
Experiments with Continuation Semantics for
DNA Computing

Eneia Nicolae Todoran
Department of Computer Science

Technical University of Cluj-Napoca
Gh. Baritiu Street 28, 400027, Cluj-Napoca, Romania

Email: eneia.todoran@cs.utcluj.ro

Nikolaos Papaspyrou
School of Electrical and Computer Engineering

National Technical University of Athens
Polytechnioupoli, 15780 Zografou, Athens, Greece

Email: nickie@softlab.ntua.gr

Abstract—We investigate the semantics of a process algebra
language for DNA computing. As a formal description technique
we use denotational semantics and the mathematical methodology
of metric semantics. We use continuations and powerdomains to
represent nondeterministic behavior. An element of a powerdo-
main is a collection of sequences of observables representing DNA
structures. We consider two notions of an observable item and we
design two corresponding denotational models. As far as we know
this is the first paper that employs the denotational approach in
the semantic investigation of DNA computing.

I. INTRODUCTION

We investigate the semantics of a process algebra language
- that we call here LDNA - which incorporates some basic
concepts of DNA computing. The language was introduced
in [6] where a couple of so-called ’strand algebras’ are pre-
sented. These formalisms can capture the massive concurrency
available at molecular level in DNA systems. The relevance of
LDNA process algebra for DNA computing is explained in [6].

As a formal description technique we use denotational
semantics and the mathematical methodology of metric se-
mantics [3]. We use continuations for concurrency [15] and
powerdomains [12], [2] to represent nondeterministic behavior.
In this paper an element of a powerdomain is a collection of
sequences of observables representing LDNA structures. We
consider two notions of an observable item and we design two
corresponding denotational models. The presentation focuses
on the first denotational model where an observable is a LDNA
gate which captures an interaction. In the second denotational
model an observable is a multiset of LDNA elements.

LDNA combines the following concepts: signals, gates
and populations. Signals x, y, . . . ∈ X are symbols taken
from a countable alphabet X . A gate1 is an operator
([x1, . . . , xn], [y1, . . . , ym]) that joins the signals x1, . . . , xn
and forks the signals y1, . . . , ym. We consider that the order
of signals in [x1, . . . , xn] and [y1, . . . , ym] is irrelevant, hence,
[x1, . . . , xn] and [y1, . . . , ym] are multisets.2 A gate is a pair of
multisets of signals. Signals and gates combine in a multiset of
elements (a ’chemical soup’) that proceed concurrently. When
n signals x1, . . . , xn and a gate ([x1, . . . , xn], [y1, . . . , ym])

1In [6] a gate is represented by using the notation
[x1, . . . , xn].[y1, . . . , ym]. We avoid this notation since we use the
symbol ’·’ to represent a concatenation operator over sequences.

2Intuitively, a multiset is a collection in which an element may occurs more
than once, an unordered list. A formal definition is provided in section II.

are present in such a multiset they can interact. The signals
x1, . . . , xn and the gate are consumed in the interaction and the
signals y1, . . . , ym are released in the multiset. This interaction
is described operationally in [6] by the following rule, where
’‖’ is the operator for parallel composition:

x1 ‖ · · · ‖ xn ‖ ([x1, . . . , xn], [y1, . . . , ym])→ y1 ‖ · · · ‖ ym

Note that signals can interact with gates, but signals cannot
interact with signals, nor gates with gates [6]. A gate captures
the information that is processed in a LDNA interaction, in the
sense that it contains all signals that are joined and forked.

The signals x1, . . . , xn of a gate
([x1, . . . , xn], [y1, . . . , ym]) represent a join pattern. Join
synchronization was initially investigated in [8]. The chemical
metaphor [5] served as an inspiration model for the both
formalisms [8], [6]. The ability to join and fork signals and
the ability to group signals and gates into finite or unbounded
(inexhaustible) populations are specific of the strand algebras
introduced in [6]. The construct for unbounded populations is
based on the replication primitive of π-calculus [10].

Process algebras are formal languages that can describe
concurrent activities of multiple processes [4]. In general, a
process algebra only provides compositionality at the level of
syntax in terms of operators which can be used to build more
complex systems from simple components.

Denotational semantics (initially known as mathematical
semantics or Scott-Stratchey semantics) is an important ap-
proach to formalizing the meanings of languages. The most im-
portant principle in denotational semantics is compositionality:
the denotational semantics of a composite syntactic construct
is expressed solely based on the denotational semantics of its
syntactic components. A denotational semantics assigns math-
ematical objects to syntactic constructs which are elements
of a given formal language. The approach employs a space
of denotations, which are elements of a mathematical domain
specific of the language under investigation. Denotations can
be computed and analyzed independently, and then composed.
In general, the denotational description of iteration and recur-
sion relies on fixed point definitions.

In the denotational approach metric spaces [3] may be
more appropriate than classic domains [9] for models that
are naturally characterized by unique fixed points. On the
other hand, the use of metric structures may make certain

optimizations more difficult to achieve. In some applications
it may be difficult to avoid using hiatons or silent steps to
achieve the contractiveness of the semantic operators [3].

In this paper we follow the metric approach to semantics in
defining two denotational semantics for LDNA: [[·]]G and [[·]]C .
Each of the two denotational mappings takes two parameters:
a (synchronous) continuation and a synchronization context.
The main difference between [[·]]G and [[·]]C is given by the
notion of an observable item. In the case of [[·]]G an observable
is an LDNA gate capturing an interaction. In the case of
[[·]]C an observable is a multiset of elements representing a
configuration of a system specified in LDNA. We consider a
couple of LDNA examples.

Let P1 = (x1 ‖ ([x1], [y1])) ‖ (x2 ‖ ([x2], [y2])), P1 ∈
LDNA, f0 be the empty continuation and null be the empty
synchronization context. [[P]]G behaves as follows:

[[P1]]G(f0)(null) = {([x1], [y1])([x2], [y2]),

([x2], [y2])([x1], [y1])}

The result is a collection of two sequences of gates. Each gate
represents an interaction. There are two possible interactions:
([xi], [yi]) interacts with xi and releases yi, for i = 1, 2.
Also, there are two possible interleavings between the two
interactions, caused by the nondeterminism of the system.

