK)

M;∆;Γ ` e1 : τ1
γa
−→τ2 &(γ3;γ′) ξ ` γa γ2 = γ⊕γa

M;∆;Γ ` e2 : τ1 &(γ2;γ3) ξ = seq(γ)∨ (ξ = par∧τ2 = 〈〉)

M;∆;Γ ` (e1 e2)ξ : τ2 &(γ;γ′)
(T-A)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ+(0,1);γ′)
κ ≥ (1,0) γ(r) = κ

M;∆;Γ ` unlocke : 〈〉&(γ;γ′)
(T-UL)

M;∆;Γ ` e1 : τ1 &(γ2 \ρ;γ′) γ1 = γ2,ρ
1,1

M;∆ ` τ M;∆,ρ;Γ, x : ref(τ1,ρ) ` e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ` let ρ, x = ref e1 in e2 : τ&(γ;γ′)
(T-NG)

M;∆;Γ ` e1 : ref(τ,r)&(γ1;γ′)
M;∆;Γ ` e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ` e1 := e2 : 〈〉&(γ;γ′)
(T-AS)

γ(r) ≥ (1,1)
M;∆;Γ ` e1 : ref(τ,r)&(γ;γ′)

M;∆;Γ ` deref e1 : τ&(γ;γ′)
(T-D)

13

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Type Safety

Evaluation Context Typing

` M;∆;Γ;γ1;γ2 M;∆ ` τ

M;∆;Γ ` � : τ
γ1;γ2
−→ τ&(γ1;γ2)

(E0)
M;∆;Γ ` E : τ2

γ5;γ6
−→ τ3 &(γ1;γ2) M;∆;Γ ` F : τ1

γ3;γ4
−→ τ2 &(γ5;γ6)

M;∆;Γ ` E[F] : τ1
γ3;γ4
−→ τ3 &(γ1;γ2)

(E1)

` M;∆;Γ;γ1;γ4 γ2 = γ1 ⊕γa γ3 Cγ4

M;∆;Γ ` e2 : τ1 &(γ2;γ3) M;∆ ` τ1
γa
−→τ2

ξ ` γa ξ = seq(γ1)∨ (ξ = par∧τ2 = 〈〉)

M;∆;Γ ` (� e2)ξ : (τ1
γa
−→τ2)

γ3;γ4
−→ τ2 &(γ1;γ4)

(F1)

` M;∆;Γ;γ1;γ3 γ2 = γ1 ⊕γa γ2 Cγ3

M;∆;Γ ` v1 : τ1
γa
−→τ2 &(γ3;γ3) M;∆ ` τ1

γ3
−→τ2

ξ ` γa ξ = seq(γ1)∨ (ξ = par∧τ2 = 〈〉)

M;∆;Γ ` (v1 �)ξ : τ1
γ2;γ3
−→ τ2 &(γ1;γ3)

(F2)

` M;∆;Γ;γ;γ′ ` M;∆;Γ;γ1;γ3
γ′ = γ⊕γ3 M;∆ ` τ γ2 Cγ3

M;∆;Γ ` popγ � : τ
γ1;γ2
−→ τ&(γ;γ′)

(F3)

γ3 = γ2 \ρ γ3 Cγ
′ γ1 = γ2,ρ

1,1 M;∆ ` τ1 M;∆ ` τ
` M;∆;Γ;γ;γ′ M;∆,ρ;Γ, x : ref(τ1,ρ) ` e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ` let ρ, x = ref � in e2 : τ1
γ3;γ′
−→ τ&(γ;γ′)

(F4)

` M;∆;Γ;γ;γ′ M;∆ ` ref(τ,r)
M;∆;Γ ` e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ` � := e2 : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F5)

` M;∆;Γ;γ;γ′ γ(r) ≥ (1,1)
M;∆;Γ ` locı : ref(τ,r)&(γ′;γ′)

M;∆;Γ ` locı := � : τ
γ;γ′
−→〈〉&(γ;γ′)

(F6)

