
Compilation to Quantum Circuits for a Language
with Quantum Data and Control

Yannis Rouselakis∗† Nikolaos S. Papaspyrou∗ Yiannis Tsiouris∗ Eneia N. Todoran‡

∗School of Electrical and Computer Engineering
National Technical University of Athens

Polytechnioupoli, 15780 Zografou, Athens, Greece
Email: {nickie, gtsiour}.softlab.ntua.gr

†Department of Computer Science
University of Texas at Austin

2317 Speedway, Stop D9500, Austin, TX 78712, USA
Email: jrous@cs.utexas.edu

‡Computer Science Department
Technical University of Cluj-Napoca

Baritiu Street 28, 400027, Cluj-Napoca, Romania
Email: Eneia.Todoran@cs.utcluj.ro

Abstract—In this paper we further investigate nQML, a
functional quantum programming language that follows the
“quantum data and control” paradigm. We define a semantics
for nQML, which translates programs to quantum circuits in
the category FQC of finite quantum computations, following the
approach of Altenkirch and Grattage’s QML. This semantics,
which coincides with the denotational semantics for nQML
over density matrices and unitary transformations, serves as a
compiler from nQML programs to quantum circuits. We also
provide an implementation of this compiler, written in Haskell,
as well as an interpreter for quantum circuits.

I. INTRODUCTION

QUANTUM computing processes data that is stored in
the form of quantum bits (qubits) and, for doing so,

it employs quantum mechanical phenomena such as the su-
perposition and entanglement of quantum states. Roughly
speaking, a qubit may contain the digit “0”, the digit “1”,
or any superposition of these two. Although research towards
the manufacturing of quantum computers has not yet led to
mature results, quantum circuits seem to be today a commonly
accepted model for quantum hardware. Such circuits consist of
appropriate formations of quantum gates, acting upon qubits
in the same way that classical logic gates act upon bits in
ordinary computers.

Most quantum programming languages that have been
proposed so far are based on the principle “quantum data,
classical control”, that is, on the idea that the execution of
a quantum program follows a specific control-flow, exactly
as the execution of a program in a classical computer. Such
languages allow programmers to use quantum data, in addition
to classical, and through their manipulation to implement
quantum algorithms. On a different track, we see languages
following the “quantum data and control” paradigm. Such
languages use quantum control flow; in other words, they allow
the execution flow of a program to be in a superposition of
various different states in exactly the same way as the quantum
data that the program manipulates.

nQML [15], [14] is a high-level functional language based
on the concept of “quantum data and control.” It was defined
by Lampis et al., inspired by Altenkirch and Grattage’s QML
[1], [8], [9], and its main design goal was to give programmers
sufficient expressive power to implement quantum algorithms
easily, while preventing them from breaking the rules of
quantum computation. nQML includes constructs which allow
any unitary transformation to be expressed as a program in
nQML quite naturally, more or less using the same notation
that is used by the designers of quantum algorithms. It also
permits quantum measurements to be carried out at any point
during the execution of a program.

As explained in the paper defining nQML [14], the relative
ease of use of the language comes at the cost of putting aside
a number of important practical issues, such as the existence
of imperfect quantum hardware, the need for quantum error
correction and the fact that every quantum program will
eventually have to be implemented as a quantum circuit using
only a finite set of quantum gates and, therefore, some of
the unitary transformations that nQML allows will have to
be approximated. Similar problems were a source of concern
for the founders of the classical programming model many
decades ago. Fortunately they have been resolved and their
solutions have been abstracted in such a way that people who
use modern high-level programming languages need not know
anything about them. The same can and must be done for
quantum programming languages and, therefore, such issues
should be tackled not by the designer and users of a quantum
programming language, but by the architect of a quantum
computer, the designer of its operating system and, to a lesser
extent, the designer of the compiler.

In order to demonstrate the feasibility of using nQML as
a quantum programming language and to draw attention to
the assumptions that are necessary and to the problems that
remain to be resolved, in this paper we define a compiler
for nQML, targeting quantum circuits in the category FQC
of finite quantum computations [1], [8]. We also provide an

Proceedings of the 2013 Federated Conference on
Computer Science and Information Systems pp. 1537–1544

978-83-60810-53-8/$25.00 c© 2013, IEEE 1537

implementation of the compiler in Haskell, as well as an
interpreter for quantum circuits in FQC. The combination of
these two can be used for the execution of quantum programs
and for a direct comparison with the original definition of the
language, using denotational semantics over density matrices
and unitary transformations [14].