Let P2 = x ‖ (([x1, x2], [x3]) ‖ ([x], [x1, x2])) ∈ LDNA.

[[P2]]G(f0)(null) = {([x], [x1, x2])([x1, x2], [x3])}

There is one possible execution sequence. First, ([x], [x1, x2])
interacts with x, ([x], [x1, x2]) and x are consumed, and x1
and x2 are released. Next, follows the interaction between
([x1, x2], [x3]), x1 and x2, with the release of x3.

A formal comparison between denotational semantics and
operational semantics for LDNA is beyond the scope of the
present paper. Operationally, the semantics of P2 can be
described by the following sequence of (two) transitions [6].

P2 → x1 ‖ x2 ‖ ([x1, x2], [x3]) → x3

A transition is an element of a relation between elements,
called configurations [13]. In the above example, the configu-
rations are LDNA terms (P2, x1 ‖ x2 ‖ ([x1, x2], [x3]), and x3)
and each transition shows the effect of an LDNA interaction.
[[·]]C can capture such (operational) effects denotationally:

[[P2]]C(f0)(null) = {[x1, x2, ([x1, x2], [x3])][x3]}

[[·]]C produces as final value a collection of sequences of
observable items, where each observable is a multisetof LDNA
elements. It is common to represent parallel composition of
processes by using the concept of a multiset [5], [8], [6].
We represent a (finite) multiset by enumerating its elements
between square brackets ’[’ and ’]’. In the last example the
multiset [x1, x2, ([x1, x2], [x3])] is a semantic representation
of the LDNA term x1 ‖ x2 ‖ ([x1, x2], [x3]). Note that in this
representation parallel composition is automatically associative
and commutative.

In general, an operational semantics is defined based on a
labeled transition system and the relationship with a denota-
tional semantics is established based on transition labels [3].

An operational semantics can also show systems configura-
tions. In this paper we show how to express behavior based
on system configurations in a pure compositional manner,
following the discipline of denotational semantics.

A. Semantic prototype interpreters

The denotational (mathematical) specifications given in this
paper were developed following a prototyping approach. We
used the functional language Haskell [11] as a prototyping tool
(and as a metalanguage) for denotational semantics.

The two denotational models given in this paper
are implemented as 4 executable Haskell semantic inter-
preters available at [17]. [[·]]G is implemented in the files
semgDNA.hs and semgDNA_fin.hs. [[·]]C is implemented in
the files semcDNA.hs and semcDNA_fin.hs. semgDNA.hs
and semcDNA.hs can only be used to test toy LDNA ”pro-
grams” that terminate after a finite number of interactions.3

The interpreters semgDNA_fin.hs and semgDNA_fin.hs
compute only finite approximations of the semantics. They
accept two parameters, an LDNA ”program” and a natural
number n. They terminate the ”execution” of the LDNA
”program” after at most n steps (i.e. the semantics is a
collection of sequences, the length of each sequence is less
than or equal with n).

B. Contribution

We offer a semantic investigation of a process algebra
language for DNA computing introduced in [6]. The language
combines join synchronization [6], [8], finite and unbounded
populations. We use metric spaces [3] and continuations for
concurrency [15] to model concurrent behavior following the
discipline of denotational (compositional) semantics. To the
best of our knowledge this is the first paper that employs the
denotational approach in the semantic investigation of DNA
computing. The final semantic domain describes behavior as
a collection of sequences of observables representing DNA
structures, with no silent steps interspersed.

As it is well known, at present most researchers prefer
operational semantics, where behavior is expressed based on
transitions between system configurations. Each transition can
show the effect of an interaction. In this paper we demon-
strate that such operational effects can be captured in a pure
compositional manner, following the discipline of denotational
semantics by using continuations for concurrency [15].

C. Structure of the paper

Section II contains some mathematical preliminaries. In
section III we present the syntax of LDNA. In sections IV
and V we define the denotational semantics [[·]]G and [[·]]C ,
respectively. The final section VI contains concluding remarks
and plans for future research.

3In the mathematical specification w ∈ W only if µ(w); see definition
4.1. In the Haskell implementation the condition µ(w) is verified at run time.
Apart from this, we think that the denotational functions represent an accurate
mathematical specification based on the Haskell prototypes.

II. MATHEMATICAL PRELIMINARIES

A multiset is a generalization of a set. Intuitively, a multiset
is a collection in which an element may occur more than once.
We can present a multiset of elements of type X by using a
function from X to N, or a partial function m : X → N+,
where N+ = N \ {0}, namely the set of natural numbers
without 0. m(x) is called the multiplicity of x, representing
its number of occurrences in m.

The notation (x ∈)X introduces the set X with typical
element x ranging over X . Let X be a countable set. We
denote by [X] the set of all finite multisets of elements of type
X , i.e., [X]

not.
=
⋃
A∈Pfin(X){m | m ∈ (A→ N+)}; Pfin(X)

is the powerset of all finite subsets of X . Since X is countable,
Pfin(X) is also countable. An element m ∈ [X] is a multiset
of elements of type X , namely a function m : A→ N+, where
A ∈ Pfin(X) is such that ∀x ∈ A : m(x) > 0.

We can also represent a multiset m ∈ [X] by enumerating
its elements between parentheses ’[’ and ’]’. Notice that the
elements in a multiset are not ordered; intuitively, a multiset
is an unordered list of elements. For example, [] is the empty
multiset, i.e. the function with empty graph. Another example:
[x1, x1, x2] = [x1, x2, x1] = [x2, x1, x1] is the multiset with
two occurrences of x1 and one occurrence of x2, i.e. the
function m : {x1, x2} → N+,m(x1) = 2,m(x2) = 1.

We can define various operations on multisets m1,m2 ∈
[X]. Below, dom(·) is the domain of function ’·’.

