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Abstract

We have recently introduced the “continuation semantics for concurrency” (CSC) tech-
nique in an attempt to exploit the benefits of using continuations in concurrent systems
development. In the CSC approach, a continuation is an application-dependent config-
uration of computations (partially evaluated denotations). Every computation or group
of computations contained in a continuation can be accessed and manipulated separately
by the denotational semantic function. The CSC technique provides excellent flexibility
and a “pure” continuation-based approach to communication and concurrency, in which
all control concepts are modeled as operations manipulating continuations.

In this paper, we present a methodology for concurrent language development, based
on denotational semantics. We show that, by using the CSC technique, denotational
semantics can be used both as a method for formal specification and design and as a
general method for implementing compositional prototypes of concurrent programming
languages. We provide continuation structures for various traditional concurrent control
concepts. We also present compositional semantic models for the following advanced con-
trol concepts that have not been modeled until now without CSC: remote object (process)
destruction and cloning and nondeterministic promotion in Andorra-like languages.

1 Introduction

In software engineering, a prototype is an initial version of a system which is used to demon-
strate concepts, try out design options and, generally, to find out more about the problem and
its possible solutions [Somm06]. A prototype can serve as a mechanism for identifying the
software requirements, which may be expressed in a semi-formal or a formal notation. This
paper is developed around the core idea of using the “continuation semantics for concurrency”
∗This paper is based on work partially funded by the joint research and technology program of bilateral

cooperation between the Hellenic Republic and Romania. Project title: “Continuations and monads for parallel
and distributed computing” (2003–2005).
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(CSC) technique — recently introduced by us [Todo00a, Todo00c] — as a prototyping tool
in a language development methodology based on denotational semantics.

It is easy to use a functional language, such as Scheme [Kels98] or Haskell [Peyt99], and
classic denotational semantic techniques to produce prototype implementations for various
aspects of sequential languages. To support this statement it is probably enough to mention
the early work of Peter Mosses on the use of denotational descriptions in compiler generation
[Moss75, Moss79], or the work of Mitchell Wand on semantic prototyping [Wand84]. How-
ever, classic denotational techniques seem inappropriate for producing executable prototypes
of concurrent programming languages; in this paper, by classic technique we mean either re-
sumption models for concurrency [Plot76, dBak96] or Stratchey and Wadsworth continuations
[Stra74]. For a general discussion on the pragmatic issues related to the use of denotational
semantics in the development of (complex and / or) concurrent systems the reader should
consult [Moss90, Moss96, Abra96]. From the particular perspective of semantic prototyping,
it is easy to see that power domains [Plot76] — used extensively in the denotational treatment
of concurrency — do not provide an adequate support for empirical testing and evaluation.
An element of a power domain is exponential in the length of execution traces1 and therefore
a direct implementation can lead to intractable solutions; also, formal reasoning upon such
structures is impractical in most non-trivial applications.

In this paper we present a methodology for the development of concurrent languages based
on denotational semantics. We give a number of carefully designed continuation structures
for communication and concurrency. We show that, in the CSC approach, the language
designer can establish a simple relation between a general notion of structured continuation
and the control concepts of the (concurrent) language under study. We also show that,
by using the CSC technique, denotational semantics can be used not only as a method for
formal specification and design, but also as a general method for implementing tractable
compositional prototypes of concurrent programming languages. The methodology considered
in this paper is inspired from Queinnec’s work [Quei90, Quei92a, Quei92b], where a similar
approach was employed for developing concurrent and distributed extensions of Scheme. In
Queinnec’s work, the denotational models for concurrent behavior are implemented in Scheme
and are based on domains of multisets of computations which can be executed in an interleaved
fashion; such domains can be seen as a particular case of the semantic domains for CSC.
In this article, we present a number of continuation-based prototype interpreters, that we
call semantic interpreters or semantic prototypes. The semantic interpreters can be seen
as prototype implementations of corresponding denotational (mathematical) models; as an
implementation tool we prefer the lazy functional programming language Haskell.

In the approach that we employ in this paper, a denotational (compositional) mapping
can use CSC continuations to produce a single stream of observables, i.e. a single execution
trace. By using a random number generator, the semantic mapping can choose an arbi-
trary execution trace, thus simulating the nondeterministic behavior of a “real” concurrent
system. Alternatively, CSC continuations can be used to model the non-determinism by em-
ploying power domains. Our semantic interpreters are parameterized by a notion of program
behavior monad. Monads were proposed as a tool for structuring denotational semantics
[Mogg90, Mogg91]. They have become quite popular both in the denotational semantics
and the functional programming community [Wadl92, Lian95, Lian96, Lian98] and are di-

1An element of a power domain is a tree-like structure, or a collection of “traces” essentially equivalent to
an unfolding of such a tree.
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rectly supported in Haskell [Peyt99]. The program behavior monad can be designed in two
ways, roughly corresponding to the two perspectives on non-determinism described in this
paragraph. To implement the “single trace” semantics, the monad is parameterized by an
oracle that decides the alternative to be selected in nondeterministic choices; being given
different oracles, any possible trace can be obtained. The “all possible traces” semantics is
implemented by using an appropriate power domain monad.

In sections 2, 3, 4 and 5.1 we offer semantic interpreters for nine imperative languages,
out of which only one is sequential. Each of these imperative languages provides assignment,
conditional selection, (parameterless) recursive procedures, and a primitive for producing in-
termediate results (observables) at the standard output file. The following control concepts
are modeled denotationally in a imperative setting by using the CSC technique: sequential
composition, parallel composition, process creation, CSP-like [Hoar78, Hoar85] synchronous
communication, suspension and the await statement [Owic76] (including atomization), the
rendez-vous concept (a key notion in languages such as Ada [Ada83] or POOL [Amer89]),
remote object (process) destruction, and remote object (process) cloning. The last two oper-
ations are studied in section 5.1; they can be encountered at operating system level, in some
coordination languages [Holz96], or in distributed object oriented and multi agent systems
such as Obliq [Card95] and IBM Java Aglets [Lang98, Aglets]. The former operation kills
a parallel running object and is similar to the “ kill -9 ” system call in Unix. The latter
operation creates an identical copy of a (parallel) running object2.

In section 5.2.1 and in appendix B.4 we present semantic interpreters designed with CSC
for the control flow kernel of three logic programming languages. In section 5.2.1 we study
two concurrent languages based on the Andorra model [Warr88]; in appendix B.4 we treat
the control flow kernel of sequential Prolog. In our semantic investigation we adopt the
“logic programming without logic” approach [dBak91] and we model compositionally the fol-
lowing control concepts: backtracking, AND-OR parallelism, failure, and nondeterministic
promotion in Andorra-like languages. The Andorra model was designed to exploit both AND
parallelism and search, i.e. don’t know nondeterminism. The model gives priority to determi-
nate goals (for which it is known that at most one clause succeeds) over nondeterminate goals,
as the nondeterminate steps are likely to multiply work. When only nondeterminate goals
remain in a parallel conjunction, the system selects one such goal and performs a so-called
nondeterministic promotion by replicating all the AND-parallel goals for each non failing
alternative of the selected one.

In total, this paper offers semantic interpreters designed with CSC-continuations for twelve
languages. To the best of our knowledge the control concepts that we study in section 5 —
i.e. the operations for remote object (process) control and the nondeterministic promotion
in Andorra — have never been modeled denotationally by using only classic (compositional)
techniques.

For each concurrent language under study, we present both a “single trace” and an “all
possible traces” semantics; the choice between the two kinds of semantics depends only on
the selection of the monad that is used for modeling the program behavior. The relation
is always simple because all control concepts (including parallel composition and process
synchronization) are modeled as operations manipulating continuations, and only the final
yield3 of the semantic mapping distinguishes between the “single trace” and the “all possible

2In this paper, an object is a thread (sequence) of computations with a local state.
3The final yield of the denotational function is encapsulated in the program behavior monad.
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traces” behaviors. Of course, for the sequential languages (which are also deterministic) the
two behaviors coincide. For all other languages, the CSC technique is an essential ingredient
in the semantic design.

In “all possible traces” semantics, a semantic interpreter can only be tested on toy con-
current programs; in this case the final yield of the interpreter models an element of a power
domain, rather than a single execution trace. This gives raise to non-tractable solutions,
because an element of a power domain is exponential in the length of execution traces. When
the monad for “single trace” semantics is selected, our semantic interpreters are tractable and
can be tested with “real life” concurrent programs. For example, in section 4.2, we present a
simple concurrent generator of prime numbers based on the sieve of Erathostenes. It is not
difficult to check that all operations manipulating CSC continuations are polynomial in all
parameters involved in computations, including the number of parallel processes. Therefore,
in “single trace” semantics, our semantic interpreters are reasonably efficient and can be used
without difficulty to test relatively complex concurrent algorithms.4

In this paper, instead of using mathematical notation for the definition of the denota-
tional models, we use the lazy functional programming language Haskell [Peyt99]. Haskell
provides an excellent support for the specific techniques used in denotational semantics: con-
tinuations, monads and fixed point semantics. In addition, a natural correspondence can be
established between the mathematical domains used in denotational semantics and the types
in Haskell. In this paper, functions, products, and sums — as used in denotational semantics,
are implemented in Haskell as functions, tuples and algebraic data types, respectively; also,
power domains, are implemented by using Haskell lists. In this way we avoid the unnecessary
complexities accompanying the use of (classic) domain theory or the theory of metric spaces,
which could have been adopted alternatively. At the same time, we allow our denotational
models to be directly implementable, in the form of semantic interpreters for the (concurrent)
languages under study, and thus to be easily tested and evaluated.

The CSC technique was first introduced in [Todo00a] by using the mathematical method-
ology of metric semantics. Also, in [Todo04] a classic (cpo-based [Plot78]) denotational model
was designed for CSC. Although we do not develop the idea technically, we work on the as-
sumption that a CSC-based semantic interpreter implemented in Haskell is a prototype system,
which can easily be synchronized with (or can be the basis of) a corresponding mathematical
(denotational) specification. This assumption is reasonable if we take into consideration the
ideas and the experiments given in [Moss75, Moss79, Wand84, Watt86].

1.1 Continuation Semantics for Concurrency

Continuations are well-known in denotational semantics for the flexibility they provide as a
language design tool. Traditional continuations were first introduced in denotational seman-
tics to model the behavior of the go to statement [Stra74]. As it is well-known, they can
easily capture the semantics of sequential composition, and can be used to model a variety of
advanced control concepts, including non-local jumps [Stra74], exceptions, coroutines [Frie86]
and even multitasking [Wand80, Dybv89]. However, traditional continuations do not work
well enough in the presence of concurrency [Hieb94]. The CSC technique [Todo00a, Todo00c]
was introduced in an attempt to exploit the benefits of using continuations in the development

4The concurrent version of the sieve of Erathostenes algorithm given in section 4.2 creates a new process
for each prime number. Therefore, in this particular case, performance degrades continuously.
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of concurrent languages. It can model both sequential and parallel composition in interleav-
ing semantics, as well as various synchronization and communication mechanisms in a “pure”
continuation style.

CSC is a tool for denotational semantics.5 The mathematical domains for CSC can be
defined by recursive domain equations [Todo00a, Todo04]. The technique provides an excellent
flexibility in the compositional design of concurrent control flow concepts. There are control
concepts that can be modeled compositionally with CSC, but which seem to be beyond the
expressive power of the classic denotational techniques. For example, in [Todo00c] CSC
was applied in designing the first compositional semantics for nondeterministic promotion in
Andorra-like languages [Warr88].

The central characteristic of the CSC technique is the modeling of continuations as com-
plex structures of computations, where by computation we understand a partially evaluated
denotation (meaning function).6 The semantics of each statement is defined with respect to a
continuation, which is a representation of the behavior of the rest of the program.7 The space
of computations is divided into one active computation and the rest of the computations
which are encapsulated in a CSC continuation; conceptually, the continuation behaves as an
evaluation context [Fell06, Danv04] for the active computation. Intuitively, the CSC tech-
nique is a semantic formalization of a process scheduler simulated on a sequential machine.
Each computation remains active only until it performs an elementary action; subsequently,
another computation taken from the continuation is planned for execution. Depending upon
the structure of the continuations and the particular scheduling strategy, the computations
contained in a CSC continuation can be evaluated either in some specific order or in an
interleaved fashion.

1.2 Contribution

In this paper we describe the basic evaluation mechanism of CSC continuations, we propose
a number of carefully designed continuation structures for communication and concurrency,
and provide new insights in understanding the excellent flexibility provided by CSC.

CSC continuations are divided in this paper into two categories: closed continuations and
open continuations. A closed continuation is a self-contained structure of computations. An
open continuation is an evaluation context for the active computation; it is a structure of
computations which contains a hole (indicating the conceptual position of the active com-
putation). A CSC-based semantic interpreter consists of three components: an evaluator, a
(continuation-completion mapping together with a) normalization procedure, and a scheduler.
The evaluator maps open continuations to program behaviors. It comprises the (composi-
tional) definition of the semantic mapping, together with language-specific control operators.
The functions of the evaluator have one thing in common: they manipulate open continu-
ations. The normalization procedure transforms an open continuation into a corresponding
closed continuation. The scheduler maps closed continuations to program behaviors. It acti-

5It can also be used for operational semantic design [Todo00a], but in this paper we focus on denotational
semantics.

6We do not present any operational model in this paper, but it may help to mention that such a computation
is simply a statement in the case of operational semantics, and respectively the partially evaluated denotation
(or meaning) of a statement in the case of denotational semantics [Todo00a].

7According to the initial definition [Stra74], a continuation is a representation of the rest of the computation.
However, in the CSC approach a continuation is not simply a function to some answer type, but rather a
structured configuration of partially evaluated denotations.
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vates one computation, by decomposing a closed continuation into an (activable) computation
and a corresponding open continuation. In general, the selection of the activable computa-
tion is nondeterministic, and it may follow after a (finite) number of synchronization steps. A
CSC-based semantic interpretor implements an evaluate-normalize-schedule loop [Danv04].

In this paper we show that the CSC technique gives the language designer the ability of
establishing a simple relation between a general notion of structured continuation and the
control concepts of the (concurrent) language under study. CSC continuations are language-
specific configurations of partially evaluated meaning functions (denotations), which can be
accessed and manipulated separately. In a mathematical model, a CSC continuation is an
element of a semantic domain defined as the solution of a domain equation where the domain
variable occurs in the left-hand side of a function space construction [Todo00a]; in this sense
the computation model is rather complex. However, CSC continuations can be designed in
terms of simple structures which can provide operational intuition.

All continuation structures given in this article are designed by using two abstract con-
cepts, which seem to provide a basic framework for control flow semantics: the stack to
model sequential composition, and the multiset to model parallel composition. In the tech-
nical sections of the paper we present semantic interpreters for twelve languages. The CSC
continuation structure is language specific. For a simple language providing only sequential
composition the continuation is a stack of computations. In the case of a language with par-
allel composition and action prefixing8 the continuation is a multiset of computations. For
more complex behaviors we introduce the ps-tree — a CSC continuation structure in which
parallel levels (multisets) alternate with sequential levels (stacks). The ps-tree is inspired
from the the structure of a cactus stack [Bobr73]. For a language that combines parallel com-
position with a general operator for sequential composition (rather than just action prefixing)
the structure of the CSC continuation takes the form of a multiset of ps-trees (a ps-forest).

As a language design tool the CSC technique provides an excellent flexibility. Each com-
putation or group of computations contained in a CSC continuation can be accessed and
manipulated separately at evaluation time. To prove this facility, in section 5 we present
compositional semantic models for the following concepts which, as far as we know, have
never been modeled denotationally by using only classic techniques: remote object (process)
destruction and cloning, and nondeterministic promotion in Andorra-like languages. Based
on our experiments, we believe that these control concepts are beyond the expressive power of
classic compositional techniques. In the CSC approach their semantics can easily be modeled
by appropriate manipulations of the computations contained in continuations.

