
Mobile Objects and Modern Communication Abstractions:
Design Issues and Denotational Semantics

Eneia Nicolae Todoran, Claudiu Adam, Mirel Bâlc, Radu Pop,
Răzvan Radu, Dorin Simina, Emanuel Varga, Dan Andrei Zaharia

Department of Computer Science
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
Email: eneia.todoran@cs.utcluj.ro, adam.claudiu86@gmail.com,

mirel.balc@yahoo.com, pop.radu10@gmail.com,
razvansr@yahoo.com, dorin.simina@yahoo.com,

emanuelvarga@me.com, dan andrei zaharia@yahoo.com

Abstract—We introduce Join Voyager - a language that can
be used to program a Peer to Peer network using object ori-
ented techniques and Join methods. In Join Voyager any object
can migrate to any node (peer) of the underlying network. The
language provides strong mobility, i.e. the ability to capture and
transfer the full execution state of mobile objects at any time.
Objects can communicate by sending and receiving messages
in object oriented style. As in Join Java or Polyphonic C#,
both synchronous and asynchronous messages are supported.
The paper presents the design rationales and a semantic
interpreter for Join Voyager. The interpreter is designed with
continuations following the discipline of denotational semantics
and is implemented in Haskell.

I. INTRODUCTION

The object oriented programming paradigm provides an
appropriate framework for modeling interaction patterns and
behaviors taken from real life scenarios. Real life objects can
do various things. They can interact, but they can also move,
i.e. they are mobile. Also, their mobility does not alter their
interaction capability. For example, people can communicate
by using mobile phones (and they can also do various other
things in parallel) while they roam. Most object oriented
programming languages do not provide direct support for
modeling such complex behaviors, either because objects
are not mobile or because each object is a sequential entity,
unable to perform different tasks in parallel.

This paper presents Join Voyager - a language that can be
used to program a Peer to Peer (P2P) network by using the
modern communication abstractions introduced in Join Java
[10] and Polyphonic C# [2]. In Join Voyager any object
can migrate freely to any node of the underlying network
and can communicate by sending and receiving messages
in object oriented style. Each object is capable to answer
in parallel an arbitrary number of messages. The interaction
style is based on the Join method model introduced in Join
Java and Polyphonic C#, which in turn are based on the Join
calculus [5]. Both synchronous and asynchronous messages
are supported. The communication capability of an object is

not altered by its mobility or by the mobility of other objects.
The language provides strong mobility, i.e. the ability to
transfer the full execution state of mobile objects at any
time rather than just at specific pre-determined points.

The semantic model of Join Voyager assumes the ex-
istence of a middleware for P2P computing that provides
the following minimal set of services (1) a mechanism for
naming the nodes (peers), (2) a feature for (asynchronous)
transmission of messages between nodes and (3) a primitive
that computes the list of nodes of the P2P network. For
example, the JXTA platform [7] (developed at Sun Microsys-
tems) provides the three features mentioned above. In the
sequel we prefer the term node, rather than peer, but it is
assumed that any two nodes can communicate in P2P style.

We present a denotational (compositional) semantics for
Join Voyager . The semantic model is designed with contin-
uation semantics for concurrency (CSC) [14], [15], monads
and standard fixed point definitions. Instead of using a
mathematical notation, we find convenient to use the lazy
functional programming language Haskell [19] as a metalan-
guage for the denotational semantics. In this way, we allow
our denotational model to be directly implementable, in the
form of a semantic interpreter for the language under study,
and thus to be easily tested and evaluated. At the same time,
we avoid unnecessary complexities accompanying the use of
domain theory [6] or the theory of metric spaces [1], which
could have been adopted alternatively. The Join Voyager
system comprises a static type checker and a semantic inter-
preter which implements a dynamic denotational semantics.
In this paper we only present the semantic interpreter.

CSC is a general tool for designing denotational models
of concurrency in interleaving semantics. The semantics of
each statement is defined with respect to a continuation. The
central characteristic of the CSC technique is the modeling
of continuations as (application-specific) structures of com-
putations (partially evaluated denotations). The structure of
a CSC continuation is representative for the control concepts

of the language under study.
The semantic prototype that we present in this paper

is available from [20] in two variants: one that produces
all possible execution traces of a program, and another
one that produces incrementally a single execution trace.
The first variant is not tractable (it can only be tested
on toy programs). The second variant simulates the non-
determinism of a ”real” distributed program by using a
(pseudo-)random number generator; this variant is tractable
and reasonably efficient. It can be tested with ”real life”
programs. In this paper we present a distributed generator
of prime numbers based on the sieve of Erathostenes. that
uses mobile objects to print the result on all the nodes of the
underlying P2P network. We have also tested successfully
our semantic interpreter on all the algorithms based on
Join methods given in [10] and we extended some of these
algorithms with mobile objects [16].

