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1 Introduction

Continuation semantics for concurrency (CSC) [12] is a general tool for designing opera-
tional and denotational models of concurrent languages and systems. In denotational models
designed with CSC, a continuation is a structured configuration of computations (denotations
of program statements) rather than just a function to some answer type as in the classic
technique of continuations [11]. Following [1, 12] in this paper we use the term resumption
as an operational counterpart of the term continuation. In an operational model designed
with CSC a resumption is a structured configuration of program statements. A general idea
in continuation semantics is that a program is decomposed into a current statement and the
remainder of the program. A continuation is a representation of such a remainder of the
program. The evaluation mechanism of CSC is explained in [12, 13].

Most works employ the direct (rather than the continuation-based) style in designing
semantic models of concurrent languages and systems. The reader may consult, e.g., the
monograph [1], where the direct style is employed in designing the semantics of parallel com-
position for various concurrent programming languages. Alternatively, the semantic designer
could employ CSC for the same purpose. In this paper we investigate the relationship between
an operational semantics designed in direct semantics and an operational semantics designed
with CSC. For this purpose we use bisimulation semantics [5, 7, 6] and basic techniques of
metric semantics [1].

We consider an abstract concurrent language L incorporating a general mechanism of asyn-
chronous communication. Based on results in process algebra [4], asynchronous interaction is
primitive and synchronous communication could be expressed in terms of asynchronous prim-
itives. The relation between synchronous and asynchronous interaction has received consider-
able attention in recent years [8, 14]. Asynchronous interaction represents a basic mechanism
in various modern distributed systems, Internet and Web applications. The language L that
we consider in this paper embodies the paradigm of asynchronous communication studied in
[3]; instances of this paradigm include asynchronous CSP, dataflow and concurrent constraint
programming [10]. L extends the paradigmatic language studied in [3] with recursion.

We specify the behavior of L programs in an operational manner in the style of Plotkin’s
structural operational semantics [9]. We consider two different transition system specifications
for L. One is designed following the direct approach to concurrency semantics as, e.g., in [1].
The other one is designed with CSC. We establish the formal relationship between direct
semantics and continuation semantics for concurrency by defining a bisimulation relation
between the two transition systems. By using this bisimulation relation and an argument of
the kind ’ε ≤ 1

2 ∙ ε ⇒ ε = 0’, which is standard in metric semantics, we prove that the two
operational semantics assign the same meaning to any L program. As an easy consequence,
any property or concurrency law that holds in a semantic model designed in direct semantics
also holds in a semantic model designed with CSC. For example, parallel composition is
associative and commutative in the semantic model designed in direct semantics (see, e.g.,
[1, 6]). This means that parallel composition is also associative and commutative in the
semantic model designed with CSC.

2 Theoretical preliminaries

The notation (x ∈)X introduces the set X with typical element x ranging over X. For
any set X, we denote by |X| the cardinal number of X. |X| = 0 when the set X is empty. For
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any set X we denote by Pπ(X) the collection of all subsets of X which have property π. Let
f ∈ X →Y be a function. The function (f | x 7→ y) : X →Y , is defined (for x, x′ ∈ X, y ∈ Y )
by:

(f | x 7→ y)(x′) =

{
y if x′ = x
f(x′) if x′ 6= x

We write ( f | x1 7→ y1 | ∙ ∙ ∙ | xn 7→ yn ) as an abbreviation for (∙ ∙ ∙ (f | x1 7→ y1) ∙ ∙ ∙ | xn 7→ yn).
If f : X →X and f(x) = x we call x a fixed point of f . When this fixed point is unique (see
Theorem 2.2) we write x = fix(f). We assume known the notion of a partially ordered set.
We recall that, given a partially ordered set (X,≤X), an element x ∈ X is said to be maximal
if there are no elements strictly greter than x in X, that is if x ≤X y then y ≤X x in which
case x = y.

2.1 Metric spaces

Following [1], the study presented in this paper takes place in the mathematical framework
of 1-bounded complete metric spaces. We assume known the following notions: metric (and
ultrametric) space, isometry (distance preserving bijection between metric spaces; we denote
it by ’∼=’) and completeness of a metric space.

Example 2.1 (a) Let (a, b ∈)A be a set. The so-called discrete metric dA on A is defined
as follows. dA(a, b) = if (a = b) then 0 else 1 . For any set A, (A, dA) is a complete
metric space.

(b) Let (a ∈)A be a nonempty set, and let (x, y ∈)A∞ = A∗ ∪ Aω, where A∗(Aω) is the
set of all finite (infinite) sequences over A. One can define a metric over A∞, by
d(x, y) = 2−sup{n|x(n)=y(n)}, where x(n) denotes the prefix of x of length n, in case
length(x) ≥ n, and x otherwise. Also, by convention 2−∞ = 0. d is a Baire-like metric.
(A∞, d) is a complete ultrametric space.