• Multiset sum: m1]m2 (] : ([X]× [X])→ [X])

dom(m1]m2) = dom(m1) ∪ dom(m2)

(m1]m2)(x) ={
m1(x) +m2(x) if x ∈ dom(m1) ∩ dom(m2)
m1(x) if x ∈ dom(m1) \ dom(m2)
m2(x) if x ∈ dom(m2) \ dom(m1)

• Multiset difference: m1 \m2 (\ : ([X]× [X])→ [X])

dom(m1 \m2) =

(dom(m1) \ dom(m2)) ∪
{x | x∈ dom(m1) ∩ dom(m2) ,m1(x)>m2(x)}

(m1 \m2)(x) ={
m1(x) if x ∈ dom(m1) \ dom(m2)
m1(x)−m2(x) if x ∈ dom(m1) ∩ dom(m2)

• Submultiset: m1 ⊆ m2 (⊆: ([X]× [X])→ Bool)

m1 ⊆ m2 iff (dom(m1) ⊆ dom(m2)) ∧
(∀x ∈ dom(m1) : m1(x) ≤ m2(x)).

• Cardinal number: |m| =
∑

x∈ dom(m)

m(x)

We write m1 = m2 to express that the multisets m1 and
m2 are equal. m1 = m2 iff dom(m1) = dom(m2) and
∀x ∈ dom(m1) : m1(x) = m2(x). Also, we write m1 ⊂ m2

whenever m1 ⊆ m2 and ¬(m1 = m2).

When (x ∈)X is a countable set we use the following
convention. We denote by x typical elements of [X], i.e. x ∈
[X] is a multiset of elements of the type X .

Let f : X→X be a function. When x ∈ X is such that
f(x) = x, we call x a fixed point of f . When this fixed point
is unique, we write x = fix(f).

The denotational semantics given in this paper is defined
following the mathematical methodology of metric semantics
[3]. More exactly, we work within the mathematical framework
of 1-bounded complete metric spaces. We assume the follow-
ing notions are known: metric and ultrametric space, isometry
(distance preserving bijection between metric spaces, denoted
by ’∼=’), complete metric space, and compact set. For details,
the reader may consult the monograph [3], for instance.

Some metrics are frequently used in metric semantics.
For example, if X is any nonempty set, we can define
the discrete metric d : X × X → [0, 1] as follows:
d(x, y) = if x = y then 0 else 1. (X, d) is a complete ultra-
metric space.

We recall that if (X, dX), (Y, dY) are metric spaces,
a function f :X→Y is a contraction if ∃c ∈ R, 0 ≤ c < 1,
∀x1, x2 ∈ X : dY (f(x1), f(x2))≤ c · dX(x1, x2). In metric
semantics, it is usual to attach a contracting factor c = 1

2 to
each computation step. When c = 1 the function f is called
nonexpansive. In what follows, we denote by X

1

→Y the set
of all nonexpansive functions from X to Y .

The following theorem is at the core of metric semantics.

Theorem 2.1 (Banach): Let (X, dX) be a complete metric
space. Each contraction f : X→X has a unique fixed point.

Definition 2.2: Let (X, dX), (Y, dY) be (ultra)metric
spaces. We define the following metrics over X , X→Y
(function space), X×Y (Cartesian product), X + Y (disjoint
union defined by X + Y = ({1} × X) ∪ ({2} × Y)), and
P(X) (powerset of X), respectively.

(a) d 1
2 ·X

:X ×X→[0, 1]

d 1
2 ·X

(x1, x2) = 1
2 · dX(x1, x2)

(b) dX→Y : (X→Y)× (X→Y)→[0, 1]
dX→Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X × Y)× (X × Y)→[0, 1]
dX×Y ((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)};

(d) dX+Y : (X + Y)× (X + Y)→[0, 1]
dX+Y (u, v)= if (u, v ∈ X) then dX(u, v)

else if (u, v∈Y) then dY (u, v) else 1
(e) dH : P(X)× P(X)→[0, 1]

dH(U, V) = max{supu∈U d(u, V), supv∈V d(v, U)}
where d(u,W)= infw∈W d(u,w) and by convention
sup ∅=0 and inf ∅=1; dH is the Hausdorff metric.

We use the abbreviation Pnco(X) to denote the powerset of
non-empty and compact subsets of X . Also, we often suppress
the metrics part in domain definitions, and write only 1

2 · X
instead of (X, d 1

2 ·X
).

Remark 2.3: Let (X, dX), (Y, dY), d 1
2 ·X

, dX→Y , dX×Y ,
dX+Y and dH be as in Definition 2.2. If dX , dY are ul-
trametrics, then so are d 1

2 ·X
, dX→Y , dX×Y , dX+Y and dH .

Moreover, if (X, dX), (Y, dY) are complete then 1
2 ·X , X→Y ,

X
1

→Y , X×Y ,X+Y , and Pnco(X) with their metrics defined
above are also complete metric spaces [3].

III. SYNTAX OF LDNA

Let (x, y ∈)X be a (countable) set of signals and let
(x, y ∈)[X] be the set of all finite multisets of signals. We
define the set of gates by (g ∈)G = [X] × [X]. A gate
g = (x, y)(∈ G) is a pair of multisets of signals.

Definition 3.1: (Syntax of LDNA)

P ::= 0 | x | g | P ‖ P | P k | P ∗

Formally, (P ∈)LDNA is the set of finite trees P generated
by the syntax above. We call the syntactic elements of LDNA
programs or components, and we use the term execution to
refer to their behavior.

0 is the inert component. x is a signal. g =
([x1, . . . , xn], [y1, . . . , ym]) is a gate, an operator from signals
to signals; it can interact with n parallel signals x1, . . . , xn,
it produces m signals y1, . . . , ym and is consumed in the
process. The semantics of such an interaction was described
in the introduction; the formal operational semantics is given
in [6]. Signals and gates can be combined into a multiset by
parallel composition P1 ‖ P2, and can also be combined into
finite populations P k or unbounded populations P ∗. P k is an
abbreviation for k parallel copies of P , with P 0 = 0. P ∗ has
the property that P ∗ = P ‖ P ∗, that is, there is always one
more P that can be taken from the population.