The rest of the paper is structured as follows. In section
II we give the syntax of the language nQML and explain its
constructs. Section III contains a description of the quantum
circuits that we will use as the target language for our nQML
compiler, which is in turn defined in section IV. Section V
contains a number of examples in nQML, corresponding to
well known quantum algorithms, and the quantum circuits in
which they are compiled. We conclude with an exposition of
related work, followed by some remarks and directions for
future work.

Due to space limitations, in this paper we do not have
the luxury to explain how quantum programming works. It
is assumed that the reader is familiar with the basics of
quantum computation and quantum circuits. There are several
introductory books [3], [12], [24], [16], as well as publicly
available manuscripts and course material on this field.

II. THE LANGUAGE NQML

The syntax of nQML is given by the following grammar. It
is assumed that x is a variable identifier and λ is a complex
constant. The grammar defines two syntactic classes. Quantum
expressions are denoted by e; they represent quantum pro-
grams and their syntax is similar to that of QML. Classical
expressions are denoted by c; they are only needed in the
quantum transformation construct |e〉 → x, x′. c and they can
represent two types of information: a structure of classical bits
or a complex number.

e ::= x | { (λ)qfalse+ (λ′)qtrue }
| let x = e1 in e2
| (e1, e2) | let (x1, x2) = e1 in e2
| if e then e1 else e2 | ifm e then e1 else e2
| |e〉 → x, x′. c

c ::= x | false | true | λ | let x = c1 in c2
| (c1, c2) | let (x1, x2) = c1 in c2
| if c then c1 else c2 | c1 = c2 | c1 < c2
| int c | c1 + c2 | c1 − c2 | c1 ∗ c2 | c1/c2 | cc21

Variables in nQML are viewed as references to quantum
information that is stored in a global quantum state. There are
two types of quantum information: qubits and products. A new
qubit is allocated in the quantum state when the superposition
operator { (λ)qfalse + (λ′)qtrue } is used, in the same
way that new objects are allocated on the heap when a data
constructor is used in a functional programming language.
Products are introduced and eliminated with the constructs
(e1, e2) and let (x1, x2) = e1 in e2. nQML also features
three control constructs:

• ifm e then e1 else e2: It conducts a measurement on
e, which must be of type qubit. Depending on the result,

it executes one of its branches. It is similar to a classical
random branching, based on a toss of a biased coin with
probabilities depending on the state of the qubit being
measured.

• if e then e1 else e2: It allows the programmer to
perform quantum branching. If e, which must be of type
qubit, is in a classical state, then the effect is what we
would expect from ifm. But if e is in a quantum super-
position, the program proceeds in a quantum superposi-
tion of both branches, most likely creating entanglement
among the qubits of the quantum state.

• |e〉 → x, x′. c: A generic means of expressing any
unitary transformation, which has to be relied upon when
a transformation can not be easily broken down to a
series of controlled operations, expressible with if . Its
advantage is that, rather than forcing programmers to
precompute and provide the whole unitary matrix of the
transformation, whose size is exponential in the number
of qubits that it affects, it allows them to express that
matrix as a complex function of the input and output
state of the transformed qubits. This leads to a succinct
and clear expression of many useful quantum algorithms,
such as the Deutsch-Jozsa or Grover’s algorithm that are
described in Section V.
In quantum pseudocode notation, all unitary transforma-
tions can be expressed in the form:

|i〉 →
2n−1∑

j=0

f(i, j) |j〉

where f(i, j) is a function of the input state i of the
quantum register and its output state j. The construct
|e〉 → x, x′. c allows the programmers to use precisely
this natural notation: the classical variables x and x′

denote the register’s input and output state and the
classical expression c denotes the function’s body.
From this notation, if the function f is known, the unitary
matrix can be easily constructed by taking Sj,i = f(i, j).
Of course, not all functions f result in unitary matrices
and the type system of nQML cannot efficiently decide
whether the resulting transformation is indeed unitary.
The type system of Altenkirch and Grattage’s QML is
able to do that, at the expense of making the size of the
program exponential and complicating the typing with
orthogonality constraints.

nQML admits a simple type system and denotational se-
mantics [14]. By simple, we mean that both use structures
and techniques that are typical in the study of classical
programming languages of similar size and complexity.