In this paper we also show that a CSC-based semantic interpreter can generate exactly the
observables produced by a “real” implementation of a concurrent programming language. Our
semantic interpreters produce no silent steps or communication attempts; the synchronization
and the communication information is completely encapsulated in continuations. Due to
the excellent flexibility provided by CSC, branching domains are never needed to obtain
compositionality. A CSC-based semantic interpreter can always produce exactly the desired
observables assembled in a linear model.9

8Action prefixing is a particular form of sequential composition, in which the first component is an ele-
mentary action. It takes the form a;x, where a may be an assignment statement or an expression evaluation,
and x is an arbitrary statement. For example, CCS [Miln89] and the π-calculus [Miln99] use action prefixing
instead of a general operator for sequential composition.

9An element of a linear domain is a collection of sequences. An element of a branching domain is a tree-like
structure. For a more elaborated explanation the reader may consult, e.g., [dBak96].
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Finally, the ability to design compositional prototypes (in “single trace” semantics) for
concurrent programming languages is another proof of the flexibility provided by CSC. To
the best of our knowledge, denotational semantics has never been used systematically for con-
current languages prototyping and all our attempts to get a general solution to this problem
by using only classic compositional techniques have failed.

1.3 Related work

Continuations constitute a classical tool in denotational semantics [Stra74]. For a historical
overview of the discoveries of continuations in a variety of settings the reader may consult
[Reyn93]. Traditional continuations are frequently used in denotational semantics to capture
the behavior of sequential composition. They can also model a variety of more advanced
control concepts, including nonlocal jumps [Stra74], coroutines [Frie86] and even multitasking
[Wand80, Dybv89]. However, traditional continuations provide only a limited support for
concurrency semantics [Hieb94].

Programming languages such as Scheme [Kels98] or SML/NJ [SMLNJ], support continu-
ations through a call/cc primitive. In the uniprocessor implementation of Concurrent ML
[Repp92, Repp99], threads are implemented with SML/NJ continuations. The behavior of
continuations in the presence of concurrency has been investigated, e.g., in the MultiLisp and
the MultiScheme projects [Hals85, Mill87, Katz90, Feel93]. One of the first (informal) uses
of the continuation concept in a concurrent setting was in the actor model of Carl Hewitt
[Hewi77a, Hewi77b].

Traditional (undelimited) continuations are used to represent the entire “rest of the compu-
tation” [Stra74]. Delimited continuations [Fell88a, Fell88b, Sita90, Hieb94, Quei91, Danv92,
More94] seem to provide a finer control than the traditional continuations. Delimited contin-
uations can be used to represent only a part of the remainder of the computation; also, they
support the composition of continuations. The CSC continuation structures presented in this
paper are (partly) inspired from [Hieb94], where (stacks of stacks or) trees of stacks are em-
ployed in the implementation of subcontinuations, a variant of delimited continuations which
can be used to control tree-structured concurrency. Tree-structured concurrency can also
be controlled with CSC continuations. However, as far as we know, delimited continuations
have never been used to model some of the advanced control concepts handled composition-
ally with CSC continuations in this paper, such as synchronous CSP-like communication or
remote object (process) control.

The “continuation semantics for concurrency” (CSC) technique was introduced in [Todo00a]
by using the mathematical methodology of metric semantics. In [Todo00a], we defined and
related operational and denotational semantic models for a language providing CSP-like syn-
chronous communication and a language that incorporates the asynchronous communication
mechanism studied in [dBoe93]. It seems that the metric framework enforces the introduction
of some artificial silent steps (with no operational counterpart) in the denotational models de-
signed with CSC for synchronous communication. Subsequently, in [Todo04], we showed that
this drawback can be eliminated if classic (cpo-based [Plot78]) domains are employed instead.
The use of Haskell as an implementation tool for the denotational models designed with CSC
was first experienced in [Todo00c]. Also, in [Todo00c] we showed that CSC continuations
are a valuable tool in the analysis and design of semantic models for parallel logic program-
ming, and we designed the first compositional semantics for nondeterministic promotion in
Andorra-like languages [Warr88].
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The language development methodology considered in this paper is based on Queinnec’s
work [Quei90, Quei92a, Quei92b], where a number of executable denotational models for con-
current and distributed extensions of Scheme are presented. The denotational models given
in Queinnec’s work use a choice operator, called oneof, to mimic a scheduler by selecting an
arbitrary element from a multiset of computations; an alternative definition for oneof results
in a classical powerdomain semantics. This operator is not defined in the presence of more
advanced control notions (modeled with CSC in this paper) such as: tree-structured con-
currency, atomization, or CSP-like synchronous communication. The domains of multisets
of computations used in Queinnec’s work represent only a (very) particular device for con-
currency semantics, which can not be extended in a straightforward way to handle arbitrary
control flow. Moreover, the concept of a continuation semantics for concurrency is not articu-
lated in [Quei90, Quei92a, Quei92b]. In this paper, we hope to convince the reader that CSC
represents a general new approach to concurrency semantics.

It is well-known that classic denotational techniques can be used to produce prototype
implementations for (various aspects of) sequential programming languages [Moss75, Moss79,
Wand84, Schm86, Watt86]. In this article we show that, by using the CSC technique, de-
notational semantics can also be used to produce prototype implementations for concurrent
programming languages. As far as we know denotational semantics has never been used
systematically for concurrent languages prototyping and all our attempts to get a general so-
lution to this problem by using only classic compositional techniques have failed. Moreover,
the remote object control operations and the nondeterministic promotion in Andorra that
we explore in section 5 seem to be beyond the expressive power of the classic compositional
techniques.

1.4 Overview

In section 2 we compare the CSC technique with the classic technique of continuations. We
consider a simple sequential language, for which we develop a semantic interpreter designed
with classic continuations and one designed with CSC. Section 3 presents semantic interpreters
designed with CSC continuations for five concurrent languages of progressive complexity. The
concurrent languages studied in section 3 have one thing in common: a global state shared by
all processes. We present CSC continuation structures for various control concepts, including
parallel composition, process creation, synchronous communication, rendez-vous, atomization
and suspension. In section 4 we present semantic interpreters for two languages based on
distributed objects, where an object is a sequence of computations acting on a local state.
In section 5 we offer compositional models for remote object destruction and cloning and for
nondeterministic promotion in Andorra-like languages. The section on logic programming
(5.2.1) is accompanied by a substantial appendix that includes a semantic interpreter for an
abstract language capturing the control flow kernel of pure sequential Prolog. In section 6 we
present some concluding remarks and directions for future research.

2 Classic Continuations versus CSC

In this section we define a simple sequential imperative language Lseq , which gives us the
opportunity to compare the classic technique of continuations with the CSC technique. Lseq

comprises a simple language of expressions supporting basic operators on integer numbers
and boolean values. Throughout this paper, the notation (x ∈)X introduces the set X with
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a typical element x ranging over X . In the grammar that follows, (z ∈)Z denotes the set of
integer constants and (v ∈)V the set of (numeric) variables. The set of (numeric or) integer
expressions is (n ∈)N and the set of booleean expressions is (b ∈)B . The operators have the
obvious intended meaning.

n ::= z | v | n op n
b ::= n rel n | not b | b and b | b or b
op ::= + | − | ∗ | / | %
rel ::= == | ! = | < | > | <= | >=

We consider the following set (a ∈)A of elementary (or atomic) actions:

a ::= v := n | write n

The statement v := n assigns an integer value to a variable; the statement write n outputs an
integer value as an observable result. Only the values of numeric expressions can be assigned
or output; expressions of boolean type will only be used as conditions.

Let (y ∈)Y be a set of procedure variables. The class (x ∈)X of statements for Lseq is
defined as follows:

x ::= skip | a | if b then x else x | x ; x | letrec y = x in x | call y

The language Lseq provides an empty statement, a statement that performs a single elemen-
tary action, a conditional statement, sequential composition, and standard constructs for
defining and calling (parameterless) recursive procedures.10

The syntax of Lseq can be implemented in Haskell by using the following set of data types:

type V = String
type Y = String

data N = Z Int | V V | Plus N N | Minus N N | Times N N | Div N N | Mod N N
data B = Eq N N | Ne N N | Lt N N | Le N N | Gt N N | Ge N N

| Not B | And B B | Or B B

data A = Assign V N |Write N
data X = Skip | Action A | If B X X | Seq X X | LetRec Y X X | Call Y

The semantics of (numeric or booleean) expressions is defined with respect to a domain
(s ∈)S of states. A state is a function from variables to numeric (integer) values in the set
(u ∈)Val .

type Val = Int
type S = V → Val

The semantics of expressions can easily be defined as follows. It is independent of the
choice of technique that will be used for defining the rest of the language, and will not change
in the rest of the paper.

10Throughout this paper, syntactic definitions will be treated as abstract syntax. Parentheses will be used
freely to group syntactic constructs, such as expressions or statements. Composition of statements will be
left-associative.
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evN :: N → S → Val
evN (Z n) s = n
evN (V v) s = s v
evN (Plus n1 n2) s = evN n1 s + evN n2 s
evN (Minus n1 n2) s = evN n1 s − evN n2 s
evN (Times n1 n2) s = evN n1 s ∗ evN n2 s
evN (Div n1 n2) s = evN n1 s ‘div ‘ evN n2 s
evN (Mod n1 n2) s = evN n1 s ‘mod ‘ evN n2 s

evB :: B → S → Bool
evB (Eq n1 n2) s = evN n1 s == evN n2 s
evB (Ne n1 n2) s = evN n1 s /= evN n2 s
evB (Lt n1 n2) s = evN n1 s < evN n2 s
evB (Le n1 n2) s = evN n1 s <= evN n2 s
evB (Gt n1 n2) s = evN n1 s > evN n2 s
evB (Ge n1 n2) s = evN n1 s >= evN n2 s
evB (Not b) s = not (evB b s)
evB (And b1 b2) s = evB b1 s && evB b2 s
evB (Or b1 b2) s = evB b1 s || evB b2 s

We also define the domain (q ∈)Q of sequences of intermediate observable values. The
constant Epsilon denotes normal termination. To model non-termination we rely on the
laziness of Haskell. For all the imperative languages that we study in this paper the type Obs
of observables is just a synonym of the type Val of values.11

type Obs = Val
data Q = Epsilon | Observe Obs Q

The use of monads in denotational semantic descriptions can improve their modularity. To
facilitate the definition of a modular and elegant semantics, we introduce a program behavior
monad M parameterized by the type of program result. In the rest of the paper, program
behaviors will be elements of M Q . In this section, M will be the standard environment
monad, with the domain of states S as the environment, i.e. M Q = S → Q . We also define
the function put which facilitates the output of observable values.

data M a = InM {unM :: S → a }

instance Monad M where
return a = InM (\s → a)
InM m >>= f = InM (\s → unM (f (m s)) s)

put :: Obs → M Q → M Q
put u (InM m) = InM (\s → Observe u (m s))

To conclude the preparations for the technical sections that follow, we introduce the
(polymorphic) operator upd which “perturbs” a function at a point; it will be used in the
semantic definitions for the assignment statement and the recursive definition.

upd :: Eq a ⇒ a → b → (a → b)→ a → b
upd a b f a ′ = if a ′ == a then b else f a ′

11For the time being, it may seem strange that we used a special data type instead of the equivalent type of
lists of values [Val ]. The purpose of this choice will become clear in later sections.
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In section 2.1 we present a semantic interpreter for Lseq designed with traditional con-
tinuations. Next, in section 2.2 the semantic interpreter is re-designed with CSC structured
continuations. This gives us the opportunity to compare the two techniques.

2.1 Classic Continuation Semantics

The denotational models given in this paper use the technique of continuations, therefore it
is reasonable to assume that a denotation is a function from the current continuation to a
corresponding program behavior. Also, we employ a classic notion of a semantic environment
which is a mapping from procedure variables to denotations. The domains (d ∈)D of de-
notations and (e ∈)Env of (semantic) environments are introduced by the following Haskell
declarations:

type D = Cont → M Q
type Env = Y → D

A continuation is a representation of the rest of the computation [Stra74]. Using the tradi-
tional approach, both continuations and program behaviors are modeled as functions S → Q
from states to observables.

type Cont = M Q

Functions rdState and inState provide the interface between states and types constructed
by monad M . As a provision for sections 4 and 5.1 where CSC continuations are employed
in the semantic representation of distributed objects with local states, the types of rdState
and inState presume that the state may be part of the current continuation (a feature that
is actually not needed in sections 2 or 3).12

rdState :: Cont → M S
rdState c = InM (\s → s)

inState :: S → (Cont → M Q)→ Cont → M Q
inState s f c = InM (\s ′ → unM (f c) s)

After these preparations, we introduce the equations that define a general continuation
semantics for Lseq . The functions semA and sem define the semantics of elementary actions
and the (fixed-point) semantics of statements, respectively. The definitions given below are
straightforward if we state that cc is the continuation completion mapping that converts a
continuation into a program behavior, and addc is the control operator for sequential compo-
sition. The following equations will remain unchanged for all the imperative languages that
we study in the sequel.

semA :: A→ Cont → M Q
semA (Assign v n) c = rdState c >>= \s →

12In the particular case of a global state the definitions correspond to the rdEnv and inEnv operations of
the environment monad:

rdState :: M S
rdState = InM (\s → s)

rdState :: S → M Q → M Q
rdState s m = InM (\s ′ → unM m s)
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inState (upd v (evN n s) s) cc c
semA (Write n) c = rdState c >>= \s →

put (evN n s) (cc c)

sem :: X → Env → D
sem Skip e c = cc c
sem (Action a) e c = semA a c
sem (Seq x1 x2) e c = sem x1 e (addc (Den (sem x2 e)) c)
sem (If b x1 x2) e c = rdState c >>= \s →

if evB b s then sem x1 e c
else sem x2 e c

sem (Call y) e c = e y c
sem (LetRec y x1 x2) e c = sem x2 e ′ c

where e ′ = upd y (fix (\d → sem x1 (upd y d e))) e
fix :: (a → a)→ a
fix f = f (fix f )

We get a classic continuation semantics for Lseq if we implement the operators cc and
addc as below. The following definitions are redundant in the case of a classic continuation
semantics, but they smoothen the transition to the following sections where we present a
number of CSC-based semantic interpreters.

data Comp = Den D

cc :: Cont → M Q
cc = id

addc :: Comp → Cont → Cont
addc (Den d) c = d c

Comp is the domain of computations. In section 2 a computation is just a denotation, but more
complex definitions are employed in the sections that follow. Also, in the classic continuation
semantics given in this section cc is the identity function and the control operator addc
models sequential composition as a simple application. More elaborated definitions however
are required in the semantic models designed with CSC.

The above semantics of Lseq defines a semantic interpreter implemented in Haskell. To
test our semantic interpreter we need initial values for the state, the semantic environment,
and the continuation. In the initial state s0 all variables have indeterminate values. The
initial (empty) environment e0 simply raises an exception whenever it is used. Also, the
initial continuation c0 is the behavior of an empty program; the definition given below is
appropriate for the classic continuation semantics of Lseq .

s0 :: S
s0 v = error "variable not initialized"

e0 :: Env
e0 y = error "unbound procedure variable"

c0 :: Cont
c0 = return Epsilon

The execution of a program can be performed by using the function test ; the auxiliary function
display facilitates the execution of programs in the initial state.

12



display :: Show a ⇒ M a → IO ()
display (InM m) = print (m s0)

test :: X → IO ()
test x = display (sem x e0 c0)

To test the semantic interpreter we consider the Lseq program given below. The Haskell
implementation of syntactic definitions is straightforward but less readable. In the rest of the
paper we only present the abstract syntax of the test programs.

letrec y = if 0 < v then write v; v := v − 1; call y
else skip

in v := 10; call y

Running this program with test produces the following output:

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

2.2 Continuation Semantics for Concurrency

The “continuation semantics for concurrency” (CSC) technique [Todo00a, Todo00c] was intro-
duced in an attempt to exploit the benefits provided by continuations [dBru86] in concurrent
systems development. It is a general language design tool, providing excellent flexibility in
the compositional modeling of parallel and distributed systems. A CSC continuation is a
language-specific structure of computations (partially evaluated meaning functions), rather
than just a program behavior. In a mathematical model, a CSC continuation is an element
of a semantic domain defined as solution of a domain equation where the domain variable
occurs in the left-hand side of a function space construction [Todo00a, Todo04]; in this sense
the computation model is rather complex. However, CSC continuations can be designed in
terms of simple structures which can provide operational intuition. The structure of a CSC
continuation reflects the execution order of the computations it contains. In the case of a
simple language providing only sequential composition a continuation is a stack of computa-
tions. To model the interleaved execution of the parallel computations contained in a CSC
continuation we employ the concept of a multiset. Both stacks and multisets of computations
are implemented in this paper using Haskell lists.