We recall that if (X, dX), (Y, dY ) are metric spaces, a function f :X →Y is a contraction
if ∃k ∈ R, 0 ≤ k < 1∀x1, x2 ∈ X : dY (f(x1), f(x2))≤k∙dX(x1, x2). When k = 1 the function
f is called non-expansive. In the sequel we denote the set of all k-contracting (nonexpansive)

functions from X to Y by X
k

→Y (X
1

→Y ).

Theorem 2.2 (Banach) Let (X, dX) be a complete metric space. Each contracting function
f : X →X has a unique fixed point.

Definition 2.3 Let (X, dX), (Y, dY ) be (ultra) metric spaces. On (x ∈)X, (f∈)X →Y
(the function space), ((x, y)∈)X×Y (the cartesian product), (u, v∈)X + Y (the disjoint
union of X and Y , which can be defined by X +Y = ({1}×X)∪ ({2}×Y )) and (U, V ∈)P(X)
(the power set of X), one can define the following metrics:

(a) d 1
2
∙X : X × X →[0, 1], d 1

2
∙X(x1, x2) = 1

2 ∙ dX(x1, x2)

(b) dX →Y : (X →Y ) × (X →Y )→[0, 1], dX →Y (f1, f2) = supx∈XdY (f1(x), f2(x))

(c) dX×Y : (X × Y ) × (X × Y )→[0, 1]



6 Relationship Between Direct Semantics and Continuation Semantics

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}

(d) dX+Y : (X + Y ) × (X + Y )→[0, 1]

dX+Y (u, v) = if (u, v ∈ X) then dX(u, v) else if (u, v∈Y ) then dY (u, v) else 1

(e) dH : P(X) × P(X)→[0, 1], dH(U, V ) = max{supu∈Ud(u, V ), supv∈V d(v, U)} where
d(u,W )=infw∈W d(u,w) and by convention sup∅=0, inf∅=1 (dH is the Hausdorff dis-
tance).

We recall that, given a metric space (X, dX), a subset A of X is called compact whenever each
sequence in A has a convergent subsequence with limit in A. We use the abbreviations Pco(∙),
Pnco(∙) and Pfinite(∙) to denote the power sets of compact, non-empty and compact and finite
subsets of ’∙’, respectively. Also, we often suppress the metrics part in domain definitions, and
write, e.g., 1

2 ∙ X instead of (X, d 1
2
∙X).

Remark 2.4 Let (X, dX), (Y, dY ), d 1
2
∙X , dX →Y , dX×Y , dX+Y and dH be as in definition 2.3.

In case dX , dY are ultrametrics, so are d 1
2
∙X , dX →Y , dX×Y , dX+Y and dH . If in addition

(X, dX), (Y, dY ) are complete then 1
2 ∙ X, X →Y , X

1

→Y , X×Y , X +Y , and Pnco(X) (with
the metrics defined above) are also complete metric spaces.

2.2 Bisimulation

A labelled transition system T is a triple (Conf,Obs,→), where (c ∈)Conf is a set of con-
figurations, (a ∈)Obs is a set of observations and → is a subset of Conf × Obs × Conf , i.e.
→⊆ Conf × Obs × Conf . Usually, a triple (c, a, c′) is written in the notation c

a
−→c′.

Let T = (Conf,Obs,→) be a transition system. The concept of a bisimulation was
introduced by Milner [5, 6] and Park [7]. A (strong) bisimulation on T is a relation R ⊆
Conf × Conf , satisfying for all (c1, c2) ∈ R:

(a) For all a, c′1 if c1
a

−→c′1 then there exists c′2 such that c2
a

−→c′2 and (c′1, c
′
2) ∈ R.

(b) For all a, c′2 if c2
a

−→c′2 then there exists c′1 such that c1
a

−→c′1 and (c′1, c
′
2) ∈ R.

An unlabelled state transition system is a tuple (Conf,→) where (c ∈)Conf is a set (of
configurations or states) and →⊆ Conf×Conf is a binary relation over Conf (of transitions).
If c, c′ ∈ Conf one usually expresses the fact that (c, c′) ∈→ as c−→c′.

A labelled transition system where the set of labels consists of only one element is equiva-
lent to an unlabelled transition system. In this paper we only deal with unlabelled transition
systems.

3 Syntax of L and notation conventions

We assume given a set (a ∈)Act of atomic actions and a set (x ∈)Pvar of procedure
variables.

Definition 3.1 (Syntax of L)

(a) (Statements) s(∈ Stat) ::= a | x | s + s | s; s | sbb s | s ‖ s
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(b) (Guarded statements) g(∈ GStat) ::= a | g + g | g; s | gbb s | g ‖ g

(c) (Declarations) (D ∈)Decl = PV ar → GStat

(d) (Programs) (π ∈)Prog = Decl × Stat

; , + and ‖ are operators for sequential, alternative (nondeterministic) and parallel composi-
tion, respectively. ‖ is also called a merge operator, and bb is the left merge operator. There
is a special symbol δ ∈ Act, whose behavior is explained below. (g ∈)G is the class of guarded
statements. Recursion is defined based on a set (D ∈)Decl = Y → G of declarations.