The main novelty of nQML’s type system is that the
type of a quantum expression conveys information which
reveals the exact qubits of the quantum state in which the
expression’s value resides. Qubit aliasing is allowed in such
a way that the “no cloning” and “no dropping” principles are
not violated. Programmers have the look-and-feel of a classical
programming language, without linearity restrictions. The type
system can be extended to support polymorphic higher-order

1538 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

functions, where polymorphism is over the exact qubits of the
quantum state that are used for representing data [14].

Quantum types, in the type system of nQML, are defined
by the grammar

τ ::= qbit[n] | τ1 ⊗ τ2

where n is the exact qubit of the state that is used, e.g., an
expression has type qbit[5] if its value is stored in the 5th
qubit of the state. This information is used to make sure that
the same qubit cannot be used twice in a transformation.

There are two typing relations: Γ;n ⊢◦ e : τ ;m is
for type checking pure quantum expressions (i.e. without
measurements); on the other hand, Γ;n ⊢ e : τ ;m is for
type checking arbitrary quantum expressions, We refer to both
by Γ;n ⊢α e : τ ;m, allowing the superscript α to be
either ◦ or empty. As the types of nQML convey information
regarding the position of qubits in the quantum state, the typing
relation is forced to process and propagate such information.
In Γ;n ⊢α e : τ ;m, the natural number n appearing on the
left side of the relation stands for the number of qubits of the
original quantum state, before e starts evaluating. The natural
number m appearing on the right side of the relation stands
for the number of new qubits that are allocated during the
evaluation of e. The typing rules are defined in [14].

The denotational semantics of nQML is based on the use of
density matrices to describe quantum states. The meaning of a
well-typed nQML program is a function from density matrices
to density matrices and describes the program’s effect on an
arbitrary quantum input state. Pure well-typed programs, i.e.,
programs which conduct no measurements, are also assigned
a meaning in the form of a unitary matrix which describes
the transformation they perform on the quantum state. The
execution of an nQML program can be seen as a sequence of
steps which affect the quantum state by allocating new qubits,
by applying unitary transformations to existing qubits or by
measuring existing qubits.

III. QUANTUM CIRCUITS

Quantum circuits are one possible model of quantum com-
putation. We extend the Haskell data type proposed by Al-
tenkirch and Grattage [6], [8] by adding one more constructor
for arbitrary unitary matrices (Unit), which will be the target
of nQML’s |e〉 → x, x′. c construct.

data Circ = Rot (C,C) (C,C)
| Wire [Int]
| Par Circ Circ
| Seq Circ Circ
| Cond Circ Circ
| Unit (Matrix C)

The set of quantum circuits operating on a state of n qubits
are defined inductively using these constructors:

• Rotation Rot (λ0, λ1) (κ0, κ1): introduces a new unitary
transformation on one qubit (n = 1), defined by the
following matrix, where λ∗

0κ0 + λ1κ
∗
1 = 0.

(
λ0 λ1

κ0 κ1

)

• Wire reordering Wire p: reorders the qubits in the state.
The parameter p must be a permutation of the sequence
[0 .. n − 1]. If the i-th element of this permutation is
j, this means that the wire at the i-th position in the
input state becomes the j-th wire of the output state. The
identity permutation corresponds to the identity unitary
matrix which leaves the state unchanged. When drawing
quantum circuits, we will not use quantum gates to
implement wire reordering; we will just draw crossing
wires, e.g., as follows:

n1
n2
n3
n4

n3
n1
n4
n2

In all circuits, the numbers next to the wires denote
multiplicity, i.e., the number of qubits in the state. If
n1 = n2 = n3 = n4 = 1, the reordering shown above
would be encoded in Haskell by Wire [1,3,0,2].

