
Continuation Semantics for
Maximal Parallelism and Imperative Programming

Eneia Nicoloae Todoran
Department of Computer Science

Technical University of Cluj-Napoca
Baritiu Street 28, 400027, Cluj-Napoca, Romania

Email: eneia.todoran@cs.utcluj.ro

Abstract—We present a denotational semantics for a simple
concurrent imperative programming language in which the
semantic operator for parallel composition is designed according
to the maximal parallelism model of non-interleaved computa-
tions. The denotational semantics is designed with metric spaces
and continuation semantics for concurrency. We also present a
Haskell implementation of our denotational semantics in the
form of a prototype interpreter.

I. INTRODUCTION

In previous work we introduced a continuation semantics
for concurrency (CSC) [15], [6] that can be used to model
both sequential and parallel composition in interleaving se-
mantics while providing the general advantages of the tech-
nique of continuations [14]. More recently, we investigated
the possibility to express synchronization between two or
multiple parties in continuation semantics [18], [7]; in [7],
[18] we used CSC for this purpose. In [20] we used CSC in
combination with classic continuation-passing style to express
synchronization between multiple parallel components in a
compositional manner.

In this paper we present a denotational semantics for a
simple concurrent imperative programming language in which
the semantic operator for parallel composition is designed ac-
cording to the maximal parallelism model of non-interleaved
computations. The denotational semantics is designed with
metric spaces and continuations for concurrency following
the approach introduced in [20]. We also present a Haskell
implementation of our denotational semantics in the form of
a prototype interpreter.

As it is well known, a number of mathematical theories
have been developed based on models of the so-called true
concurrency (or non-interlaving) kind. The notion of Petri net
is of fundamental importance in this area. There is a well-
known treatment of maximal parallelism in direct semantics;
see, e.g., [2] section 15.2. In metric semantics the non-
interleaving model was also investigated based on the pomset
model [3]. Continuation-passing style was developed initially
as a tool for denotational semantics [13], [12]. Our present
aim is to show that the concept of maximal parallelism can
also be expressed in continuation semantics.

A. Contribution

We show that the continuation-based technique introduced
in [20] can be used to model maximal parallelism (sometimes
called synchronous parallelism) in a compositional manner.
In [7], [18] the semantics of synchronization is expressed by
using silent steps or hiatons (see, e.g., [2], chapter 9), which

are needed to achieve the contractiveness of some higher-
order mappings. The technique introduced in [20] can be used
to express synchronization between two or multiple parallel
components without using silent steps or hiatons. We present
a denotational model for maximal parallelism designed by
using the continuation-based technique introduced in [20].
Our denotational (mathematical) semantics is given in Section
IV. In Section V we also present a Haskell implementation
of our denotational semantics in the form of a prototype
interpreter for the language under investigation, that can be
easily tested and evaluated.

II. PRELIMINARIES

The notation (x ∈)X introduces the set X with typ-
ical element x ranging over X . Let f ∈ X → Y
be a function. The function (f | x 7→ y) : X →
Y , is defined (for x, x′∈X, y∈Y) by: (f | x 7→ y)(x′) =
if x′=x then y else f(x′). Instead of ((f | x1 7→ y1) |
x2 7→ y2) we write (f | x1 7→ y1 | x2 7→ y2). In general,
instead of ((f | x1 7→ y1) · · · | xn 7→ yn) we write
(f | x1 7→ y1 | · · · | xn 7→ yn). If f : X→X and f(x) = x
we call x a fixed point of f . When this fixed point is unique
(see Theorem 2.1) we write x = fix(f).

A multiset is a generalization of a set. Intuitively, a multiset
is a collection in which an element may occur more than
once, or an unordered list. One can represent the concept of
a multiset of elements of type A by using functions from
A → N, or partial functions from A → N+, where N+ =
N \ {0} (N+ is the set of natural numbers without 0). Let
(a ∈)A be a countable set. We use the notation:

[A]
not.
=

⋃
X ∈Pfinite(A)

{m | m ∈ (X → N+)}

where Pfinite(A) is the power set of all finite subsets of A.
As A is countable, Pfinite(A) is also countable. An element
m ∈ [A] is a (finite) multiset of elements of type A, a function
m : X → N+, for some finite subset X ⊆ A, such that ∀a ∈
X : m(a) > 0. m(a) is called the multiplicity (number of
occurrences) of a in m. [A] is the set of all finite multisets
of elements of type A.