The meaning of atomic actions is defined by an interpretation function I : Act → Σ →
({↑} ∪ Σ), where (σ ∈)Σ is a set of states. If I(a)(σ) =↑ the action a cannot proceed in state
σ; its execution is suspended. When all processes are suspended deadlock occurs. Notice that
I(δ)(σ) =↑, ∀σ ∈ Σ, i.e. the action δ suspends in all states. L incorporates the mechanism of
asynchronous communication studied in [3]. As explained in [3], this form of asynchronous
communication can be encountered in concurrent constraint programming, and also in other
languages like dataflow or asynchronous CSP.

The semantics of L will be defined by means of two transition systems TD and TC . In
each case, a transition relation of a type C × C will be induced, where (c ∈)C is a class of
configurations. The elements (c, c′) of C ×C will be written in the form c−→c′ in the case of
TD. Similarly, for TC we will use the notation c=⇒c′. In the definitions of TD and TC we use
the following conventions:

c1 −→0 c2 is an abbreviation for
c2−→c′

c1−→c′

and

c1 =⇒0 c2 is an abbreviation for
c2=⇒c′

c1=⇒c′

For the sake of brevity (and without loss of generality) in the sequel we assume given some
fixed declaration D(∈ Decl) and all considerations in any given argument refer to this fixed
D.

4 Direct semantics for L

The operational semantics given in this this section is designed following the traditional
direct approach to concurrency semantics (as, e.g, in [1]).

Definition 4.1 Let u(∈ U) ::= E | s. The set of configurations for direct semantics is
ConfD = U × Σ.

By convention, in the sequel we identity E; s, E ‖ s and s ‖ E with s, i.e., for each
s ∈ Stat we have E; s ≡ E ‖ s ≡ s ‖ E ≡ s, where ’≡’ denotes syntactic identity. Also, we
identity E ‖ E with E, i.e. E ‖ E ≡ E.

Definition 4.2 (TD) The transition relation for L is the smallest subset of ConfD ×ConfD

satisfying the following axioms and rules

(A1) (a, σ)−→(E, σ′) if I(a)(σ) = σ′ ( 6=↑)
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(R2) (x, σ)−→0 (D(x), σ)

(R3) (s1 + s2, σ)−→0 (s1, σ)

(R4) (s1 + s2, σ)−→0 (s2, σ)

(R5) (s1 ‖ s2, σ)−→0 (s1bb s2, σ)

(R6) (s1 ‖ s2, σ)−→0 (s2bb s1, σ)

(R7)
(s, σ)−→(u, σ′)

(s; s′, σ)−→(u; s′, σ′)

(R8)
(s, σ)−→(u, σ′)

(sbb s′, σ)−→(u ‖ s′, σ′)

According to axiom (A1) an atomic action a ∈ Act can only be executed in those states
σ where I(a)(σ) 6=↑; it’s execution is suspended until a state σ is reached where I(a)(σ) 6=↑.
We use the notation (u, σ)−→/ to express the fact that (u, σ) has no transitions. For all
(u, σ) ∈ U × Σ it can be decided whether (u, σ)−→/ , by induction on the complexity measure
cu given in Definition 4.5.

Definition 4.3 (Semantic universe) P = Pnco(Σ∞
δ ), where Σ∞

δ = Σ∗ ∪Σ∗{δ} ∪Σω, i.e., Σ∞
δ

is the collection of all finite sequences of elements of type Σ (states), possibly terminated with
the symbol δ, together with the collection of all infinite sequences of elements of type Σ. As a
metric on P we take (dB)H , i.e. the Hausdorff distance induced by the Baire metric on Σ∞

δ .

In this paper we use the symbol ’∙’ as a concatenation operator over sequences. In partic-
ular, if σ ∈ Σ and q ∈ Σ∞

δ then σ ∙ q ∈ Act∞δ is the sequence obtained by prefixing the state
σ to the sequence q. Also, we use the notation σ ∙ p = {σ ∙ q | q ∈ p}, for any σ ∈ Σ, p ∈ P.

Definition 4.4 (Operational semantics (
→
O) for L)

(a) Let (S ∈)SemO = U → P and let Φ : SemO → SemO be given by:

Φ(S)(E, σ) = {ε}

Φ(S)(s, σ) = {δ} if (s, σ)−→/

Φ(S)(s, σ) =
⋃
{σ ∙ S(u, σ′) | (s, σ)−→(u, σ′)}

(b) We put
→
O= fix(Φ) and define

→
O[[∙]] : Stat → Σ → P by

→
O[[s]]σ =

→
O (s, σ).

One can prove that TD is finitely branching1 (and thus it induces a compact operational
semantics; see, e.g., [1]), by induction on the complexity measure defined in Definition 4.5.
Also, a mapping like Φ is contracting in particular due to the ”σ ∙ . . .”-step in its definition.
We say that the configuration (E, σ) terminates. Also, when (s, σ)−→/ we say that (s, σ)
blocks.

For inductive reasonings we use the complexity measure given in Definition 4.5, as in [1].