• Parallel composition Par c1 c2: combines c1 and c2 in
parallel, adding the number of qubits in their states.

c1n1

c2n2

n1

n2

• Sequential composition Seq c1 c2: combines c1 and c2 in
sequence, The two circuits must have a state of n qubits,
where n is also the number of qubits in their composition.

c1n c2 n

• Conditional Cond c1 c2: creates a conditional circuit that
is controlled by an extra qubit. The two circuits must
have a state of n qubits, whereas the number of qubits in
the conditional circuit is n+ 1.

c1n c2
1 1

n

• Arbitrary unitary matrix UnitC: creates a circuit with
a state of n qubits corresponding to the unitary matrix
C. Such a circuit must in general be approximated by an
appropriate composition of elementary quantum gates.

Ucn n

Reversible finite quantum circuits form the category FQC≈,
whose objects are states of n qubits and morphisms are unitary

YANNIS ROUSELAKIS ET AL.: COMPILATION TO QUANTUM CIRCUITS FOR A LANGUAGE WITH QUANTUM DATA 1539

transformations. Following Altenkirch and Grattage [6], [8],
we define two larger categories, FQC and FQC◦.

Circuits in FQC are not necessarily reversible: they can
also contain measurements and/or qubit initializations (which
also amount to measurements). To model circuits in FQC, we
separate a number of qubits of the input state, which we call
heap, and a number of qubits of the output state, which we call
garbage. Qubits in the heap are considered to be initialized
to |0〉. Qubits in the garbage are measured and discarded.
When drawing circuits, we denote the heap and garbage by
terminating lines. It must be n+ h = m+ g.

c
n
h

m
g

Also, the category FQC◦ is a subset of FQC where circuits
are allowed to have a heap, but not garbage. Such circuits
are pure, in the sense that they do not contain measurements,
and can be modelled by unitary transformations between pure
quantum states. It must be n+ h = m.

c
n
h

m

Obviously, FQC≈ ⊂ FQC◦ ⊂ FQC.

IV. A COMPILER FOR NQML
Following the compilation approach used by Altenkirch and

Grattage [6], [8] we use the typing relation for compiling (pure
and impure) quantum expressions. However, in contrast to the
approach used for QML, the process is not guided by the linear
type system, deciding how to split the wires of the input state.
Instead, purity information and the numbers n and m from
nQML’s typing information are used.

If e is a pure quantum expression such that Γ;n ⊢◦ e : τ ;m,
then e is compiled to a circuit in FQC◦ which has an input
state of n wires plus m wires of heap and an output state of
n+m wires (without garbage). We draw this as follows:

e
n
m

n+m

On the other hand, if e is an impure quantum expression
such that Γ;n ⊢ e : τ ;m, then e is compiled to a circuit in
FQC which has an input state of n wires plus h ≥ m wires
of heap and an output state of n + m wires plus g wires of
garbage. It must be h = m+ g. We draw this as follows:

e
n
�

n+m
g

Fig. 1 shows how nQML constructs are compiled to circuits.
The compilation process is based on the typing of expressions.

• Superposition. A new qubit is added to the state corre-
sponding to { (λ)qfalse + (λ′)qtrue }. The remaining
n qubits of the state are unaltered, whereas the new qubit
is initialized with the transformation matrix:

(
λ λ′

λ′ −λ

)

• Let construct and products. Although the typing rules
for these three constructs (simple let, product formation
and product elimination) are different when it comes to
the types of the participating expressions, they are all the
same w.r.t. the number of qubits in the state and they
produce the same quantum circuit, which is essentially
the sequential composition of two expressions.

• Quantum conditional. In the typing of
if e then e1 else e2, the condition is the k-th
qubit of the state and the pure expressions e1 and
e2 are not allowed to refer to the k-th qubit (as the
environment Γ|k suggests in the figure). The circuit
corresponding to condition e is generated first and the
k-th qubit of the output state is isolated. This qubit
controls the conditional circuit of e1 and e2. Notice
that it is not strictly true that this conditional circuit
is composed of e1 and e2. First of all, we have to
translate away the (unused) k-th qubit, by inductively
transforming the circuits corresponding to e1 and e2.
Then, we have to extend the input state of the smallest
of the two circuits, so that both expect an input state of
n+m− 1 + max(m1,m2) qubits.

