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Abstract— By using membrane computing patterns and the 

stochastic process algebra Bio-PEPA we develop and analyze a 

model of the immune system response against virus attacks. We 
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I.  INTRODUCTION 

 
The human body is continuously protected by the immune 

system, a complex network of biological structures and 
processes whose primary task is to defend us against disease. 
The immune system comprises cells, tissues and organs that 
work together to defend our body against attacks of foreign 
agents such as bacteria, viruses or parasites.  

Viruses and bacteria can enter into the human body aiming 
to destroy the immunity of the tissues by means of replication 
and propagation. The life time of such intruders depends on the 
host organism where they reside. A virus that resides within a 
cell doesn’t execute any harmful actions until it becomes a 
mature virus. Every virus has a maturity period; in this paper 
we refer to this period as the M period. After the maturity 
period ends, the virus starts replicating and sending copies of 
itself to other cells. The replication process occurs at every P 
units of time, where P is the propagation period. One important 
feature of the immune system is the capability of self-detecting 
the presence of intruders, being able even to neutralize viruses. 
Virus neutralization is the process of virus annulment, 
involving both a virus and an antibody. Antibodies are self-
generated by the organism and their purpose is to protect the 
cells by destroying the detected virus particles. If the antibody 
is not present in a membrane then the inter-cellular 
communication makes it possible that the antibody to be 
transported from the point where it is produced to the place 
where it is needed. 

In this paper we use the stochastic process algebra Bio-
PEPA [7] to model and analyze the behavior of the immune 
system. We analyze the response of the immune system against 
virus attacks. Following [4], the structure of the system is 
modelled using membrane computing patterns [14] and, 
essentially, it is a tree-like structure. Formal conditions are 

identified and expressed based on Bio-PEPA functional rates 
for successful immune responses against virus attacks.  

In terms of distributed computing we can say that the 
immune system is a massively concurrent environment. In this 
environment it is possible that sometimes the amount of the 
existing resources to be deficient compared to the demand for 
resources. This is why all the cells in our body must develop a 
constant activity. The immune system solves this problem by 
using a multilayered architecture of structural barriers, for 
example using physical barriers (skin or membranes), 
physiological ones (pH value) or its own cells and molecules 
that provide an adaptive response immune system. 

 There are various formalisms that can be used to express 

the behavior of distributed systems. In this paper we use 

membrane computing patterns to express the structure of the 

immune system. Also, we use the stochastic process algebra 

Bio-PEPA to model its behavior. Some papers [3, 11] report 

the usage of Bio PEPA framework in investigating the immune 

system, but the models presented in [3, 11] do not employ 

membrane computing patterns for this purpose. Biological 

systems can be easily modeled as concurrent systems: 

biochemical species may correspond to the processes that 

interact to each other, while the reactions may be seen as 

distributed actions. The structure of the system can be 

expressed in a compositional manner by using process 

algebras.  A series of complex analysis can be performed in 

order to predict the evolution of the system, the possible 

inconsistencies or in order to validate the model.  

 The immune system acts like a complex network 

comprising interconnected nodes.  The high complexity makes 

the system hard to understand and especially to analyze. Given 

an initial layout it is useful to know when a balance is 

achieved, in other words it is useful to know whether the cells 

are clean or are infected. In pharmaceutical terms, this indicates 

whether the body requires external aid offered through drugs or 

if the body is strong enough to withstand the virus attacks. 

Some of these configurations would get worse in subsequent 

phases of the disease (for example in cancer). Therefore the 

detection of such patterns in the early stages would enhance 

cleaning the body’s cells [4]. 



The paper is structured as follows. Section II offers a brief 

overview of the membrane computing paradigm followed by a 

description of the Bio-PEPA tool. The following sections 

focus on the mapping between the membrane structure and the 

structure of the immune system. Section III presents a Bio-

PEPA modelling approach used in order to describe the 

interaction process between viruses and antibodies. Within 

Section IV the Bio-PEPA model is analysed using both 

stochastic and ordinary differential equations algorithms. 