1) Contribution: A significant number of languages have
been created or simply adapted to incorporate some form
of code mobility. For a comprehensive survey of mobile
code languages, the reader may consult [4]. The key role
played by the object oriented paradigm in the last decade
is beyond dispute [3], [13]. The design of Join Voyager
appears to be original. It combines the strong mobility of
objects with the Join method model introduced in Join
Java [10] and Polyphonic C# [2]. Also, the denotational
model given in this paper is new. It uses various techniques,
including continuations, monads and fixed point definitions.
To the best of our knowledge this is the first paper that
presents a compositional semantics for a strong mobility
feature at object level combined with the modern communi-
cation abstractions introduced in Join Java and Polyphonic
C#. Due to space limitations the paper only presents the
semantic domains and a selection of the semantic equations.
A complete version of the paper is available online as a
technical report [16].

II. THE LANGUAGE JOIN VOYAGER

A. Main design issues

It is generally considered that the P2P model represents
a promising paradigm for global computing, offering a
scalable pragramable infrastructure [18]. However, the de-
sign of programming languages that exploit the flexibility
provided by the P2P model is still at the beginning [9]. The
solution that we propose in this paper is developed within the
framework of the object oriented paradigm. It is based on the
idea of combining a strong mobility feature at object level
with the modern communication abstractions introduced in
Join Java [10] and Polyphonic C# [2]. Our solution also takes
into consideration general software engineering principles
for achieving a good design. In particular, we strive to
achieve a model that encourages module cohesion.

As far as we know, the only (alternative) existing solution
to exploiting the flexibility provided by the Join method

model in a distributed setting is based on the movable
methods of MC# [8]. The problem with that solution is
that in object oriented programming a method is not a
unit of protection. Our solution obeys a a general software
engineering principle, commonly known as communication
cohesion [11]. A system exhibits communication cohesion
when all modules that access or manipulate certain data are
kept together (e.g. in the same class), and everything else
is kept out. One of the strong points of the object-oriented
paradigm is that it helps ensure communicational cohesion.

The language Join Voyager provides a primitive go(e)
which can be used to initiate the migration of the current
object (the migration of self). e is an expression that must
evaluate to a valid node name π. The object that executes this
statement will move physically to node π. Such a migration
can be initiated from outside (by any another object) through
any method of the current object.1 In the Join Voyager
model the distribution unit is the object rather than the
method. Remote references toward a mobile object remain
valid no matter where the object migrates.

Join Voyager embodies both the mobility of objects and
the mobility of object references. Any message can carry
parameters that are object references (rather than the objects
themselves). In addition, any object can migrate on any node
and thus any service can be executed on any node. The
callers of different Join method fragments can be located
on different P2P nodes. For a synchronous Join method the
result is returned to the caller of the synchronous fragment.

Another important decision in the design of Join Voyager
is based on the idea that an object should be able to create
an arbitrary number of threads to serve incoming messages.
Each Join Voyager thread is created in response to a (local or
remote) method invocation. The threads created by an object
share the instance variables of the object, but each thread
also has its own temporary variables that are not shared
with other threads. Any Join Voyager object can answer in
parallel an arbitrary number of messages. Mutual exclusion
can be programmed as in Join Java or Polyphonic C#.

B. Syntax and informal explanation

A Join Voyager object is an instance of a class. Each
object has a (unique) name. For an object that is an instance
of an user defined class its name can be used as an identifier
or a reference to the object. A message can carry one or
several object names as parameters. A class definition is a
collection of synchronous and asynchronous Join methods.
A Join method is composed of Join method fragments that
can be synchronous or asynchronous. A synchronous Join
fragment can return to the caller an answer that is an object
name. In the sequel we assume given a set (i ∈)Ivar of
instance variables, a set (v ∈)Tvar of temporary variables,
a set (C ∈)Cname of class names, a set (f ∈)Jfname

1For simplicity, in this semantic study all the methods are public.

of Join fragment names and a set (π ∈)Nname of node
names (or node identifiers).2 One defines a set (φ ∈)Sobj
of standard objects as follows:

(φ ∈)Sobj = Z ∪Bool ∪Nname ∪Nname∗ ∪ {nil}
A standard object can be an integer number (z ∈)Z, a
boolean value (b ∈)Bool = { true , false }, a node name,
a list of node names, or the special object nil. We put
Nname = N. The name of a node is a unique identifier
(different nodes have different names). It is assumed that the
underlying network includes a node with name (identifier) 0;
any Join Voyager program starts its execution on this node.

Standard objects answer to messages according to the
intuitive semantics. Any method of a primitive object is
synchronous and is composed of a single fragment. The
objects of type ($ ∈)Nname∗ are lists of node names and
deserve a special attention. For an object $(∈ Nname∗) the
programmer can use the following methods. In each case,
the type T of the value returned by a method call $.m() is
indicated by using the notation: $.m() : T .