One can define various operations on multisets m1,m2 ∈
[A]. Below, dom(·) is the domain of function ’·’. The multiset
sum operation] : ([A] × [A]) → [A] can be defined as
follows:

dom(m1]m2) = dom(m1) ∪ dom(m2)

(m1]m2)(a) = m1(a) +m2(a) if a ∈ dom(m1) ∩ dom(m2)
m1(a) if a ∈ dom(m1) \ dom(m2)
m2(a) if a ∈ dom(m2) \ dom(m1)

When (a ∈)A is a countable set we use the following
notation convention. We denote by a typical elements of [A],
i.e., a ∈ [A] is a multiset of elements of the type A.

A. Metric spaces

The denotational semantics given in this paper is built
within the mathematical framework of 1-bounded complete
metric spaces. We work with the following notions which
we assume known: metric and ultrametric space, isometry
(distance preserving bijection between metric spaces, denoted
by ’∼=’), complete metric space, and compact set. For details
the reader may consult, e.g., the monograph [2].

We recall that if (X, dX), (Y, dY) are metric spaces, a
function f :X→Y is a contraction if ∃c ∈ R, 0 ≤ c < 1,
∀x1, x2 ∈ X : dY (f(x1), f(x2))≤c · dX(x1, x2). In metric
semantics it is customary to attach a contracting factor of
c = 1

2 to each computation step. When c = 1 the function
f is called non-expansive. In what follows we denote the set
of all nonexpansive functions from X to Y by X

1

→Y . The
following theorem is at the core of metric semantics.

Theorem 2.1 (Banach): Let (X, dX) be a complete metric
space. Each contraction f : X→X has a unique fixed point.

Let (a, b ∈)A is any nonempty set. One can define the
discrete metric on A (d : A×A→ [0, 1]) as follows: d(a, b) =
0 if a = b, and d(a, b) = 1 otherwise. (A, d) is a complete
ultrametric space.

Let A be a nonempty set. Let (x, y ∈)A∞ = A∗ ∪ Aω ,
where A∗(Aω) is the set of all finite (infinite) sequences
over A. One can define a metric over A∞ as follows:
dB(x, y) = 2− sup{n | x[n]=y[n] }, where x[n] denotes the
prefix of x of length n, in case length(x) ≥ n, and x
otherwise (by convention, 2−∞ = 0). dB is a Baire-like
metric. (A∞, dB) is a complete ultrametric space.

Other composed metric spaces can be built up using the
composite metrics given in Definition 2.2.

Definition 2.2: Let (X, dX), (Y, dY) be (ultra) metric
spaces. On (x ∈)X , (f∈)X→Y (the function space),
(x, y)∈X×Y (the Cartesian product), u, v∈X + Y (the dis-
joint union of X and Y , X + Y = ({1} ×X)∪ ({2} × Y)),
and U, V ∈P(X) (the power set of X) one can define the
following metrics:

(a) d 1
2 ·X

: X ×X→[0, 1], d 1
2 ·X

(x1, x2) =
1
2 · dX(x1, x2)

(b) dX→Y : (X→Y)× (X→Y)→[0, 1]
dX→Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X × Y)× (X × Y)→[0, 1]
dX×Y ((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)}

(d) dX+Y : (X + Y)× (X + Y)→[0, 1]
dX+Y (u, v) =
if (u, v ∈ X) then dX(u, v)
else if (u, v∈Y) then dY (u, v) else 1

(e) dH : P(X)× P(X)→[0, 1],
dH(U, V) = max{supu∈U d(u, V), supv∈V d(v, U)}

where d(u,W)= infw∈W d(u,w) and by convention
sup ∅=0, inf ∅=1.