1i.e., the set {(u′, σ′) | (u, σ)−→(u′, σ′)} is finite for any (u, σ) ∈ ConfD.
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Definition 4.5 (Complexity measure) Let cs : Stat→N be given by

cs(a) = 1

cs(x) = 1 + cs(D(x))

cs(s1 op s2) = 1 + cs(s1) op ∈ {; , bb }

cs(s1 op s2) = 1+max{cs(s1), cs(s2)} op ∈ {+, ‖}

Also, we define cu : U → N as follows: cu(E) = 0 and cu(s) = cs(s).

5 Continuation semantics for L

In the CSC approach [12] continuations are structured configurations of computations.
The structure of continuations is specific of the (concurrent) language under investigation. In
the case of a language like L, which combines parallel composition with a general operator
for sequential composition, a continuation is a tree with active computations (statements) at
the leaves [12, 13]. Following [1] we use the term resumption as an operational counterpart of
the term continuation.

5.1 Structure of resumptions

In order to define such trees of computations we employ a partially ordered set of identifiers
(Id,≤). (α, β ∈)Id is the set of all finite, possibly empty (ε), sequences over {1, 2} and α ≤ α′

iff α is a prefix of α′.

Definition 5.1

(a) Let (α ∈)Id = {1, 2}∗ be a set of identifiers, equipped with the following partial ordering:
α ≤ α’ iff α′ = α ∙ i1 ∙ ∙ ∙ in for i1, ∙ ∙ ∙ , in ∈ {1, 2}, n ≥ 0.

(b) We define a function max : P(Id)→P(Id) by:

max(A) = {α | α is a maximal element of (A,≤A)}

A ∈ P(Id) and ≤A is the restriction of ≤ to the A.

The construct (Id,≤) can be used to represent tree-like structures. For example, let A =
{α, α ∙ 1,
α ∙ 2, α ∙ 1 ∙ 1, α ∙ 1 ∙ 2, α ∙ 2 ∙ 1, α ∙ 2 ∙ 2}. The maximal elements of (A,≤A) are the leaves of the
tree: max(A) = {α ∙ 1 ∙ 1, α ∙ 1 ∙ 2, α ∙ 2 ∙ 1, α ∙ 2 ∙ 2}.

Let (x ∈)X be a set. We use the following notation:

{|X |}Id not.
= Pfinite(Id) × (Id→X)

Let α ∈ Id, (π, ϕ) ∈ {|X |}Id with π ∈ Pfinite(Id), ϕ ∈ Id→X. We define id :
{|X |}Id →Pfinite(Id), id(π, ϕ) = π. We also use the following abbreviations:

(π, ϕ)(α)
not.
= ϕ(α) (∈ X)

(π, ϕ) \ α
not.
= (π \ {α}, ϕ) (∈ {|X |}Id)

(π, ϕ) ∩ π′ not.
= (π ∩ π′, ϕ) (∈ {|X |}Id)

((π, ϕ) | α 7→ x)
not.
= (π ∪ {α}, (ϕ | α 7→ x)) (∈ {|X |}Id)
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The basic idea is that we treat (π, ϕ) as a ’function’ with finite graph {(α,ϕ(α)) | α ∈ π}, thus
ignoring the behaviour of ϕ for any α /∈ π (π is the ’domain’ of (π, ϕ)). We use this math-
ematical structure to represent finite partially ordered bags (or multisets)2 of computations.
The set Id is used to distinguish between multiple occurrences of a computation in such a
bag. The operators behave as follows. id(π, ϕ) returns the collection of identifiers for the valid
computations contained in the bag (π, ϕ), (π, ϕ)(α) returns the computation with identifier
α, (π, ϕ) \ α removes the computation with identifier α, (π, ϕ) ∩ π′ removes all computations
with identifiers /∈ π′, and ((π, ϕ) | α 7→ x) replaces the computation with identifier α.

5.2 Operational semantics

In this subsection we present a transition system TC designed with continuations for L.

Definition 5.2

(a) (Resumptions) We define the set of closed resumptions by (r ∈)Res = {|Stat|}Id. Also,
we define the set of open resumptions by ORes = {(α, r) | (α, r) ∈ Id×Res and ν(α, r)},
where ν : Id×Res → Bool is given by ν(α, r) = (α /∈ id(r)) and (α ∈ max({α}∪id(r))).
Stat is the class of L statements given in Definition 3.1.

(b) (Configurations) The class of configurations for continuation semantics is given by (t ∈
)ConfC = (Res ∪ (Stat × ORes)) × Σ. We also let w range over (w ∈)W = Res ∪
(Stat × ORes). A configuration is either a pair (r, σ) with r ∈ Res and σ ∈ Σ, or
a stucture ((s, (α, r)), σ) ∈ (Stat × ORes)) × Σ, with s ∈ Stat. (α, r) ∈ ORes and
σ ∈ Σ. We define the predicate empty : W → Bool, empty(r) = (id(r) = ∅), and
empty(s, (α, r)) = (id(r) = ∅).