` M;∆;Γ;γ;γ′ γ(r) ≥ (1,1) M;∆ ` ref(τ,r)

M;∆;Γ ` deref � : ref(τ,r)
γ;γ′
−→τ&(γ;γ′)

(F7)

` M;∆;Γ;γ;γ′ M;∆ ` ref(τ,r)
κ ≥ (2,0) γ(r) = κ γ1 = γ,rκ−(1,0) γ1 Cγ

′

M;∆;Γ ` share� : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F8)

` M;∆;Γ;γ;γ′ M;∆ ` ref(τ,r) n1 = 0⇒ n2 = 0
κ = (n1,n2) γ(r) = κ γ1 = γ,rκ+(1,0) γ1 Cγ

′

M;∆;Γ ` release� : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F9)

` M;∆;Γ;γ;γ′ M;∆ ` ref(τ,r)
κ ≥ (1,0) γ(r) = κ γ1 = γ,rκ+(0,1) γ1 Cγ

′

M;∆;Γ ` unlock� : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F10)

` M;∆;Γ;γ;γ′ M;∆ ` ref(τ,r)
κ ≥ (1,1) γ(r) = κ γ1 = γ,rκ−(0,1) γ1 Cγ

′

M;∆;Γ ` lockγ� : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F11)
M;∆;Γ ` e : τ&(γa;γb) M;∆;Γ ` E : τ

γa;γb
−→ τ′&(γ1;γ2)

M;∆;Γ ` E[e] : τ′&(γ1;γ2)
(EA0)

M;∆;Γ ` u : τ&(γa;γb) M;∆;Γ ` E : τ
γa;γb
−→ 〈〉&(γ1;γ2)

γ′2 ⊆min γ2 ∀rκ ∈ γ′2.κ = (0,0) E;γc;γc ` θ
γc = if u , popγa v then γb else ∅

M;∆;Γ `t θ; E[u] : 〈〉&(γ1;γ2)
(EA1)

M;∆;Γ ` () : 〈〉&(γ1;γ1) M;∆;Γ ` � : 〈〉
γ1;γ1
−→ 〈〉&(γ1;γ1)

γ′1 ⊆min γ1 ∀rκ ∈ γ′1.κ = (0,0) �;γ′1;γ′1 ` θ

M;∆;Γ `t θ;�[()] : 〈〉&(γ1;γ1)
(EA2)

Dynamic Count Typing

θ;γ ` θ′, ı 7→ n1,n2 κ = n3,n4
(n1,n2) ≥ (n3,n4) ı ' r

θ;γ,rκ ` θ′, ı 7→ n1 −n3,n2 −n4
(B0)

θ;γ ` θ′, ı 7→ n1,n2 κ = n1,n2 ı ' r

θ;γ,rn1,n2 ` θ′, ı 7→ 0,0
(B1)

θ;∅ ` θ
(B2)

γ′′ ⊆max γ
′ θ;γ′′ ` θ′

∀(n 7→ n1,n2) ∈ θ′.n1 = n2 = 0

�;γ;γ′ ` θ
(C0)

γ1b ⊆min γ1 γa ⊆max γ
γc = γ1b +γr γa � γc
θ;γr ` θ

′ E;γ;γ2 ` θ
′

E[popγ �];γ1;γ2 ` θ
(C1)

F , popγ′ � E;γ;γ′′ ` θ

E[F];γ;γ′′ ` θ
(C2)

14

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Configuration Typing

mutex(T) ≡ ∀T1,n :θ; E[e].T = T1,n :θ; E[e]⇒∀ı.θ(ı) ≥ (1,1)⇒ ı < locked(T1)
deadlocked(T) ≡ T ⊇ T1,n0 :θ0; E[lockγ0 locı0], . . .nk :θk; Ek[lockγk locık]∧ k > 0⇒∀m1 ∈ [0,k].m2 = (m1 +1)mod(k+1)∧ θm1 (ım2) ≥ (1,1)
blocked(T,n) ≡ T = T1,n1 :θ; E[lockγ2 locı]∧ θ(ı) ≥ (1,0)∧E; ı;1 ` ε ∧ locked(T1)∩ (ε ∪{ı}) , ∅