We use the abbreviation Pnco(·) to denote the power set
of non-empty and compact subsets of ’·’. Also, we often
suppress the metrics part in domain definitions, and write,
e.g., 1

2 · X instead of (X, d 1
2 ·X

).
Remark 2.3: Let (X, dX), (Y, dY), d 1

2 ·X
, dX→Y , dX×Y ,

dX+Y and dH be as in Definition 2.2. In case dX , dY
are ultrametrics, so are d 1

2 ·X
, dX→Y , dX×Y , dX+Y and dH .

Moreover, if (X, dX), (Y, dY) are complete then 1
2 · X ,

X→Y , X
1

→Y , X×Y ,X+Y , and Pnco(X) (with the metrics
defined above) are also complete metric spaces [2]. dH is the
Hausdorff metric.

III. SYNTAX OF L

We assume given a set (v ∈)V of variables, a set (e ∈)Exp
of expressions, a set (b ∈)Bexp of boolean expressions
and a set (y ∈)Y of procedure variables. We assume that
the evaluation of an expression always terminates (without
producing side effects) and yields an integer value z ∈ Z.
Similarly, the evaluation of a boolean expression yields a
boolean value.

Definition 3.1: (Syntax of L) Let a(∈ A) ::= v := e. A is
the set of (elementary) assignment statements. We define the
sets of statements (x ∈)X and guarded statements (g ∈)G
by:

x ::= skip | a;x | if b then x else x
| y | letrec y be g in x | x ‖ x

g ::= skip | a;x | if b then g else g
| letrec y be g in g | g ‖ g

skip is the inoperative statement. The construction a;x
specifies a sequential composition in prefix form. v := e
is the assignment statement. Action prefixing is a particular
case of sequential composition, which can be encountered,
e.g., in CCS or π calculus [9], [10]. The language L also
provides standard constructions for expressing conditional
execution (if b then x else x), parallel composition (x ‖ x),
recursive definitions (letrec y be g in x) and procedure calls
(y). Intuitively, the construction letrec y be g in x defines a
new procedure y with body g (y may occur recursively in
g); notice that the body g of the procedure y is a guarded
statement. In a guarded statement each recursive call is pre-
ceeded by at least one elementary action, and this guarantees
that the semantic operators are contracting functions in the
present metric setting [2].

The meaning of expressions is given by a valuation

E [[·]] : Exp→ Σ→ Z

where (σ ∈)Σ = V ar → Z is the set of states. Similarly, the
meaning of boolean expressions is given by a valuation

B[[·]] : Exp→ Σ→ { true , false }

Let (α ∈)Act = V ×(Σ→ Z). We let ξ range over Σ→ Z.
Act is the set of partially evaluated (elementary) assignment
statements. An element (v, ξ) ∈ Act is a pair, consisting of a
variable v and a partially evaluated expression ξ(∈ Σ→ Z).

IV. CONTINUATION-BASED DENOTATIONAL SEMANTICS

We present a denotational semantics designed with contin-
uations for the language L. The semantic operator for parallel
composition in L is designed according to the maximal
parallelism model of non-interleaved computations

A. Semantic domain

The final yield of our continuation-based semantics is a
standard linear-time domain (p ∈)P

P = Pnco(Σ∗ ∪ Σω)

Here, Σ∗ is the collection of all finite (posibly empty)
sequences over Σ, and Σω is the collection of all infinite
sequences over Σ. We use the symbol ε to represent the empty
sequence. We view (q ∈)Σ∗ ∪ Σω as a complete ultrametric
space by endowing it with the Baire metric (see Section II).
We use the notation σ · p = {σ · q | q ∈ p}, for any σ ∈ Σ
and p ∈ P.

In Section IV-C we define a denotational semantics [[·]] for
L . The semantic domain of [[·]] is D:

(φ ∈)D ∼= F
1

→Σ→ P

(κ ∈)K = {κ0}+ 1
2 · D

(f ∈)F = ([Act]×K)
1

→Σ→ P
(η ∈)Env = Y → D

D is the domain of denotations. Following [20], we call
F the domain of synchronous continuations and K is the
domain of asynchronous continuations. The combination of
synchronous and asynchronous continuations can express the
non-interleaved execution of parallel components (maximal
or synchronous parallelism) in a compositional manner.