According to the CSC evaluation mechanism, the space of computations is divided into
one active computation and the rest of the computations which are encapsulated in the
continuation [Todo00a]. Conceptually, a CSC continuation behaves as an evaluation context
[Danv04, Fell06] for the active computation. In this paper CSC continuations are divided into
two categories: closed continuations and open continuations. A closed continuation is a self-
contained structure of computations. An open continuation is a structure of computations
which contains a hole (indicating the conceptual position of the active computation). Both
closed and open continuations are semantic representations of what remains to be computed
from the program [Stra74]. At the same time, an open continuation is an evaluation context
[Danv04, Fell06] for the active computation, but a closed continuation cannot be interpreted
by using the notion of an evaluation context. As explained below, CSC continuations are only
closed for scheduling purposes.

The functions of a CSC-based semantic interpreter can be grouped into the following three
components: an evaluator, a continuation-completion mapping together with a normalization
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type SC = [Comp ]

type Kont = SC
type Cont = Kont

Figure 1: Structure of continuations for Lseq : a stack of computations.

procedure, and a scheduler. The evaluator maps open continuations to program behaviors.
It comprises the (compositional) definition of the semantic mapping together with language-
specific control operators. The functions of the evaluator have one thing in common: they
manipulate open continuations, i.e. evaluation contexts. The continuation-completion func-
tion is called by the evaluator to map an open continuation to the program answer that
would result if the continuation alone was left to execute. First, it calls the normalization
procedure, which transforms the open continuation into a corresponding closed continuation;
next it calls the scheduler. Intuitively, the normalization procedure computes the closed
continuation that results by removing the ’hole’ from an open continuation. The scheduler
maps closed continuations to program behaviors. It activates a computation by decomposing
a closed continuation into an (activable) computation and a corresponding open continua-
tion. In the particular case of a deterministic language like Lseq , there is always at most
one possible such activation. However, in general, the selection of the activable computation
is nondeterministic, and it may follow after a (finite) number of synchronization steps. A
CSC-based semantic interpretor implements an “evaluate-normalize-schedule” loop [Danv04].

In the sequel we use the type Kont to implement the domain of closed continuations,
and the type Cont to implement the domain of open continuations. The difference between
closed and open continuations can be encoded explicitly in the semantic domains, but this
is only an implementation decision. In this paper we prefer to set Cont = Kont and to
distinguish between open and closed continuations only at a conceptual level. We believe the
intuitive behavior of CSC continuations is not obscured by this decision; at the same time
the resulted definitions are a bit simpler. For example, in the case of Lseq both open and
closed continuations are stacks of computations executing in sequence, but the reader has
to imagine that an open stack contains a hole at its top (indicating the conceptual position
of the active computation). The definitions of Cont and Kont for Lseq are given below in
terms of a domain SC of stacks of computations. The intuitive behavior of an open stack of
computations is depicted in figure 1. We emphasize that, with the exception of figure 11, all
figures given in this paper depict open continuations.

To conclude the CSC semantics of Lseq it suffices to redefine the special functions on
continuations, but it may be appropriate to state clearly the components of the CSC-based
semantic interpreter for this case. The domain Comp of computations remains as in section
2.1, but the functions cc and addc have to be redefined.

• The evaluator comprises the (compositional) definitions of the semantic functions sem
and semA given in section 2.1, together with a specific new definition of addc. Notice
that the domain D of denotations (used in the declarations of semA and sem) is given
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in terms of open continuations: D = Cont → M Q . The control operator addc adds
a computation to an open continuation for sequential composition. In the case of Lseq ,
addc simply prepends a computation to a stack of computations.

addc :: Comp → Cont → Cont
addc p sc = p : sc

• The continuation-completion mapping cc is called by the evaluator to map an open
continuation to a program answer. For this purpose, it normalizes the continuation
and next it calls the scheduler kc. Function cc stops if the normalized continuation is
empty. The following definition of cc will remain unchanged in the rest of the paper
(with the exception of appendix B.2). The normalization procedure re transforms an
open continuation into a corresponding closed continuation; here, re is just the identity
function.

cc :: Cont → M Q
cc c = case re c of

[ ]→ return Epsilon
k → kc k

re :: Cont → Kont
re = id

• The scheduler function kc is again very simple for Lseq ; it activates the computation at
the top of the stack, giving it as a continuation the rest of the stack.

kc :: Kont → M Q
kc (Den d : sc) = d sc

The domain of continuations has been modified in this section. If we want to test the
CSC-based semantic interpreter we need to re-define the initial continuation c0. We put:

c0 :: Cont
c0 = [ ]

All our experiments show that the CSC-based semantic interpreter and the semantic
interpreter designed with classic continuations behave the same. In particular, the example
program of section 2.1 produces the same execution trace in the CSC semantics.

3 Continuations for Communication and Concurrency

The CSC technique was introduced as a general tool for designing concurrency semantics
[Todo00a, Todo00b, Todo00c]. One of our present aims is to show that it can provide finer
control than the classic denotational techniques. More importantly, the CSC technique gives
the language designer the ability to model compositionally both sequential and concurrent
control flow concepts simply by adapting the structure of continuations. In this section we
present CSC continuation structures for five concurrent languages. All continuation structures
are designed by combining two simple concepts: the stack to model sequential composition
and the multiset to model parallel composition.
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Both stacks and multisets are implemented in this paper using Haskell lists. The oper-
ations on stacks and multisets are used by the schedulers of our CSC-based semantic inter-
preters. A multiset is an unordered collection which may contain duplicate elements. The
behavior of a multiset is given by the following general multiset scheduling algorithm:

ms :: [a ]→ [(a, [a ])]
ms xs = aux xs [ ]

where aux [ ] ys = [ ]
aux (x : xs) ys = (x , xs ++ ys) : aux xs (x : ys)

Function ms takes as parameter a list implementing a multiset. We use this algorithm to
decompose a closed continuation into pairs consisting of an activable computation and a
corresponding open continuation. In the case of a multiset of computations such a decom-
position is not unique, and the selection of the activable computation is nondeterministic.13

Suppose that a closed continuation structure is represented as the multiset [d1, d2, d3 ]. The
ms algorithm computes three possible decompositions.

ms [d1, d2, d3 ] = [(d1, [•, d2, d3 ]), (d2, [•, d3, d1 ]), (d3, [•, d2, d1 ])]

The above picture gives the intuition behind the ms algorithm. The bullet (•) represents the
conceptual position of the activable computation, i.e. the hole of each open continuation. To
simplify the implementation of our schedulers, we find convenient to consider that the hole in
a list implementing an open multiset is always at the head of the list. This implementation
decision is easily justified by the fact that the reordering of the elements of a multiset is a
semantics preserving transformation.14

In this section we offer CSC-based semantic interpreters for five concurrent languages:
Lap , Lnew , Lps , Lrv and Law . Their computation model is based on the concept of a global
state shared by all concurrent processes. The concept of a local state is studied in section
4. Apart from various combinations of sequential and parallel composition operators, Lap ,
Lnew and Lps provide CSP-like synchronous communication, Lrv provides a simplified form
of the rendez-vous mechanism of Ada [Ada83] or POOL [Amer89], and Law incorporates the
suspension mechanism of the await statement [Owic76]. The control, synchronization and
communication concepts are designed by using specific CSC continuation structures.

Unlike the sequential language of section 2, the concurrent languages that we study in
the present section allow for the possibility of deadlock, i.e. the possibility that two or more
concurrent processes wait for each other to do something before either can proceed. A con-
current program can terminate normally or it can terminate in a deadlock state. We redefine
the domain Q of sequences of observables to account for the possibility of a deadlock.

data Q = Epsilon | Deadlock | Observe Obs Q

We also need to redefine the program behavior monad to deal with the nondeterminis-
tic behavior of a concurrent language. As already explained in the introduction, the non-
determinism can be modeled either in “single trace” or in “all possible traces” semantics.
We define a specific monad for each of the two interpretations of non-determinism. The two
monads can be used interchangeably without other modifications of our semantic interpreters.

13In the case of a stack of computations such a decomposition is unique: the activable computation is always
selected from the top of the stack.

14The exact position of the hole (or of any other element in the multiset) is not important.

16



For the purpose of this section, the definitions take into account the model of a concurrent
language employing the concept of a global state. The “all possible traces” version of the
monad is given in appendix A. Here, we only present a monad that implements the “single
trace” semantics. The monad is parameterized by an oracle that decides the alternative to be
selected in nondeterministic choices. The oracle is implemented by using the concept of a ran-
dom number generator. Different execution traces can be obtained at consecutive executions
of a nondeterministic program; given different oracles any possible trace can be obtained.

For the experiments given in this paper we use the random number generator that is given
in the Haskell library Random.hs. We define the domain R of random number generators as
a type synonym of Random.StdGen.

type R = Random.StdGen

We also need an initial value r0 :: R, together with a function for obtaining a new random
number. We put:

r0 :: R
r0 = Random.mkStdGen 42

The revised monad M is a composition of an environment monad, with environment of
type S , and a state monad, with state of type R. Function random extracts one value from
the random number generator; it can be defined easily, as the function Random.next from
Haskell’s library has precisely the appropriate type. The functions put , display , rdState and
inState can easily be redefined.

data M a = InM {unM :: S → R → (a,R)}

instance Monad M where
return a = InM (\s → \r → (a, r))
InM m >>= f = InM (\s → \r → let (a, r ′) = m s r in unM (f a) s r ′)

random :: M Int
random = InM (\s → Random.next)

put u (InM m) = InM (\s → \r → let (q , r ′) = m s r in (Observe u q , r ′))
display (InM m) = print (fst (m s0 r0))

rdState c = InM (\s → \r → (s, r))
inState s f c = InM (\s ′ → \r → unM (f c) s r)

The revised monad’s most important operation is non-deterministic choice. This is im-
plemented with the aid of two functions: ned and bigned . Both use the random number
generator; the former chooses between two alternatives, whereas the latter chooses between
a (finite) set of alternatives.

ned :: M a → M a → M a
ned m1 m2 = bigned [m1,m2 ]

bigned :: [M a ]→ M a
bigned ml = random >>= \r →

ml !! (r ‘mod ‘ (length ml))

The definitions of the domains Val (of values), S (of states), D (of denotations) and Env
(of semantic environments), as well as the definitions of the initial state s0 and the initial
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environment e0, remain as in the section 2. Also, the semantic valuations evN (for numeric
expressions) and evB (for boolean expressions), as well as the equations given in section 2 for
semA (the semantics of elementary actions) and sem (the semantics of statements), remain
unchanged. The same definitions will also be employed without modifications in sections 4
and 5.1. In addition, the definition of the continuation completion mapping cc remain as in
section 2.2.

The function test given in section 2.1 can be used without modifications to test our
semantic interpreters in “all possible traces” semantics; of course, for the purpose of this
section test uses the current definition of display . To avoid any ambiguities, we repeat below
the definition of test :

test :: X → IO ()
test x = display (sem x e0 c0)

The above definition can also be used to (test and) evaluate our semantic interpreters in
“single trace” semantics, but it always returns the same execution trace. It is convenient to
define a function testR for obtaining a different random trace at every new execution.

testR :: X → IO ()
testR x = do r0 ← Random.newStdGen

let InM m = sem x e0 c0

print (fst (m s0 r0))

We are finally prepared to present the CSC continuation structure, the evaluator, the
normalization procedure and the scheduler for each of the five concurrent languages that we
study in section 3.

3.1 Parallel Composition, Action Prefixing and
Synchronous Communication

The language Lap is the simplest concurrent language that we study in this paper. It replaces
the unrestricted sequential computation of Lseq by action prefixing and adds an operator
for parallel composition. The combination of these two can be used to build concurrent
computations; however, parallel computations cannot meet. The last additional feature is
CSP-like synchronous communication with the aid of a non-deterministic choice operator.
Communication is performed through channels, each named with an element of (γ ∈)Ch.
The syntax of Lap , including the communication primitives (g ∈)C for send and receive, is
given below.

g ::= γ !n | γ ? v
x ::= skip | a · x | if b then x else x | x ‖ x | ned [ ( g → x )∗ ]
| letrec y = x in x | call y

A non-deterministic statement is a construct that contains a set of statements, each
guarded by a communication primitive g . Two such constructs can “communicate” if one
of them has a clause of the form γ !n→x1 and the other has a clause of the form γ ? v→x2.
The result of this communication is that n is evaluated, its value is assigned to variable v and
execution continues with x1 and x2 respectively.

The syntax of Lap in Haskell is given below.
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type PC = [Comp ]

type Kont = PC
type Cont = Kont

Figure 2: Structure of continuations for Lap : a multiset of computations.

type Ch = String
data C = Snd Ch N | Rcv Ch V

data X = Skip | Prefix A X | If B X X | Par X X | Ned [(C ,X )]
| LetRec Y X X | Call Y

The first difference in the semantics of Lap w.r.t. Lseq is that there are now two kinds
of computations, waiting to be executed: normal computations, that will eventually perform
an elementary action as in Lseq , and communication attempts, i.e. computations guarded by
communication primitives. The guards are semantically modeled by the data type SemC ,
which contains the name of the channel and either the meaning of the expression to be sent
or the name of the variable in which the received value will be assigned.

data SemC = SemSnd Ch (S → Val) | SemRcv Ch V
data Comp = Den D | Sync [(SemC ,D)]

The structure of continuations has to change, in order to model the semantics of Lap .
Continuations are now parallel computations, i.e. multisets of simple computations as depicted
in Figure 2. One element of the multiset is taken to be the active computation; in our
implementation, this is the head of the list.

As already explained in section 2.2, a CSC-based semantic interpreter implements an
“evaluate-normalize-schedule” loop. However, a more sophisticated scheduler is now neces-
sary. The data type Sched models the options that the scheduler can select from. An element
of the form Scheda d c is an activation schedule: a normal computation d with continuation
c. On the other hand, an element of the form Scheds v pe c is a synchronization schedule: a
successful communication attempt, where pe is the meaning of the expression whose value is
sent, v is the variable in which the received value is assigned and c is the future continuation.
Several auxiliary functions are needed by the scheduler, which is implemented in function kc:

• actc decomposes a closed continuation and finds all activable computations and the
corresponding open continuations;

• scheda uses actc to find all possible activations schedules;

• sync synchronizes two independent closed continuations; and

• scheds uses sync to find all possible synchronization schedules.