Section V discusses directions for future research. Section VI 

presents some concluding remarks. 

 

II. PRELIMINARIES 

In this section we give a brief overview of the membrane 

computing paradigm and a description of the Bio-PEPA tool. 

A. Membrane computing 

Membrane computing (MC) is a new branch of computer 
science which relies on the mapping between the distributed 
and parallel computing domain and the operating mode of 
living cells, focusing on the organizational model of the cells 
within the tissues. MC addresses the distributed computing 
models by processing multisets of objects encapsulated within 
membrane delimited compartments forming the membrane 
structure. Intuitively, a multiset is a collection in which an 
element may occur more than once; see, e.g., [1]. The 
membrane structure is illustrated in Fig.1, which is based on 
[13]. The systems modeled based on the membrane computing 
abstract ideas are called membrane systems or P systems. A 
comprehensive introduction to membrane computing is 
provided in [13]. 

The communication between the compartments and with 
the outside world has an important role within this kind of 
model. If each membrane is associated with a host, then a 
membrane comprising several similar sub-membranes can be 
seen as a subnet and moving on with this analogy, at a very 
wide scale, the skin membrane can even represent the World 
Wide Web. Actually, the Internet packet routing process is 
analogous to the message exchange within P systems [4]. 

The advantages of using membrane computing concepts in 
modeling the immune system are discussed in [2]. From the 
membrane computing perspective, the organism being infected 
is represented as a skin membrane or a P system. Membrane 
computing focuses on the multisets of objects encapsulated in 
the membrane structure. Cellular hierarchy is important in the 
immune system and it is modeled as a tree of membranes. For 
example, an organ system (grouped as a membrane) includes 
several organs represented as sub-membranes. The viruses and 
antibodies are modeled as objects in the system and their 
properties, such as type or lifetime are symbols of objects. 

B. Bio-PEPA 

Bio-PEPA is a process algebra framework used to model 
and analyze the biochemical networks [18, 7]. It is actually an 
improvement of PEPA (Performance Evaluation Process 
Algebra) [10] that was originally defined for the performance  

 

Fig.1. Membrane structure 

analysis of computer systems. Bio-PEPA handles some 
features of biological models such as stoichiometry and general 
kinetic laws [7]. Stoichiometry is a branch of chemistry that 
deals with the relative quantities of reactants and products in 
chemical reactions.  

 A Bio-PEPA model may be seen as an intermediate formal 
and compositional representation of a biological system that 
allows the execution of a series of analyzes, including 
stochastic simulation, analysis based on differential equations, 
CTMC (continuous time Markov chain) and numerical solution 
for stochastic model checking using PRISM. The use of 
different types of analysis promotes understanding the way the 
system works. Functional rates are introduced into the 
language in order to express the general kinetic laws. Each 
action type is a reaction and it is associated with a functional 
rate [17]. Bio-PEPA also includes an operational semantics and 
a stochastic labeled transition based system that relies on 
discrete levels of concentration [7]. The representation of such 
discrete levels of concentration is reflected in the definition of 
continuous Markov chains derived from the system.  

A biochemical system M is comprised of a set of 
compartments C representing species locations, a set of 
chemical species S (genes, proteins) and a set of irreversible 
reactions R [7]. In biochemical reactions every species has an 
initial concentration and this concentration can be affected by 
the reactions. The general form of an irreversible reaction j is 
illustrated in equation (1) where Ahj are the reactants, Blj are the 
products, Evj are the enzymes and Iuj are the inhibitors of the 
reaction. They all belong to the set S.  

Enzymes and inhibitors are represented different from the 
reactants and products because their role is to activate or inhibit 
the reaction. Enzymes are molecules that accelerate chemical 
reactions and inhibitors are substances that reduce the rate of a 
chemical reaction or even prevent a chemical reaction. khj and 
k

’
lj parameters are stoichiometric coefficients and express the 

degree in which the species participates in a reaction. 