Intuitively, a non-empty asynchronous continuation κ
stores a D computation; κ is a parallel composition of com-
putations. In general, such an (asynchronous) continuation
is a more complex structure [17], e.g., a tree [7], [15], or
a multiset of computations [4], [5], [19]. In the case of L, a
continuation is a multiset of computations that are packed into
a single computation by means of parallel composition. In
this paper, an asynchronous continuation κ is a computation,
stored in the space K = {κ0} + 1

2 · D. κ0 is the empty
continuation. The spaces D and 1

2 · D have the same support
set, only the distance between points is halved in 1

2 · D.
(α ∈)[Act] is the set of all finite multisets of elements of

the type Act. We recall our convention to denote by α typical
elements of [Act] (when α ranges over Act; see Section II). In
the equations given above the sets [Act] and Σ are endowed
with the discrete metric which is an ultrametric. Any set
endowed with the discrete metric is a complete ultrametric
space. An element α of the set [Act] is a finite multiset
of partially evaluated assignment statements to be executed
concurrently (in a non-interleaved manner). The composed
metric spaces are built up using the metrics of Definition
2.2. According to [1] the above system of equations has a
solution, which is unique up to isometry (∼=). The solution
for D is obtained as a complete ultrametric space. Finally,
Env is the domain of semantic environments, that we use to
describe recursive definitions in a compositional manner.

B. Semantic operators in continuation semantics

We define an operator for parallel composition on de-
notations ‖ : (D × D)

1

→D and an operator for parallel
composition on continuations ||| : (K×K)

1

→K as follows.

κ0 |||κ0 = κ0
κ0 |||φ = φ
φ |||κ0 = φ
φ1 |||φ2 = φ1 ‖ φ2

φ1 ‖ φ2 =
λf.λσ.((φ1bφ2)(f)(σ) ∪ (φ2bφ1)(f)(σ))

The auxiliary operator b : (D×D)
1

→D is given by:

φ1bφ2 =
λf.φ1(λ(α1, κ1).φ2(λ(α2, κ2).f(α1] α2, κ1 |||κ2)))

Following [16], the semantics of parallel composition is
modeled in continuation semantics as a non-deterministic
choice between two alternative computations: one starting
from the first parallel component and another starting from
the second. It is easy to check that the operators ‖ , ||| and b
are non-expansive in both their arguments.

In [4], [5] we showed that it is also possible to describe
a computation model based on parallel rewriting of multisets
(a form of maximal parallelism) by using a combination of
continuation semantics and direct semantics.

C. Denotational semantics

In Definition 4.3 we present the denotational mapping [[·]] :
X → D. The behavior of [[·]] depends on three parameters:
a semantic environment, a (synchronous) continuation and a
state. In Definition 4.1 we introduce an initial synchronous
continuation f0 as fixed point of a higher order mapping.

Definition 4.1: Let (ς ∈)Act∗ be the set of all finite,
possibly empty, sequences over Act. We denote the empty
sequence over Act by ςε (ςε ∈ Act∗).

Let upd : ([Act]× Σ)→ Pfinite(Σ) be given by:

upd (α, σ) = { assign (ς, σ) | ς ∈ perm (α)}

where we denote by perm (α) the set of all permutations of
the multiset α ∈ [Act],1 and assign : (Act∗ × Σ)→ Σ

assign (ςε, σ) = σ
assign ((v, ξ)ς, σ) = assign (ς, (σ | v 7→ ξ(σ)))

In the second equation defining assign , (v, ξ)ς is the Act∗

sequence with head (v, ξ) and tail ς .
Let Ψ : F→ F be given by:

Ψ(f)(α, κ)(σ) =⋃
σ′∈upd (α,σ)

(σ′ · (case κ of κ0 → {ε};φ→ φ(f)(σ′)))

We define f0 = fix(Ψ).

1Obviously, perm (α) ∈ Pfinite(Act
∗).