Definition 5.3 (TC) The transition relation for L is the smallest subset of ConfC × ConfC

satisfying the following axioms and rules:

(A1) ((a, (α, r)), σ)=⇒(r, σ′) if I(a)(σ) = σ′ ( 6=↑)

(R2) ((x, (α, r)), σ)=⇒0 ((D(x), (α, r)), σ)

(R3) ((s1 + s2, (α, r)), σ)=⇒0 ((s1, (α, r)), σ)

(R4) ((s1 + s2, (α, r)), σ)=⇒0 ((s2, (α, r)), σ)

(R5) ((s1; s2, (α, r)), σ)=⇒0 ((s1, (α ∙ 1, (r | α 7→ s2))), σ)

(R6) ((s1 ‖ s2, (α, r)), σ)=⇒0 ((s1, (α ∙ 1, (r | α ∙ 2 7→ s2))), σ)

(R7) ((s1 ‖ s2, (α, r)), σ)=⇒0 ((s2, (α ∙ 2, (r | α ∙ 1 7→ s1))), σ)

(R8) (r, σ)=⇒0 ((r(α), (α, r \ α)), σ) ∀α ∈ max(id(r)) if id(r) 6= ∅

2We avoid using the notion of a partially ordered multiset which is a more refined structure – see [2], or ch.
16 of [1].
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One can prove that TC is finitely branching, and thus it induces a compact operational se-
mantics (see, e.g., [1]), by induction on the complexity measure given in Definition 5.4. As
in section 4, we use the notation t−→/ to express the fact that t has no transitions. Also,
one can prove that for all t ∈ ConfC it can be decided whether t−→/ . The both proofs can
proceed by induction on the complexity measure cw given in Definition 5.4. If t = (r, σ) and
id(r) = ∅ we say that t terminates. If t 6= (r, σ) when id(r) = ∅ and t−→/ we say that t blocks.

Definition 5.4 (Complexity measure) Let cs : Stat → N be as in Definition 4.5. We define
cw : W → N as follows: cw((s, (α, r))) = cs(s), cw(r) = 0 if id(r) = ∅ and cw(r) = 1 +
max{cs(r(α)) | α ∈ max(id(r)))} if id(r) 6= ∅.

Lemma 5.5 If t=⇒t′ then t′ ∈ Res×Σ, i.e. the transition relation induced by TC is a subset
of ConfC × (Res×Σ). This is why in the sequel we will only deal with transitions of the form
t=⇒(r, σ), with r ∈ Res.

Proof The proof can proceed by induction on cw(w) in two steps: first for all w ∈ (Stat ×
ORes) and next for all w ∈ Res. 2

Definition 5.6 (Operational semantics (
⇒
O) for L) Let P = Pnco(Σ∞

δ ) be as in Definition
4.3.

(a) Let (S ∈)ConfC → P and let Φ : (ConfC → P) → (ConfC → P) be given by:

Φ(S)(t) = {ε} if t terminates

Φ(S)(t) = {δ} if t blocks

Φ(S)(t) =
⋃
{σ ∙ S(r, σ′) | t=⇒(r, σ′)} otherwise

(b) We put
⇒
O= fix(Φ) and define

⇒
O[[∙]] : Stat → Σ → P by

⇒
O[[s]]σ =

⇒
O

((s, (ε, (∅, λα . δ))), σ).

6 Relation between direct semantics and continuation semantics

In this section we investigate the relation between
→
O and

⇒
O. We show that

→
O

(stat(w), σ) =
⇒
O (w, σ), and, as a consequence

→
O[[s]] =

⇒
O[[s]], ∀s ∈ Stat, where the mapping

stat is defined in Definition 6.1.

Definition 6.1

(a) For any r ∈ Res we define r=α, r≥α, r>α ∈ Res as follows:3

r=α = r ∩ {α}

r≥α = r ∩ {α′ | α′ ∈ id(r), α′ ≥ α}

r>α = r ∩ {α′ | α′ ∈ id(r), α′ > α}

If w = (s, (α, r)) ∈ W we define:

w≥α0 = (s, (α, r≥α0))

3The notation r ∩ π was introduced in subsection 5.1.
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w>α0 = (s, (α, r>α0))

Note that r = r≥ε and w = w≥ε.

(b) We define ] : Res × Res → Res as follows (we use the infix notation for ]):

(r1 ] r2)(α) = if α ∈ id(r1) then r1(α) else r2(α)

Also, we use the notations

(s, (α, r1)) ] r2
not.
= (s, (α, r1 ] r2))

r1 ] (s, (α, r2))
not.
= (s, (α, r1 ] r2))

(c) We define stat : W → U , for any ϕ ∈ (Id → Stat), α ∈ Id, s ∈ Stat as follows:

stat(∅, ϕ) = E

stat((∅, ϕ) | α 7→ s) = s

stat(r>α ] r=α) = stat(r>α); stat(r=α)

stat(r≥α∙1 ] r≥α∙2) = stat(r≥α∙1)‖stat(r≥α∙2)

stat(s, (α, (∅, ϕ))) = s

stat(s, (α, r>α0 ] r=α0)) = stat(s, (α, r≥α0)); stat(r=α0) if α0 ∈ id(r) and α > α0

stat(s, (α, r≥α0∙1 ] r=α0∙2)) = stat(s, (α, r≥α0∙1))bb stat(r≥α0∙2)

if id(r≥α0∙2) 6= ∅ and α ≥ α0 ∙ 1

stat(s, (α, r≥α0∙2 ] r=α0∙2)) = stat(s, (α, r≥α0∙2))bb stat(r≥α0∙1)

if id(r≥α0∙1) 6= ∅ and α ≥ α0 ∙ 2

Definition 6.2

(a) We define 'd⊆ ConfD × ConfD as follows: (u1, σ) 'd (u2, σ) iff (u1, σ)−→(u′, σ′) ⇔
(u2, σ)−→(u′, σ′).