The reader may wonder why we use the semantic notion of
a multiset in the syntax definition of LDNA. It would be easy
to make a complete separation between syntax and semantics.
For example, we could define gates by g ::= (x∗, x∗), where
x∗ is a finite sequence of signals. But we use multisets because
we consider that the order of signals is irrelevant.

IV. DENOTATIONAL SEMANTICS OF LDNA WITH
OBSERVABLE INTERACTIONS

We present a denotational semantics [[·]]G for LDNA, where
each observable item is an LDNA gate used in an interaction.
We introduce a set (w ∈)W of synchronization contexts
that expresses synchronization in continuation semantics. We
present the domain definition, and the definition of [[·]]G .

A. Synchronization contexts

Definition 4.1: The set (w ∈)W of synchronization con-
texts is defined by:

W = {µ(w) | w ∈ {null} ∪ (G× [X])}

where µ : {null} ∪ (G× [X])→ Bool is given by

µ(null) = true

µ((x, y), x′) = (x′ ⊆ x)

Intuitively, µ(w) = true if w could synchronize but not
necessarily synchronizes (already). Over [X] multisets we use
the operations (],=,⊆,⊂, \, |·|) introduced in section II. null
could synchronize (if some parallel component contributes
with a gate at synchronization). A synchronization context
((x, y), x′) contains a gate (x, y) and a multiset of signals
x′ that could ’match’ with the gate in the sense that x′ ⊆ x.
((x, y), x′) could synchronize if x′ ⊆ x, i.e. if it is possible

to obtain x from x′ by adding a few signals (produced by
parallel components) to the multiset x′. In definition 4.2 we
introduce an operator ⊕ which adds a multiset of signals to a
synchronization context.

Definition 4.2: We define ⊕ : (W × [X])→W by:

w⊕x′′ =

{
((x, y), x′] x′′) if w = ((x, y), x′) and

x′] x′′ ⊆ x
w otherwise.

Definition 4.3: We define σ : W → Bool by:

σ(null) = false

σ((x, y), x′) = (x′ = x)

If w ∈W and σ(w) we say that w synchronizes.

Remark 4.4: σ(w)⇒ µ(w).

Definition 4.5: Let (· < ·), [· < ·) : (W ×W)→ Bool,

(w1 < w2) =


true if w1 = (g1, x1) and w2 = null
true if w1 = (g1, x1), w2 = (g2, x2),

g1 = g2, and x2 ⊂ x1
false otherwise.

[w1 < w2) = (w1 < w2) ∧ ¬(σ(w1))

Intuitively, (w1 < w2) if µ(w1) and w1 is closer of synchro-
nization than w2. If µ(w1), w1 = (g1, x1) and w2 = null
then (w1 < w2). Also, (w1 < w2) if µ(w1), w1 = (g1, x1),
w2 = (g2, x2), g1 = g2 and x2 ⊂ x1. Otherwise, ¬(w1 < w2).
[w1 < w2) if (w1 < w2) and w1 does not synchronize (yet).

Remarks 4.6:
(a) For any w1, w2 ∈W , if σ(w2) then ¬(w1 < w2).
(b) For any w1, w2 ∈W , if σ(w2) then ¬[w1 < w2).

We introduce a complexity function cw(w) that measures how
far or close w is from synchronization.

Definition 4.7: We define cw : W → N ∪ {∞} by:

cw(null) =∞
cw((x, y), x′) = |x \ x′|

We endow N ∪ {∞} with the total order 0 < 1 < 2 < · · · <
n < · · ·∞. |x\x′| is the cardinal number of the multiset x\x′.

Remarks 4.8:
(a) (w1 < w2)⇒ cw(w1) < cw(w2).
(b) σ(w)⇔ cw(w) = 0.

B. Domain definitions

The domain of the denotational semantics [[·]]G is D:

(φ ∈)D ∼= {d0}+ Den

(ϕ ∈)Den = F
1

→W → P

(f ∈)F = K
1

→W → P

(κ ∈)K = 1
2 · D

(p ∈)P = Pnco(Q)

(q ∈)Q ∼= {ε}+ (G× (1
2 · Q))

D and Den are domains of computations. D is also a domain
of denotations; the denotational semantics produces values of
the type D. An element φ ∈ D is either the inert computation
d0 or a computation ϕ ∈ Den. F is the domain of synchronous
continuations. K is the domain of asynchronous continua-
tions. Intuitively, an asynchronous continuation κ stores a D
computation; κ is a parallel composition of computations.
In general, such an (asynchronous) continuation is a more
complex structure, e.g., a tree of computations [15], [16]. In
the case of LDNA, a continuation is a multiset of computations
that are packed into a single computation by means of parallel
composition. In this paper, an asynchronous continuation κ is
a computation, stored in the space K = 1

2 · D. K and D have
the same support set (see definition 2.2), only the distance
between points halves in K.

We use ’·’ as a prefixing operator for Q sequences: g · q =
(g, q), for q ∈ Q. Instead of (g1, (g2, · · · (gn, ε) · · ·)) we write
g1g2 · · · gn. Also, we use the notation g · p = {g · q | q ∈ p},
for any g ∈ G, p ∈ P. (p ∈)P is the domain of compact and
nonempty collections of Q sequences.

In the equations given above the sets G and [X] are
endowed with the discrete metric which is an ultrametric.
The composed metric spaces are built up using the metrics of
Definition 2.2. The system of equations has a solution, which
is unique up to isometry [1]. The solution for D is obtained
as a complete ultrametric space. In [1], the family of complete
(ultra)metric spaces is made into a category C. It is proved
that a generalized form of Banachs fixed point theorem holds,
stating that a functor F : C → C that is contracting (in a
sense) has a unique fixed point (up to isometry). Intuitively,
in the equation above the relevant functor is contracting as a
consequence of the fact that the recursive occurrence of D is
preceded by a 1

2 factor. The domain equation for Q also has a
unique solution (up to isometry) [2]. ε is the empty sequence,
which denotes termination.