Remark 4.2: Ψ : F
1
2→F, i.e., Ψ is a contraction (hence it

has a unique fixed point) in particular due to the ”σ′ · . . .” -
step in its definition.
Some explanations concerning the definition of f0 are neces-
sary. If κ = κ0 (κ0 is the empty asynchronous continuation)
then the execution terminates. If κ = φ, for some φ ∈ D,
then φ is evaluated with parameters f0 and σ′, respectively;
σ′ is computed by the auxiliary mapping upd . upd takes
as parameters a multiset α(∈ [Act]) and a state σ(∈ Σ)
and yields a finite set of states. The (partially evaluated)
assignment statements in the multiset α are executed simulta-
neously if they are independent. If two or more such (partially
evaluated) statements share variables their execution order
may matter. Each execution order may produce a different
effect, hence a different new state. upd first computes the
set of all permutations of the multiset α; each permutation of
α is a (a sequence or) a list of (partially evaluated) assignment
statements corresponding to a particular order of execution of
the elements in α. The effect of the execution of such a list of
assignment statements is computed by the mapping assign .

Definition 4.3: (Denotational semantics) We define [[·]] :
X → D by:

[[skip]](η) = λf.f([], κ0)

[[v := e;x]](η) = λf.f([(v, E [[e]])], [[x]](η))

[[if b then x1 else x2]](η) =

λf.λσ.

{
[[x1]](η)(f)(σ) if B[[b]](σ)
[[x2]](η)(f)(σ) if ¬B[[b]](σ)

[[y]](η) = η(y)

[[letrec y be g in x]](η) =
[[x]](η | y 7→ fix(λφ.[[g]](η | y 7→ φ)))

[[x1 ‖ x2]](η) = [[x1]](η) ‖ [[x2]](η)

Let f0 = fix(Ψ) (f0 ∈ F) be as in Definition 4.1, and
η0 ∈ Env, η0(y) = λf.f([], κ0),∀y ∈ Y . We define D[[·]] :
X → Σ→ P as follows:

D[[x]](σ) = [[x]](η0)(f0)(σ)

In Definition 4.3 a fixed-point construction is used in the
equation that gives the semantics of the letrec construction.
Well-definedness of [[·]] is established in Lemma 4.4.

Lemma 4.4: The function λφ.[[g]](η | y 7→ φ) is 1
2 -

contractive in φ, for any g ∈ G.
Proof Ommited. A similar lemma is proved in [2] (chapter
8). We recall that g ∈ G is a guarded L statement. 2

Examples 4.5: We consider two L example programs. In
the first example, three parallel processes run independently
(using different variables). Due to the presence of a shared
variable, the second program is non-deterministic. In the
both cases the semantics is computed according to the non-
interleaving interpretation of the parallel composition opera-
tor. For easier readability, instead of a1; (a2; · · · ; (an;x)) we
write a1; a2; · · · ; an;x.

(a) Let x ∈ X ,
x = letrec y1 be

if (v1 < 3) then v1 := v1 + 1; y1
else skip

in letrec y2 be
if (v2 < 3) then v2 := v2 + 1; y2
else skip

in letrec y3 be
if (v3 < 3) then v3 := v3 + 1; y3
else skip

in v1 := 0; v2 := 0; v3 := 0; ((y1 ‖ y2) ‖ y3)
For any σ ∈ Σ, let
σ0 = (σ | v1 7→ 0),
σ1 = (σ | v1 7→ 0 | v2 7→ 0),
σ2 = (σ | v1 7→ 0 | v2 7→ 0 | v3 7→ 0),
σ3 = (σ | v1 7→ 1 | v2 7→ 1 | v3 7→ 1),
σ4 = (σ | v1 7→ 2 | v2 7→ 2 | v3 7→ 2),
σ5 = (σ | v1 7→ 3 | v2 7→ 3 | v3 7→ 3).
We have:
D[[x]](σ) = {σ0σ1σ2σ3σ4σ5σ5}

(b) Let x′ ∈ X
x′ = (v := 100; skip) ‖ (v := 200; skip).