The implementation of the scheduler and the auxiliary functions is given below.

data Sched = Scheda D Cont | Scheds V (S → Val) Kont

kc :: Kont → M Q
kc k = case scheda k ++ scheds k of

[ ] → return Deadlock
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ws → bigned (map exe ws)
where exe (Scheda d c′) = d c′

exe (Scheds v pe k ′) = rdState k >>= \s →
inState (upd v (pe s) s) kc k ′

scheda :: Kont → [Sched ]
scheda k = [Scheda d c | (Den d , c)← actc k ]

actc :: Kont → [(Comp,Cont)]
actc = ms

scheds :: Kont → [Sched ]
scheds k = [w | (ps, pc)← ms k ,w ← sync [ps ] pc ]

sync :: Kont → Kont → [Sched ]
sync k1 k2 = [Scheds v pe (re (addc (Den d1) c1) ++

re (addc (Den d2) c2))
| (Sync snd , c1) ← actc k1,

(Sync rcv , c2) ← actc k2,
(SemSnd γs pe, d1)← snd ,
(SemRcv γr v , d2) ← rcv ,
γs == γr ]

The continuation completion function remains as in section 2.2. Also, the normalization
function (which transforms an open continuation into a corresponding closed continuation) is
again defined as the identity function on multisets.

re :: Cont → Kont
re = id

Finally, the semantics of Lap concludes with the meanings of the new kinds of statements.
The semantics of communication primitives is defined at the same time. The semantics of
parallel composition is based on the non-deterministic choice between two alternative compu-
tations: one starting from the first statement and another starting from the second. It uses
the control operator addp which adds a new computation to be executed in parallel with a
given continuation.15 The evaluator functions for Lap are as follows:

addp :: Comp → Cont → Cont
addp p pc = p : pc

sem (Prefix a x ) e c = semA a (addc (Den (sem x e)) c)
sem (Par x1 x2) e c = sem x1 e (addp (Den (sem x2 e)) c) ‘ned ‘

sem x2 e (addp (Den (sem x1 e)) c)
sem (Ned gx ) e c = cc (addc p c)

where p = Sync [(semC g , sem x e) | (g , x )← gx ]
semC :: C → SemC
semC (Snd γ e) = SemSnd γ (evN e)
semC (Rcv γ v) = SemRcv γ v

15In the simple setting of Lap , where a general operator for sequential composition is missing, the control
operator addc behaves the same as addp (addc remains as in section 2.2). In the languages that we study in
the following sections we will encounter more complex combinations of sequential and parallel compositions.
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All evaluator functions operate upon open continuations. Recall that the type of the semantic
function is sem :: X → Env → D , where D = Cont → M Q and Cont is the domain of open
continuations in the semantic models designed with CSC.

As an example of Lap , consider the following program. Procedure y1 is the producer, while
procedure y2 is the consumer. Variable v receives the communicated value and both y1 and
y2 operate as long as v is positive. At each turn, y1 decrements the value of v with probability
2/3 or increments it with probability 1/3. Under a fair implementation of non-deterministic
choice, the program is bound to terminate.

letrec y1 = if 0 < v then ned [ γ ! (v − 1) → call y1

| γ ! (v + 1) → call y1

| γ ! (v − 1) → call y1 ]
else skip

in letrec y2 = if 0 < v then ned [ γ ? v → write v · call y2 ]
else skip

in v := 10 · write v · (call y1 ‖ call y2)

At consecutive executions, our semantic interpreter can produce different execution traces if
the program is non-deterministic and the random number generator is initialized with different
seeds. A possible execution trace for this program, obtained by taking c0 = [ ] is:

[10, 9, 10, 11, 10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

By employing the powerdomain monad given in appendix A instead of the monad M
defined in this section, we obtain a classic denotational model for Lap . Unfortunately, the
meaning of the previous program in this model is an infinite set of different possible traces,
produced one by one. Such a model is only useful to verify toy programs such as:

(write 1 · write 2 · skip) ‖ (write 3 · skip)

which produces the following set of traces:

{| [1, 2, 3], [3, 1, 2], [1, 3, 2] |}

As a second small example, consider the following program:

ned [ γ ! 1 → ned [ γ ? v → skip ] | γ ! 2 → write 3 · skip ]
‖ ned [ γ ? v → write v · skip ]

The set of all possible traces that is produced is given below.

{| [1, deadlock ], [3, 2], [2, 3] |}

3.2 Process Creation

The language Lnew takes a different approach to concurrency from Lap . Action prefixing is
replaced by sequential composition in general, but parallel composition is replaced with a
new construct, that allows the creation of new processes. Such processes can communicate
with each other but, as in Lap , their execution cannot “meet”. The full abstract syntax of
Lnew is given below:
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type SC = [Comp ]
type PC = [SC ]

type Kont = PC
type Cont = Kont

Figure 3: Structure of continuations for Lnew : a multiset of stacks of computations.

x ::= skip | a | if b then x else x | x ; x | new x | ned [ ( g → x )∗ ]
| letrec y = x in x | call y

and its implementation in Haskell is very straightforward.

data X = Skip | Action A | If B X X | Seq X X | New X | Ned [(C ,X )]
| LetRec Y X X | Call Y

Just one modification in the semantic domains of Lap is necessary, to model the behavior
of concurrent programs in Lnew . Continuations now can be structured as multisets of stacks
of computations: each stack (SC ) models a sequential composition that takes place in a single
process, whereas the multiset (PC ) contains all processes that are executed in parallel (see
Figure 3). A specific element of this multiset is designed to be the active process; in our
implementation of open continuations, we always assume that the active process is the head
of the list representing PC . The top element in the stack representing the active process is
the active computation.

The definition of actc (the auxiliary function used by the scheduler to find all activable
computations) must change, as all processes of the multiset are candidates for activation.

actc k = [(p, sc : pc) | (p : sc, pc)← ms k ]

Furthermore, the normalization function re must make sure that a continuation does not
contain any empty SC .16

re ([ ] : pc) = pc
re pc = pc

In the evaluator, function addc also needs to be modified, so as to prepend a computation
to the active process. A new function addn is defined, to add a computation as a new process
to the multiset.

addc :: Comp → Cont → Cont
addc p (sc : pc) = (p : sc) : pc

addn :: Comp → Cont → Cont
addn p (sc : pc) = sc : [p ] : pc

The semantics of sequential composition and process creation are easily defined in terms of
addc and addn.

16An invariant of the new structure of continuations in our semantics for Lnew is that an empty SC can only
occur as the active process of a PC .
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sem (Seq x1 x2) e c = sem x1 e (addc (Den (sem x2 e)) c)
sem (New x ) e c = cc (addn (Den (sem x e)) c)

The following example program in Lnew is very similar to that of section 3.1; the only
difference is in the use of new instead of parallel composition for running the producer and
the consumer in parallel. The empty continuation is appropriately redefined as c0 = [[ ]].)

letrec y1 = if 0 < v then ned [ γ ! (v − 1) → call y1

| γ ! (v + 1) → call y1

| γ ! (v − 1) → call y1 ]
else skip

in letrec y2 = if 0 < v then ned [ γ ? v → write v; call y2 ]
else skip

in v := 10; write v; new (call y1); call y2

It is little surprising that the produced trace is identical to that of section 3.1.

[10, 9, 10, 11, 10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

3.3 Parallel and Sequential Composition

In a language with unrestricted parallel and sequential composition, like Lps that we consider
in this section, the major issue is the presence of statements such as (x1 ‖x2) ;x3. In such
a statement, x3 can only execute after both x1 and x2 have terminated. This “meeting” of
computations is not possible in the previous languages. Let us consider the language Lps ,
whose syntax contains again the non-deterministic choice and synchronous communication of
Lap and a combination of parallel and sequential composition.

x ::= skip | a | if b then x else x | x ; x | x ‖ x | ned [ ( g → x )∗ ]
| letrec y = x in x | call y

The same syntax in Haskell is given below.

data X = Skip | Action A | If B X X | Seq X X | Par X X | Ned [(C ,X )]
| LetRec Y X X | Call Y

A richer structure for continuations is required for Lps . A combination of parallel and
sequential computation is necessary, precisely in this order: a parallel computation is first
executed (x1 ‖x2 in our example) and, upon its termination, a sequence of computations that
was blocked up to that point (x3) is launched. This leads us to the structure of a ps-tree (see
Figure 4). The shape of a ps-tree is inspired from the structure of a cactus stack [Bobr73].

Every node in a ps-tree consists of one PC and one SC with the aforementioned semantics.
A PC is a multiset of ps-trees or, in other words, a ps-forest. In a ps-tree, parallel levels
(i.e. PC multisets) alternate with sequential levels (i.e. SC stacks). The active computation
is (conceptually) a leaf in a ps-forest. In our implementation of an open continuation, we
take this leaf to be the leftmost one. The semantic operators on continuation structures
are designed in such a way as to maintain the following invariant of ps-trees: every SC
stack is non-empty, with the possible exception of the leftmost one (the active stack), which
conceptually contains at its head the active computation. When the active SC becomes
empty, it is removed by the normalization function.
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type SC = [Comp ]
data PS = Meet PC SC
type PC = [PS ]

type Kont = PC
type Cont = Kont

Figure 4: Structure of continuations for Lps : a ps-forest with active computations at the
leaves.

re (Meet [ ] [ ] : pc) = pc
re (Meet [ ] sc : pc) = Meet [ ] sc : pc
re (Meet pc0 sc : pc) = Meet (re pc0) sc : pc

Furthermore, part of the scheduler must be redefined. The two auxiliary functions actc
and scheds now become:

actc k = [w | (ps, pc)← ms k ,w ← aux ps pc ]
where aux (Meet [ ] (p : sc)) pc = [(p,Meet [ ] sc : pc)]

aux (Meet pc0 sc) pc = [(p,Meet pc′0 sc : pc)
| (p, pc′0)← actc pc0 ]

scheds k = [w | (ps, pc)← ms k ,w ← sync [ps ] pc ++ aux ps pc ]
where aux (Meet pc0 sc) pc =

[Scheds v pe (Meet pc′0 sc : pc)
| Scheds v pe pc′0 ← scheds pc0 ]

Modifications are also required in the evaluator, in functions addc and addp. The former
simply adds a computation on top of the active stack. The latter creates a branching point
on top of the active stack; an example of its operation is shown in Figure 5.

addc p (Meet [ ] sc : pc) = Meet [ ] (p : sc) : pc
addc p (Meet pc0 sc : pc) = Meet (addc p pc0) sc : pc

addp p (Meet [ ] [ ] : pc) = Meet [ ] [ ] : Meet [ ] [p ] : pc
addp p (Meet [ ] sc : pc) = Meet [Meet [ ] [ ],Meet [ ] [p ]] sc : pc
addp p (Meet pc0 sc : pc) = Meet (addp p pc0) sc : pc

As usual, the semantics of sequential and parallel composition are directly based on addc and
addp.

sem (Seq x1 x2) e c = sem x1 e (addc (Den (sem x2 e)) c)
sem (Par x1 x2) e c = sem x1 e (addp (Den (sem x2 e)) c) ‘ned ‘

sem x2 e (addp (Den (sem x1 e)) c)
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Figure 5: The result of applying addp to a process p and the open continuation depicted in
Figure 4. Process p is added in parallel to the active computation.

The empty continuation must also change appropriately.

c0 = [Meet [ ] [ ]]

As a first example, we consider a very simple program:

(write 1 ‖ write 2); write 3

The set of all possible traces that is produced by employing the powerdomain monad given
in appendix A contains only traces in which the observable 3 is found after both 1 and 2:

{| [1, 2, 3], [2, 1, 3] |}

We now convert the more involved example of section 3.1 using sequential and parallel
composition. We add a final output primitive, which will produce 99 as the last observable.

letrec y1 = if 0 < v then ned [ γ ! (v − 1) → call y1

| γ ! (v + 1) → call y1

| γ ! (v − 1) → call y1 ]
else skip

in letrec y2 = if 0 < v then ned [ γ ? v → write v; call y2 ]
else skip

in v := 10; write v; (call y1 ‖ call y2); write 99

It is again little surprising that the produced trace in our prototype implementation is identical
to that of sections 3.1 and 3.2, with the exception of the final observable.

[10, 9, 10, 11, 10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 99]

As a last example, we present a program with two meeting points. The first group of
parallel processes print a series of 1 and 2. Then a first meeting point is reached and 1000 is
printed. Subsequently, the second group of parallel processes print a series of 3 and 4 and a
second meeting point is reached. Finally, the number 2000 is printed.

25



letrec y1 = if 0 < v then (write 1; call y1) else skip
in letrec y2 = if 0 < v then (write 2; call y2) else skip
in letrec y3 = if 0 < v then (write 3; call y3) else skip
in letrec y4 = if 0 < v then (write 4; call y4) else skip
in letrec yc = if 0 < v then (v := v − 1; call yc) else skip
in v := 10; (call y1 ‖ call y2 ‖ call yc); write 1000;

v := 10; (call y3 ‖ call y4 ‖ call yc); write 2000;

The produced trace shows precisely what is described above.

[1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1000, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 3, 2000]

3.4 Rendez-vous

The language Lrv defined in this section replaces the CSP-like synchronous synchronization
with a simplified version of the rendez-vous mechanism that is typical in Ada and POOL.

x ::= skip | a | if b then x else x | x ; x | new x | ask y | answer [ y∗ ]
| letrec y = x in x | call y

The syntax in Haskell is given below.

data X = Skip | Action A | If B X X | Seq X X | New X | Ask Y | Answer [Y ]
| LetRec Y X X | Call Y

Before we explain the semantics of rendez-vous, we provide a brief, intuitive description.
In client-server terminology, ask y is executed by a client requesting a service, y is the name
of the service, answer [ys] is executed by a server providing a number of services and ys is
the set of provided services.

A statement of the form ask y requests the invocation of procedure y. In POOL terminol-
ogy, y is a method of some named object ; in the simplified view of Lrv , procedures are methods
and processes are unnamed objects. The request ask y can be answered by any process that
executes a statement of the form answer [ys], where ys is a sequence of procedure variables
and y ∈ ys. The sequence of processes ys determines what this process can invoke. A process
executing answer [ys] is blocked, until an ask request is made by some other process. When
such a rendez-vous between two processes succeeds, the specified procedure is executed; both
processes are suspended and only proceed when (and if) the procedure’s execution finishes.

The first change that is required in the semantics of Lrv concerns the domain Comp. Two
new kinds of computation must be added: Ask y is a computation that requests invocation
of procedure y and Answer yds is a computation that waits for an invocation request, where
yds is a list of pairs consisting of procedure names and procedure denotations.

data Comp = Den D | Ask Y | Answer [(Y ,D)]

Furthermore, the structure of continuations must be adapted to the rendez-vous concept.
A combination of sequential and parallel computation is again necessary, but a rendez-vous
must be seen as the opposite of the “meeting” that we discussed in section 3.3. When a
rendez-vous succeeds, a sequential computation is first executed (the invoked procedure) and,
upon its termination, two processes (the asking and answering processes) that were blocked
up to that point continue their execution in parallel. This leads again to a structure very
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type SC = [Comp ]
data PS = Fork SC PC
type PC = [PS ]

type Kont = PC
type Cont = Kont

Figure 6: Structure of continuations for Lrv : a ps-forest with active computations at the root.

similar to the ps-tree of section 3.3, but now the order of sequential and parallel levels of
computation is reversed (see Figure 6). The active computation is now (conceptually) at the
root of the the ps-tree.

In the semantics of Lrv , the domain Sched is simplified but the scheduler functions become
significantly more complex. The next step that is scheduled can be either an elementary action
(scheduled by scheda) or a successful rendez-vous (scheduled by scheds).

data Sched = Sched D Cont

scheda :: Kont → [Sched ]
scheda k = [Sched d c | (Den d , c)← actc k ]

scheds :: Kont → [Sched ]
scheds k = [w | (ps, pc)← ms k ,w ← sync [ps ] pc ]

kc :: Kont → M Q
kc k = case scheda k ++ scheds k of

[ ] → return Deadlock
ws → bigned (map exe ws)

where exe (Sched d c′) = d c′

The most interesting part in the semantics of Lrv is function sync which implements the
rendez-vous synchronization.

sync k1 k2 = [Sched d (Fork [ ] (re [ps1 ] ++ re [ps2 ]) : pc1 ++ pc2)
| (Ask y1, ps1 : pc1) ← actc k1,

(Answer yds, ps2 : pc2)← actc k2,
(y2, d) ← yds,
y1 == y2 ]

The definition of actc is simpler again, as active computations are found at the root of the
ps-tree.

actc :: Kont → [(Comp,Cont)]
actc k = [(p,Fork sc pc0 : pc) | (Fork (p : sc) pc0, pc)← ms k ]

The normalization function again makes sure that when the active SC stack becomes
empty, it is removed from the ps-tree.