C. Semantic operators

Definition 4.9: The semantics of nondeterministic choice
in LDNA is given by the operator + : (P×P)→ P,

p1+p2 = {q | q ∈ p1 ∪ p2, q 6= ε}∪{ε | ε ∈ p1 ∩ p2}.

Also, we define (:) : (Bool ×P)→ P by:

true : p = p

false : p = {ε}
Remarks 4.10:

(a) The definition of ’+’ reflects that p1 + p2 terminates
only if both p1 and p2 terminate.

(b) It is easy to check the following properties:

b : (p1 + p2) = (b : p1) + (b : p2),
(b1 ∧ b2) : p = b1 : (b2 : p) = b2 : (b1 : p).

(c) ’+’ is nonexpansive, associative, commutative and
idempotent [3]. ’:’ is nonexpansive.

Definition 4.11: We define ‖ = fix(Ψ), where
Ψ : Op→ Op, Op = (D×D)

1

→D, is given by:

Ψ(ψ)(d0, d0) = d0

Ψ(ψ)(d0, ϕ) = ϕ

Ψ(ψ)(ϕ, d0) = ϕ

Ψ(ψ)(ϕ1, ϕ2) =

λf.λw.(ϕ1(λκ1.λw1.
((w1 < w) : f(ψ(κ1, ϕ2))w1) +
([w1 < w) :

ϕ2(λκ2.f(ψ(κ1, κ2)))w1))w +
ϕ2(λκ2.λw2.

((w2 < w) : f(ψ(κ2, ϕ1))w2) +
([w2 < w) :

ϕ1(λκ1.f(ψ(κ2, κ1)))w2))w)

Lemma 4.12: Ψ : Op
1
2→Op (Ψ has a unique fixed point).

The proof of lemma 4.12 is omitted. One can use the fact that
in the right-hand side of the equation for Ψ(ψ)(ϕ1, ϕ2) the
occurrences of ψ(·, ·) are stored in the space K = 1

2 · D.

Definition 4.13: b : (Den×Den)→ Den is an operator
that we call left synchronization.

(ϕ1 bϕ2)fw =

ϕ1(λκ1.λw1.((w1 < w) :f(κ1 ‖ ϕ2)w1) +
([w1 < w) :ϕ2(λκ2.f(κ1 ‖ κ2))w1))w

We use the infix notation for ‖ and b . The expression
(φ1 bφ2)fw reads, after adding parentheses, as follows:
(φ1 bφ2)(f)(w). Similar elaborations will be omitted in the
sequel since the intended meaning can always be inferred
from the types of the functions concerned. (ϕ1 bϕ2) attempts
to synchronize two computations ϕ1, ϕ2, in this order. ϕ1 is
evaluated in the synchronization context w and produces a
new synchronization context w1 such that (w1 < w). ϕ2 is
evaluated in the synchronization context w1 only if w1 does
not synchronize (yet), i.e. if ¬σ(w1) (see definition 4.5). No
observable is produced before synchronization. Synchroniza-
tion is handled by the synchronous continuation f . It is easy
to check the following:

Lemma 4.14: ‖ and b are nonexpansive.

Remark 4.15: d0 ‖ d0 = d0, d0 ‖ ϕ = ϕ ‖ d0 = ϕ and for
any ϕ1, ϕ2 ∈ Den:

ϕ1 ‖ ϕ2 = λf.λw.((ϕ1 bϕ2)fw + (ϕ1 bϕ2)fw)

‖ is commutative (because + is commutative).

Definition 4.16: For any n ∈ N, we define
‖n (·) : Dn → D (Dn = D× · · · ×D - n times, n ≥ 0) by:

‖0 () = d0

‖n+1 (φ1, φ2, . . . , φn+1) = φ1 ‖ (‖n (φ2, . . . , φn+1))

Definition 4.17: Let [[·]]XG : X → D be given by:

[[x]]XG =

λf.λw. if (w = null) then {ε}
else let w′ = w ⊕ [x]

in ((w′ < w) : f(d0)(w′))

Also, we define [[·]]GG : G→ D by:

[[g]]GG =

λf.λw. if (w = null) then f(d0)(g, []) else {ε}

Definition 4.18: Let Φ : F→ F be given by:

Φ(f)kw =

if (¬σ(w)) then {ε}

else let w = (g, x′)

g = (x, [y1, . . . , ym])

φ =‖m+1 (κ, [[y1]]XG , . . . , [[ym]]XG)

in if φ = d0 then {g} else g · φ(f)null

We define f0 = fix(Φ).

Lemma 4.19: Φ is a contraction, i.e. Φ : F
1
2→F.

Proof: The proof is an easy consequence of the fact that
the occurence of f is preceded by the ”g·” -step in the right-
hand side of the equation defining Φ.

We introduce an operator Ω that we use in the semantic
equation for unbounded populations. Well-definedness of Ω
follows by induction on cw(w).

Definition 4.20: We define Ω : Den→ Den→ Den by:

Ωϕ1ϕ2fw =

ϕ1(λκ1.λw1.((w1 < w) :f(κ1 ‖ ϕ2)w1) +
([w1 < w) :Ωϕ1ϕ2(λκ2.f(κ1 ‖ κ2))w1))w

Lemma 4.21: Ω : Den
1

→Den
1
2→Den, i.e.:

(a) d(Ωϕ1
1,Ωϕ

2
1) ≤ d(ϕ1

1, ϕ
2
1), ∀ϕ1

1, ϕ
2
1 ∈ Den and

(b) d(Ωϕ1ϕ
1
2,Ωϕ1ϕ

2
2)≤ 1

2 ·d(ϕ1
2, ϕ

2
2), ∀ϕ1,ϕ

1
2, ϕ

2
2 ∈Den.