 

 

(1) 

 

 k1jA1j+...+knjAnjj                                                     k’1jB1j+...+k’mjBmjj 
E1j,E2j,...I1j,I2j...; fj 



Reaction dynamics is described by the kinetic law fj. 
Reversible reactions can be seen as a pair of direct and inverse 
reactions. The best known kinetic law is the law of mass-
action: the reaction rate is proportional to the product of the 
reactants’ concentrations [8]. 

The compartments used in Bio-PEPA are static, are not 
actively involved in the reactions and are interpreted as simple 
containers. These containers are static in order to keep the 
simplicity of the language and to allow the representation of 
the majority of the biochemical networks’ attributes. For 
example, the transport of a species from one compartment to 
another is modeled by introducing two different species. 
Translocation is abstracted by the transformation of one species 
into another one. When defining a Bio-PEPA system it is 
recommended to define all the compartments because in the 
system analysis phase specifying the compartments’ dimension 
may be necessary. An example of such an analysis model is 
Gillespie’s algorithm [17]. 

 Reference [9] presents the syntax allowed by the version 
0.1.0 of the Bio-PEPA Eclipse Plug-in and gives a brief 
overview of the features present within the plugin. In the 
following, the Bio-PEPA version 0.2.1 is going to be used for 
modeling the immune system response to virus attacks. Some 
suggestive Bio-PEPA Eclipse Plug-in syntax examples are 
presented in [17, 18]. The syntax differences between the Bio-
PEPA symbols and the ASCII representation of these symbols 
within the Bio-PEPA Eclipse Plug-in are described in [9]. 

III. SIMULATING THE IMMUNE SYSTEM USING BIO-PEPA 

In the following the membrane computing patterns and the 
Bio-PEPA process algebra are used to model and analyze the 
behavior of the immune system. The mapping between the 
membranes and the tree data structure the immune system 
relies on is presented in Fig.2. The skin membrane is associated 
with the whole organism and it is represented as the tree root. 
All other membranes reside within the skin membrane. Fig.2 
illustrates four groups of cells placed within four locations. The 
current solution aims to exemplify the basic immune system 
concepts and can be further extended in order to use a higher 
granularity. The proposed approach considers the immune 
system as a hierarchy of membranes subsequently expressed 
and analyzed using the Bio-PEPA Eclipse Plug-in.  

 

 

Fig.2. Immune response model architecture 

 

 

Fig.3. Bio-PEPA Eclipse Plug-in syntax for the immune system model - 
locations definition 

 Fig.3 presents the Bio-PEPA definitions of the four 
locations. The Bio-PEPA Eclipse Plug-in defines two types of 
locations: “compartment” and “membrane”. The compartments 
used in Bio-PEPA are not actively involved in the reactions 
and are interpreted as simple containers. The example 
illustrated in Fig.3 considers all tree nodes as “compartment” 
locations, except for the skin membrane which is defined as a 
“membrane” location.  

The initial state of the system assumes that a virus reaches 
the skin membrane and starts to replicate and propagate as 
shown in Fig.4. Each virus has a maturity period M and a 
propagation period P [4]. The viruses and the antibodies are 
modeled as populations implemented as Bio-PEPA species that 
reside within the defined locations. The four virus species 
managed within this approach are: VirusPopulationN0, 
VirusPopulationN1, VirusPopulationN2 and 
VirusPopulationN3. These four species reside within the nodes 
N0, N1, N2 and N3 and their definitions are presented in Fig.5. 
Virus species may act as “reactants” or as “products” (or both), 
depending on their role in the biochemical reactions. For 
example, the increaseVirusPopulation_N0 kinetic law is 
defined as a “prefixProd” Bio-PEPA semantic rule [7], where 
the virus species is both a product and a reactant and the level 
species’ concentration level increases each time the reaction 
takes place. The stoichiometric coefficient “2” indicates that 
the virus replicates every time the reaction occurs. 