(b) We define 'c⊆ ConfC × ConfC as follows: (w1, σ) 'c (w2, σ) iff (w1, σ)=⇒(r′, σ′) ⇔
(w2, σ)=⇒(r′, σ′).

The main results of the paper are given in Theorem 6.4. Lemma 6.3 is needed in the proof
of Theorem 6.4. Also, the Appendix contains two technical Lemmas, A.1 and A.2, that are
needed in the proof of Lemma 6.3.

Lemma 6.3 S ⊆ (ConfD∪ConfC)×(ConfD∪ConfC) defined by S = {((w, σ), (stat(w), σ)) |
w ∈ W,σ ∈ Σ} is a (strong) bisimulation with respect to =⇒ ∪ −→.

Proof We have to prove that ∀((w, σ), (stat(w), σ)) ∈ S:

(i) Whenever (w, σ)=⇒(r, σ′) then, for some u, σ′, (stat(w), σ)−→(u, σ′) and u = stat(r)
(i.e. ((r, σ′), (u, σ′)) ∈ S).

(ii) Whenever (stat(w), σ)−→(u, σ′) then, for some r, σ′, (w, σ)=⇒(r, σ′) and u = stat(r)
(i.e. ((r, σ′), (u, σ′)) ∈ S).
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We proceed by induction on cu(stat(w)) for both (i) and (ii). We only treat (i) and only
consider the subcase when stat(w) = s1 ‖ s2, for some s1, s2 ∈ Stat. This happens in either
of the following subcases:

w = ((∅, ϕ) | α 7→ (s1 ‖ s2)), for some ϕ ∈ Id → Stat, α ∈ Id,

w = (s1 ‖ s2, (α, (∅, ϕ))), for some ϕ ∈ Id → Stat, α ∈ Id,

w = r≥α∙1 ] r≥α∙2, for some r ∈ Res when ¬(empty(r≥α∙1)) and ¬(empty(r≥α∙2)).

((∅, ϕ) | α 7→ (s1 ‖ s2)) 'c (s1 ‖ s2, (α, (∅, ϕ))) 'c ((∅, ϕ) | α ∙ 1 7→ s1 | α ∙ 2 7→ s2), by Lemma
A.1(c) and A.1(f). Also, ((∅, ϕ) | α ∙1 7→ s1 | α ∙2 7→ s2) = ((∅, ϕ) | α ∙1 7→ s1)]((∅, ϕ) | α ∙2 7→
s2). Hence, it suffices to study the behavior of a configuration (w, σ) where w = r≥α∙1 ] r≥α∙2,
for some r ∈ Res when ¬(empty(r≥α∙1)) and ¬(empty(r≥α∙2)). By A.2(j)

(r≥α∙1 ] r≥α∙2, σ)=⇒(r′, σ′) ⇔

[[((r≥α∙1, σ)=⇒(r′≥α∙1, σ
′)) ∧ (r′ = r′≥α∙1 ] r≥α∙2)]∨

[((r≥α∙2, σ)=⇒(r′≥α∙2, σ
′)) ∧ (r′ = r≥α∙1 ] r′≥α∙2)]]

If r′ = r′≥α∙1]r≥α∙2 and (r≥α∙1, σ)=⇒(r′≥α∙1, σ
′) then, as cu(stat(r≥α∙1]r≥α∙2)) > cu(r≥α∙1) we

can apply the induction hypothesis and infer that whenever (r≥α∙1, σ)=⇒(r′≥α∙1, σ
′) then,

for some u1,
(stat(r≥α∙1), σ)−→(u1, σ

′) and u1 = stat(r′≥α∙1). By Lemma A.2(k), (stat(r≥α∙1), σ)−→(u1, σ
′)

implies that we also have (stat(r≥α∙1) ‖ stat(r≥α∙2), σ)−→(u1 ‖ stat(r≥α∙2), σ′). Also, notice
that stat(r′≥α∙1 ] r≥α∙2) = stat(r′≥α∙1) ‖ stat(r≥α∙2) = u1 ‖ stat(r≥α∙2). The case when
r′ = r≥α∙1 ] r′≥α∙2 and (r≥α∙2, σ)=⇒(r′≥α∙2, σ

′) can be handled similarly. We conclude that,
whenever (r≥α∙1 ] r≥α∙2, σ)=⇒(r′, σ′) then, for some u′, (stat(r≥α∙1 ] r≥α∙2), σ)−→(u′, σ′) and
stat(r′) = u′, i.e. (r′, u′) ∈ S, which implies that (i) holds. 2

Theorem 6.4

(a) For all w ∈ W,σ ∈ Σ:
→
O (stat(w), σ) =

⇒
O (w, σ).