$.readNet() : Nname∗, $.isEmpty() : Bool
$.first() : Nname, $.rest() : Nname∗

A call $.readNet() returns the list of all nodes allocated
to the program. In the sequel we assume that this primitive
is deterministic. In our implementation a call $.readNet()
returns an ordered list (with respect to the natural order over
N). In case the network is composed of 5 nodes with names
0, 1, 2, 3 and 4, a call $.readNet() will always return the
list [0, 1, 2, 3, 4]. For simplicity, we ignore issues such as
node creation, destruction or failure. A call $.isEmpty()
returns true if $ is the empty list, and false otherwise.
The empty list (∈ Nname∗) is denoted by the symbol ε.
An expression $.first() reduces to the name of the first
node of the list $. An expression $.rest() reduces to the
list resulted by removing the first element of the list $.

The syntax of Join Voyager is given below in BNF. A
program p(∈ Prg) is a list of class declarations. A class
declaration is a pair consisting of a class name C and a class
definition c. A class definition is a triple, consisting of a list
of synchronous method definitions, a list of asynchronous
method definitions, and a statement whose execution is
started automatically upon the creation of a class instance
(a new object). The execution of a Join Voyager program is
started by the creation of an instance of the last class defined
in the program on the node with name (identifier) 0.

As in Join Java [10], the definition of an asynchronous
method is preceded by the keyword signal . A (synchronous
or asynchronous) Join method definition consists of a header,
that is a conjunction of Join fragments (j ∈ Jh) and the
body of the method. The body of a synchronous method
is an expression; the value of the expression is returned by
the Join method to the caller of the synchronous fragment.

2In this paper the notation (x, y, · · · ∈)X introduces the set X with
typical variables x, y, · · ·.

As in Join Java [10] only the first (leftmost) fragment can
be synchronous. The body of an asynchronous method is a
statement; in this case nothing is returned to the caller.

prg(∈ Prg) ::= class C χ · · · class C χ
χ(∈ Cdef) ::= { ρ · · · ρ [] % · · · % [] s }
ρ(∈ Jsdef) ::= j { e }
%(∈ Jadef) ::= signal j { s }
j(∈Jh) ::= f(v,· · ·, v) | j & j
e(∈ Exp) ::= self | φ | i | v | new(C) | e = e

| s; e | e . f(e, · · · , e)
s(∈ Stat) ::= skip | i := e | v := e | exp(e) | write(e)

| go(e) | s; s | if e then s else s
| while e do s | e#f(e, · · · , e) | {s}

An expression e(∈ Exp) is a syntactic construct that
reduces to a value, i.e. an object name. An object name
is either a standard object or a reference to an object which
is an instance of a user defined class. The expression self
reduces to the name of the object for which it is evaluated.
The evaluation of a standard object produces the object itself.
The semantics of an instance or a temporary variable is the
value (object name) stored in it. An expression (e1 = e2)
reduces to a boolean value: true if e1 and e2 reduce to
the same object name, respectively false , otherwise. An
expression s; e evaluates the statement s for its side effects;
the value of s; e is given by the value of e. The expression
new(C) creates a new instance of class C (on the local
node), and produces as value a reference to the new object.

An expression e . f(e1, · · · , en) is a synchronous Join
fragment call; it has blocking semantics. The expression e
must reduce to a (local or remote) object name which is
the destination of the message. The expressions e1, · · · , en

must also reduce to object names which are the parameters
of the call. Only the first (leftmost) fragment of the header
of a synchronous Join method is synchronous. The body
of a synchronous Join method is an expression, which is
evaluated only when all Join fragment calls arrive. The result
is returned to the caller of the synchronous Join fragment.

A Join Voyager statement is a syntactic construct that is
only evaluated for its side effects (it produces no value).
skip is the inoperative statement. i := e and v := e are
assignment statements. An expression e can be treated as a
statement exp(e), in which case its value is ignored. The
statement write(e) prints the value of the expression e
at the standard output device of the node on which the
object that executes the write(e) statement is physically
located. Join Voyager statements can be combined by us-
ing constructs for sequential composition (s; s), conditional
(if) and repetitive (while) execution. e#f(e, · · · , e) is an
asynchronous Join fragment call that does not block the
caller. Such a call returns immediately. The body of an
asynchronous Join method is executed in a separate thread.

The primitive go(e) can be used to initiate the migration
of the current object (the migration of self). e is an
expression that must evaluate to a valid node name π.
This operation captures the complete execution state of the

current object (its instance variables, the collection of Join
fragment calls and the collection of threads that serve all its
current Join method invocations) at the moment when the
migration operation is initiated. An object that executes this
statement moves physically to the destination node π. Its
execution is resumed at the destination node in the state it
was when the migration operation was initiated.