 Each virus species executes some basic actions like 
replication and propagation. These actions are modeled as 
kinetic laws. Such a kinetic law is to be defined for each of the 
specified actions: increaseVirusPopulation_N0, 
sendVirusfromNotoN1 and sendVirusfromN0toN2. The 
replication is a reaction that involves only one species (e.g. 
VirusPopulationN0) and describes the population behavior in 
prefix terms [7]. In other words, the replication implies only 
one species and the product is represented by the same species, 
but with a higher concentration. For example, 
increaseVirusPopulation_N0 kinetic law describes the virus 
replication at every M units of time and it is modeled using the 
functional mass-action kinetic law (fMA). 

 
Fig.4.Virus replication and propagation processes 

//Locations 

location N0: size=4, type=membrane; 

location N1 in N0: size=2, type=compartment; 

location N2 in N0: size=1, type=compartment; 

location N3 in N1: size=1, type=compartment; 



Fig.5. Bio-PEPA Eclipse Plug-in syntax for the virus species definition 

 fMA takes one parameter, r (in our case r = M), with the 
overall rate for the reaction being the product of the rate and 
the population counts of all the reactants and modifier species 
involved in the reaction [7]. The kinetic laws defined in order 
to model the virus species actions are shown in Fig.6.  

 One important feature of the immune system is the 
capability to self-detect and even remove the intruders. Once a 
virus has been detected, if the membrane does not contain any 
antibodies, it tries to procure antibodies and sends a request to 
the parent membrane. The current approach considers that the 
skin membrane has unlimited resources of antibodies. In this 
case, the membrane receiving an antibody request and that does 
have a resource of antibodies decides to provide the requested 
antibody for the membrane where it is needed.  

 

Fig.6. Bio-PEPA Eclipse Plug-in syntax for the virus species kinetic laws 
definitions 

 

Fig.7. Virus neutralization process 

 When an antibody meets a virus the neutralization process 
occurs. This process is presented in Fig.7 and during this 
reaction both the virus and the antibody are destroyed. The 
immune system is modeled by defining two antibody species 
that represent the antibody populations that reside within nodes 
N0 and N1: AntiVirusPopulationN0 and 
AntiVirusPopulationN1. In order to keep the system as simple 
as possible, this approach takes into consideration only those 
antibody populations within membranes N0 and N1 (because 
these are the only nodes that contain other nodes).  

 The definitions of the two antibody species and the 
associated kinetic laws are presented in Fig.8. For example, the 
AntiVirusPopulationN0 population is involved in several 
reactions: sendAntivirusfromN0toN1, 
sendAntivirusfromN0toN2, increaseAntivirusPopulationN0 and 
decrementAntivirusPopulationN0 describing the dynamics of 
sending an antibody to the interior membranes, auto-increasing 
the number of antibodies and decrementing the number of 
antibodies. The neutralization processes that occur within 
nodes N1, N2 and N3 are managed by the kinetic laws 
sendAntivirusfromN0toN1, sendAntivirusfromN0toN2 and 
sendAntivirusfromN1toN3. These kinetic laws involve a 
decrement of the virus species concentration and are followed 
by the decrement of the antibody species concentration. 

 Functional rates are introduced into the language in order to 
express general kinetic laws. Each action type is a reaction and 
it is associated with a functional rate [7]. Within the proposed 
Bio-PEPA immune system model the functional rate of the 
kinetic laws depends on a series of predefined parameters. For 
example, the increaseAntivirusPopulationN0 kinetic law is 
defined based on the mass-action functional rate (fMA) which 
depends on b parameter.  Other kinetic laws are defined in a 
similar way: increaseAntivirusPopulationN1, 
increaseVirusPopulation_N0, increaseVirusPopulation_N1, 
increaseVirusPopulation_N2, increaseVirusPopulation_N3. 
The virus propagation kinetic laws depend on another 
parameter, a. As the value of this parameter gets higher, the 
reaction occurs faster. These parameters have an important role 
in our proposed Bio-PEPA model of the immune system 
because their values affect the functional rates of the virus 
propagation and virus neutralization biochemical reactions.  