Store Typing Configuration Typing
dom(M) = dom(S)

∀(ı 7→ τ) ∈ M.M;∅;∅ ` S (ı) : τ&(∅;∅)
M ` S

M ` T M ` S mutex(T)
M ` S ;T

Thread Typing Not Stuck

M;∅ ` ∅

M;∅;∅ `t θ; E[e] : 〈〉&(γ;γ′)
M ` T n < dom(T)

M ` T,n :θ; E[e]

¬deadlocked(T)
∀n :θ;e ∈ T (S ;T {n S ′;T ′)∨blocked(T,n)

` S ;T

n > 0 S ;T {n−1 S n−1;Tn−1
S n−1;Tn−1 { S n;Tn

S ;T {n S n;Tn
(E-M1)

S ;T {0 S ;T
(E-M2)

Main Theorems/Lemmas
Safety: S 0;T0 ≡ ∅;0 :∅;e∧ ∅ ` S 0;T0 ∧ S 0;T0 {

n S ′;T ′⇒` S ′;T ′

Preservation: M ` S ;T ∧ S ;T { S ′;T ′⇒∃M′ ⊇ M. M′ ` S ′;T ′

Progress: ¬deadlocked(T)∧M ` S ;T ⇒ ` S ;T

Proof Sketch
Theorem 1 (Type safety). If the initial configuration S 0;T0 (defined in page 8) is well-typed with ∅ ` S 0;T0 and the operational
semantics takes any number of steps S 0;T0 {

n S n;Tn, then the resulting configuration S n;Tn is not stuck.

Proof. The application of lemma 1 to the assumption implies that ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı. Therefore, S n;Tn is well-typed
for some Mn. The application of lemma 2 to ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı and ∅;0 :∅;e {n S n;Tn implies that ¬deadlocked(Tn).
The application of lemma 14 to the latter facts implies S n;Tn is not stuck. �

Lemma 1 (Multi-step Program Preservation). Let S 0;T0 be a closed well-typed configuration such that M0 ` S 0;T0 for some
M0. If the operational semantics evaluates S 0;T0 to S n;Tn in n steps, then ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı

Proof. Proof by induction on the number of steps n. When no steps are performed (i.e., n = 0) the proof is immediate from
the assumption. When some steps are performed (i.e., n > 0), we have that S 0;T0 {

n S n;Tn or S 0;T0 {
n−1 S n−1;Tn−1

and S n−1;Tn−1 { S n;Tn. By applying the induction hypothesis on the fact that S 0;T0 is well-typed and that n− 1 steps
are performed we obtain that ∀ı ∈ [0,n− 1].∃Mı.Mı ` S ı;Tı. Thus, Mn−1 ` S n−1;Tn−1 holds. The application of lemma 4 to
Mn−1 ` S n−1;Tn−1 and S n−1;Tn−1 { S n;Tn. implies that Mn ` S n;Tn. Therefore, ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı. �

Lemma 2 (Deadlock Freedom). if ∅;∅,0:∅;e {n S n;Tn and ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı then ¬deadlocked(Tn).

Proof. Assume that deadlocked(Tx) holds for some x ∈ [0,n] and the first deadlock occuring in the program is in Tx (i.e.
∀ı.ı < x⇒¬deadlocked(Tı)). Then, the following hold:

- Tx = T,n0 :θ0; E0[lockγ0 locı0], . . .nk :θk; Ek[lockγk locık]: we abbreviate each lock request operation as (n, εn′ , ın′),
where the first element of the tuple is the thread identifier n, the second is the lockset (εn′) inferred by the run-time
system (where εn′ is given by En[popγn′

�]; ın′ ;1 ` εn′) and the third element is a lock identifier ın′ . Here, locks are
numbered from 0 to k. We also use the notation eps(n,n′), to extract the second element of the tuple (n, εn′ , ın′) for some
εn′ . We use the abbreviation locked(n,n′) when thread n has locked ın′ . In addition, we define a partial order over this
relation: locked(n,n′) < locked(n′′,n′′′), which implies that thread n locked ın′ before thread n′′ locked ın′′′ .