1) A toy program: The execution of the Join Voyager
program given below starts on node 0 by the (auto-
matic) creation of an object of type Toy. First, this object
prints the value 1 on node 0. Next, it creates a thread
by an asynchronous Join method call self #f(2). This
thread is executed in parallel with the rest of the program
go(2) ; write(3) . In case the thread is faster than the rest of
the program it will print the value 2 on node 0. Otherwise,
a migration operation is initiated by the statement go(2)
and the thread will migrate together with the rest of the
object. The execution of the object is resumed on node 2.
We verified this program by using our interpreter in ”all
possible traces” semantics and we obtained the following
set of (possible) traces: [[(1, 0), (3, 2), (2, 2)], [(1, 0), (2, 0), (3, 2)],

[(1, 0), (2, 2), (3, 2)]]. In our implementation a trace is a list
of pairs of the form (observable value, node name). For example,
the trace [(1, 0), (3, 2), (2, 2)] corresponds to the following
execution scenario. After printing the value 1 on node 0,
the instance of Toy migrates on node 2; on node 2 the
execution of statement write(3) is faster than the thread
that was created by the asynchronous call self #f(2).

classToy{
[] signal f(v){write(v) } [] write(1) ; self #f(2); go(2) ; write(3)
}

We also tested the above program by using the ”single trace”
variant of our semantic interpreter. The (pseudo-)random
number generator that is used to model the non-determinism
in ”single trace” semantics is initialized with different seeds
at consecutive executions. Therefore, in general, a non-
deterministic program produces different execution traces
at consecutive executions. For the above (toy) program all
the three possible traces are produced by our interpreter
after the first eight consecutive executions in ”single
trace” semantics: [(1, 0), (2, 2), (3, 2)], [(1, 0), (2, 0), (3, 2)],
[(1, 0), (2, 0), (3, 2)], [(1, 0), (2, 0), (3, 2)], [(1, 0), (2, 0), (3, 2)],
[(1, 0), (2, 0), (3, 2)], [(1, 0), (2, 0), (3, 2)], [(1, 0), (3, 2), (2, 2)].

2) Sieve of Erathostenes: We present a distributed gen-
erator of prime numbers based on the sieve of Erathostenes.
The prime numbers are generated on a single node (on
the initial node 0) and are printed on all the nodes of
the network. A Sieve object is created for each prime
number. Each Sieve object creates a Printer object which
migrates and prints the corresponding prime number. Each
Printer object is created in the body of the asynchronous
Join method signal print() & loc(vnet), therefore perfor-
mance is not altered by the distributed printing process.
The observable behavior of this program is deterministic.

The generator produces the stream of prime numbers in
strict increasing order and each Printer object traverses the
nodes of the network in the same order (given by the initial
call to readNet()). Also, each Printer object completes
its printing job before the next Printer object is created.
Sieve objects are synchronized by using the Join fragment

calls to input() and answerInput() and the auxiliary class
RV , following the rendezvous pattern given in section 3.2
of [2]. For each call to input() an instance of RV is created,
in order to wait for an asynchronous reply message, which
is sent after synchronization with answerInput().

classRV {
wait() & reply(){self} [] [] self
}
classSieve{
input(vn){
vrv := new(RV); self #ainput(vn, vrv); vrv . wait()
}
answerInput() & ainput(vn, vrv){
vrv#reply(); iq := vn; self
}

[] signal print() & loc(vnet){
vprn := new(Printer); exp(vprn . print(ip, vnet));
inext#loc(vnet)
}

[] exp(self . answerInput()); ip := iq ;
inext := new(Sieve); self #print();
while (true){

exp(self . answerInput());
if (((iq .mod(ip)).eq(0)).not()) then exp(inext . input(iq))

else skip ;
}
}
classPrinter
print(vp, vnet) {

if (vnet . isEmpty()) then skip
else { go(vnet . first()) ; write(vp) ;

exp(self . print(vp, vnet . rest()))
}; self
}

[] [] skip
}
classPrimes{
[] [] ifirst := new(Sieve) ; vnet := ε . readNet();

ifirst#loc(vnet); i := 2;
while (i . leq(20)){ exp(ifirst . input(i)); i := i . add(1) }

}

This program generates all prime numbers less than
20. It cannot be verified in ”all possible traces”
semantics. We tested this program by 1000 consecutive
executions of the ”single trace” variant of our
interpreter. A network with 5 nodes (0, 1, 2, 3 and 4)
was considered for testing purposes. The semantic
interpreter always produced the following execution trace:
[(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),←↩
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4),←↩
(11, 0), (11, 1), (11, 2), (11, 3), (11, 4), (13, 0), (13, 1), (13, 2),←↩
(13, 3), (13, 4), (17, 0), (17, 1), (17, 2), (17, 3), (17, 4), (19, 0),←↩
(19, 1), (19, 2), (19, 3), (19, 4), deadlock]. In this experiment the
same trace was obtained by 1000 consecutive executions
in ”single trace” semantics (at each execution the random
number generator is initialized with a different seed). This

can give a good degree of confidence that the program is
correct and its observable behavior is deterministic.

III. SEMANTIC PROTOTYPING WITH
CONTINUATIONS FOR CONCURRENCY AND MONADS

In recent work [15] we showed that, by using CSC
continuations and monads denotational semantics can be
used both as a method for formal specification and as
a general method for designing compositional prototypes
of parallel and distributed languages. Monads, which are
directly supported in Haskell [19], are well known as a tool
for improving the modularity and elegance in denotational
descriptions and functional programs [17]. The CSC tech-
nique was introduced in [14], [15]. It provides flexibility
in the denotational design of concurrent control concepts
[15]. The central characteristic of the CSC technique is
the modeling of continuations as structured configurations
of computations, where by computation we understand a
partially evaluated denotation (meaning function).