Proof: We only treat 4.21(b). It suffices to show that
d(Ωϕ1ϕ

1
2fw,Ωϕ1ϕ

2
2fw) ≤ 1

2 · d(ϕ1
2, ϕ

2
2), for arbitrary f ∈

F, w ∈W . We proceed by induction on cw(w).

If cw(w) = 0 then d(Ωϕ1ϕ
1
2fw,Ωϕ1ϕ

2
2fw) =

d(ϕ1fε, ϕ1fε) = 0, where fε = λκ1.λw1.{ε}, because
cw(w) = 0⇒ σ(w), hence there is no w1 such that (w1 < w)
or [w1 < w), according to remark 4.6.

Next, assume that cw(w) > 0.

d(Ωϕ1ϕ
1
2fw,Ωϕ1ϕ

2
2fw)

= d(ϕ1(λκ1.λw1.
((w1 < w) : f(κ1 ‖ ϕ1

2)w1) +
([w1 < w) :

Ωϕ1ϕ
1
2(λκ12.f(κ1 ‖ κ12))w1))w

ϕ1(λκ1.λw1.
((w1 < w) : f(κ1 ‖ ϕ2

2)w1) +
([w1 < w) :

Ωϕ1ϕ
2
2(λκ22.f(κ1 ‖ κ22))w1))w)

[ϕ1, ’+’ and ’:’ are nonexpansive]

= supκ1∈K,w1∈W

max{d(f(κ1 ‖ ϕ1
2)w1, f(κ1 ‖ ϕ2

2)w1)(∗),

d(Ωϕ1ϕ
1
2(λκ12.f(κ1 ‖ κ12))w1,

Ωϕ1ϕ
2
2(λκ22.f(κ1 ‖ κ22))w1)(∗∗)}

By using the fact that f is nonexpansive we obtain:

(∗) = dK(κ1 ‖ ϕ1
2, κ1 ‖ ϕ2

2)

[’‖’ is nonexpansive, K = 1
2 ·D = 1

2 · ({d0}+ Den)]

≤ 1
2 · dD(ϕ1

2, ϕ
2
2) = 1

2 · dDen(ϕ1
2, ϕ

2
2)

By remark 4.8 [w1 < w)⇒ cw(w1) < cw(w). Hence, by the
induction hypothesis:

(∗∗) ≤ 1
2 · dDen(ϕ1

2, ϕ
2
2)

Remark 4.22: Let ϕ ∈ Den. The mapping Ω(ϕ) is 1
2

contractive (by lemma 4.21). Let ϕ = fix(Ω(ϕ)). It is
straightforward to check that Ω(ϕ)(ϕ) = ϕ bϕ.

D. Denotational semantics

Definition 4.23: We define [[·]]G : LDNA → D by:

[[0]]G = d0

[[x]]G = [[x]]XG
[[g]]G = [[g]]GG

[[P k]]G = ‖k ([[P]]G , . . . , [[P]]G)

[[P ∗]]G =

{
d0 if [[P]]G = d0,
fix(Ω([[P]]G)) otherwise

[[P1 ‖ P2]]G = [[P1]]G ‖ [[P2]]G

Let DG [[·]] : LDNA → P be given, for any P ∈ LDNA, by:

DG [[P]] = [[P]]G(f0)(null)

Remark 4.24: The operator for unbounded populations is
based on the operator for replication from the π calculus [10].
There are standard domain-theoretic descriptions of replication
in the literature; see, e.g, [14]. However, such solutions are
conceived for binary interactions (as in the π calculus), and
cannot be applied to a language with multiparty (or join) inter-
actions as LDNA. Essentially, (when [[P]]G 6= d0) in definition
4.23 we put [[P ∗]]G = fix(λϕ.([[P]]G bϕ)), which implies
[[P ∗]]G = [[P]]G b [[P ∗]]G . The operator for unbounded popu-
lations should satisfy the property: [[P ∗]]G = [[P]]G ‖ [[P ∗]]G ,4
but we cannot simply put fix(λϕ.([[P]]G ‖ ϕ)), because,
in general, λϕ.([[P]]G ‖ ϕ) is not a contraction. In this
paper we only explain informally why our solution works.
Also we validate the solution experimentally, by providing
LDNA examples with unbounded populations that are executed
properly by our semantic interpreters available at [17].

[[P]]G ‖ [[P ∗]]G is defined based on a nondeteministic
choice between [[P]]G b [[P ∗]]G and [[P ∗]]G b [[P ∗]]G . As the
operator for nondeterministic choice ’+’ is idempotent, it
is enough to prove that [[P]]G b [[P ∗]]G = [[P ∗]]G b [[P]]G . We
notice that [[P]]G b [[P ∗]]G = ([[P]]G b · · · ([[P]]G b [[P ∗]]G) · · ·)
and [[P ∗]]G b [[P]]G = ([[P]]G b · · · ([[P]]G b [[P ∗]]G) · · ·) b [[P]]G
Intuitively, both [[P ∗]]G b [[P]]G and [[P]]G b [[P ∗]]G take as many
copies of [[P]]G as necessary (but not more) to achieve a

4[[P]]G ‖ [[P ∗]]G = λfw.([[P]]G b [[P ∗]]G)fw + ([[P ∗]]G b [[P]]G)fw.

synchronization. The synchronization produces an observable
(12 contraction) step. After such a synchronization step the
continuations of all computations involved are executed in
parallel with [[P ∗]]G ‖ [[P]]G and [[P ∗]]G , respectively. Based
on this observation we notice that the relationship between
[[P ∗]]G ‖ [[P]]G and [[P ∗]]G is an invariant of the computation,
preserved by each computation step.

A formal proof of [[P ∗]]G = [[P]]G ‖ [[P ∗]]G and other
program properties could employ the technique introduced in
[7]. In [7] each (nontrivial) semantic property is proved by
identifying a corresponding invariant of the computation, as
a relation between continuation structures. The identification
of semantic properties from the invariants of the computation
is common in bisimulation semantics [10]. In [7] this idea is
adapted to a denotational framework, by using arguments of
the kind ’ε ≤ 1

2 · ε ⇒ ε = 0’, which are standard in metric
semantics [3]. ε is the distance between two behaviorally
equivalent continuations, before and after a computation step,
respectively. The effect of each computation step is given by
the 1

2 contracting factor. Hence ε = 0 and the desired property
follows.