(b) For all s ∈ Stat :
→
O[[s]] =

⇒
O[[s]].

Proof For part (a) let

ε = sup{d(
→
O (stat(w), σ),

⇒
O (w, σ)) | w ∈ W,σ ∈ Σ}

We show that ε ≤ 1
2 ∙ ε, which means that ε = 0. More precisely, we show that

∀w ∈ W,σ ∈ Σ[d(
→
O (stat(w), σ),

⇒
O (w, σ)) ≤ 1

2 ∙ ε]

When w = (∅, ϕ) ∈ Res, for some ϕ ∈ Id → Stat (which implies empty(w)), we have:

d(
→
O (stat(w), σ),

⇒
O (w, σ)) = d(

→
O (E, σ),

⇒
O ((∅, ϕ), σ)) = d({ε}, {ε}) = 0 ≤ 1

2 ∙ ε

Otherwise, we have (recall that TD is finitely branching, hence below we have a finite union
for all w ∈ W , and stat(w) ∈ Stat)

→
O (stat(w), σ) =

⋃
(stat(w),σ)−→(u,σ′) σ∙

→
O (u, σ′)
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and (TC is also finitely branching, hence below we also have a finite union)
⇒
O (w, σ) =

⋃
(w,σ)=⇒(r,σ′) σ∙

⇒
O (r, σ′)

Now, by Lemma 6.3 whenever (w, σ)=⇒(r, σ) then, for some u, (stat(w), σ)−→(u, σ′) and
u = stat(r). Also, whenever (stat(w), σ)−→(u, σ′) then, for some r, (w, σ)=⇒(r, σ) and

u = stat(w). Therefore {σ∙
→
O (u, σ′) | (stat(w), σ)−→(u, σ′)} = {σ∙

→
O (stat(r), σ′) |

(w, σ)=⇒(r, σ′)}, and thus we have:
⋃

(stat(w),σ)−→(u,σ′) σ∙
→
O (u, σ′) =

⋃
(w,σ)=⇒(r,σ′) σ∙

→
O (stat(r), σ′)

Hence, we have:

d(
→
O (stat(w), σ),

⇒
O (w, σ))

= d(
⋃

(stat(w),σ)−→(u,σ′) σ∙
→
O (u, σ′),

⋃
(w,σ)=⇒(r,σ′) σ∙

⇒
O (r, σ′))

= d(
⋃

(w,σ)=⇒(r,σ′) σ∙
→
O (stat(r), σ′),

⋃
(w,σ)=⇒(r,σ′) σ∙

⇒
O (r, σ′))

[’
⋃

’ is nonexpansive]

≤ max(w,σ)=⇒(r,σ′)d(σ∙
→
O (stat(r), σ′), σ∙

⇒
O (r, σ′))

≤ 1
2 ∙ max(w,σ)=⇒(r,σ′)d(

→
O (stat(r), σ′),

⇒
O (r, σ′)) ≤ 1

2 ∙ ε

We have thus shown that, for all w ∈ W,σ ∈ Σ : d(
→
O (stat(w), σ),

⇒
O (w, σ)) ≤ 1

2 ∙ ε, from

which sup{d(
→
O (stat(w), σ),

⇒
O (w, σ)) | w ∈ W,σ ∈ Σ} = ε ≤ 1

2 ∙ ε, i.e. ε = 0, follows. The

implication is that for all w ∈ W,σ ∈ Σ:
→
O (stat(w), σ) =

⇒
O (w, σ), which proves part (a).

Part (b) follows easily by using part (a). For any s ∈ Stat we put w(∈ W ) =
(s, (ε, (∅, λα . δ))). We have:

⇒
O[[s]]

= λσ .
⇒
O[[s]]σ [Def.

⇒
O[[∙]]]

= λσ .
⇒
O (w, σ) [part (a)]

= λσ .
→
O (stat(w), σ)

= λσ .
→
O (s, σ) [Def.

→
O[[∙]]]

= λσ .
→
O[[s]]σ

=
→
O[[s]]

2

Theorem 6.4 implies that all properties, or concurrency laws, that hold in a semantic
model designed in direct semantics also hold in a semantic model designed with continuation
semantics for concurrency. Corolarry 6.5 is an easy consequence of Theorem 6.4 and well-

known properties of the transition system TD and operational semantics
→
O[[∙]], which are

designed in classic direct semantics. For example, the reader may consult the monograph [1]
where all properties given in Corolarry 6.5 are proved in direct semantics.
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Corollary 6.5 For all s, s1, s2, s3 ∈ Stat:

(a)
⇒
O[[s1 + s2]] =

⇒
O[[s2 + s1]]

(b)
⇒
O[[(s1 + s2) + s3]] =

⇒
O[[s1 + (s2 + s3)]]

(c)
⇒
O[[s + s]] =

⇒
O[[s]]