For any σ ∈ Σ, let
σ1 = (σ | v 7→ 100) and
σ2 = (σ | v 7→ 200)}.
We have:
D[[x′]](σ) = {σ1σ1, σ2σ2}

V. A HASKELL IMPLEMENTATION OF THE DENOTATIONAL
SEMANTICS

We present a semantic interpreter for the language L which
is a direct implementation of the denotational semantics
introduced in Section IV. The semantic interpreter is imple-
mented in Haskell [11]. In the sequel we only present the
implementation of the denotational mapping and the main
semantic operators. The reader can easily provide definitions
for the missing functions, which are either very simple or
well-known. For example, we do not provide implementations
for the set union operation and for the operation that computes
the permutations of a multiset. However, the complete Haskell
code of the semantic interpreter is available from [22].

A. Syntax and auxiliary operators

The abstract syntax of L can be implemented in Haskell as
follows. We use the types V, Y, X, A and Act to implement
the sets V (of variables) Y (of procedure variables), X (of
L statements), A (of assignment statements) and Act (of
partially evaluated assigment statements) respectively.

type V = String
type Y = String

data A = A V Exp
data Act = Act V (S -> Val)

data X = Skip
| Prefix A X
| If Bexp X X
| Call Y
| Letrec Y X X
| Par X X

We do not provide here definitions for the types Exp and
Bexp. The type Exp implements the class Exp of (numeric)
expressions. The type Bexp implements the class Bexp of
boolean expressions. Also, we assume given two valuations
evalE :: Exp -> S -> Val, and evalB :: Bexp
-> S -> Bool. evalE and evalB implement the map-
pings E [[·]] : Exp → Σ → Z, and B[[·]] : Bexp → Σ →
{ true , false }, respectively.

type Val = Int
type S = [(V,Val)]

The type Val implements the set Z of integer values. The
type S implements the type Σ of states. For testing and
evaluation purposes it is convenient to implement the concept
of a state as an association list (which associates a value to
each variable).

subs :: V -> Val -> S -> S
subs v val [] = [(v,val)]
subs v val ((v’,val’):s) =

if (v’ == v)
then (v,val):s
else (v’,val’):subs v val s

assign :: [Act] -> S -> S
assign [] s = s
assign (Act v xi:vvs) s =

assign vvs (subs v (xi s) s)

The function assign implements the operation assign :
(A∗ × Σ)→ Σ presented in Section IV.

subse :: Eq a =>
(a -> b) -> a -> b -> (a -> b)

subse f a b a’ =
if (a’ == a) then b else f a’

The function subse implements the notation (f | a 7→ b)
introduced in Section II. In this Haskell implementation we
only use the mapping subse to handle semantic environ-
ments.

B. Final semantic domain

The types Q and P implement the domains Q and P,
respectively. We recall that P is the final semantic domain in
our continution-based model. We use the function prefix
to implement the notation σ ·p. We ommit here the definition
of the set union operation union. The function bigunion
implements a finite union.

type Q = [S]
type P = [Q]

prefix :: a -> [[a]] -> [[a]]
prefix a ass =

[a:as | as <- ass]

bigunion :: Eq a => [[a]] -> [a]
bigunion [xs] = xs
bigunion (xs:xss) =

xs ‘union‘ (bigunion xss)

C. Semantic domain and semantic operators in continuation
semantics

We use the types D, K, F and Env as implementations
of the domains D (of denotations), K (of asynchronous
continuations), F (of synchronous continuations) and Env
(of semantic environments). We implement multisets (of
elementary assignment statements) as Haskell lists. We use
the Haskell list concatenation operator ++ to implement the
multiset sum operation.

type D = F -> S -> P
data K = K D | K0
type F = ([Act],K) -> S -> P
type Env = Y -> D

The implementation of the continuation-based semantic op-
erators in Haskell is also straightforward. The functions
park, lsyn and par implement the operators ||| , b and ‖ ,
respectively.