27



re :: Cont → Kont
re (Fork [ ] pc0 : pc) = pc0 ++ pc
re (Fork sc pc0 : pc) = Fork sc pc0 : pc

The semantics of ask and answer simply use addc to add the corresponding rendez-vous
attempts to the continuation. The control operator addc adds a computation on top of the
active stack, which is at the root of the leftmost ps-tree in our implementation.

addc p (Fork sc pc0 : pc) = Fork (p : sc) pc0 : pc

sem (Ask y) e c = cc (addc (Ask y) c)
sem (Answer ys) e c = cc (addc (Answer [(y , e y) | y ← ys ]) c)

A straightforward modification is also required in the control operator addn of section 3.2.

addn p (ps : pc) = ps : Fork [p ] [ ] : pc

The empty continuation c0 must also change appropriately.

c0 = [Fork [ ] [ ]]

A small program in Lrv will serve as our first example. In the following program, two
processes synchronize upon the invocation of procedure m.

letrec m = write 7; write 42
in new (write 1; ask m; write 3);

write 2; answer [m]; write 4

The set of all possible traces that is produced by employing the powerdomain monad given in
appendix A is the following. All traces contain the subsequence [7, 42] which is obtained when
the two processes are synchronized and procedure m is called. Before this subsequence there
are the observables 1 and 2, in any order, and after this subsequence there are the observables
3 and 4, again in any order.

{| [2, 1, 7, 42, 3, 4], [1, 2, 7, 42, 3, 4], [2, 1, 7, 42, 4, 3], [1, 2, 7, 42, 4, 3] |}

The following example program demonstrates the synchronization capabilities of Lrv . It
uses a semaphore, modeled by procedure sema, to implement mutual exclusion between two
procedures, y1 and y2. Procedure sema acts as a monitoring process. Procedures inc and dec
are the semaphore’s basic methods and done is a method for signaling that the semaphore is
no more necessary. Notice that when the value of variable v is zero, the semaphore does not
answer to dec.
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letrec inc = v := v + 1; write v
in letrec dec = v := v − 1;write v
in letrec done = m := m− 1; write 99
in letrec sema = if 0 < v then answer [done, inc, dec]

else answer [done, inc];
if 0 < m then call sema else skip

in letrec y1 = if 0 < n then ask dec; n := n− 1; write 42;
ask inc; call y1

else ask done
in letrec y2 = if 0 < n then ask dec; n := n− 1; write 7;

ask inc; call y2

else ask done
in v := 1; n := 10; new (call y1); new (call y2);

m := 2; call sema

In our prototype implementation, the produced trace is the following. It is not coincidental
that y1 and y2 tend to alternate; given a fair implementation of non-deterministic choice,
alternation is the highest probability scenario.

[0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 7, 1, 0, 7, 1, 0, 99, 42, 1, 99]

3.5 The Await Statement

Let us now consider the language Law featuring parallel, sequential composition and the
await statement as a means of suspension. This suspension mechanism may be considered
as an instance of a general paradigm for asynchronous communication [dBoe93]. We ex-
pect that other instances of this paradigm can be handled similarly. We omit synchronous
communication from the syntax of Law , mostly for reasons of simplicity.

x ::= skip | a | if b then x else x | x ; x | x ‖ x | await b then x
| letrec y = x in x | call y

According to the semantics of await b then x, as defined by Owicki and Gries [Owic76],
execution is blocked until b is true. Subsequently, the body x is executed indivisibly, as if it
were an elementary action. The syntax of Law in Haskell is given below.

data X = Skip | Action A | If B X X | Seq X X | Par X X | Await B X
| LetRec Y X X | Call Y

The atomization of an await statement’s body is what requires a redesign in the semantics
of Law , w.r.t. Lps . Yet a richer structure is necessary allowing computations to be executed
indivisibly. In the work of Owicki and Gries, the body of await was restricted to a simple
sequential computation that was bound to terminate. We have no reason to impose such a
restriction: in Law , the body of await is unrestricted. If the guarding condition is true, then
all parallel processes are suspended and the computation of the body takes place in isolation,
as if it was the only statement in the whole program. Only when (and if) it terminates do the
suspended processes continue their execution. Moreover, Law allows await statements to be
nested; in this case there may be several “layers” of suspended parallel processes, each layer
waiting for the body of some nested await to finish.
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type SC = [Comp ]
data PS = Meet PC SC
type PC = [PS ]
type SP = [PC ]

type Kont = SP
type Cont = Kont

Figure 7: Structure of continuations for Law : a stack of ps-forests with active computations
at the leaves.

With all this in mind, the obvious model of continuations in Law is a stack of ps-forests.
The top element of the stack is the multiset of parallel computations (ps-trees) that is cur-
rently executed. All other elements of the stack contain various “layers” of suspended pro-
cesses, waiting their turn until the upper elements complete their execution. Figure 7 shows
this structure. The active computation is found at the leaves of the stack’s top element.

Apart from the different continuation structure, the semantics of Law is a direct adaptation
of Lps , with one exception. A new kind of computation for await statements waiting for their
guarding condition to become true is added in domain Comp: in Await f d , f is the meaning
of the condition and d is the denotation of the body.

data Comp = Den D | Await (S → Bool) D

The scheduler operation for synchronization has a dual rôle: to find all activation schedules
that can resume their execution, including await statements with a true guarding condition,
and to suspend all processes if the body of an await statement is scheduled for execution. In
order to evaluate guarding conditions, scheds needs to access the state, which must be passed
by the scheduler.

data Sched = Sched D Cont

scheda :: Kont → [Sched ]
scheda k = [Sched d c | (Den d , c)← actc k ]
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scheds :: Kont → S → [Sched ]
scheds k s = [Sched d ([Meet [ ] [ ]] : re c)

| (Await f d , c)← actc k , f s ]

kc :: Kont → M Q
kc k = rdState k >>= \s →

case scheda k ++ scheds k s of
[ ] → return Deadlock
ws → bigned (map exe ws)

where exe (Sched d c) = d c

actc :: Kont → [(Comp,Cont)]
actc (pc : c) = [(p, pco : c) | (p, pco)← paux pc ]

where paux pc = [w | (ps, pc′)← ms pc,w ← aux ps pc′ ]
aux (Meet [ ] (p : sc)) pc = [(p,Meet [ ] sc : pc)]
aux (Meet pc0 sc) pc = [(p,Meet pc′0 sc : pc)
| (p, pc′0)← paux pc0 ]

The remaining changes to the normalization procedure and the evaluator are necessary to
restrict the focus to the stack’s bottom layer. As a general rule, the revised functions apply
their counterparts of Lps to the stack’s first element and leave the other elements unaffected.

The revised normalization procedure for Law is given below.

re :: Cont → Kont
re (pco : c) = case aux pco of

[ ]→ c
pc → pc : c
where aux (Meet [ ] [ ] : pc) = pc

aux (Meet [ ] sc : pc) = Meet [ ] sc : pc
aux (Meet pc0 sc : pc) = Meet (aux pc0) sc : pc

Furthermore, the evaluator’s functions addc and addp must be revised as follows.

addc p (pco : c) = aux p pco : c
where aux p (Meet [ ] sc : pc) = Meet [ ] (p : sc) : pc

aux p (Meet pc0 sc : pc) = Meet (aux p pc0) sc : pc

addp :: Comp → Cont → Cont
addp p (pco : c) = aux p pco : c

where aux p (Meet [ ] [ ] : pc) = Meet [ ] [ ] : Meet [ ] [p ] : pc
aux p (Meet [ ] sc : pc) = Meet [Meet [ ] [ ],Meet [ ] [p ]] sc : pc
aux p (Meet pc0 sc : pc) = Meet (aux p pc0) sc : pc

The semantics of the await statement is also straightforward.

sem (Await b x ) e c = cc (addc (Await (evB b) (sem x e)) c)

The last modification is the redefinition of the empty continuation.

c0 :: Cont
c0 = [[Meet [ ] [ ]] ]

Our first example will be a simple program with two await statements.
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v := 0; ((write 0; v := 1; write 3) ‖
(await 2 == v then write 2) ‖
(await 1 == v then (write 1; v := 2; write 4)))

The first process prints 0 and sets v to 1, thus releasing the guard of the second await
statement. When this is executed, it prints 1 and 4 without interruption and sets v to 2, thus
releasing the guard of the first await statement. When this is executed, it prints 2. Thus,
the sequence of observables [0, 1, 4, 2] will occur in this order. It is not known, however, at
which point the first process will print 3: it will be after 0 and not between 1 and 4, so there
are three possibilities. The set of all possible traces obtained by employing the powerdomain
of appendix A shows this:

{| [0, 3, 1, 4, 2], [0, 1, 4, 3, 2], [0, 1, 4, 2, 3] |}

We will now rewrite the example of section 3.4, implementing mutual exclusion using
a semaphore. In Law it is much more natural to implement the semaphore and it is not
necessary to have a monitoring process. We use the always true condition 0< 1 in procedure
inc to ensure that incrementing and output will be indivisible.

letrec inc = await 0 < 1 then (v := v + 1; write v)
in letrec dec = await 0 < v then (v := v − 1; write v)
in letrec y1 = if 0 < n then call dec; n := n− 1; write 42;

call inc; call y1

else skip
in letrec y2 = if 0 < n then call dec; n := n− 1; write 7;

call inc; call y2

else skip
in v := 1; n := 10; (call y1 ‖ call y2); write 99

In our prototype implementation, the produced trace is the following. Again, it is not purely
coincidental that y1 and y2 alternate; different traces can be obtained by using different
random number generators. In the appendix, we use this very example to demonstrate the
ability of the powerdomain monad to compute all possible execution traces.

[0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 7, 1, 0, 42, 1, 0, 7, 1, 0, 42, 1, 99]

4 Continuations for Distributed Computing

All the languages considered in sections 2 and 3 have one thing in common: a global state,
shared by all concurrent processes. In this section, we explore the possibility of having a local
state for each process. This is essential for defining the semantics of concurrent programming
languages used in distributed computing. Furthermore, we investigate the notion of remote
processes as named objects and allow object-to-object communication.

We first introduce support for distributed state, which is identical in structure to that
of the previous languages. Each process created with new and the other object creation
constructs introduced in the rest of this section will have its own local state, stored within its
semantic representation. This provides a more elegant compositional solution to the problem
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of distributed state than, e.g., the one proposed by America [Amer89] for the semantic de-
scription of POOL, or by de Bakker and de Vink [dBak96, ch. 13]. In the rest of this section,
we refer to such stateful processes as objects.

The introduction of distributed state forces a redefinition of monad M . The environment
monad component of M , supporting the global state, is now removed and only the state
monad component for the random number generator is kept: M a = R → (a,R). The
definition of the new M is standard.

type M a = S → R → (a,R)

instance Monad M where
return a = InM (\r → (a, r))
InM m >>= f = InM (\r → let (a, r ′) = m r in unM (f a) r ′)

random :: M Int
random = InM (Random.next)

put u (InM m) = InM (\r → let (q , r ′) = m r in (Observe u q , r ′))
display (InM m) = print (fst (m r0))

What is interesting, though, is the redefinition of rdState and inState. These two operations
until now ignored the continuation passed as a parameter and were defined as operations of
the monad M ; they now cannot be defined unless the structure of continuations is known and
their definition is deferred until section 4.1.

4.1 Distributed State

We start with the language Lnew and we redefine its semantics, so that a new local state is
introduced for each process created with new. The structure of the state is identical to that
of the previous languages. The resulting language Lds has exactly the same syntax as Lnew :

x ::= skip | a | if b then x else x | x ; x | new x | ned [ ( g → x )∗ ]
| letrec y = x in x | call y

and its implementation in Haskell is the following:

data X = Skip | Action A | If B X X | Seq X X | New X | Ned [(C ,X )]
| LetRec Y X X | Call Y

The local state must be made part of each parallel process. Therefore, in the semantics of
Lds a parallel computation is a multiset of pairs, each having a sequential computation and
its local state. Elements of PS (processes) can now be thought of as objects, although still
unnamed. The structure of continuations is shown in Figure 8. Except for the local state, it
is identical to that of Figure 3.

Functions rdState and inState must access the local state of active computation, i.e. the
first element of the current continuation.

rdState (Obj sc s : pc) = InM (\r → (s, r))
inState s f (Obj sc s ′ : pc) = InM (\r → unM (f (Obj sc s : pc)) r)

The scheduler must also change. Apart from the straightforward changes, having to do
with the propagation of the local state, it is worth noticing how function sync uses the state
of the sending object to evaluate the expression whose value must be sent, and then assigns
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type SC = [Comp ]
data PS = Obj SC S
type PC = [PS ]

type Kont = PC
type Cont = Kont

Figure 8: Structure of continuations for Lds : a multiset of stacks of computations, each with
its local state.

this to a variable in the state of the receiving object. Synchronization schedules are simplified
versions of those in section 3.2.

data Sched = Scheda D Cont | Scheds Cont

kc c = case scheda c ++ scheds c of
[ ] → return Deadlock
sc → bigned (map exe sc)

where exe (Scheda d c′) = d c′

exe (Scheds c′) = kc c′

actc k = [(p,Obj sc s : pc) | (Obj (p : sc) s, pc)← ms k ]

sync k1 k2 =
[Scheds (re (addc (Den d1) (Obj sc1 s1 : pc1)) ++

re (addc (Den d2) (Obj sc2 (upd v (pe s1) s2) : pc2)))
| (Sync snd ,Obj sc1 s1 : pc1)← actc k1,

(Sync rcv ,Obj sc2 s2 : pc2)← actc k2,
(SemSnd γs pe, d1) ← snd ,
(SemRcv γr v , d2) ← rcv ,
γs == γr ]

The rest of required changes in the semantics is trivial.

c0 = [Obj [ ] s0 ]

re (Obj [ ] s : pc) = pc
re (Obj sc s : pc) = Obj sc s : pc

addc p (Obj sc s : pc) = Obj (p : sc) s : pc

addn p (ps : pc) = ps : Obj [p ] s0 : pc

Notice that newly created processes (objects) are equipped with the initial state s0. This does
not agree with the behavior of Unix’s fork system call for process creation, which makes a
copy of the parent’s local state and equips the child process with that copy. This behavior is
possible by changing the last equation with:

addn p (Obj sc s : pc) = Obj sc s : Obj [p ] s : pc
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A trivial change is also required in the function testR that is used to execute a program
and produce a random trace.

testR :: X → IO ()
testR x = do r0 ← Random.newStdGen

let InM m = sem x e0 c0

print (fst (m r0))

We now provide an example that shows the difference between the global state of Lnew

and the local state of Lds . Consider the following program:

v := 7;
new (ned [ γ ! 42 → skip ]);
new (ned [ γ ? v → write v ]);
write v

When we execute this program with the powerdomain monad for local state that is given in
appendix A, the following set of traces is produced:

{| [7, 42], [42, 7] |}

Notice that the fourth line always produces the observable 7, as the value of its local variable v
never changes, and that the third line produces the observable 42 when the processes created
by the second and third lines synchronize. The first possible trace occurs when the fourth line
is executed before the synchronization, whereas the second trace occurs when it is executed
after the synchronization.

If we execute the same program with the semantics of Lnew , where the state is global,
the second trace above is not possible. If the synchronization occurs first, the value of v in
the global state becomes 42 and the fourth line produces the observable 42. The set of all
possible traces produced by the powerdomain monad with a global state is:

{| [7, 42], [42, 42] |}

4.2 Distributed Objects

The language Lobj enhances Lds with a mechanism for naming newly created objects (pro-
cesses), so that other objects can later “refer” to them. A new class of variables, modeled
by the data type W , is used for references to objects. A typical such variable is denoted
by w. The syntax of the new statement is slightly changed, to support the naming of new
objects. To demonstrate the ability of Lobj to refer to such named objects, we replace the
communication mechanism through named channels of Lnew and Lds with a new mechanism
for synchronous object-to-object communication. The revised syntax for Lobj is given below.

g ::= w ¡n | ¿ v
x ::= skip | a | if b then x else x | x ; x | new w is x | ned [ ( g → x )∗ ]
| letrec y = x in x | call y

The new communication mechanism employs a new pair of communication primitives:
w ¡n and ¿ v. The former evalutes the expression n and sends the value to the object refered
by w. The latter suspends execution until a value is received (by a use of the former primitive);
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type SC = [Comp ]
data PS = Obj O SC S
type PC = [PS ]

type Kont = PC
type Cont = Kont

Figure 9: Structure of continuations for Lobj : a multiset of stacks computations. Each stack
represents an object and contains an object identifier and the local state.

the value is then assigned to variable w. Notice that the receiving object is willing to accept
communication messages from any other object that knows how to refer to it. Therefore,
the revised statement new not only creates a new object but also a new communication
connection to it.