Examples 4.25: Let P1, P2, P3 ∈ LDNA,

P1 = (x1 ‖ ([x1], [y1])) ‖ (x2 ‖ ([x2], [y2]))

P2 = x ‖ (([x1, x2], [x3]) ‖ ([x], [x1, x2]))

P3 = (y ‖ ([y, x1], [x2, y])∗) ‖ (x1)3

P1 and P2 are as in section I. In P3, y ‖ ([y, x1], [x2, y])∗ is
a catalytic system ready to transform multiple x1 to x2 with
catalyst y [6]. P3 contains a finite population of 3 signals
(x1)3, hence computation terminates after 3 steps (although
P3 also contains an unbounded population ([y, x1], [x2, y])∗).
One may check the following results:

DG [[P1]] = {([x1], [y1])([x2], [y2]), ([x2], [y2])([x1], [y1])}
DG [[P2]] = {([x], [x1, x2])([x1, x2], [x3])}
DG [[P3]] = {ggg}, where g = ([y, x1], [x2, y])

The reader may (download and) run the semantic inter-
preters available at [17]. For example, running (the Haskell
implementation of) P1 with the interpreter semgDNA.hs one
obtains the following result:

[(["x1"],["y1"]).(["x2"],["y2"]),

(["x2"],["y2"]).(["x1"],["y1"])]

Let P4 = x∗ ‖ ([x], [y])∗. The execution of P4 never
terminates, hence P4 cannot be tested with semgDNA.hs.
The semantic interpreter semgDNA_fin.hs enforces the
termination any LDNA program after a finite number of steps,
hence it allows you to make experiments with nonterminating
LDNA programs. For example, you can run P4 enforcing its
termination after at most 3 steps and you obtain:

[(["x"],["y"]).(["x"],["y"]).(["x"],["y"])]

V. DENOTATIONAL SEMANTICS OF LDNA WITH
OBSERVABLE CONFIGURATIONS

We present an alternative denotational semantics [[·]]C for
LDNA. In this section each observable item is a Γ configu-
ration of a LDNA system. Since the main lines of reasoning

were introduced in section IV we adopt a more terse style of
the presentation.

Definition 5.1: We define the class α ∈ A of LDNA
elements inductively. Any signal x ∈ X or gate g ∈ G is an
LDNA element, i.e. X ⊆ A,G ⊆ A. If α1, . . . , αn ∈ A then
(∗, [α1, . . . , αn]) ∈ A. We use the notation [α1, . . . , αn]∗ =
(∗, [α1, . . . , αn]); here, [α1, . . . , αn] is a multiset of LDNA
elements. We define the class γ ∈ Γ of LDNA configurations
by Γ = [A]; a configuration is a multiset of LDNA elements.

The domain of the denotational semantics [[·]]G is D:

(φ ∈)D ∼= {d0}+ (Γ×Den),

(ϕ ∈)Den = F
1

→W → P,

(f ∈)F = K
1

→W → P, (κ ∈)K = 1
2 · D,

(p ∈)P = Pnco(Q), (q ∈)Q ∼= {ε}+ (Γ× (1
2 · Q)).

Domain definitions are similar to the ones given in section IV.
There are two important differences. In this section observable
items are Γ configurations, rather than G gates. Also, a
denotation may be either the inert computation d0 or a pair
consisting of a Γ configuration and a Den computation. The
set Γ is endowed with the discrete metric.

We use the operators on W synchronization contexts and
multisets introduced in the previous sections. Also, for Q
and P we use the same notation and operators. The no-
tation for prefixing is γ · p = {γ · q | q ∈ p}, where
γ · q = (γ, q), ∀γ ∈ Γ, q ∈ Q. ε is the empty sequence and
instead of (γ1, (γ2, . . . (γnε) . . .)) we write γ1γ2 . . . γn. The
operator + : (P × P) → P for nondeterministic choice is
p1 +p2 ={q | q ∈ p1∪ p2, q 6= ε}∪{ε | ε ∈ p1∩ p2}. Also, we
put (:) : (Bool×P)→ P, (true :p) = p, and (false :p) = {ε}.

The semantic operator for parallel composition
‖: (D×D)→ D acts as a multiset sum on configurations.
d0 ‖ d0 = d0, d0 ‖ φ = d0 ‖ φ = φ and:

(γ1, ϕ1) ‖ (γ2, ϕ2) =

(γ1] γ2,
λf.λw.(ϕ1(λκ1.λw1.

((w1 < w) : f(κ1 ‖ (γ2, ϕ2))w1) +
([w1 < w) :

ϕ2(λκ2.f(κ1 ‖ κ2))w1))w +
ϕ2(λκ2.λw2.

((w2 < w) : f(κ2 ‖ (γ1, ϕ1))w2) +
([w2 < w) :

ϕ1(λκ1.f(κ2 ‖ κ1))w2))w))

The mappings [[·]]XC : X → D and [[·]]GC : G→ D are

[[x]]XC =

([x], λf.λw. if (w = null) then {ε}
else let w′ = w ⊕ [x]

in ((w′ < w) : f(d0)(w′))

[[g]]GC =

([g],λf.λw. if (w=null) then f(d0)(g,[]) else {ε})

The initial continuation f0 : F produces an observable step
which is a configuration. This information is extracted from

the asynchronous continuation and the signals that are released
by the interaction step.

f0kw = if (¬σ(w)) then {ε}
else let w = ((x, [y1, . . . , ym]), x′)

φ =‖m+1 (κ, [[y1]]XC , . . . , [[ym]]XC)

in if φ = d0 then {[]}
else let φ=(γ, ϕ) in γ ·ϕ(f0)null

Formally, ‖ and f0 can be defined as fixed points of appro-
priate higher-order operators, as we have shown in section
IV. The n-ary operators for parallel composition can also be
defined inductively: ‖0 () = d0 and ‖n+1 (φ1, φ2, . . . , φn+1)
= φ1 ‖ (‖n (φ2, . . . , φn+1)).