park :: K -> K -> K
park K0 K0 = K0
park K0 d = d
park d K0 = d
park (K d1) (K d2) = K (d1 ‘par‘ d2)

lsyn :: D -> D -> D
lsyn d1 d2 = \f ->

d1 (\(as1,k1) ->
d2 (\(as2,k2) ->

f (as1 ++ as2,
k1 ‘park‘ k2)))

par :: D -> D -> D
par d1 d2 =

\f s -> (lsyn d1 d2 f s)
‘union‘ (lsyn d1 d2 f s)

D. Denotational semantics

The function upd implements the mapping upd . The
implementation of the mapping perm is ommited. perm
computes all permutations of a multiset represented as a
Haskell list.

upd :: [Act] -> S -> [S]
upd as s = aux (perm as)

where
aux [] = []
aux (as’:ass’) =

[(assign as’ s)]
‘union‘
(aux ass’)

Following the mathematical specification given in Section
IV, the initial synchronous continuation f0 is defined as fixed
point of a higher-order mapping psi.

psi :: F -> F
psi f (as,k) s =

bigunion [prefix s’
(case k of

K0 -> [[]]
(K d) -> d f s’)

| s’ <- upd as s]

f0 :: F
f0 = fix psi

In a language that supports lazy evaluation, like Haskell,
it is possible to implement the fixed-point combinator fix
according to its defining equation.

fix :: (a -> a) -> a
fix f = f (fix f)

Finally, we implement the denotational semantics [[·]] :
X → D and the mapping D[[·]] : X → Σ→ P as follows:

sem :: X -> Env -> D
sem Skip e =

\f -> f ([],K0)
sem (Prefix (A v exp) x) e =

\f -> f ([Act v (evalE exp)],
K (sem x e))

sem (If b x1 x2) e =
\f -> \s ->

if (evalB b s)
then sem x1 e f s
else sem x2 e f s

sem (Call y) e = e y
sem (Letrec y x1 x2) e =

sem x2
(subse e y

(fix (\d ->
sem x1 (subse e y d))))

sem (Par x1 x2) e =
(sem x1 e) ‘par‘ (sem x2 e)

den :: X -> S -> P
den x s =

let f0 = fix psi
e0 y = \f -> f ([],K0)

in sem x e0 f0 s

E. Testing the semantic interpreter

Instead of using mathematical notation, in this section we
use Haskell as a metalanguage for denotational semantics.
Our denotational semantics is implemented in the form of an
executable intepreter that can be easily tested and evaluated.

In the following experiments we consider that s0 = []
is the initial state (s0 :: S). The Haskell implementation
of the L example programs x, x′ (∈ X) given in Example
4.5(a) is available from [22]. Let x :: X be the Haskell
implementation of x ∈ X . Let x’ :: X be the Haskell
implementation of x′ ∈ X . Running x with den produces
the following output:

den x s0 ⇒
[[[("v1",0)],[("v1",0),("v2",0)],

[("v1",0),("v2",0),("v3",0)],
[("v1",1),("v2",1),("v3",1)],
[("v1",2),("v2",2),("v3",2)],
[("v1",3),("v2",3),("v3",3)],
[("v1",3),("v2",3),("v3",3)]]]

Also, running x’ with den produces the following output:

den x’ s0 ⇒
[[[("v1",200)],[("v1",200)]],
[[("v1",100)],[("v1",100)]]]

VI. CONCLUSION

It is well-known that traditional continuations [14] ca
be used to model a variety of advanced control concepts,
including non-local exits, coroutines and even multitasking
[21]. However, the traditional continuations do not work well
enough in the presence of concurrency [8]. In [15] we in-
troduced a continuation semantics for concurrency (CSC); in
subsequent work we refined the CSC technique [6], [16], [20].
In this paper we showed that the technique of continuations
can be used to express maximal parallelism in a compositional
manner. We presented a denotational semantics designed with
metric spaces and continuations for a concurrent imperative
language in which the semantic operator for parallel com-
position is designed according to the maximal parallelism
model of non-interleaved computations. The denotational
semantics was developed by using the continuation-based
technique introduced in [20]. We also presented a Haskell
implementation of our denotational semantics.