• Measurement. The difference between the quantum con-
ditional and the measurement is that (a) impure expres-
sions are allowed in branches, (b) the branches can use the
qubit of the condition, and (c) the qubit of the condition
is measured at the end of the circuit. In order to be used
by the two branches and (at the same time) be measured
at the end, the qubit of the condition must be duplicated
(creating a quantum entanglement). This is achieved by
using one extra qubit and the controlled CNOT gate.
The two expressions may, of course, use the measured
value of this qubit. Notice that this is the only circuit
which explicitly creates garbage, by measuring the qubit
of the condition. Also, this is one of the two circuits
that explicitly use qubits from the heap (the other one is
generated by superposition).

• Unitary transformation. In |e〉 → x, x′. c, it is assumed
that c(x, x′) defines an arbitrary unitary transformation on
states of n+m qubits, and this transformation is applied
to the result of expression e.

The implementation of our compiler applies several simple
optimizations to the generated quantum circuits.1 In general,

1The implementation of nQML can be found at http://www.softlab.ntua.gr/
∼nickie/Research/nqml/. It consists of approximately 3,200 lines of Haskell
code. Parts of it have been written by Michael Lampis.

1540 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Superposition:
Γ;n ⊢◦ { (λ)qfalse+ (λ′)qtrue } : qbit[n]; 1

n
Uc1

n
1

Let and products:
Γ;n ⊢α let x = e1 in e2 : τ ;m1 +m2

Γ;n ⊢α (e1, e2) : τ ;m1 +m2

Γ;n ⊢α let (x1, x2) = e1 in e2 : τ ;m1 +m2

where:
Γ1;n ⊢α e1 : τ1;m1

Γ2;n+m1 ⊢α e2 : τ2;m2

e2

h2

n+m1+m2

g2

e1
n
h1 g1

n+m1

Quantum conditional:
Γ;n ⊢α if e then e1 else e2 : τ ;m+max(m1,m2)

where:
Γ;n ⊢α e : qbit[k];m

Γ|k;n+m ⊢◦ e1 : τ ;m1

Γ|k;n+m ⊢◦ e2 : τ ;m2

en
h

max(m1, m2) e1' e2'
g

1(k)
n+m-1

n+m n+m+
max(m1, m2)

1(k)

Measurement:
Γ;n ⊢ ifm e then e1 else e2 : τ ;m+max(m1,m2)

where:
Γ;n ⊢ e : qbit[k];m

Γ;n+m ⊢ e1 : τ ;m1

Γ;n+m ⊢ e2 : τ ;m2

en
h

e1' e2'
g
1

1(k)
n+m-1

n+m n+m+
max(m1, m2)

1
max(h1, h2)

1(k) max(g1,g2)

Unitary transformation:
Γ;n ⊢α |e〉 → x, x′. c : τ ;m

where:
Γ;n ⊢α e : τ ;m

c(x, x′) defines a unitary transformation on n+m qubits

Uc
n+m

e1
n
h

g

n+m

Fig. 1. Compiling nQML expressions to quantum circuits: A typing-directed approach.

the implementation is written in Haskell; it targets the poly-
morphic language described in [14] and consists of:

• a parser,
• a type checker,
• a first interpreter, based on the denotational semantics of

nQML, using density matrices and unitary transforma-
tions,

• the compiler from nQML to quantum circuits, defined in
this paper, and

• a second interpreter, based on the simulation of quantum
circuits generated by our compiler.

The implementation checks that the outputs of the two inter-
preters coincide, thus testing the correctness of our compiler.

V. EXAMPLES

In this section, we outline the use of nQML and its compiler
with two relatively simple but historically important examples:
Deutsch’s algorithm for testing whether a function on one bit is

balanced or constant [4], and Grover’s algorithm for searching
an unsorted database [11].

We begin by providing a couple of auxiliary functions,
not and had, that will be useful in both examples. They
correspond to the NOT gate and the Hadamard gate. Their
definitions can be given by simple unitary transformations.

def not q = |q> -> x, x’.
if x’ = x then 0 else 1;

def had q = |q> -> x, x’.
(if x then (if x’ then -1 else 1) else 1)
/ sqrt(2);

The syntax of function definitions in nQML follows the
proposed extension with polymorphic functions [14]. Such
functions could be treated as macros by the compiler.