The syntax of Lobj is encoded in Haskell as follows.

data C = Snd W N | Rcv V
data X = Skip | Action A | If B X X | Seq X X | New W X | Ned [(C ,X )]

| LetRec Y X X | Call Y

References to objects necessitate a new semantic domain O of object identifiers. Object
identifiers must be unique in any continuation; for simplicity, we choose to represent them
by integer numbers. The mapping between an object variable (reference) w and an object
identifier o has a local character and must be made part of the distributed state. Therefore,
the data type S is extended with a mapping of type W → O .

type O = Int
data S = St{getv :: V → Val , getw :: W → O }

s0 = St{getv = sv0 , getw = sw0 }
where sv0 v = error "variable not initialized"

sw0 w = error "object variable not initialized"

As a result of the modification of S , trivial changes are required in the semantics of
expressions and elementary actions, where values are read from the state and stored in the
state respectively:

evN (V v) s = getv s v

semA (Assign v n) c = rdState c >>= \s →
inState s{getv = upd v (evN n s) (getv s)}cc c

The structure of continuations in Lobj is very similar to that of Lds . Continuations are
again structured as multisets of stacks of computations, but each sequential composition
(process) contains additionally an object identifier and its local state (see Figure 9). In this
structure of continuations, functions rdState and inState can be simply defined as follows:

rdState (Obj o sc s : pc) = InM (\r → (s, r))
inState s f (Obj o sc s ′ : pc) = InM (\r → unM (f (Obj o sc s : pc)) r)
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The only interesting change to the scheduler for Lobj , in comparison to that for Lds ,
concerns synchronization. First of all, the semantic domain SemC needs to change, to reflect
the change in C .

data SemC = SemSnd W (S → Val) | SemRcv V
data Comp = Den D | Sync [(SemC ,D)]

Synchronization schedules are similar to those in section 4.1, but function sync checks that
the receiving object is indeed the one referred to by w in the sending object’s local state.

actc k = [(p,Obj o sc s : pc) | (Obj o (p : sc) s, pc)← ms k ]

sync k1 k2 =
[Scheds (re (addc (Den d1) (Obj o1 sc1 s1 : pc1)) ++

re (addc (Den d2) (Obj o2 sc2 s2{getv = upd v (pe s1) (getv s2)} : pc2)))
| (Sync snd ,Obj o1 sc1 s1 : pc1)← actc k1,

(Sync rcv ,Obj o2 sc2 s2 : pc2)← actc k2,
(SemSnd w pe, d1) ← snd ,
(SemRcv v , d2) ← rcv ,
getw s1 w == o2 ]

The normalization function is very similar to that of Lds , with the trivial addition of
object identifiers.

re (Obj o [ ] s : pc) = pc
re (Obj o sc s : pc) = Obj o sc s : pc

In the evaluator, a trivial change is also required in the semantics of ned, reflecting the
changes in SemC .

sem (Ned gx ) e c = cc (addc p c)
where p = Sync [(semC g , sem x e) | (g , x )← gx ]

semC :: C → SemC
semC (Snd w e) = SemSnd w (evN e)
semC (Rcv v) = SemRcv v

For the semantics of new, there must be a way of allocating new unique object identifiers;
this is achieved with function newo :: Cont → O which takes as parameter the complete
current continuation, so as to avoid returning an object identifier that is already in use. Also,
function addn must change, in order to update the new object’s variable w in the state of
the object that created it. Furthermore, trivial changes are required in several functions, to
propagate object identifiers.

newo :: Cont → O
newo pc = maximum [o | Obj o sc s ← pc ] + 1

addn :: Comp → Cont →W → Cont
addn p (Obj o sc s : pc) w = Obj o sc s ′ : Obj o ′ [p ] s0 : pc

where s ′ = s{getw = upd w o ′ (getw s)}
o′ = newo (Obj o sc s : pc)

addc :: Comp → Cont → Cont
addc p (Obj o sc s : pc) = Obj o (p : sc) s : pc
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The semantics of new now becomes:

sem (New w x ) e c = cc (addn (Den (sem x e)) c w)

Furthermore, the definition of an empty continuation changes again. The initial object’s
identifier is 0.

c0 = [Obj 0 [ ] s0 ]

The combination of object references and object-to-object communication suffices to en-
code a nice parallel implementation of the sieve of Eratosthenes. Although this implemen-
tation is not realistic in terms of resource usage (it creates one process for filtering out the
multiples of each computed prime number), it is interesting to see how distributed state and
object-to-object communication can be used to set up a pipeline of filters.

letrec generate = ned [ first ¡ i → i := i+ 2 ];
call generate

in letrec filter = ned [ ¿ i → skip ];
if i%p == 0 then skip

else ned [ next ¡ i → skip ];
call filter

in letrec sieve = ned [ ¿ p → write p ];
new next is (call sieve);
call filter

in write 2; i := 3;
new first is (call sieve);
call generate

This program is deterministic but does not terminate. In our prototype implementation the
produced trace begins with the sequence:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137 Interrupted .

5 Advanced Control Concepts

In this section we study advanced control concepts which can be encountered in some dis-
tributed systems or in some parallel logic programming systems. In section 5.1 we present
a compositional model designed with CSC for a language Lkc that extends Lobj with con-
structs for remote object destruction and cloning. The section 5.2.1 is dedicated to logic
programming. The presentation focuses on a compositional semantics designed with CSC for
a language Lao that captures the control flow kernel of Warren’s basic Andorra model. To
the best of our knowledge, the remote control operations that we study in section 5.1 and
the Andorra model that we study in section 5.2.1 have never been modeled denotationally by
using only classic compositional techniques.
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5.1 Remote Object Destruction and Cloning

The language Lkc that we consider in this section is an extension of Lobj with two new
constructs: remote process (object) destruction and cloning. As in Lobj , in Lkc objects are
executed in parallel. Each object o has an unique identifier which can be used by any other
object (that knows the identifier of o) to communicate a message to o (call one of its methods),
as in Lobj , but also to destroy or clone o. The syntax of Lkc is given below.

x ::= skip | a | if b then x else x | x ; x | new w is x | ned [ ( g → x )∗ ]
| letrec y = x in x | call y | kill w | clone w is w

The syntax of Lkc in Haskell is given below.

data X = Skip | Action A | If B X X | Seq X X | New W X | Ned [(C ,X )]
| LetRec Y X X | Call Y | Kill W | Clone W W

As in Lobj , the construct new w is x creates a new object (with a new private state) to
evaluate x; the identifier of the newly created object is assigned to the variable w. In Lkc , ob-
ject references can be used to control objects remotely. The statement kill destroys the object
running in parallel to which the object variable w refers and the statement clone wnew is wold

clones an existing object running in parallel, referred to by wold , and assigns the clone’s iden-
tifier to the object variable wnew .

Object identifiers can be used for object to object communication, as in Lobj . But the
semantics of kill and clone can be studied in isolation from any communication mechanism.
For simplicity, we disallow object suicide and self-cloning; these operations are less interesting
because they can easily be modeled both with CSC and with classic denotational techniques.

Two new functions are required to model the semantics of kill and clone. They take
as parameter the current continuation and one or two object references. They traverse the
continuation until they locate the object to be destroyed or cloned; then they perform their
job upon it.

kill :: Cont →W → Cont
kill (Obj o sc s : pc) w =

Obj o sc s : [Obj o ′ sc′ s ′ | Obj o ′ sc′ s ′ ← pc, o′ /= getw s w ]

clone :: Cont →W →W → Cont
clone (Obj o sc s : pc) wnew wold =

case [Obj onew sc′ s ′ | Obj o ′ sc′ s ′ ← pc, o′ == getw s wold ] of
[ ] → Obj o sc s : pc
pc′ → Obj o sc s{getw = upd wnew onew (getw s)} : pc′ ++ pc

where onew = newo (Obj o sc s : pc)

The semantics of kill and clone are directly based on the functions kill and clone:

sem (Clone wnew wold ) e c = cc (clone c wnew wold )
sem (Kill w) e c = cc (kill c w)

As an illustration of programs that can be written in Lkc we present some examples. In
our first example, a counting object w is created and left alone to do its job for a little while.
Then, the object is cloned and there are two counters (w and z ) working in parallel. After
some time, w is killed and later on z is killed too.
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letrec count = write v; v := v + 1; call count
in letrec sleep = if 0 < d then d := d− 1; call sleep

else skip
in new w is (v := 100; call count);

d := 5; call sleep; write 1; clone z is w;
d := 10; call sleep; write 2; kill w;
d := 5; call sleep; write 3; kill z

This program can only be tested in “single trace” semantics. Here is a possible execution
trace produced by our semantic interpreter:

[100, 1, 101, 102, 101, 103, 102, 104, 105, 103, 106, 107, 2, 108, 104,
109, 110, 111, 112, 3]

In the sequel, we consider three toy programs that can be tested in the “all possible
traces” semantics, using the powerdomain monad given in appendix A. The first one contains
no recursive definitions.

new w1 is (write 1; write 2); clone w2 is w1; kill w1; kill w2

This program can produce nine different traces. Running the program in “all possible traces”
semantics, it produces the following result:

{| [ ], [1, 2], [1, 2, 1, 2], [1], [1, 1, 2], [1, 2, 2], [1, 2, 1], [1, 1], [1, 1, 2, 2] |}

It is not surprising that the following program, using a recursive definition, behaves exactly
the same. Our semantic interpreter produces the same collection of nine different traces.

letrec y = if v < 3 then write v; v := v + 1; call y
else skip

in new w1 is (v := 1; call y); clone w2 is w1; kill w1; kill w2

The last Lkc example is again a recursionless program. It avoids a deadlock state by
appropriately using the kill primitive. An object is created which produces an observable
and immediately suspends upon an unmatched communication attempt. The object is then
cloned but the program terminates normally because both clones are killed.

new w is (write 42; ned [ ¿ v → skip ]);
clone z is w; kill w; kill z

The program can produce three different traces, depending on the exact time when the object
was cloned:

{| [ ], [42], [42, 42] |}

5.2 Nondeterministic Promotion in Andorra-like Languages

This section is dedicated to logic programming. In dealing with this paradigm we adopt
the “logic programming without logic” approach [dBak91], which relies on the general idea
of separating the logic from control [Kowa79]. In this approach, the elementary actions are
modeled as simple (uninterpreted) symbols, thus ignoring specific logic programming concepts
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such as unification or substitution generation.17 Following [dBak96], we say that a language
providing only uninterpreted elementary actions is uniform.18 A semantic study conducted
in the “logic programming without logic” style proceeds in two phases. In the first phase, a
semantic model of an uniform language capturing the control flow kernel of the logic language
under study is designed. Next, the atomic actions are interpreted as unifications, substitution
generations, etc. As the second phase is similar for most logic programming languages, the
study usually focuses on the first phase [dBak91, dBak90, dBoe93, dBak96].

The presentation in this section focuses on a semantic interpreter designed with CSC for a
uniform language Lao capturing the control kernel of Warren’s basic Andorra model [Warr88].
The essence of this model can be explained by using the concepts of a determinate goal and
a nondeterminate goal. A goal is determinate if at most one of its alternatives (clauses)
succeeds; a goal is nondeterminate if it has more than one non-failing alternatives. In the An-
dorra model the goals in a conjunction can be executed in parallel. According to the Andorra
principle, the executive of the language gives priority to the determinate goals over the non-
determinate goals, as the execution of a nondeterminate goal could possibly (unnecessarily)
multiply the number of inference steps. When a state is reached where only nondeterminate
goals remain, the system selects one such goal and performs a nondeterministic promotion:
it makes a copy of all AND-parallel goals for each alternative of the selected nondeterminate
goal. Next, these groups of AND-parallel processes can be executed either in sequence, giving
rise to a backtracking mechanism (a sequential OR), or in parallel, giving rise to OR paral-
lelism. The logical disjunction is implemented by using the concept of search or don’t know
nondeterminism. The operations of failure and nondeterministic promotion in Andorra may
be seen as generalizations of the kill and clone operations that we studied in section 5.1.

Following [Todo00c], in the semantic treatment of the Andorra model we employ the
following domain of observables:

type Obs = [Act ]

where Act is the type of the (uninterpreted) atomic actions (which will be introduced in
section 5.2.1). A list containing exactly one atomic action models a determinate reduction
step. A list containing more than one atomic actions models a nondeterminate reduction
step, which marks the moment of a nondeterministic promotion operation. By recording
the nondeterminate promotion steps we simplify the interpretation of the final yield of the
semantic interpreter of an Andorra-like language.

In [Todo00c], a combination of CSC and the classic direct approach to concurrency was
employed in designing a full compositional semantics for Andorra and this domain of observ-
ables was essential for the implementation of the Andorra priority mechanism. In the present
paper we offer a “pure” CSC-based semantic interpreter for Andorra. The above definition of
Obs is employed only to simplify the interpretation of the final yield of the semantic function.
The Andorra priority mechanism is implemented by the scheduler of the semantic interpreter
which does not depend on this particular definition of Obs to model the suspension of the
nondeterminate goals.

17In the concurrent contraint programming paradigm the elementary actions are executions of ask or tell
primitives [Sara93].

18By contrast, a language where the semantics of an elementary action depends on an appropriate notion of
a state is called nonuniform in [dBak96]. Following this terminology, the imperative languages of the previous
sections or a “real” logic programming language are called nonuniform.
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The domain Q of lists of observables remains as in section 2; termination is modeled by
using the constant Epsilon. In the context of logic programming it makes sense to distinguish
formally between successful termination and failure; this specific treatment of termination is
explored in appendix B.2.

The CSC continuation structure that we employ in section 5.2.1 in designing the semantic
interpreter of Lao is a stack of multisets of computations (each computation modeling a goal).
In section 5.2.2 we study a language Laop that extends Lao with OR parallelism (and don’t
care nondeterminism); in this case the CSC continuation structure is a ps-forest having in
nodes multisets of computations. To complete the picture of logic programming, in appendix
B.4 we sketch a CSC-based semantic interpreter for a language Lpro capturing the control
flow kernel of pure sequential Prolog; in this particular case the CSC continuation structure
is a stack of stacks of computations.

Finally, the program behavior monads that facilitates the switch between the “single
trace” and the “all possible traces” semantic interpretations of the Andorra-like languages
Lao and Laop are given in appendix B.1. The domains D of denotations and Env of semantic
environments (including the initial environment e0) are defined as usual (see section 2.1).

5.2.1 Combining AND parallelism with backtracking

The language Lao combines the following features: failure, atomic actions, recursion, back-
tracking and parallel composition (parallel AND). We assume given a set (α ∈)Act of atomic
actions whose elements are simple (uninterpreted) symbols; as in the previous sections, we
also use the set (y ∈)Y of procedure variables. An elementary statement a(∈A) can be either
an atomic action or the symbol fail (which is not an element of Act). The backtracking
operator 〈·〉 takes a (possibly empty) list of operands, i.e. an element of the syntactic class
(g ∈)G , each operand being a statement guarded by an elementary statement (which can
model head unification). This definition is in the spirit of the basic Andorra model [Warr88],
which is based on flat guards.19 The symbol ? can be viewed as a simple sequential compo-
sition operator prefixing a guard to a statement. If the guard succeeds then the statement is
executed; upon backtracking other alternatives of a g list may follow. In AKL [Hari90], the
guard operator ? is called wait. The syntactic class (x ∈)X of the Lao statements is given
below.

a ::= α | fail

g ::= ε | a ?x ( + a ?x )∗

x ::= a | 〈g〉 | x ‖ x | letrec y = x in x | call y

We implement the abstract syntax of Lao as follows:

type Act = String
type Y = String

data A = Fail | Atom Act
type G = [(A,X )]
data X = Action A | Pand X X | Sor G | LetRec Y X X | Call Y

19The so-called extended Andorra model [Hari90, Ware90] —which is based on deep guards— is not formally
studied in this paper.
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type PA = [Comp ]
type SO = [PA ]

type Kont = SO
type Cont = Kont

Figure 10: Structure of continuations for Lao : a stack of multisets of computations.