- k > 0 and ∀m1 ∈ [0,k].m2 = (m1 +1) mod(k+1)∧ θm1 (ım2) ≥ (1,1): we define function succ(n) = (n+1) mod(k+1) and
function pred(n) = (k+n) mod(k+1).

Let m be the thread that acquires the first of the k + 1 locks that cause the deadlock, namely succ(m) (given the def-
inition of Tx). Then, the following holds: locked(m,succ(m)) < locked(succ(m),succ(succ(m))). Notice that, succ(m) <
eps(succ(m),succ(succ(m))) holds. Otherwise, thread succ(m) would not have acquired lock succ(succ(m)) (the semantics
would get stuck) as lock succ(m) would have been locked by thread m.

15

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

According to lemma 3, succ(m) < eps(succ(m),succ(succ(m))) holds when ısucc(m) is allocated at thread succ(m) once
lock ısucc(succ(m)) has been acquired. This contradicts the assumption that thread m is the first of the deadlocked threads that
acquired a lock as thread succ(m) locks ısucc(succ(m)) before creating and sharing the lock ısucc(m). �

Lemma 3 (Locking prior to allocation). If the following hold

- S 0;T,k : θ0; E0[lockγ locı] {m S m;T ′,k : θn−1; En−1[lockγ′ locı′],
- each configuration S ı;Tı,k : θı; Eı[e], where ı ∈ [0,m], is well-typed in Mı,
- θ0(ı) = (n1,n2), n1 > 0, n2 = 0,
- θ1(ı) = (n1,n2), n1 > 0, n2 = 1,
- θn−1(ı′) = (n1,n2), n1 > 0, n2 = 0,
- for all z ∈ [1,n−1].θz(ı) = (n1,n2)∧n1 > 0∧n2 ≥ 1
- ı′ < ε, where ε is defined in E0[popγ �]; ı;1 ` ε

then ı′ < dom(θ0)

Proof. Let us assume that ı′ ∈ dom(θ0). Let us assume that ı′ is locked within the same function context as ı, then the typing
relation for thread k at step 0 and the fact that ı′ remains locked until step m imply that locking event of ı′ exists in γ. Hence
ı′ ∈ ε, where ε is defined in E0[popγ �]; ı;1 ` ε (operational rules L2,W2,W3). This contradicts the assumption of this lemma,
thus it must the case that ı′ must be locked outside the function context. This is a contradiction as well, using the same reasoning
about outer effects γx and rules L0-L3, W1-W3. Thus, the initial assumption that ı′ ∈ dom(θ0) leads to a contradiction. �

Lemma 4 (Preservation — Program). Let S ;T be a well-typed configuration with M ` S ;T. If the operational semantics takes
a step S ;T { S ′;T ′, then there exist an M′ ⊇ M such that the resulting configuration is well-typed with M′ ` S ′;T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : Rule E-T implies that θ; E[e] = θ;�[()], S ′ = S and T ′ = T , ∀ı 7→ n1,n2 ∈ θ.n1 = n2 = 0. By inversion of the
configuration typing assumption we have that:

– M ` T,n :θ;�[()]: by inversion of this derivation we have that:
∗ M;∅;∅ `t θ;�[()] : 〈〉&(γ;γ)
∗ M ` T
∗ n < dom(T)

– M ` S
– mutex(T,n :θ;�[()]): implies that mutex(T).

Given the above facts, M ` S ;T holds.
Case E-PP : Rule E-PP implies the following facts:

– S ′ = S , T ′ = T,n :θ; E[v] and e = popγa v.