We will also abbreviate tuples of more than two elements
by writing (x, y, z) instead of (x, (y, z)). Furthermore, we will

YANNIS ROUSELAKIS ET AL.: COMPILATION TO QUANTUM CIRCUITS FOR A LANGUAGE WITH QUANTUM DATA 1541

H 1

X H1

1 f
I X

H
1

Fig. 2. The circuit produced for Deutsch’s algorithm, where f is the
parameter: the function that we want to determine if it’s constant or balanced.

use qtrue as syntactic sugar for { (0)qfalse+ (1)qtrue }
and qfalse as syntactic sugar for { (1)qfalse+(0)qtrue }.

A. Deutsch’s Algorithm

Deutsch’s algorithm (later generalized by Deutsch and
Jozsa) was one of the first quantum algorithms to be studied.
Supposing that we have a function f(x) : {0, 1} → {0, 1},
we want to determine whether this function is constant,
i.e., f(0) = f(1), or balanced, i.e., f(0) 6= f(1), by just
computing it once.

There is obviously no classical solution to this problem. The
quantum solution employs the trick of computing the function
once, with a superposition of the two inputs, then appropriately
measuring the result. (The interested reader is refered to the
introductory literature in quantum computations for analyses
of the algorithm and proofs of correctness.) In nQML, it can
be written as follows. The measurement of had i gives 1 if
function f is balanced and 0 if it is constant.

def Deutsch f =
let (i, j) = (had qfalse, had qtrue) in
let r = if f i then j else not j in
ifm had i then qtrue else qfalse;

The circuit that our compiler produces for this program
(just measuring the result and excluding the new qubits for
the branches of ifm), is shown in Fig. 2.

B. Grover’s Algorithm

As a second example, let us see an implementation of
Grover’s fast database search. Consider an unsorted database
with N = 2n entries and the problem of finding the index
of a particular database entry that satisfies some criterion. To
simplify things, let us assume that c denotes the index that
we are searching for. We first need to implement the query
operator, which is a transformation corresponding to a matrix
which has 0 everywhere, 1 along the primary diagonal and −1
at the element with coordinates (c, c).

def query q = |q> -> x, x’.
if x = x’ then
if int x = c then -1 else 1

else
0;

We now define the diffusion operator, a transformation
corresponding to the matrix 2P − I , where P a matrix with
2−n everywhere.

def diffusion q = |q> -> x, x’.
if x = x’ then 2 / 2ˆn - 1 else 2 / 2ˆn;

The algorithm proceeds by repeated iterations of queries and
diffusions. Let us now consider the most simple application of
Grover’s algorithm: searching in a space of size N = 4 (with
n = 2 qubits). In this special case, one iteration is enough to
produce the correct result with certainty:

def grover2 =
let qs = (had qfalse, had qfalse) in
diffusion (query qs);

In the general case, O(
√
N) iterations of the two operators

are required to obtain the result with a high probability.
Consider N = 16 (with n = 4 qubits). Three iterations suffice:

def grover4 =
let qs = (had qfalse, had qfalse,

had qfalse, had qfalse) in
let step1 = diffusion (query qs) in
let step2 = diffusion (query qs) in
let step3 = diffusion (query qs) in
qs

The circuit that our compiler produces for grover4 is
shown in Fig. 3. The result is implicitly measured.

VI. RELATED WORK

The design of quantum algorithms, such as Shor’s algorithm
for the factorization of integer numbers in polynomial time
[21] and Grover’s algorithm for searching an unordered list of
n elements in O(

√
n) time [11], has shown that the quantum

model of computation is strictly more powerful than the clas-
sical model; although both can compute the same set of func-
tions, some functions can be computed in the quantum model
strictly faster than in the classical one. Quantum algorithms are
usually studied at a low level, either expressed directly in the
form of quantum circuits or using appropriate mathematical
models. The fact that reasoning about quantum circuits is
no easier than reasoning about their classical counterparts
has given rise to quantum programming languages, that is,
languages that allow programmers to implement quantum
algorithms and make use of the added power of the quantum
computational model, while respecting its special restrictions.