 The model component is always the final definition in a 
Bio-PEPA model [17] and it describes the synchronization 
process between components. 

VirusPopulationN0 = (increaseVirusPopulation_N0,2) >> 

VirusPopulationN0 + sendVirusfromN0toN1 << 

VirusPopulationN0 + sendVirusfromN0toN2 << 

VirusPopulationN0; 

 

VirusPopulationN1 = (increaseVirusPopulation_N1,2) >> 

VirusPopulationN1 + sendVirusfromN0toN1 >> 

VirusPopulationN1 + sendVirusfromN1toN3 << 

VirusPopulationN1 +sendAntivirusfromN0toN1 << 

VirusPopulationN1; 

 

VirusPopulationN2 = (increaseVirusPopulation_N2,2) >> 

VirusPopulationN2 + sendVirusfromN0toN2 >> 

VirusPopulationN2 + sendAntivirusfromN0toN2 << 

VirusPopulationN2; 

 

VirusPopulationN3 = (increaseVirusPopulation_N3,2) >> 

VirusPopulationN3 + sendVirusfromN1toN3 >> 

VirusPopulationN3 + sendAntivirusfromN1toN3 << 

VirusPopulationN3; 

//Parameters 

a = 0.05; 

c = 0.1; 

 

//Functional rates (kinetic laws) 

increaseVirusPopulation_N0 = [fMA(a)]; 

increaseVirusPopulation_N1 = [fMA(a)]; 

increaseVirusPopulation_N2 = [fMA(a)]; 

increaseVirusPopulation_N3 = [fMA(a)]; 

 

sendVirusfromN0toN1 = [c*(VirusPopulationN0@N0-1)]; 

 

sendVirusfromN0toN2 = [c*(VirusPopulationN0@N0-1)]; 

 

sendVirusfromN1toN3 = [c*(VirusPopulationN1@N1-1)]; 



 

Fig.8. Bio-PEPA Eclipse Plug-in syntax for the antibody species and associated 
kinetic laws definitions 

 The Bio-PEPA implementation of the proposed model 
component is described in Fig.9. In the current case it 
comprises three sub-models.  The term P < L > Q denotes the 
cooperation between P and Q over the cooperation set L and 
determines those activities during which the species are forced 
to synchronize. This process is called the cooperation process 
of two species and it is mentioned both in the definition of the 
involved species and in the component model. For example, if 
a virus spreads from the root membrane to N1, then a 
cooperation process is defined between VirusPopulationN0 and 
VirusPopulationN1 species over the kinetic law 
sendVirusfromN0toN1. In this case, the cooperation process is 
expressed by the model sub-component 
“VirusPopulationN0<sendVirusfromN0toN1>VirusPopulation
N1”. The kinetic law sendVirusfromN0toN1 is included in both 
VirusPopulationN0 and VirusPopulationN1 species 
declarations. 

 

Fig.9. Bio-PEPA Eclipse Plug-in syntax for the immune system model 
component 

 Within this reaction the role of the species is easy to be 
determined: one item of the VirusPopulationN0 species is the 
reactant and changes his location from N0 location to N1 
membrane, where it becomes a new item of VirusPopulationN1 
species and represents the product of the reaction. The 
cooperation between the virus species within the skin 
membrane and N2 membrane and, of course, between the virus 
species VirusPopulationN1 and VirusPopulationN3 can be 
presented in a similar manner. As already highlighted, 
sendAntivirusfromN0toN1 kinetic law assumes that node N1 
has already received and auto-detected a virus and sent an 
antibody request to the root membrane. This kinetic law 
imposes the cooperation between VirusPopulationN1 and 
AntiVirusPopulationN0. Receiving the antibody triggers the 
virus neutralization process of one virus instance within node 
N1.  