By inversion of the configuration typing assumption we have that:

– M ` S
– mutex(T,n :θ; E[popγa v]): no new locks are acquired. Thus, mutex(T,n :θ; E[popγa v]) holds.
– M ` T,n :θ; E[popγa v]: by inversion of this derivation we have that:

∗ M ` T
∗ n < dom(T)
∗ M;∅;∅ `t θ; E[popγa v] : 〈〉&(γ;γ′): by inversion of this derivation we have that E;∅;∅ ` θ, M;∅;∅ ` E :

τ2
γa;γb
−→ 〈〉&(γ;γ′), M;∅;∅ ` popγa v : τ2 &(γa;γb). By inversion of the latter derivation we have that

M;∅;∅ ` v : τ2 &(γd;γd), ` M;∆;Γ;γa;γb and γb = γa ⊕γe, where γd Cγe. The application of lemma 6 to
the former two derivations implies that M;∅;∅ ` v : τ2 &(γa;γa). The application of lemma 8 to M;∅;∅ ` E :

τ2
γa;γb
−→ 〈〉&(γ;γ′) and γaCγb implies that there exists a γ′′ such that γ′′Cγ′ and M;∅;∅ ` E : τ2

γa;γa
−→ 〈〉&(γ;γ′′).

Thus, M;∅;∅ ` E[v] : 〈〉&(γ;γ′′), by the application of rule EA0 .
If E = �, then rule EA2 implies that M;∅;∅ `t θ;�[()] : 〈〉&(γ;γ). Otherwise, lemma 7 implies that there
exists an E′ and u′ such that E[v] = E′[u′] and M;∅;∅ ` E′[u′] : 〈〉&(γ;γ′′). Since, we have assumed that E
is not equal to � and given that v is a value, then E = E′[F] and u′ = F[v] for some frame F. By inversion

of the latter derivation we obtain that M;∅;∅ ` u′ : τa &(γ′a;γ′b) and M;∅;∅ ` E′ : τa
γ′a;γ′b
−→ 〈〉&(γ;γ′′). It can

be shown that E′;γ′c;γ′c ` θ, where γ′c = if u′ , popγ′a v′ then γ′b else ∅, using the above facts and E;∅;∅ ` θ.
Thus, M;∅;∅ `t θ; E′[u′] : 〈〉&(γ;γ′′).

16

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Case E-D,E-AS, E-A ,E-RP ,E-NG , E-SH , E-RL ,E-LK ,E-UL ,E-SN : similar to the previous case. In the case of rule E-RP ,
the proof requires the use of lemma 11. In the case of rules E-AS and E-NG the use of lemma 9 will also be required.
The proof of rule E-NG also requires lemmata 12 and 13. For rules E-SH , E-RL , E-LK , E-UL it must be shown that
the correspondence between static and dynamic counts is preserved. This is easy to show given the typing derivation of
θ; E[u] and the input effects of the typing rules T-SH , T-RL , T-LK , T-UL respectively. In the case of E-SN , θ is divided
into θ1 and θ2 for threads n and n′ respectively. Thus, it is shown that the effects of the remaining computation of thread
n match θ1, whereas the effect of the new thread n′ matches θ2.

�

Lemma 5 (Well-Formedness). If an expression e is well-typed in the typing context M;∆;Γ, with effect γ;γ′, then `M;∆;Γ;γ;γ′

holds.

Proof. Straightforward proof by induction on the expression typing derivation. The most interesting case is rule T-AP , where
it needs to be shown that if ` M;∆;Γ;γ1;γ2 and ` M;∆;Γ;γ2;γ3 are the well-formedness derivations of expressions e2 and e1
respectively and γ0 is the input effect to the application term, then ` M;∆;Γ;γ0;γ3 holds.