Knill’s conventions for quantum pseudocode [13] was the
first proposed formal language for the description of quan-
tum algorithms, tightly connected with the Quantum Random
Access Machine. Since then, several quantum programming
languages have been proposed; the reader is referred to an
excellent (although slightly outdated) survey of the emerging
field [5]. Ömer’s QCL is an imperative language with quantum
primitives and automatic quantum scratch space management
[17]. Moreover, van Tonder has proposed a λ-calculus for
higher-order quantum programs without measurements [22].
Both languages, however, do not compile to quantum circuits
and, in the case of van Tonder’s λ-calculus, it is not clear how
this can be done. Sanders and Zuliani have defined qGCL, an
extension of Dijkstra’s guarded command language [18], and
they have shown how to compile qGCL to a form of assembly
language for a quantum computer [25].

1542 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

1

H1

H1

H1

H1

Q D Q D Q D
1

1

1

Fig. 3. The circuit produced for Grover’s algorithm, where N = 16 (n = 4). The transformations Q and D correspond to the query and diffusion operators,
which are applied iteratively.

Selinger’s QPL is a language following the paradigm “quan-
tum data, classical control” [20]. It is functional in nature,
although from a programmer’s point of view it looks more
imperative than functional. QPL allows the programmer to
access both classical and quantum memory and includes high-
level features such as loops and recursion. Program control
is strictly classical and quantum branching can only be im-
plemented indirectly with appropriate unitary transformations.
The denotational semantics of QPL is given in the form of
superoperators on density matrices. A higher-order extension
of QPL in the form of a quantum lambda calculus has also
been proposed by Selinger and Valiron [19]. In the same
paradigm, Green et al. have recently defined Quipper [10],
a functional, higher-order quantum programming language
designed to be used for implementing large-scale quantum
algorithms. They have shown how programs can be compiled
to quantum circuits consisting of a large number of gates.

On the other hand, Altenkirch and Grattage’s QML is a
functional language that follows the paradigm “quantum data
and control” [1], [7], [8]. QML comes with a linear type
system prohibiting implicit weakening, which would lead to
implicit measurements and quantum collapse. The authors
describe a way to compile QML programs to quantum circuits
in the category FQC of finite quantum computations [6],
[9]. Variables in QML correspond to wires in the produced
quantum circuit and thus have to be shared implicitly when
they are used in several places in a program so as not to
break the “no cloning” rule. The sharing of wires is mon-
itored by a linear type system. Altenkirch and Green have
recently presented a monadic purely functional interface to
quantum programming (the QIO monad) and they provide an
implementation in the form of a quantum DSL in Haskell
[2]. Again, there is an almost direct translation from QIO to
quantum circuits. A similar embedding in Haskell, in the form
of arrows, is proposed by Vizzoto et al. [23].

VII. CONCLUDING REMARKS

We have defined a compiler for quantum programs written
in the language nQML that follows the paradigm “quantum
data and control”. The compiler targets quantum circuits in
the category FQC of finite quantum computations, defined by
Altenkirch and Grattage. We have implemented our compiler
as part of nQML’s implementation, which is publicly available.

The real challenge in quantum programming, and a definite
direction for future work, is the integration of features that

are at a higher-level than quantum gates and unitary transfor-
mations, for example, reversible binary arithmetic, quantum
data structures, etc. The proper integration of such features in
quantum programming languages is a hard problem in terms
of language design and usability, especially if one wants to
keep compatibility with the way in which quantum algorithms
are expressed (mostly by non-programmers) today.

ACKNOWLEDGMENT

This research is partially funded by the research project “SemNatComp:
Semantic models and technologies for natural computations” (ΓΓET 11
ROM 11 1 ET30), funded by the Greek General Secretariat for Research
and Technology and the European Regional Development Fund, through
the operational program “Competitiveness Entrepreneurship & Regions in
Transition”, action “Billateral Co-operation Greece-Romania 2011-2012”.

REFERENCES

[1] T. Altenkirch and J. Grattage, “A functional quantum programming
language,” in Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science. IEEE Computer Society, 2005, pp. 249–258.

[2] T. Altenkirch and A. S. Green, “The quantum IO monad,” in Semantic
Techniques in Quantum Computation, S. Gay and I. Mackie, Eds.
Cambridge University Press, 2009, p. 173205.