The component model consists of several sub-models used 
for better legibility. The sub-components are joined in the last 
line of the model presented in Fig.9. The “@” symbol indicates 
the initial location of the species and it is followed by one of 
the four location names (N0, N1, N2 or N3). The terms 
VirusPopulationN0@N0[1] and 
AntiVirusPopulationN0@N0[1] specify that at the beginning of 
the simulation within the skin membrane resides one instance 
of the VirusPopulationN0 species and one instance of the 
AntiVirusPopulationN0 species. This example assumes that 
within all the other locations there are no viruses and 
antibodies and expects their population concentrations to 
increase as time passes. 

IV. EXPERIMENTAL RESULTS 

In Section III the membrane computing patterns and the 

Bio-PEPA process algebra are used in order to model the 

response of the immune system to virus attacks. The current 

section analyzes the behavior of the immune system based on 

the formal model proposed in the previous section. Several 

time series analyzes are going to be performed in order to 

identify the formal conditions expressed based on Bio-PEPA 

functional rates for successful immune responses. 

//Parameters 

b = 0.02;  

d = 0.3; 

e = 0.5; 

 

//Functional rates (kinetic laws) 

increaseAntivirusPopulationN0 = [fMA(b)]; 

increaseAntivirusPopulationN1 = [fMA(b)]; 

 

sendAntivirusfromN0toN1 = [d*(VirusPopulationN1@N1-1)]; 

 

sendAntivirusfromN0toN2 = [d*(VirusPopulationN2@N2-1)]; 

 

sendAntivirusfromN1toN3 = [d*(VirusPopulationN3@N3-1)]; 

 

decrementAntivirusPopulationN0 = 

[e*(AntiVirusPopulationN0@N0-1)]; 

 

decrementAntivirusPopulationN1 = 

[e*(AntiVirusPopulationN1@N1-1)]; 

 

//Species definition 

AntiVirusPopulationN0 =   sendAntivirusfromN0toN1 >> 

AntiVirusPopulationN0 + sendAntivirusfromN0toN2 >> 

AntiVirusPopulationN0 + (increaseAntivirusPopulationN0,2) >> 

AntiVirusPopulationN0 + (decrementAntivirusPopulationN0,2) 

<< AntiVirusPopulationN0; 

 

AntiVirusPopulationN1 =  

sendAntivirusfromN1toN3 >> AntiVirusPopulationN1 + 

(increaseAntivirusPopulationN1,2) >> 

AntiVirusPopulationN1 + (decrementAntivirusPopulationN1,2) 

<< AntiVirusPopulationN1; 

// Model component 

PopulationN0ToN1 ::= 

VirusPopulationN0@N0[1]<sendVirusfromN0toN1>VirusPopu

lationN1@N1[0]; 

 

PopulationN0ToN2 ::= 

AntiVirusPopulationN0@N0[1]<sendAntivirusfromN0toN2>Vi

rusPopulationN2@N2[0]; 

 

PopulationN1ToN3 ::= 

VirusPopulationN3@N3[0]<sendAntivirusfromN1toN3>AntiVi

rusPopulationN1@N1[0]; 

 

PopulationN0ToN2<sendAntivirusfromN0toN1>PopulationN0

ToN1<sendVirusfromN1toN3>PopulationN1ToN3 



The relative amount of the virus and antibody biochemical 

species defined in the proposed formal model will change in 

time because the concentrations of the species involved in the 

reactions also change. A time series analysis is going to be 

used in order to illustrate the evolution of the species 

concentrations. Such a time series analysis can be applied to a 

Bio-PEPA formal model in order to simulate the model and 

plot the quantities of the chemical species in the model as a 

function of time. Different types of time series simulations are 

available in the Bio-PEPA Eclipse Plug-in, including 

continuous, deterministic simulators and stochastic simulators.  