The premise that γ1 = γ0 ⊕γa, where γa is the annotation of the abstraction type (i.e. the type of e1) implies that γ0 Cγ1.
` M;∆;Γ;γ1;γ2 and ` M;∆;Γ;γ2;γ3 imply that γ1Cγ2, γ2Cγ3. Thus, γ0Cγ3. They also imply that seq(∅) ` γ3, ` M, M;∆ ` Γ
and M;∆ ` γ3. The latter fact and the fact that γ0 Cγ3 imply that M;∆ ` γ0. Thus, ` M;∆;Γ;γ0;γ3 holds. �

Lemma 6 (Value-Effect — Using well-formedness). If value v is well-typed in the typing context M;∆;Γ, with effect (γ;γ) and
` M;∆;Γ;γ1;γ2, then v is well-typed in the same typing context with effect (γ1;γ1) and (γ2;γ2).

Proof. The proof is trivial, but we provide the key steps behind the proof. The assumption implies that `M;∆;Γ;γ1;γ1 and also
` M;∆;Γ;γ2;γ2 hold (trivial). By inversion of the typing derivation of v (for any v) we obtain the well-formedness derivation
as well as some other premises (in the case of rules T-L,T-V,T-F,T-RF,T-I,T-U). We may use the latter premises of value typing,
which still hold (same typing context), along with the latter two well-formedness derivations to formulate the new value typing
derivations with effect (γ1;γ1) and (γ2;γ2) respectively. The case for rule T-RF can be shown trivially by induction (the base
case is the same as for rule T-F). �

Lemma 7 (Redex). If M;∆;Γ ` E[e] : τ&(γ1;γ2) and E[e] is not a value then M;∆;Γ ` E′[u] : τ&(γ1;γ2) such that E′[u]= E[e].

Proof. By induction on the shape of e. The key idea is to convert typing derivations of e, when e is not a redex, to typing
derivations of the form E′[e′] and apply induction for e′. �

Lemma 8 (Evaluation Context Variable Substitution). If M;∆;Γ ` E : τ
γ1;γ2
−→ τ′&(γ3;γ4) and γ3 C γ5 C γ4, then M;∆;Γ ` E :

τ
γ1;γ5
−→ τ′&(γ3;γ6) and γ6 Cγ4

Proof. Straightforward induction on the evaluation context typing relation. �

Lemma 9 (Variable Substitution). M;∆;Γ, x : τ1 ` e : τ2 &(γ1;γ2)∧M;∅;∅ ` v : τ1 &(γ;γ)⇒ M;∆;Γ ` e[v/x] : τ2 &(γ1;γ2)

Proof. Straightforward induction on the expression typing derivation. �

Lemma 10 (Type Well-formedness). M;∆;Γ ` e : τ&(γ;γ′)⇒ M;∆ ` τ

Proof. Straightforward induction on the typing rules. �

Lemma 11 (Location Substitution). If the following hold:

- M, ı 7→ τ′;∆,ρ;Γ ` e : τ&(γ;γ′)
- fresh n
- seq(∅) ` γ′[ı@n/ρ].

then M, ı 7→ τ′;∆;Γ[ı@n/ρ] ` e[ı@n/ρ] : τ[ı@n/ρ]&(γ[ı@n/ρ];γ′[ı@n/ρ]).

Proof. Proof by induction on the typing derivation of e. �

Lemma 12 (Evaluation Typing Weakening). M;∆;Γ ` e : τ&(γ;γ′), M;∅ ` τ′ and ı < dom(M) then M, ı 7→ τ′;∆;Γ ` e : τ&(γ;γ′).

Proof. Proof by induction on the typing derivation of e. �

Lemma 13 (Evaluation Context Typing Weakening). M;∆;Γ ` E : τ
γ1;γ2
−→ τ′&(γ;γ′), M;∅ ` τ′ and ı < dom(M) then M, ı 7→

τ′;∆;Γ ` E : τ
γ1;γ2
−→ τ′&(γ;γ′).

17

A Type System for Deadlock Freedom without Lock Ordering P. Gerakios et al.

Proof. Proof by induction on the derivation of E. �

Lemma 14 (Progress — Program). Let S ;T be a closed well-typed configuration with M ` S ;T and ¬deadlocked(T), then
S ;T is not stuck (` S ;T).