We define the semantics of unbounded populations based
on the operator Ω : Γ→ D→ D→ D,

Ωγ2ϕ1ϕ2fw =

ϕ1(λκ1.λw1.((w1 < w) : f(κ1 ‖ (γ2, ϕ2))w1) +
([w1 < w) :

Ωγ2ϕ1ϕ2(λκ2.f(κ1 ‖ κ2))w1))w

For any γ ∈ Γ, ϕ ∈ Den one can show that Ωγϕ is 1
2

contractive. If ϕ = fix(Ωγϕ) then Ωγϕϕ = ϕ bϕ, where

(ϕ1 bϕ2)fw =

ϕ1(λκ1.λw1.((w1 < w) : f(κ1 ‖ (γ2, ϕ2))w1) +
([w1 < w) : ϕ2(λκ2.f(κ1 ‖ κ2))w1))w

Finally, we define the denotational semantics [[·]]C .

Definition 5.2: We define [[·]]C : LDNA → D by:

[[0]]C = d0

[[x]]C = [[x]]XC
[[g]]C = [[g]]GC

[[P k]]C = ‖k ([[P]]C , . . . , [[P]]C)

[[P ∗]]C =

{
d0 if [[P]]C = d0,
([γ∗], fix(Ω[γ∗]ϕ) if [[P]]C = (γ, ϕ)

[[P1 ‖ P2]]C = [[P1]]C ‖ [[P2]]C

Let DG [[·]] : LDNA → P be given, for any P ∈ LDNA, by:

DC [[P]] = [[P]]C(f0)(null)

Examples 5.3: Let P1, P2, P3 be the LDNA example pro-
grams considered in 4.25. One can check the following:

DC [[P1]] = {[x2, y1, ([x2], [y2])][y1, y2],

[x1, y2, ([x1], [y1])][y1, y2]}
DC [[P2]] = {[x1, x2, ([x1, x2], [x3])][x3]}
DC [[P3]] = {γ1γ2γ3}

where γ1 = [x1, x1, x2, y, [([y, x1], [x2, y])]∗]

γ2 = [x1, x2, x2, y, [([y, x1], [x2, y])]∗]

γ3 = [x2, x2, x2, y, [([y, x1], [x2, y])]∗]

These and other LDNA example programs can be tested
by using the semantic interpreters semcDNA.hs and

semcDNA_fin.hs available at [17]. P1, P2 and P3 can
be tested by using semcDNA.hs. semcDNA_fin.hs ter-
minates automatically any LDNA program after a specified
number of steps, hence it provides testing support for nonter-
minating LDNA programs, such as P4 = x∗ ‖ ([x], [y])∗.

VI. CONCLUDING REMARKS AND FUTURE RESEARCH

We report on the first stage of an investigation of the
denotational semantics of DNA computing. We work in the
mathematical framework of metric semantics [3]. We use
continuations [15] and powerdomains to represent nondeter-
ministic behavior. In this paper an element of a powerdomain
is a collection of sequences of observables representing DNA
structures. We consider two notions of an observable item and
we design two corresponding denotational models.

We intend to continue the research concerning the be-
havior of DNA systems by using methods in the tradition
of programming languages semantics. We will investigate the
possibility to define a metric denotational semantics designed
with continuations for the stochastic strand algebra given
in [6]. We will study the formal relationship between the
denotational semantics and the operational semantics of the
process algebras for DNA computing given in [6].

REFERENCES

[1] P.America, J.J.M.M. Rutten, Solving reflexive domain equations in a
category of complete metric spaces, J. of Comput. System Sci., 39:343-
375, 1989.

[2] J.W. de Bakker, J.I. Zucker, Processes and the denotational semantics
of concurrency. Information and Control, 54:70-120, 1982.

[3] J.W. de Bakker, E.P. de Vink, Control flow semantics. MIT Press, 1996.
[4] J.C.M. Baeten, W.P. Weijland, Process algebra, Cambridge Univ. Press,

1990.
[5] G. Berry, G. Baudol, The chemical abstract machine, Theoretical

Computer Science, 96:217–248, 1992.
[6] L. Cardelli, Strand algebras for DNA computing, Natural Computing

10(1): 407-428, 2011.
[7] G. Ciobanu, E.N. Todoran, Continuation semantics for asynchronous

concurrency, Fundamenta Informaticae (in press).
[8] C. Fournet, G. Gonthier, The Join calculus: a language for distributed

mobile programming, LNCS 25:268–332, 2002.
[9] G. Giertz, D.S. Scott, Continuous lattices and domains. Cambridge

Univ. Press, 2003.
[10] R. Milner. Communicating and mobile systems: the π caculus. Cam-

bridge Univ. Press, 1999.
[11] S. Peyton Jones, J. Hughes (Eds.), Report on the Programming

Language Haskell 98: a Non-Strict Purely Functional Language, 1999.
Available at http://www.haskell.org/.

[12] G. Plotkin, A powerdomain construction, SIAM Journal of Computing
5(3):452–487, 1976.

[13] G. Plotkin, A structural approach to operational semantics, J. Log.
Algebr. Program. (60-61):17–139, 2004.

[14] I. Stark, A fully abstract domain model for the π-calculus, Proc. of
LICS, pages 36–42, 1996.

[15] E.N.Todoran, Metric semantics for synchronous and asynchronous
communication: a continuation-based approach, ENTCS 28:119–146,
2000.

[16] E.N.Todoran, N.Papaspyrou, Continuations for prototyping concurrent
languages: yet another study of concurrency with emphasis on control-
flow and communication mechanisms, Technical Report CSD-SW-TR-
1-06, National Technical University of Athens, Software Engineering
Laboratory, 2006.

[17] ftp://ftp.utcluj.ro/pub/users/gc/.