The CSC-based semantic interpreter of Lao employs the domain of computations defined
below. A computation of the form Den d models the semantics of a determinate goal; a
computation of the form SemSor gs models the semantics a nondeterminate goal.

data Comp = Den D | SemSor [(Act ,D)]

The continuations for Lao can be structured as stacks of multisets of computations (see Figure
10). Each PA multiset models a parallel conjunction (a parallel AND). The SO stack is used
to model the backtracking mechanism (a sequential OR). The initial continuation is: c0 = [[ ]].

The evaluator of the semantic interpreter of Lao comprises the definitions of the semantic
functions semA, sem and the control operators addc, addp and fails. To avoid any ambiguity
we give below the complete definitions of all these mappings.

semA :: A→ D
semA Fail c = cc (fails c)
semA (Atom act) c = put [act ] (cc c)

sem :: X → Env → D
sem (Action a) e c = semA a c
sem (Call y) e c = e y c
sem (LetRec y x1 x2) e c = sem x2 e ′ c

where e ′ = upd y (fix (\d → sem x1 (upd y d e))) e
fix :: (a → a)→ a
fix f = f (fix f )

sem (Sor g) e c =
case [(act , sem x e) | (Atom act , x )← g ] of

[ ] → cc (fails c)
[(act , d)]→ put [act ] (cc (addc (Den d) c))
sg → cc (addc (SemSor sg) c)

sem (Pand x1 x2) e c = sem x1 e (addp (Den (sem x2 e)) c) ‘ned ‘
sem x2 e (addp (Den (sem x1 e)) c)

addc :: Comp → Cont → Cont
addc p (pa : so) = (p : pa) : so

addp :: Comp → Cont → Cont
addp p (pa : so) = (p : pa) : so

fails :: Cont → Cont
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fails (pa : so) = [ ] : so

The semantics of an elementary action and the semantics of a (failing or a non-failing) deter-
minate goal are easily defined with the aid of the operators put (which is given in appendix
B.1) and fails. For a determinate goal put is always used to prefix an observable (of the type
Obs) representing a determinate step (a list of length one). The operator fails implements
the semantics of failure by voiding the multiset (the parallel conjunction) of goals at the top
of the backtracking stack. The semantics of a nondeterminate goal (an n-ary disjunction
with more than one non-failing guards) is added to the continuation to be handled by the
scheduler; the evaluation of a nondeterminate goal is delayed as much as possible in Andorra.
As usual, the continuation semantics of parallel composition (interpreted here as a parallel
AND) is based on the combination of two alternative computations: one starting from the
first statement and one starting from the second. The control operators addc and addp simply
add a computation to the multiset at the top of the backtracking stack.

The continuation completion mapping cc remains as in section 2.2. The normalization
procedure removes an eventual empty multiset from the top of the backtracking stack.

re :: Cont → Kont
re ([ ] : so) = so
re so = so

According to the Andorra principle [Warr88], the scheduler of Lao must give priority to
computations modeling determinate goals (Den d) over computations modeling nondeter-
minate goals (SemSor gs). The scheduler function kc calls scheda to compute all possible
activation schedules of the form Scheda d c, where d is an activable computation (a denota-
tion implementing a determinate goal) and c is a corresponding open continuation. If scheda
produces an empty list, i.e. if the continuation (is not empty but it) contains no determi-
nate goals, then the scheduler calls scheds which computes all possible schedules of the form
Scheds obs k , where k is a closed continuation obtained by a nondeterministic promotion and
obs is a corresponding observable.

data Sched = Scheda D Cont | Scheds Obs Kont

kc :: Kont → M Q
kc k = case scheda k of

[ ] → bigned (map exe (scheds k))
ws → bigned (map exe ws)

where exe (Scheda d c) = d c
exe (Scheds obs k ′) = put obs (kc k ′)

scheda :: Kont → [Sched ]
scheda k = [Scheda d c | (Den d , c)← actc k ]

actc :: Kont → [(Comp,Cont)]
actc k = [(p, pa : tail k) | (p, pa)← ms (head k)]

The computations (that model nondeterminate goals) of the form SemSor sg are handled
by scheds, which uses the auxiliary mapping semSor . Function semSor implements a non-
deterministic promotion: it replicates the multiset from the top of the backtracking stack for
each alternative of a nondeterminate goal. It is designed to produce a closed continuation
which can immediately be passed to the scheduler. The effect of this operation is represented
in figure 11.
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Figure 11: The result of applying semSor to a list of computations [p1,...,pn] and the open
continuation depicted in Figure 10; semSor implements a nondeterministic promotion step
and yields a closed continuation.

scheds :: Kont → [Sched ]
scheds k = [Scheds [act | (act , )← sg ]

(semSor [Den d | ( , d)← sg ] c)
| (SemSor sg , c)← actc k ]

semSor :: [Comp ]→ Cont → Kont
semSor lp (pa : so) = [p : pa | p ← lp ] ++ so

To test this semantic interpreter we consider three Lao example programs. The first
program executes two determinate goals in AND parallel.

c ‖ 〈a ? b〉

Throughout this paper we prefer to give the abstract syntax of the test programs. In this
section the results are produced on the assumption that the symbols representing atomic ac-
tions are implemented in Haskell by using corresponding strings. For example, we implement
the syntax of this Lao program as follows:

Pand (A (Atom "c")) (Sor [(Atom "a",A (Atom "b"))])

The program can produce three different traces. Here is the result produced by our semantic
interpreter in “all possible traces” semantics:

{| [["c"], ["a"], ["b"]],
[["a"], ["b"], ["c"]],
[["a"], ["c"], ["b"]] |}

The second program executes two determinate goals in parallel with a nondeterminate
goal, which is given the least priority.

letrec y = 〈A ? a+ fail ? b+ C ? c〉
in d ‖ call y ‖ e
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This program can produce two different traces. The evaluation of the nondeterminate goal
(〈A ? a+ fail ? b+C ? c〉) begins only after the completion of the interleaved execution of the
elementary goals d and e. The evaluation of the nondeterminate goal begins by outputing
the observable ["A", "C"] (the list of non-failing guards of the nondeterminate goal), which
marks the moment when the nondeterministic promotion occurs. Next, the (bodies of the)
two alternatives of the the nondeterminate goal are tried in sequence according to the implicit
backtracking mechanism of Lao .

{| [["d"], ["e"], ["A", "C"], ["a"], ["c" ]],
[["e"], ["d"], ["A", "C"], ["a"], ["c" ]] |}

The next Lao program launches four goals in parallel: two determinate goals, and two
nondeterminate goals. When the execution of the determinate goals terminates the parallel
execution of the two nondeterminate goals begins. In this state an arbitrary nondeterminate
goal is selected and execution can only proceed by a nondeterministic promotion, i.e. by
making copies of the other goal for each alternative of the selected one. This example is taken
from [Todo00c].

a ‖ 〈C ? c+D ? d〉 ‖ b ‖ 〈E ? e+ F ? f〉
The program can produce four different execution traces. Each trace is marked by three
nondeterminate reduction steps. Running this program in “all possible traces” semantics
produces the following output:20

{| [["a"], ["b"], ["E", "F"], ["e"], ["C", "D" ], ["c" ], ["d"], ["f"], ["C", "D"], ["c" ], ["d" ]],
[["b"], ["a"], ["C", "D"], ["c"], ["E", "F" ], ["e" ], ["f" ], ["d"], ["E", "F"], ["e" ], ["f" ]],
[["a"], ["b"], ["C", "D"], ["c"], ["E", "F" ], ["e" ], ["f" ], ["d"], ["E", "F"], ["e" ], ["f" ]],
[["b"], ["a"], ["E", "F"], ["e"], ["C", "D" ], ["c" ], ["d" ], ["f"], ["C", "D"], ["c"], ["d" ]] |}

By running the above program in “single trace” semantics one can obtain each of the four
possible traces at subsequent executions.

Such experiments are, of course, less interesting as long as one can run the semantic
interpreter to obtain all possible traces. But let’s consider the following Lao program.

letrec y = 〈a ? (call y ‖ fail)〉
in b ‖ call y ‖ c

This program cannot be tested in “all possible traces” semantics because it can produce an
infinite number of different traces. The length of each trace depends on the moment when
failure occurs. However, the program can be tested in “single trace” semantics. We reproduce
below four possible traces obtained with our semantic interpreter in “single trace” semantics.

[["b"], ["c"], ["a"], ["a"], ["a"]]

[["c"], ["b"], ["a"]]

[["a"], ["a"], ["b"]]

[["a"], ["c"], ["b"], ["a"]]
At each execution, the program terminates in failure. In the present form, our semantic
interpreter does not make any formal distinction between normal termination and failure.
However, it is easy to modify the semantic interpreter to obtain this effect; the required
modifications are described in appendix B.2.

20This output is equivalent to the one that we have obtained in [Todo00c]; only the order of the execution
traces is different but that is semantically irrelevant.
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5.2.2 AND-OR Parallelism

The language Laop extends Lao with OR parallelism and don’t care nondeterminism. In the
grammar for Laop the rule for statements has been extended as follows:

h ::= ε | a : x ( + a : x )∗

x ::= a | 〈g〉 | #〈g〉 | �h� | x ‖ x | letrec y = x in x | call y

where, in addition to the features already present in Lao , #〈g〉 is the construct for OR
parallelism and �h� is the construct for don’t care nondeterministic choice between the
alternatives of the list h. The guard operator : is called commit.

We emphasize that the constructs 〈g〉 and #〈g〉 are interpreted by using the concept of
search or don’t know nondeterminism. There is a fundamental distinction between don’t know
and don’t care nondeterminism in logic programming. The alternatives of a 〈g〉 construct are
tried in sequence and the alternatives of a #〈g〉 construct are tried in parallel, but in the
both cases all the alternatives are inspected. The construct�h� is interpreted by using the
concept of (committed choice or) don’t care nondeterminism. In this case only one, arbitrarily
selected, alternative of h is tried by the executive of the language; this leads to a more efficient
evaluation strategy at the expense of sacrificing the logical completeness. Notice that only a
don’t know goal can be nondeterminate; a don’t care goal is always determinate.

We implement the syntax of Laop in Haskell as follows:

type H = [(A,X )]
data X = Action A | Pand X X | Sor G | Por G | Ned H

| Call Y | LetRec Y X X

Laop is identical to the Andorra-like language that we studied in [Todo00c], but in this paper
we follow a different language design approach. In [Todo00c], we employed the CSC technique
only in the implementation of the AND parallelism by using the simple structure of a multiset
of computations that are executed in parallel; for the sequential OR, the parallel OR and the
Andorra priority mechanism we used the classic direct approach to concurrency semantics.
In this section we offer a “pure” CSC-based semantic interpreter for Laop ; consequently, the
structure of CSC continuations is more complex.

The implementation of the evaluator, the normalization procedure and the scheduler of
Laop are given in appendix B.3; in the main text we only describe the structure of the
CSC continuations that we employ in its design. We extend the definition of the domain of
computations with a new alternative (with data constructor SemPor) that we need in the
semantic design of the OR parallelism.

data Comp = Den D | SemSor [(Act ,D)] | SemPor [(Act ,D)]

Continuations in Laop can be structured as ps-forests having in nodes multisets of com-
putations. The active computations are selected from the multisets at the leaves of (any
of the ps-trees in) the ps-forest. This continuation structure is depicted in figure 12. The
ps-structure is needed for modeling the general combination of the sequential OR and the
parallel OR connectives in Laop . The multiset structure is needed for the implementation
of the AND parallelism. In the case of Laop the initial continuation c0 :: Cont is defined as
follows: c0 = [Meet [ ] [[ ]]]. We also mention that it is possible to extend Laop with an
operator for sequential conjunction, i.e. a sequential AND operator. In this case, the CSC
continuation structure becomes a ps-forest having as nodes ps-forests.
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type PA = [Comp ]
type SO = [PA ]
data PS = Meet PO SO
type PO = [PS ]

type Kont = PO
type Cont = Kont

Figure 12: Structure of continuations for Laop : a ps-forest having as nodes multisets of
computations; the active computations are selected from the leaves.

In the final part of this section we present a number of Laop example programs together
with their interpretation in “all possible traces” semantics. The examples are taken from
[Todo00c]. This gives us the opportunity to compare the semantic interpreter designed in
this section in a “pure” CSC style, with the semantic model given in [Todo00c]. All our
experiments show that the two semantic models behave the same.21

The first test program given here illustrates the behaviour of a parallel composition in
interleaving semantics.

a ‖ b ‖ c

This program can produce six different interleavings.

{| [["a"], ["b"], ["c"]], [["c"], ["a"], ["b" ]], [["b" ], ["a"], ["c"]]
[["c"], ["b"], ["a"]], [["a"], ["c"], ["b" ]], [["b" ], ["c"], ["a"]] |}

The next program illustrates the semantics of don’t care nondeterminism.

�a : b+ fail : c+ d : e�

The two possible execution traces correspond to the two non-failing guards.

{| [["a"], ["b"]], [["d"], ["e"]] cb

The next program illustrates a combination of don’t care nondeterministic choice and
parallel composition.

a ‖ �fail : b+ c : d�
21The order of the execution traces may be different for some tests in the two interpretations, but this is

semantically irrelevant.
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This program can produce three different execution traces.

{| [["a"], ["c"], ["d"]], [["c"], ["d"], ["a" ]], [["c" ], ["a"], ["d"]] |}

The last two examples illustrate the biased execution behavior towards determinate goals.
In the first case the don’t know goal is a sequential OR.

a ‖ 〈c : d+ e : f〉 ‖ b

The don’t know goal is reduced only after the completion of the interleaved execution of the
elementary goals a and b. The observable ["c", "e"] marks the moment when the nondeter-
ministic promotion occurs. Next, the (bodies of the) alternatives of the don’t know goal are
tried in sequence.

{| [["a"], ["b"], ["c", "e"], ["d"], ["f" ]],
[["b"], ["a"], ["c", "e"], ["d"], ["f" ]] |}

The next example is similar, only the don’t know goal is a parallel OR.

a ‖ #〈c : d+ e : f〉 ‖ b

Our semantic interpreter produces four different execution traces. Notice that after the non-
deterministic promotion step the alternatives of the don’t know goal are tried in parallel (their
execution is interleaved).

{| [["a"], ["b"], ["c", "e"], ["d"], ["f" ]],
[["b"], ["a"], ["c", "e"], ["d"], ["f" ]],
[["a"], ["b"], ["c", "e"], ["f"], ["d" ]],
[["b"], ["a"], ["c", "e"], ["f"], ["d" ]] |}

6 Conclusions and Future Research

In the CSC approach, a continuation is a language-specific configuration of partially evaluated
meaning functions (denotations), which can be accessed and manipulated separately, and can
be executed either in some specific order or in an interleaved fashion. The continuation-
based approach to communication and concurrency given in this paper is general. The CSC
technique provides an excellent flexibility in the compositional modeling of concurrent control
flow concepts.

Based on our experiments, we believe the remote control operations and the nondeter-
ministic promotion operation in the Andorra-like languages that are modeled compositionally
with CSC continuations in section 5 are beyond the expressive power of the classic denota-
tional techniques. In this paper we showed that, by using CSC continuations denotational
semantics can be used both as a method for formal specification and design, and as a general
method for implementing compositional prototypes of concurrent programming languages.
To the best of our knowledge, denotational semantics has never been used systematically
for concurrent languages prototyping and all our attempts to get a general solution to this
problem by using only classic compositional techniques have failed. In a mathematical model
a CSC continuation is an element of a semantic domain defined as the solution of a domain
equation where the domain variable occurs in the left-hand side of a function space con-
struction [Todo00a, Todo04]; in this sense the CSC computation model is rather complex.
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However, in this paper we have shown that the computations contained in CSC continuations
can be assembled in simple structures which can provide operational intuition in the strict
compositional setting of denotational semantics.