In the CSC approach the space of computations is divided
into one active computation and the rest of the computations
which are encapsulated in a continuation. Intuitively, the
CSC technique is a semantic formalization of a process
scheduler [14]. Each computation remains active only until
it performs an elementary action; subsequently, another
computation taken from the continuation is planned for exe-
cution. In this way it can be obtained the desired interleaving
behavior for parallel composition.

CSC continuations can be divided into two categories:
closed continuations and open continuations. An open con-
tinuation is a structure of computations which contains a
hole (indicating the conceptual position of the active com-
putation). An open continuation behaves as an evaluation
context for the active computation. A closed continuation is a
self contained structure of computations. CSC continuations
are only closed for scheduling purposes. In [15] we designed
various CSC continuation structures as combinations of two
basic concepts: the stack to model sequential composition
and the multiset (a collection in which an element may occur
more than once) to model parallel composition.

The functions of an CSC-based semantic interpreter can
be grouped into the following three components: an evalu-
ator, a continuation-completion mapping with a normaliza-
tion procedure, and a scheduler. An CSC-based interpreter
implements an ”evaluate-normalize-schedule” loop [15].
• The evaluator maps open continuations to program

behaviors. It comprises the (compositional) definition
of the denotational function together with language-
specific control operators. The functions of the evalua-
tor have one thing in common: they manipulate open
continuations (i.e. evaluation contexts) only.

• The continuation-completion function is called by the
evaluator to map an open continuation to the program
answer that would result if the continuation alone

were left to execute. First, it calls the normalization
procedure, which transforms the open continuation into
a corresponding closed continuation (intuitively, by
removing the ’hole’ from the open continuation); next
it calls the scheduler.

• The scheduler maps closed continuations to program
behaviors. It activates a computation by decomposing a
closed continuation into an (activable) computation and
a corresponding open continuation. For a distributed
language the selection of the activable computation may
be nondeterministic, and it may follow after a (finite)
number of internal synchronization steps.

In the CSC approach the final yield of the denotational
semantics can be encapsulated in a program behavior monad,
which can be designed in ”single trace” or ”all possible
traces” semantics. To obtain a ”single trace” model, the pro-
gram behavior monad is parameterized by a random number
generator which is used to simulate the non-determinism
of a ”real” distributed language. In this case, the semantic
interpreter is tractable and produces incrementally a single
execution trace. The ”all possible traces” model is obtained
by using a classic power domain monad in this case the
resulted interpreter is generally not tractable. An element
of a power domain [12] is exponential to the length of
execution traces (an element of a power domain is a tree-like
structure, or a collection of ”traces” essentially equivalent to
an unfolding of such a tree).

IV. SEMANTIC INTERPRETER FOR JOIN VOYAGER

A. Semantic domains

A denotational semantics is a compositional mapping that
associates values from a mathematical domain [6], [1] to
each program construct. In order to obtain an executable
specification instead of using a mathematical notation, we
find convenient to use Haskell [19] as a metalanguage for
the denotational semantics.

1) Object names, states and observables: The Haskell
definitions for object names, states and observables are given
in figure 1. Nname implements the set of node names. Ivar,
Tvar and Cname implement the sets of instance variables,
temporary variables and class names, respectively. Nname is
a type synonym for Int (type Nname = Int). Ivar, Tvar

and Cname are type synonyms for String.
The type ObjN implements the set of object names. An

object name is either a standard object (of type Sobj) or a
reference to an instance of a user defined class. An Oref

object reference is a pair consisting of a class name and
an Id identifier which is unique at distributed system level.
An Id identifier is a pair (i,nn) consisting of a number i

(i is unique at node level) and a node name nn. nn is the
name of the node where the object was created, its parent
node. The parent node maintains references to all objects
that are created on it, including references to remote objects.

Figure 1. Object names, states and observables
type Id = (Int,Nname)
type Oref = (Cname,Id)
data Sobj = Nil | B Bool | Z Int | N Nname | Net [Nname]
data ObjN = Oref Oref | Sobj Sobj
type S1 = Ivar -> ObjN
type S2 = Tvar -> ObjN
data Q = Epsilon | Deadlock | Q Obs Q
data Obs = ObsZ Int Nname | ObsB Bool Nname | ...

The communication protocol uses this information to locate
destination objects [16]. A value of type S1 (S2) is a store
of instance (temporary) variables. The type Q implements
a domain of sequences of observables and distinguishes
between normal termination and deadlock.3

2) Denotations and continuations: The domain of deno-
tations is defined in figure 2. To avoid notational overhead by
allowing an arbitrary number of arguments for the constructs
e . f(e, · · · , e) and e#f(e, · · · , e), in section IV we restrict
the model to messages with exactly one parameter, of the
form e . f(e) and e#f(e), respectively.