REFERENCES

[1] P. America, J.J.M.M. Rutten, Solving reflexive domain equations in a
category of complete metric spaces, Journal of Computer and System
Sciences, vol. 39(3), pp. 343–375, 1989.

[2] J.W.de Bakker, E.P. de Vink, Control flow semantics, MIT Press, 1996.
[3] J.W. De Bakker, J.H.A. Warmerdam, Metric pomset semantics for

a concurrent language with recursion, LNCS, vol. 469, pp. 21–49,
Springer, 1990.

[4] G. Ciobanu, E.N. Todoran, Metric denotational semantics for parallel
rewriting of multisets, Proceedings of 13th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2011), pp. 276–283, IEEE Computer Press, 2011.

[5] G. Ciobanu, E.N. Todoran, Relating two metric semantics for parallel
rewriting of multisets, Proceedings of 14th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2012), pp. 273–280, IEEE Computer Press, 2012.

[6] G. Ciobanu, E.N. Todoran, Continuation semantics for asynchronous
concurrency, Fundamenta Informaticae, vol. 131(3-4), pp. 373-388,
2014.

[7] G. Ciobanu, E.N. Todoran, Continuation semantics for concurrency
with multiple channels communication, Proceedings of 17th Inter-
national Conference on Formal Engineering Methods (ICFEM 2015),
Lecture Notes in Computer Science, vol. 9407, pp. 400–416, Springer,
2015.

[8] R. Hieb, R.K. Dybvig and C.W. Anderson. Subcontinuations, Lisp and
Symbolic Computation, 7(1):83–110, 1994.

[9] R. Milner, Communication and concurrency, Prentice Hall, 1989.
[10] R. Milner, Communicating and mobile systems: the π-calculus,

Cambridge University Press, 1999.
[11] S. Peyton Jones, J. Hughes, editors, Report on the Programming

Language Haskell 98: A Non-Strict Purely Functional Language, 1999;
Available from http://www.haskell.org/.

[12] G. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical
Computer Science, vol. 1, pp. 125–159, 1975.

[13] J. Reynolds, Definitional interpreters for higher-order programming
languages, 25th ACM National Conference, pp. 717–740, 1972.

[14] C. Stratchey, C. Wadsworth, Continuations: a mathematical semantics
for handling full jumps, Journal of Higher-Order and Symbolic
Computation, vol. 13(1), pp. 135–152, 2000.

[15] E.N. Todoran, Metric semantics for synchronous and asynchronous
communication: a continuation-based approach, Electronic Notes in
Theoretical Computer Science, vol. 28, pp. 101–127, Elsevier, 2000.

[16] E.N.Todoran, N. Papaspyrou, Continuations for parallel logic program-
ming, Proceedings of the 2nd ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP 2000), pp. 257-267,
2000.

[17] E.N. Todoran, N. Papaspyrou, Continuations for prototyping concurrent
languages, Technical Report CSD-SW-TR-1-06, National Technical
University of Athens, Software Engineering Laboratory, 2006.

[18] E.N. Todoran, Comparative semantics for modern communication
abstractions, Proceedings of 2008 IEEE 4th International Conference
on Intelligent Computer Communication and Processing (ICCP 2008),
pp. 153–160, 2008.

[19] E.N. Todoran, C. Adam, M. Balc, R. Pop, R. Radu, D. Simina, E.
Varga, D.A. Zaharia, Mobile objects and modern communication
abstractions: design issues and denotational semantics, Proceedings of
10th International Symposium on Parallel and Distributed Computing
(ISPDC 2011), pp. 191–198, IEEE Computer Press, 2011.

[20] E.N. Todoran, N. Papaspyrou, Experiments with continuation semantics
for DNA computing, Proceedings of 2013 IEEE 9th International
Conference on Intelligent Computer Communication and Processing
(ICCP 2013), pp. 251–258, 2013.

[21] M. Wand, Continuation-based multiprocessing, Higher-Order and
Symbolic Com- putation, vol. 12(3), 285-299, 1999.

[22] ftp://ftp.utcluj.ro/pub/users/gc/acam2015