[3] J. Brown, Quest for the Quantum Computer. Simon and Schuster, 2001.
[4] D. Deutsch and R. Jozsa, “Rapid solutions of problems by quantum

computation,” Proceedings of the Royal Society of London, vol. A 439,
pp. 553–558, Dec. 1992.

[5] S. J. Gay, “Quantum programming languages: Survey and bibliography,”
Mathematical Structures in Computer Science, vol. 16, no. 4, pp. 581–
600, Aug. 2006.

[6] J. Grattage and T. Altenkirch, “A compiler for a functional quantum
programming language,” Jan. 2005, manuscript, available from the
authors’ web page.

[7] ——, “QML: Quantum data and control,” Feb. 2005, manuscript,
available from the authors’ web page.

[8] J. Grattage, “QML: A functional quantum programming language,”
Ph.D. dissertation, School of Computer Science and School of
Mathematical Sciences, The University of Nottingham, Sep. 2006.
[Online]. Available: http://etheses.nottingham.ac.uk/archive/00000250/

[9] ——, “An overview of QML with a concrete implementation
in Haskell,” Electronic Notes in Theoretical Computer Science,
vol. 270, no. 1, pp. 165–174, 2011, proceedings of the
4th Workshop on Developments in Computational Models (DCM
’08), doi:10.1016/J.ENTCS.2011.01.015, arXiv:0806.2735. [Online].
Available: http://fop.cs.nott.ac.uk/qml

[10] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: A scalable quantum programming language,” in Proceedings
of the 34th annual ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation, Jun. 2013, to appear.

[11] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the 28th Annual ACM Symposium on the
Theory of Computing, Philadelphia, PA, May 22-24 1996, pp. 212–219.

[12] M. Hirvensalo, Quantum Computing, 2nd ed. Springer, 2004.

YANNIS ROUSELAKIS ET AL.: COMPILATION TO QUANTUM CIRCUITS FOR A LANGUAGE WITH QUANTUM DATA 1543

[13] E. Knill, “Conventions for quantum pseudocode,” Los Alamos National
Laboratory, Tech. Rep. LAUR-96-2724, 1996.

[14] M. Lampis, K. G. Ginis, M. A. Papakyriakou, and N. S. Papaspyrou,
“Quantum data and control made easier,” Electronic Notes in Theoretical
Computer Science, vol. 210, pp. 85–105, Jul. 2008.

[15] M. Lampis, K. G. Ginis, and N. S. Papaspyrou, “Quantum
data and control made easier,” in Preliminary Proceedings of the
4th International Workshop on Quantum Programming Languages,
P. Selinger, Ed., Oxford, UK, Jul. 2006, pp. 73–86. [Online]. Available:
http://www.mscs.dal.ca/∼selinger/qpl2006/

[16] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. Cambridge University Press, 2010.

[17] B. Ömer, “Structured quantum programming,” Ph.D. dissertation, Insti-
tute of Information Systems, Technical University of Vienna, May 2003.

[18] J. W. Sanders and P. Zuliani, “Quantum programming,” in Proceedings
of the 5th International Conference on Mathematics of Program Con-
struction, ser. Lecture Notes in Computer Science, vol. 1837. London,
UK: Springer-Verlag, 2000, pp. 80–99.

[19] P. Selinger and B. Valiron, “A lambda calculus for quantum computation
with classical control,” Mathematical Structures in Computer Science,
vol. 16, no. 3, pp. 527–552, 2006.

[20] P. Selinger, “Towards a quantum programming language,” Mathematical
Structures in Computer Science, vol. 14, no. 4, pp. 527–586, 2004.

[21] P. W. Shor, “Polynomial time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[22] A. van Tonder, “A lambda calculus for quantum computation,” SIAM
Journal on Computing, vol. 33, no. 5, pp. 1109–1135, 2004.

[23] J. K. Vizzotto, A. R. D. Bois, and A. Sabry, “The arrow calculus as a
quantum programming language,” in Logic, Language, Information and
Computation, ser. Lecture Notes in Computer Science. Springer, 2009,
vol. 5514, pp. 379–393.

[24] N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer
Scientists. Cambridge University Press, 2008.

[25] P. Zuliani, “Compiling quantum programs,” Acta Informatica, vol. 41,
no. 7, pp. 435–474, Jun. 2005.

1544 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