D is the domain of denotations. M is the program behavior
monad described in subsection IV-B. Cont is the domain of
open continuations. Kont is the domain of closed continua-
tions. Both open and closed continuations are sets of nodes;
for an open continuation we separate a particular node (the
local node) to make more obvious that the evaluator only
acts upon this node. Only the scheduler (described in IV-E)
manipulates closed continuations and handles communica-
tions between different nodes. F is the domain of expression
continuations, which facilitate the evaluation of expressions
in classic continuation-passing style.

A node (Node nn po pd pr obuf mbuf) has a name nn,
a set po of active objects, a set pd of dormant objects, a
set pr of references to remote objects, and two multisets
of packages obuf and mbuf handled by the mobility and
communication protocol, respectively. We implement sets,
multisets and stacks as Haskell lists.

An active object (Aobj n pt pj w s1), has a name n, a
multiset pt of threads, a multiset pj of incoming messages
(of type Msg), a rendezvous counter w (of type Wait) and
a store of instance variables s1. By using the rendezvous
counter and by capturing the thread continuation of a syn-
chronous Join fragment call in its expression continuation
we avoid introducing thread identifiers. A thread is a pair
consisting of a list (implementing a stack) of computations
and a store of temporary variables. In our implementation,
the ’hole’ (that indicates the conceptual position of the active
denotation) is at the head (the ’leftmost’ element) of the
list that implements a stack, a set or a multiset. For an
open continuation (node,k) the ’hole’ is at the head of the
leftmost thread of the leftmost active object of node node. It

3There is no universal algorithm for distributed termination or dead-
lock detection. In [16] it is explained how to add a halt statement to
Join Voyager which stops a complete distributed program by using a very
simple protocol. Otherwise the program runs indefinitely on all nodes.

is the task of the scheduler to produce such a configuration
in preparation for the evaluation of a computation.

When the components pt and pj of an active object
become empty lists and the rendezvous counter becomes
NoWait the object becomes dormant. A dormant object
(Dobj n s1) is characterized by its name (reference) n and
its instance variables store s1. If such a dormant object
receives messages it becomes active again.

Each (parent) node also maintains a list pr of references
to all remote objects that were created on it but are currently
somewhere else. Such references are elements of type Robj.
We use a structure (Robj n nn) to express that the object
with name n is currently located on the node with name nn.
A structure (OnMove n) expresses that the object with name
n is currently involved in a migration operation.

A computation of type Comp is either a denotation (D d),
or an attempt (SemSend n semcall) to transmit a semantic
call semcall to object n, or an attempt (SemGo nn) of the
current object to start a migration operation toward node
nn. A SemCall semantic call may be synchronous or asyn-
chronous; it always carries information of type Match and
Env. Values of type Match are used in the implementation of
the pattern matching mechanism that is specific of languages
based on the Join calculus. The type Jfname implements the
set of Join fragment names. A value of type Env is a semantic
environment which captures the semantics of Join methods
(see section IV-F). In the case of a synchronous method the
expression continuation of the synchronous Join fragment
call is also transmitted with the semantic call.

The communication and mobility protocols use packages
of type MsgVoyager and ObjVoyager, respectively, to trans-
mit information between nodes. A package (MsgVoyager n

msg) contains a reference n to the destination object and a
synchronous or asynchronous message msg :: Msg. A value
of type Msg carries information that is specific of a semantic
call; in addition, in case of a synchronous call, it also
carries a reference n’ (back) to the object which initiated the
synchronous (Join fragment) call and it captures the thread
continuation t of the synchronous call. Thus, the thread
that initiated the synchronous call is suspended during the
evaluation of the corresponding (synchronous Join) method.
Upon termination of execution of the corresponding method
the thread continuation t is released and transmitted back
to the object n’ which initiated the call by using a package
(ReleaseVoyager n’ t). The rendez vous counter (w) of
the object which initiates a synchronous call is incremented
(Wait w) when the call is submitted and it is decremented (w)
when the execution of the corresponding method completes.

The mobility protocol uses a package of the form
(ObjVoyager nn’ mbuf obj) to move an object obj to a
destination node nn’. The package carries all the messages4

4Join fragment calls which wait for other Join fragment calls to arrive
in order to complete a method call by a successful Join pattern matching.