The deterministic approaches convert the Bio-PEPA model 

into a system of Ordinary Differential Equations (ODE) and 

evaluate the model using numerical integration. Stochastic 

simulators convert the Bio-PEPA model into a Monte Carlo 

Markov Chain (MCMC) problem which is evaluated using 

exact or approximate stochastic simulation algorithms such as 

Gillespie’s Direct Method and Gillespie’s г-leap algorithm 

[17]. For systems that involve large molecular counts, ODE 

models provide an accurate picture of their behaviour. If 

molecular counts are small (discrete), then the stochastic 

analysis may have significant influence on the observed 

behaviour. Genetic circuits typically involve small molecule 

counts [12]. The results of both stochastic and ODE 

simulation of the immune system are analyzed below. 

 Fig.10. presents a stochastic analysis of the Bio-PEPA 
formal model of the immune system. Accurate analysis 
sometimes requires a stochastic process description. A Markov 
process is one where the next state is only dependent on the 
present state and not the past history. A stochastic model is a 
jump Markov process in which the state updates take place in 
discrete amounts [12]. The graphic illustrates the response of 
the system in the context of some predefined formal conditions 
expressed by the parameters of the functional rates (kinetic 
laws). Functional rates are introduced into the language in 
order to express the general kinetic laws. Each action type is a 
reaction and it is associated with a functional rate [7]. Fig.10. 
presents the possible evolution of the viruses and antibodies 
concentration of species based on several predefined parameter 
values. The specified parameters influence the functional rate 
of the biochemical reactions that occur in the immune system 
(e.g. virus replication and propagation, antibody population 
incrementation, virus neutralization). For example, these 
parameters can be seen as predefined data that describe the 
initial state of the immune system (e.g. features of the human 
body’s immune system). If the latency of the antibody 
replication process and the type of the virus (which indicates 
the maturity and the propagation period of the virus) are 
known, then the values of the parameters can be easily set.  In 
the following examples we use different values of the 
predefined parameters. Based on the graphics illustrated in 
Fig.10 and Fig.11 we can identify the formal conditions that 
determine an unfavorable immune response. We associate the 
unfavorable immune response with the system state called 
“infected”. The parameters “a” and “b”  influence those  kinetic 
laws that model the behavior of the concentration of viruses 
within membranes, while the other parameters affect the 

 
Fig.10. Stochastic simulation of the Bio-PEPA immune response 

functional rate of the biochemical reactions that involve the  
populations of antibodies. If the kinetic law that models the 
dynamics of the virus propagation process uses a parameter 
with greater value than the one that models the virus 
neutralization process, then it is obvious that the propagation 
reaction will execute faster than the neutralization one. 
Therefore, parameter “a” influences the virus replication 
reaction and parameter “c” affects the virus propagation 
biochemical reaction, as presented in Fig.6. Parameter “b” 
influences the rate of the antibody replication reaction, while 
the other two parameters (“d” and “e”) affect the virus 
neutralization process, respectively the reactions that imply the 
decrement of the antibody population.   

 

Fig.11. ODE simulation of the Bio-PEPA immune response model 



 Since the kinetic law describing the virus replication 
process depends on parameter “a“ and “a” has a greater value 
than  parameter “d”, which influences the neutralization 
process, we can assume that in time, the concentration of the 
virus population  within the membranes will be greater than the 
concentration  of the antibody population. Fig.11 illustrates the 
results of the ODE simulation of the Bio-PEPA immune 
system. ODE analysis is sometimes preferred compared to the 
stochastic one because it illustrates the evolution of the species 
using smoother curves. Both Fig.10 and Fig.11 predict a 
system state that includes high values of the concentration of 
the virus species. In other words, the system reaches the 
“infected” final state. In pharmaceutical terms, these two 
graphics indicate that the body requires external aid provided 
through medication. The next two figures, Fig.12 and Fig.13, 
present the results of the stochastic and ODE simulations, but 
with different values of the predefined parameters. The last two 
figures show the formal conditions that guarantee the success 
of the immune system against virus attacks.  

 Determining whether the virus will be able to infect most of 
the cells is not a trivial problem. In this example it looks like in 
the first period of time the antibody population 
AntiVirusPopulationN0 has greater values of the species 
concentration compared to the concentration of the virus 
populations. This indicates a high probability that the system 
will reach the “clean” state. Interpreting the graphic in Fig.13 
one can say that the probability of the antibodies to overcome 
the viruses is quite high as the virus population within the skin 
membrane tends to be mitigated as time passes. 