In this paper we have focused on the significance of CSC as a language design tool.
Instead of using mathematical notation we used the lazy functional programming language
Haskell, which proved to provide a nice expressive support as a prototyping environment for
denotational semantics. In the future, we would like to completely formalize our semantic
interpreters by using an appropriate mathematical apparatus - either classic order-theoretic
(cpo-based) structures or metric spaces. Also, we plan to evaluate our prototyping approach
on more complex languages, including POOL [Amer89, ABKR89] and concurrent extensions
of Algol-like languages [OHea97, Broo02]. We expect that this will give us the opportunity
to try various new, and possibly innovative, combinations of CSC with other (more classical)
techniques used in denotational semantics, including traditional continuations, possible worlds
semantics and monads.
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A Computing all possible traces

It is possible to define a monad M for computing all possible traces of a program’s execu-
tion. This monad implements a continuation semantics using powerdomains. It is useful in
concurrent language design, as it allows one to detect whether a particular execution trace is
possible.

A.1 Languages with global state

The monad given below can be used with all languages of sections 2 (although not very useful
there) and 3. M is the composition of an environment monad, with the global state S as the
environment, and Haskell’s list monad.

type M a = S → [a ]
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instance Monad M where
return a = InM (\s → [a ])
InM m >>= f = InM (\s → concatMap (\a → unM (f a) s) (m s))

put u (InM m) = InM (\s → map (Observe u) (m s))

display (InM m) = print (m s0)

ned :: Eq a ⇒ M a → M a → M a
ned (InM m1) (InM m2) = InM (\s → aux (m1 s) (m2 s))

where aux [ ] l2 = l2
aux (h : t) l2 = h : aux (filter (/= h) l2) t

bigned :: Eq a ⇒ [M a ]→ M a
bigned [ ] = InM (\s → [ ])
bigned (m : ml) = ned m (bigned ml)

rdState c = InM (\s → [s ])
inState s f c = InM (\s ′ → unM (f c) s)

Two things are worth noticing in the implementation of function ned . First, identical results
obtained more than once are discarded. Second, the parameters to aux are alternated, in
order to mix two lists of alternative execution traces. This roughly corresponds to a breadth-
first traversal of the space of execution traces, which behaves much better than a depth-first
traversal in the presence of non-termination.

A.2 Languages with distributed (local) state

The monad M defined in Appendix A.1 is particular to a global state. Similarly, Haskell’s
list monad together with simple appropriate definitions of ned , bigned , rdState and inState
can be used as a monad computing all execution traces in languages with local state. The
following monad is appropriate for the languages Lobj and Lkc that are studied in sections
4.2 and 5.1 respectively.

type M a = [a ]

put u m = map (Observe u) m

display m = putStr "{| " >> aux m >> putStr " |}\n"
where aux [ ] = return ()

aux [x ] = putStr (show x )
aux (x : xs) = putStr (show x ) >> putStr ", " >> aux xs

ned :: Eq a ⇒ M a → M a → M a
ned m1 m2 = aux m1 m2

where aux [ ] l2 = l2
aux (h : t) l2 = h : aux (filter (/= h) l2) t

bigned :: Eq a ⇒ [M a ]→ M a
bigned [ ] = [ ]
bigned (m : ml) = ned m (bigned ml)

For the language Lds , the definitions of rdState and inState are as follows,
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rdState (Obj sc s : pc) = [s ]
inState s f (Obj sc s ′ : pc) = f (Obj sc s : pc)

whereas for Lobj and Lkc they must also take into account the object identifiers.

rdState (Obj o sc s : pc) = [s ]
inState s f (Obj o sc s ′ : pc) = f (Obj o sc s : pc)

B The control flow kernel of logic programming

This appendix pertains to section 5.2. In section B.1 we present the program behavior mon-
ads that are appropriate for the Andorra-like languages Lao and Laop of section 5.2. Next, in
section B.2 we show how to modify the semantic interpreters of Lao and Laop to distinguish
formally between successful termination and failure. In section B.3 we present the defini-
tions that are lacking from the main text (of section 5.2.2) for the semantic interpreter of
Laop . Finally, in appendix B.4 we offer a CSC-based semantic interpreter for a language Lpro

capturing the control flow kernel of pure sequential Prolog.

B.1 Program behavior monad

B.1.1 “Single trace” semantics

data M a = InM {unM :: R → (a,R)}

instance Monad M where
return a = InM (\r → (a, r))
InM m >>= f = InM (\r → let (a, r ′) = m r in unM (f a) r ′)

random :: M Int
random = InM (Random.next)

put :: Obs → M Q → M Q
put u (InM m) = InM (\r → let (q , r ′) = m r in (Observe u q , r ′))

display :: M Q → IO ()
display (InM m) = print (fst (m r0))

ned :: M a → M a → M a
ned m1 m2 = bigned [m1,m2 ]

bigned :: [M a ]→ M a
bigned ml = random >>= \r →

ml !! (r ‘mod ‘ (length ml))

B.1.2 “All possible traces” semantics

data M a = InM {unM :: [a ]}

instance Monad M where
return a = InM [a ]
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InM m >>= f = InM (concatMap (\a → unM (f a)) m)

put :: Obs → M Q → M Q
put u (InM m) = InM (map (Observe u) m)

display :: M Q → IO ()
display (InM m) = print m

ned :: Eq a ⇒ M a → M a → M a
ned (InM m1) (InM m2) = InM (aux m1 m2)

where aux [ ] l2 = l2
aux (h : t) l2 = h : aux (filter (/= h) l2) t

bigned :: Eq a ⇒ [M a ]→ M a
bigned [ ] = InM [ ]
bigned (m : ml) = ned m (bigned ml)

B.2 Success and failure detection

It is easy to modify the semantic interpreters given in Section 5.2.1 to distinguish formally be-
tween successful termination and failure. For this purpose we redefine the domain of sequences
of observables as follows:

data Q = Success | Failure | Observe Obs Q

We employ a program behavior monad that can carry a success or a failure condition. The
program behavior monad is obtained from the one that we have used in section 3 simply by
replacing the domain S (of states) with the type Bool . The definition of display becomes:

display (M m) = print (m b0 )
where b0 :: Bool

b0 = False

The continuation completion mapping cc must be adapted to the new definition of Q .22

cc :: Cont → M Q
cc c = case re c of

[ ]→ rdState c >>= \b →
if b then return Success

else return Failure
k → kc k

Recall that we implement a logical conjunction (of goals) by using the concept of a multiset
(of computations). Therefore, our semantics should signal a successful termination in case the
evaluation of at least one of the multisets terminates without a failure; otherwise they should
signal a failure. In order to obtain the desired effect we redefine the semantic equation for the
(successful) elementary action (the equation for failure remains unchanged).

semA (Act act) c =
put [act ] (rdState c >>= \b →

inState (success c || b) c cc)

22This is the only place in the paper where we modify the definition of cc given in the section 2.2.
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The auxiliary operator success is only called upon the execution of a successful elementary
action. It takes as parameter an open continuation and it returns True in case the open (active)
multiset remains empty; otherwise it returns False. For the semantic interpreter of Lao this
function is defined as follows:

success :: Cont → Bool
success ([ ] : so) = True
success so = False

For the semantic interpreter of Laop the definition of success is:

success :: Cont → Bool
success (Meet [ ] ([ ] : so) : po) = True
success (Meet [ ] so : po) = False
success (Meet c so : po) = success c

Let’s consider two simple Lao test programs. In the experiments given below we employed
a Show instance declaration for Q that uses the strings "success" and "failure" to visualize
the difference between a sequence of observables that terminates with Success and a sequence
of observables that terminates with Failure, respectively.

The first example program executes three goals in parallel.

a ‖ 〈C ? c+ fail ? d+ E ? e〉 ‖ b

The don’t know goal is nondeterminate, therefore its evaluation is delayed according to the
Andorra principle. When its evaluation begins, it produces a nondeterminate step and next
it tries the bodies of its non-failing alternatives (in sequence). This program can produce two
different traces.

{| [["a"], ["b"], ["C", "E"], ["c"], ["e" ], "success"],
[["b"], ["a"], ["C", "E"], ["c"], ["e" ], "success"] |}

The don’t know goal of the next program fails immediately after the nondeterministic
promotion.

a ‖ 〈C ? fail + fail ? d+ E ? fail〉 ‖ b

Here is the result produced by our semantic interpreter:

{| [["a"], ["b"], ["C", "E"], "failure"],
[["b"], ["a"], ["C", "E"], "failure"] |}

B.3 AND-OR parallelism

In section 5.2.2 we have introduced the language Laop and the CSC continuation structure
that is appropriate for modeling its semantics. In this section of the appendix we present
the evaluator, the normalization procedure and the scheduler for the semantic interpreter of
Laop . Laop extends Lao with OR parallelism and don’t care nondeterminism, therefore many
definitions remain as in section 5.2.1. In the sequel we only present the differences.

The evaluator comprises the definitions of the semantic functions semA and sem, and the
control operators addc, addp and fails. The equations given in section 5.2.1 for semA and
sem remain unchanged. In addition, the definition of sem extends with the clauses for OR
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parallelism and don’t care nondeterminism given below. The control operators addc and addp
simply add a computation to the active (open) multiset. The operator fails implements the
semantics of failure by voiding the active multiset.

sem (Por g) e c =
case [(act , sem x e) | (Act act , x )← g ] of

[ ] → cc (fails c)
[(act , d)]→ put [act ] (cc (addc (Den d) c))
sg → cc (addc (SemPor sg) c)

sem (Ned h) e c =
case [(act , sem x e) | (Act act , x )← h ] of

[ ] → cc (fails c)
sh → bigned [put [act ] (cc (addc (Den d) c)) | (act , d)← sh ]

addc :: Comp → Cont → Cont
addc p (Meet [ ] (pa : so) : po) = Meet [ ] ((p : pa) : so) : po
addc p (Meet po0 so : po) = Meet (addc p po0 ) so : po

addp :: Comp → Cont → Cont
addp p (Meet [ ] (pa : so) : po) = Meet [ ] ((p : pa) : so) : po
addp p (Meet po0 so : po) = Meet (addp p po0 ) so : po

fails :: Cont → Cont
fails (Meet [ ] (pa : so) : po) = Meet [ ] ([ ] : so) : po
fails (Meet po0 so : po) = Meet (fails po0 ) so : po

When the active multiset becomes empty it is removed by the normalization procedure.

re :: Cont → Kont
re (Meet [ ] [ [ ] ] : po) = po
re (Meet [ ] ([ ] : so) : po) = Meet [ ] so : po
re (Meet [ ] so : po) = Meet [ ] so : po
re (Meet c so : po) = Meet (re c) so : po

The scheduler function kc, the domain Sched of schedules and the auxiliary function
scheda remain as in section 5.2.1. The definitions that change are given below. The functions
semSor and semPor implement the nondeterministic promotion operations for backtracking
(sequential OR) and OR parallelism, respectively.

actc :: Kont → [(Comp,Cont)]
actc k = [w | (ps, po)← ms k ,w ← aux ps po ]

where aux (Meet [ ] (pa : so)) po = [(p,Meet [ ] (pa ′ : so) : po)
| (p, pa ′)← ms pa ]

aux (Meet po0 so) po = [(p,Meet c so : po)
| (p, c)← actc po0 ]

scheds :: Kont → [Sched ]
scheds k = [Scheds [act | (act , )← sg ]

(semSor [Den d | ( , d)← sg ] c)
| (SemSor sg , c)← actc k ]

++ [Scheds [act | (act , )← sg ]
(semPor [Den d | ( , d)← sg ] c)
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| (SemPor sg , c)← actc k ]

semSor :: [Comp ]→ Cont → Kont
semSor lp (Meet [ ] (pa : so) : po) =

Meet [ ] ([p : pa | p ← lp ] ++ so) : po
semSor lp (Meet c so : po) =

Meet (semSor lp c) so : po

semPor :: [Comp ]→ Cont → Kont
semPor lp (Meet [ ] [pa ] : po) =

[Meet [ ] [(p : pa)] | p ← lp ] ++ po
semPor lp (Meet [ ] (pa : so) : po) =

(Meet [Meet [ ] [(p : pa)] | p ← lp ] so) : po
semPor lp (Meet c so : po) =

Meet (semPor lp c) so : po

B.4 Sequential logic programming

This section offers a CSC-based semantic interpreter for a language Lpro capturing the control
flow kernel of pure sequential Prolog. The syntax of Lpro is formally defined as follows:

x ::= a | x ; x | x + x | letrec y = x in x | call y

where the class of elementary actions with typical variable a remains as in section 5.2.1. Lpro

provides an operator ; for sequential composition, and an operator + for backtracking (don’t
know nondeterminism). The operator ; is a sequential conjunction (sequential AND), and
the operator + is a sequential disjunction (sequential OR). Notice that Lpro does not need a
mechanism for detecting the determinacy of a goal; the language lacks the notion of a guarded
statement and the n-ary disjunctions of Lao or Laop are replaced with the binary disjunction
operator +. We implement the abstract syntax of Lpro in Haskell as follows:

data X = A A | Call Y | LetRec Y X X | Sor X X | Sand X X

where the types Act , A and Y remain as in the section 5.2.1.
In Lpro there is no reason to record the moments when the system performs nondetermin-

istic promotions. Therefore, we define the domain Obs of observables as being a synonym of
the type Act of atomic actions.

type Obs = Act

The domain of sequences of observables also remain as in the section 5.2 (or 2.1).
In the case of Lpro , the program behavior monad is equivalent to the identity monad.

data M a = M {unM :: a }

instance Monad M where
return a = M a
M m >>= f = M (unM (f m))

The operations put and display become:

put :: Obs → M Q → M Q
put u (M m) = M (Observe u m)

61



type SA = [Comp ]
type SO = [SA ]

type Kont = SO
type Cont = Kont

Figure 13: Structure of continuations for Lpro : a stack of stacks of computations.

display :: M Q → IO ()
display (M m) = print m

The domain of computations is again as in section 2.1.

data Comp = Den D

To model the semantics of Lpro , continuations can be structured as stacks of stacks of
computations. This continuation structure is depicted in figure 13. Each (inner) SA stack
models a sequential conjunction (a sequential AND). The (outer) SO stack is needed to
model the backtracking mechanism (a sequential OR). The initial continuation c0 :: Cont is
defined as follows: c0 = [[ ]].

The semantics of an elementary action and the semantics of recursion remain as in section
5.2. The semantics of the sequential OR and the sequential AND connectives are directly
based on the control operators addo and adda. addo implements the semantics of don’t know
nondeterminism in Lpro . fails implements the semantics of failure by voiding the active stack
(from the top of the backtracking stack).

sem :: X → Env → D
sem (Sor x1 x2) e c = sem x1 e (addo (Den (sem x2 e)) c)
sem (Sand x1 x2) e c = sem x1 e (adda (Den (sem x2 e)) c)

addo :: Comp → Cont → Cont
addo p (sa : so) = sa : (p : sa) : so

adda :: Comp → Cont → Cont
adda p (sa : so) = (p : sa) : so

fails :: Cont → Cont
fails (sa : so) = [ ] : so

Notice that in section 5.2 - where we have studied the semantics of the the Andorra-like
languages Lao and Laop- each nondeterministic promotion operation was implemented as a
function of a scheduler. The scheduler of an Andorra-like language must delay the evaluation of
a nondeterminate goal as much as possible. By contrast, in Lpro there is no priority mechanism
and any don’t know goal can immediately be evaluated. Therefore it is more convenient to
implement the operator addo that models the semantics of don’t know nondeterminism as a
function of the evaluator (rather than the scheduler).
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The normalization procedure simply removes the active stack when it becomes empty.

re :: Cont → Kont
re ([ ] : so) = so
re so = so

The language Lpro is sequential and deterministic. The scheduler function kc produces
exactly one decomposition of a closed continuation into an active computation and a corre-
sponding open continuation, and then it executes the former with the latter as a continuation.

kc :: Kont → M Q
kc ((Den d : sa) : so) = d (sa : so)

We only consider one Lpro test program.

a; b; (c+ fail + d); e

Our semantic interpreter produces the following result:

["a", "b", "c", "e", "d", "e"]
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