Figure 2. Denotations and continuations
type D = Cont -> M Q
type Cont = (Node,[Node])
type Kont = [Node]
type F = ObjN -> D

data Node = Node Nname [Aobj] [Dobj] [Robj] Obuf Mbuf
data Aobj = Aobj Oref [Thread] [Msg] Wait S1
data Dobj = Dobj Oref S1
data Robj = Robj Oref Nname | OnMove Oref
type Obuf = [ObjVoyager]
type Mbuf = [MsgVoyager]
type Thread = ([Comp],S2)
data Wait = NoWait | Wait Wait
data Comp = D D | SemSend Oref SemCall | SemGo Nname
data SemCall = SemSynCall Match Env F

| SemAsynCall Match Env
type Match = (Jfname,ObjN)

data MsgVoyager = MsgVoyager Oref Msg
| ReleaseVoyager Oref Thread

data Msg = Msg Match Env SynInfo
data SynInfo = SynMsg F Oref Thread | AsynMsg
data ObjVoyager = ObjVoyager Nname Mbuf Obj

| ProtocolVoyager ProtocolInfo
data ProtocolInfo = Request Oref Nname | Accept Oref Nname

| Completion Oref Nname
data Obj = ObjA Aobj | ObjD Dobj

that have not been served yet by obj in a list mbuf :: Mbuf.
An object may travel as a dormant object in case after the
go(e) statement it has no other statement to execute until
it receives other messages. A migration operation from a
source node nn to a destination node nn’ is performed by an
object with name n with the permission of its parent node.
The object sends a package (Request n nn) to its parent
node.5 Upon receiving this package the parent node records
the status (OnMove n) for the object n; next it sends a pack-
age (Accept n nn) back to object n on node nn. The object
then migrates to the destination node nn’; when it arrives
at the destination it sends a package (Completion n nn’)

to its parent node. The migration operation is completed by
the parent node which changes the status of object n from
(OnMove n) to (Robj n nn’).

B. Program behavior monad

Our semantic interpreter is parameterized by a program
behavior monad M which is designed in two ways, roughly
corresponding to the two perspectives on nondeterminism
described in the last paragraph of section III. The deno-
tational semantics is of the type type D = Cont -> M Q,
where Cont is the domain of (open) continuations and Q is a a
domain of execution traces (sequences of observables). The
monad M is used to encapsulate the final yield (M Q) of the
denotational semantics. It is remarkable that only this final
yield of the denotational mapping distinguishes between the
two ways of interpreting the nondeterminism.

The monad for ”all possible traces” semantics implements
a continuation semantics using powerdomains (a behavior
is a collection of traces and a nondeterministic choice is

5The system knows the destination of this package from the name of the
object (n), which includes the name of its parent node.

a union of behaviors). This monad allows one to detect
whether a particular execution trace is possible, but it can
only be used to verify toy programs. To implement the
”single trace” semantics, the monad is parameterized by
a random number generator (an oracle) that decides the
alternative to be selected in nondeterministic choices (being
given different oracles, any possible trace can be obtained).
The ”single trace” variant of our interpreter is tractable and
can be used to test nontrivial distributed programs.

C. Evaluator
The evaluator is designed as two mutually recursive de-

notational functions: seme :: Exp -> Env -> F -> D and
sems :: Stmt -> Env -> D. Its design is based on a com-
bination of CSC continuations and classic continuation-
passing style. The constructs go(e) , e . fj(e′) and e#fj(e′)
are handled as follows. After the expressions involved are
evaluated a corresponding computation is created which
is added to the continuation in order to be processed by
the scheduler. Assuming (SynCall e j e’) is the Haskell
implementation of the construct e . fj(e′), the code given
below defines the semantics of a synchronous Join fragment
call. Standard objects are handled according to the intuitive
semantics. For user defined objects the effect of such a call
is given by the creation of a structure (SemSend n ...),
where n is a reference to the (local or remote) destination
object. This structure is added to the open continuation c in
the appropriate position (indicated by the conceptual ’hole’,
which is at the head of the list that implements the active
thread) in order to be processed by the scheduler.

seme (SynCall e j e’) env f c =
seme e env (\o -> seme e’ env (\o’ -> aux o j o’)) c
where

aux :: ObjN -> Jfname -> ObjN -> D
aux (Sobj (Z z1)) "add" (Sobj (Z z2)) =

f (Sobj (Z (z1 + z2)))
...
aux (Oref n) j o’ =

let semcall = SemSynCall (j,o’) env f
in \c -> cc (addc (SemSend n semcall) c)

D. Continuation completion and normalization procedure
The completion function cc receives as input an open

continuation c and calls the normalization procedure re ::

Cont -> Kont in order to obtain the corresponding closed
continuation k which is transmitted to the scheduler map-
ping kc. The semantic interpreter maintains the following
invariant for open continuations: every thread is nonempty,
with the possible exception of the leftmost one - the active
thread - which conceptually contains at its head the active
computation. The normalization procedure removes the ac-
tive thread in case it becomes empty.

cc :: Cont -> M Q
cc c = let k = re c in kc k

E. Scheduler
The scheduler function kc :: Kont -> M Q maps closed

continuations to program behaviors. The main components

Figure 3. Semantic environments
type Env = Cname -> (U1,U2,U3)
type U1 = D
type U2 = ([[Jfname]],G)
type U3 = ([[Jfname]],H)
type G = [Jfname] -> [ObjN] -> F -> D
type H = [Jfname] -> [ObjN] -> D

of the scheduler are two functions cProtocol and mProtocol

which implement the steps of the communication protocol
and mobility protocol, respectively. Also, an important com-
ponent of the communication protocol is a function named
match that implements the pattern matching semantics that
is characteristic for languages based on the Join calculus [5].