Proof. In order to prove that the configuration is not stuck, we need to prove that each of the executing threads can either
perform a step or block predicate holds for it. We also need to show that there exists no deadlock in T , but this is immediate
from the assumption ¬deadlocked(T).

Without loss of generality, we choose a random thread from the thread list such that T = T1,n :θ; E[e] for some T1 and
show that it is either blocked or it can perform a step. By inversion of the configuration typing derivation we have that
M;∅;∅ ` T1,n : θ; E[e], mutex(T1,n :θ; E[e]), and M ` S . By inversion of the former derivation we obtain that

- n < dom(T1)
- M;∅;∅ `t θ; E[e] : 〈〉&(γ;γ′): if E[e] is a value then by inversion of M;∅;∅ `t θ; E[e] : 〈〉&(γ;γ′) (rule EA2), we have

that ∀ı 7→ n1,n2 ∈ θ.n1 = n2 = 0 (∀rκ ∈ γ′1.κ = (0,0) and �;γ′1;γ′1 ` θ, where γ′1 ⊆min γ) and that E[e] = �[()] . Thus,
rule E-T can be applied. Otherwise, rule EA1 applies and by inversion using EA1 we obtain that M;∅;∅ ` u : τ&(γa;γb),

M;∅;∅ ` E′ : τ
γa;γb
−→ 〈〉 & &(γ;γ′) and E;γg;γg ` θ, where γg = if u , popγa v then γb else ∅. Then, we proceed by a case

analysis on u:

– popγa v: rule E-PP can be applied to perform a single step.
– (v′ v)seq(γa): rule E-A can be applied to perform a single step.
– (f) [r]: rule E-RP can be applied to perform a single step.
– let ρ, x = ref v in e2: rule E-NG can be applied to perform a single step.
– (v′ v)par: it suffices to show that γc ` θ = θ1 ⊕ θ2 holds, where γc is the annotation of function v′. If γd is defined

by γd ⊆min γc, then we need to show that γd ` θ1 + θ2. The proof can be reduced to showing that the counts of
each ı of θ are greater than or equal to the sum of counts of all ı in γd . This is immediate by γ2 = γa ⊕γc, which
can be obtained by inversion of the typing derivation of (v′ v)par, and the strict correspondence between static
and dynamic counts (i.e, E;γb;γb ` θ; notice that γa is a prefix of γb by well-formedness of the typing relation).
Thus, rule E-SN can be applied to perform a single step.

– sharelocı: E;γb;γb ` θ establishes a strict correspondence between dynamic and static counts. The typing
derivation implies that γa(ı@n1) ≥ (2,0), for some n1 existentially bound in the premise of the derivation. There-
fore, θ(ı) ≥ (1,0). It is possible to perform a single step using rule E-SH .

– releaselocı: similar to previous case. It is possible to perform a single step using rule E-RL .
– unlocklocı:similar to previous case. It is possible to perform a single step using rule E-UL .
– lockγa locı: similarly to the previous cases we can show that θ(ı) = (n1,n2) and n1 is positive. Relation

E[popγa �]; ı;1 ` ε is derivable. The intuition behind this proof is that for each lock operation there exists a
corresponding unlock operation. This is enforced by the typing rule T-RL . If n2 is positive then the proof is
completed using rule E-LK to perform a step. Otherwise, if locked(T1)∩ (ε ∪ {ı}) is empty then rule E-LK can
be used to perform a step. Otherwise, blocked(T,n) holds.

– deref locı: it can be trivially shown (as in the previous case of share that we proved θ(ı)≥ (1,0)), that θ(ı)≥ (1,1)
and since mutex(T1,n :θ; E[deref locı]) holds, then ı < locked(T1) and thus rule E-D can be used to perform a
step.

– locı := v: similar to the previous case. Rule E-AS can be used to perform a step.

�

18

	Introduction
	Deadlock Freedom and Related Work
	Type System Overview
	Formalism
	Language Description
	Operational Semantics
	Static Semantics
	Type Safety