(d)
⇒
O[[(s1 + s2); s3]] =

⇒
O[[s1; s3 + s2; s3]]

(e)
⇒
O[[(s1; s2); s3]] =

⇒
O[[s1; (s2; s3)]]

(f)
⇒
O[[s + δ]] =

⇒
O[[s]]

(g)
⇒
O[[δ; s]] =

⇒
O[[δ]]

(h)
⇒
O[[s1‖s2]] =

⇒
O[[s1bb s2 + s2bb s1]]

(i)
⇒
O[[abb s]] =

⇒
O[[a; s]]

(j)
⇒
O[[(a; s1) ‖ s2]] =

⇒
O[[a; (s2‖s1)]]

(k)
⇒
O[[(s1 + s2)bb s3]] =

⇒
O[[s1bb s3 + s2bb s3]]

7 Conclusion

For a simple abstract concurrent language embodying a general mechanism of asym-
chronous communication we designed and compared two different operational semantics, both
constructed in the style of structural operational semantics [9]. The first operational model
is based on a transition system designed in direct-style semantics. The second one is based
on a transition system designed with continuation semantics for concurrency [12]. By using
bisimulation semantics [6] and some techniques of metric semantics [1] we proved that the
two operational semantics assign the same meaning to any program in the asynchronous lan-
guage under investigation, and thus, any property that holds in direct semantics also holds in
continuation semantics.
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A Appendix

The following Lemmas are needed in the proof of Lemma 6.3. We omit here the proofs,
which are not difficult but are laborius. The proofs can proceed by induction on cu(u) (given
in Definition 4.5) and cw(w) (given in Definition 5.4), respectively.
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Lemma A.1

(a) 'd,'c are equivalence relations (they are symmetric, reflexive and transitive).

(b) (x, σ) 'd (D(x), σ).

(c) (((∅, ϕ) | α 7→ s), σ) 'c ((s, (α, (∅, ϕ))), σ)

(d) ((x, (α, r)), σ) 'c ((D(x), (α, r)), σ)

(e) ((s1; s2, (α, r)), σ) 'c ((s1, (α ∙ 1, (r | α 7→ s2))), σ)

(f) ((s1‖s2, (α, (∅, ϕ))), σ) 'c (((∅, ϕ) | α ∙ 1 7→ s1 | α ∙ 2 7→ s2), σ)

Lemma A.2

(a) (w>α, σ)=⇒(r, σ′) ⇒ r = r>α.

(b) (w≥α, σ)=⇒(r, σ′) ⇒ r = r≥α.

(c) (w>α, σ)=⇒0 (w′, σ′) ⇒ w′ = w>α.

(d) (w≥α, σ)=⇒0 (w′, σ) ⇒ w′ = w≥α.

(e) If ¬(empty(w>α)), ¬(empty(r=α)) and σ ∈ Σ then

(w>α ] r=α, σ)=⇒(r′≥α, σ′) ⇔ [((w>α, σ)=⇒(r′>α, σ′)) ∧ (r′≥α = r′>α ] r=α)].

(f) For all u ∈ U, σ ∈ Σ : (s1; s2, σ)−→(u, σ′) ⇔ ∃u1, σ1[((s1, σ)−→(u1, σ1)) ∧ (u ≡ u1; s2)].

(g) If ¬(empty(r≥α∙2)) and β ≥ α ∙ 1 then

((s, (β, r≥α∙1)) ] r≥α∙2, σ)=⇒(r′, σ′) ⇔

[(((s, (β, r≥α∙1)), σ)=⇒(r′≥α∙1, σ
′)) ∧ (r′ = r′≥α∙1 ] r≥α∙2)].

(h) If ¬(empty(r≥α∙1)) and β ≥ α ∙ 2 then

((s, (β, r≥α∙2)) ] r≥α∙1, σ)=⇒(r′, σ′) ⇔

[(((s, (β, r≥α∙2)), σ)=⇒(r′≥α∙2, σ
′)) ∧ (r′ = r≥α∙1 ] r′≥α∙2)].

(i) For all u ∈ U, σ ∈ Σ : (s1bb s2, σ)−→(u, σ′) ⇔ ∃u1, σ1[((s1, σ)−→(u1, σ1))∧(u ≡ u1‖s2)].

(j) If ¬(empty(r≥α∙1)), ¬(empty(r≥α∙2)) and σ ∈ Σ then

(r≥α∙1 ] r≥α∙2, σ)=⇒(r′, σ′) ⇔

[[((r≥α∙1, σ)=⇒(r′≥α∙1, σ
′)) ∧ (r′ = r′≥α∙1 ] r≥α∙2)]∨

[((r≥α∙2, σ)=⇒(r′≥α∙2, σ
′)) ∧ (r′ = r≥α∙1 ] r′≥α∙2)]]

(k) (s1‖s2, σ)−→(u, σ′) ⇔

∃u1[((s1, σ)−→(u1, σ
′)) ∧ (u ≡ u1‖s2)] ∨

∃u2[((s2, σ)−→(u2, σ
′)) ∧ (u ≡ s1‖u2)]