The scheduler provides an accurate description of a P2P
distributed implementation. The scheduler uses a single
primitive for asynchronous transmission of protocol infor-
mation between different nodes. All the other operations
performed by the semantic interpreter are local to a par-
ticular node. Any synchronization effect (in particular the
execution of a synchronous Join method) is obtained as a
consequence of the distributed protocol steps.

F. Semantic environment and fixed point semantics

The domain of semantic environments Env is given in
figure 3. A semantic environment is a mapping from class
names to triples (u1,u2,u3) :: (U1,U2,U3). For a given
class the component u1 :: U1 defines the semantics of the
body, the component u2 :: U2 defines the semantics of the
synchronous Join methods, and the component u3 :: U3

defines the semantics of the asynchronous Join methods.
Join method declarations may be recursive. The semantic

environment env :: Env is defined as fixed point of a higher
order mapping given in [16]. Haskell is a lazy functional
language [19]. The fixed point operator can be defined as
follows: fix :: (a -> a) -> a, fix f = f (fix f).

V. CONCLUDING REMARKS AND FUTURE RESEARCH

We presented the main design issues and a dynamic
denotational semantics for Join Voyager . Join Voyager is
an experimental object oriented language that combines a
strong mobility feature at object level with communication
abstractions based on the Join method model [10], [2].

We introduced Join Voyager as a language for P2P pro-
gramming. A distributed implementation of Join Voyager
on top of the JXTA platform [7] is in progress. A limitation
to P2P computing may not be mandatory, but we leave the
adaptation of the Join Voyager programming model to other
types of networks as a topic for future research.

Finally, fundamental research related to the CSC tech-
nique will be directed toward a complete formalization of
the semantic interpreter given in this paper in the form of a
corresponding (mathematical) denotational semantics.

REFERENCES

[1] J.W. de Bakker, E.P. de Vink, Control Flow Semantics, MIT
Press, 1996.

[2] N. Benton, L. Cardelli, C. Fournet, ”Modern concurrency
abstractions for C#,” ACM Transactions on Programming
Languages and Systems (TOPLAS), 25(5):769-804, 2004.

[3] D. Caromel, L Henrio, A theory of distributed objects:
asynchrony, mobility, groups, components. Springer, 2005

[4] G. Cugola, C. Ghezzi, G. Picco and G. Vigna, ”Analyzing
mobile code languages,” LNCS, 1222:93-111, 1997.

[5] C. Fournet, G.Gonthier, ”The Join calculus: a language for
distributed mobile programming,” LNCS, 25:268- 332, 2002.

[6] G. Gierz et al, Continuous lattices and domains. Cambridge
University Press, 2003.

[7] J.D. Gradecki, Mastering JXTA: Building Java Peer-to-Peer
applications, Wiley, 2002.

[8] V. Guzev and Y. Serdyuk, ”Asynchronous parallel program-
ming language based on the Microsoft .NET platform,” LNCS
2763:236-243, 2003.

[9] Q. Hieu Vu, M. Lupu and B. Chin Ooi, Peer-to-Peer comput-
ing: principles and applications, Springer, 2009.

[10] G.S. von Itzstein, Introduction of high level concurrency se-
mantics in object-oriented languages, Ph.D.Thesis, University
of South Australia, 2005.

[11] T. Lethbridge and R. Laganiere, Object oriented software
engineering (2nd edition), Prentice-Hall, 2005.

[12] G.D. Plotkin, ”A Powerdomain Construction,” SIAM Journal
of Computing, 5(3):452–487, 1976.

[13] R. Quitadamo, The issue of strong mobility: an innovative
approach based on the IBM Jikes Research Virtual Machine,
Ph.D. Thesis, University of Modena and Reggio Emilia, 2008.

[14] E.N. Todoran, ”Metric semantics for synchronous and
asynchronous communication: a continuation-based approach,”
Electronic Notes in Theoretical Computer Science, vol.28, pp.
119–146, Elsevier, 2000.

[15] E.N. Todoran and N. Papaspyrou, Continuations for prototyp-
ing concurrent languages, Technical Report CSD-SWTR-1-06,
National Technical University of Athens, Software Engineering
Laboratory, 2006.

[16] E.N. Todoran et al. Mobile objects and modern communi-
cation abstractions, Technical Report CSD-SE-TR-01-2011,
Technical University Cluj-Napoca, 2011, available from [20].

[17] P. Wadler, ”The Essence of Functional Programming,” In
Proc. of 19th ACM Symposium on Principles of Programming
Languages, pages 1–14, ACM Press, 1992.

[18] K. Wehrle, R. Steinmetz, editors, Peer-to-Peer systems and
applications. LNCS 3485, Springer, 2005.

[19] http://www.haskell.org

[20] ftp://ftp.utcluj.ro/pub/users/gc/ispdc2011

[21] http://en.wikipedia.org/wiki/OpenMP