 The sufficient condition for the system state to be “clean” 
can be written as M > 2D, where M represents the maturity 
period of the virus and D is the maximum distance between a 
virus and the skin membrane [4]. It is easy to see that it will 
take exactly 2D time for a membrane to receive the antibody 
after it has requested it. If the above condition is satisfied, then 
the virus will be destroyed before it reproduces. The 
parameters used for the simulation of the successful response 
of the immune system (Fig.12. and Fig.13.) take into 
consideration this condition: the value of the parameter “a” 
which affects the virus replication process is lower than the 
values of the parameters “d” and “b” which influence the virus 
neutralization and antibody generation processes. The values of 
these parameters are inverse proportional with M and P.  This 
condition has to be true for each membrane in the system in 
order for the system to eliminate the viruses. From a 
pharmaceutical point of view, this means that the host 
organism (e.g. the human body) is strong enough to remove the 
intruders without any external help. 

 However, the necessary condition is a lot more complicated 
[4]. While the number of viruses in the system is increasing as 
time passes, generalizing we obtain the equation (2), where t 
represents the time, P is the virus propagation period and M is 
the virus maturity period. By performing a series of complex 
analysis like the time series analysis presented in this section, 
we can predict the evolution of the system, the possible 
inconsistencies or we can even validate the proposed formal 
model. 

 

Fig.12. Stochastic simulation of the successful Bio-PEPA immune response 
model 

 As shown in the previous stochastic and ODE simulations 
results, the parameters involved in the biochemical reactions 
used to model the immune response are very important in the 
system. These parameters affect the execution time of all 
reactions. The execution time of the reactions is very important 
in determining the possible final state of the system (“clean” or 
“infected”). 

 

Fig.13. ODE simulation of the successful Bio-PEPA immune response model 

n (t) = n (t-P) + n (t-M)                                                    (2) 

 



From a pharmaceutical point of view, this means that it is 
necessary to know the type of the virus and the level of the 
immune system in order to set the values of these parameters. 
If the immune system has a low level of immunity, then the 
virus detection and neutralization reactions will be executed in 
a longer period of time. Similar, if the immune system has a 
high level of immunity, then the execution time of the virus 
neutralization process is shorter. These information are likely 
to be used as parameters in the simulation of the Bio-PEPA 
immune response formal model developed in Section III. 

V. FUTURE WORK 

In the near we intend to continue our work with a Java 

parallel implementation of the immune system model 

developed and analyzed in this paper. This system will map 

each membrane on a core of a multicore computer and will try 

to simulate the inter-cellular communication and 

synchronization, as well as the virus and antibodies 

interaction, replication and neutralization processes. The 

purpose of the Java implementation is to validate the 

stochastic and ODE simulations achieved using Bio-PEPA. 

We also intend to investigate the semantics of Bio-PEPA by 

using methods in the tradition of programming language 

semantics, namely operational and denotational semantics. We 

will use continuations semantics for concurrency [15,6], which 

can describe distributed systems with dynamic configurations 

[5,16], specific of membrane computing and other biologically 

inspired models of computation. 

 

VI. CONCLUSIONS 

 

The paper proposes a strategy of modeling and analyzing 

the behavior of the immune system based on membrane 

computing patterns and the Bio-PEPA stochastic process 

algebra. In terms of distributed computing we can say that the 

immune system is an environment with a high degree of 

concurrency. In this environment it is possible that the amount 

of the existing resources to be deficient compared to the 

demand for resources and that’s why a continuous activity to 

protect the system is mandatory. The Bio-PEPA experimental 

results given in this paper show that the effectiveness of 

modeling biochemical networks can be significantly improved 

by providing an intermediate, formal compositional 

representation of the model on which different kinds of 

analysis can be carried out.  
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