
Relating Two Metric Semantics for Parallel Rewriting of Multisets

Gabriel Ciobanu

Institute of Computer Science
Romanian Academy, Iaşi

Iaşi, Romania
Email: gabriel@iit.tuiasi.ro

Eneia Nicolae Todoran

Department of Computer Science
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
Email: eneia.todoran@cs.utcluj.ro

Abstract—In this paper we employ the mathematical
methodology of metric semantics in defining and relating a
denotational and an operational semantics for an abstract
concurrent language embodying the following features: parallel
composition is based on maximal parallelism, and computations
are specified by means of multiset rewriting rules. We relate
these semantics, and compare them in terms of this combina-
tion of concepts. The semantic models are designed by using
continuations for concurrency.

Keywords-metric semantics; continuations for concurrency;
parallel multiset rewriting;

I. INTRODUCTION

We study two different semantic models for a multiset

concurrent language LMR providing the following features:

non-interleaving semantics given by maximal parallelism,

and computations are specified by multiset rewriting rules.

We present an operational semantics and a denotational

semantics for LMR; both models are designed with the con-

tinuation semantics for concurrency (CSC) technique [14].

Operational semantics is based on a labelled transition

system specification in the style of Plotkin’s structural

operational semantics [12]. Denotational semantics is based

on the compositionality principle; its model was introduced

initially in [8].

Different semantics of a given language can be seen as

different views of the same language. The main goal of this

paper is to compare the operational semantics with the de-

notational semantics of LMR, by providing a formal relation

between them. The semantic models are designed and related

formally following the methodology of metric semantics [4].

The main mathematical tool in this approach is Banach’s

fixed point theorem, which states that a contracting function

defined on a complete metric space has a unique fixed point.

We also use the general method of solving reflexive domain

equations in a category of complete metric spaces presented

in [2].

A. Parallel rewriting of multisets and membrane computing

The features of the language LMR are used in natural

computation, being inspired by biological systems. Mem-

brane computing is an established and successful research

field which belongs to the more general area of natural com-

puting [10]. Membrane computing deals with parallel and

nondeterministic computing models inspired by cell biology.

Membrane systems are complex hierarchical structures with

a flow of materials and information which underlies their

functioning, involving parallel application of rules, com-

munication between membranes and membrane dissolution.

A computation is performed in the following way: starting

from an initial structure, the system evolves by applying the

rules in a nondeterministic and maximally parallel manner. A

halting configuration is reached when no rule is applicable.

A configuration of a membrane system is given by a

membrane structure and multisets of objects associated with

the regions defined by this membrane structure. A rule or

a multiset of rules associated to a membrane is applicable

in a configuration if its left hand side is a part of the

multiset contained in that membrane. Configurations evolve

by having multisets of rules applied in each membrane

in a nondeterministic and maximally parallel manner. The

maximally parallel way of using the rules means that in

each step we apply a maximal multiset of rules, namely a

multiset of rules such that no further rule can be added to

the multiset.

Example 1.1: To clarify how a membrane system evolves,

we present the following example, together with the graphi-

cal representation of a membrane system as a Venn diagram.

a

r1 : a → c + 2(d, in3)

r2 : a → b + (d, in2)

1 2 a + b

r3 : a → c + δ
r4 : b → (a, in3) + (c, out)

3
2d
r5 : d → (a, out)

Figure 1. The initial configuration of Example 1.1

The set of objects of the system is given by O =
{a, b, c, d}, and the membrane structure is clear from the

Venn diagram. The initial multisets are w0
1 = a, w0

2 = a+ b
and w0

3 = 2d. The sets of rules are R1 = {r1, r2},
R2 = {r3, r4} and R3 = {r5}, where r1 : a→ c+2(d, in3),

2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-4934-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SYNASC.2012.35

273

2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-4934-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SYNASC.2012.35

273



r2 : a → b + (d, in2), r3 : a → c + δ, r4 : b →
(a, in3) + (c, out) and r5 : d → (a, out). The rules

contain target indications specifying the membranes where

the objects are sent. The objects either remain in the same

membrane whenever they have no target attached, or they

pass through membranes in two directions: they can be sent

out of the membrane, or can be sent in one of the nested

membranes which is precisely identified by its label. In one

step, the objects can pass only through one membrane. This

configuration is described graphically in Figure 1.

In membrane 1 we can only apply rule r2 : a → b +
(d, in2) since rule r1 : a → c + 2(d, in3) is not eligible

due to membrane 3 not being a child of membrane 1. In

membrane 2 maximal parallelism requires the application

of both rules r3 and r4. In membrane 3 rule r5 is applied

twice for the same reason. At this point we have b+(d, in2)
in membrane 1, c+(a, in3)+(c, out)+δ in membrane 2, and

2(a, out) in membrane 3. Now messages of form (x, out),
(x, inj) are sent to their respective destinations: d from 1
to 2, 2a from 3 to 2, a from 2 to 3, and c from 2 to 1.

The evolution step ends with the dissolution of membrane

2, which is triggered by the presence of δ in membrane 2.

Now the membrane system has only two membranes, as seen

in Figure 2.

2a + b + 2c + d

a → c + 2(d, in3)

a → b + (d, in2)

1 3 a

d → (a, out)

Figure 2. The P system configuration of Example 1.1 after one step

Some operational semantics for membrane systems were

presented in [3] and [6]. For systems with a complex

hierarchical structure, a reduction to a system with a single

membrane (and additional rules) is presented in [1]. Such a

reduction is achieved by encoding the semantic constraints

of the hierarchical system within rule using promoters and

inhibitors in the system consisting of just one membrane.

This reduction is subsequently used as a technical tool to

solve problems for complex systems by reducing them to

simpler cases. Several applications of membrane systems are

presented in [7].

B. Continuation semantics for concurrency

In the classic technique of continuations [13], a program

is conceptually divided into a current statement and the

remainder of the program. The continuation semantics for

concurrency (CSC) is based on a similar idea. Intuitively, it

is a semantic formalization of a process scheduler. In CSC,

processes are grouped in what we call continuation in the

case of denotational semantics, and respectively resumption
in the case of operational semantics. On the other hand,

there is one active or current process corresponding to the

current statement. The term process is used here to denote

a statement in the case of operational semantics, and a

denotation of a statement (i.e., a computation) in the case

of denotational semantics. The current statement can be

evaluated either in sequence or in parallel with the remainder

of the program.

In CSC, continuations are application-specific structures

of computations rather than just functions to some final

answer type as in the classic technique of continuations. The

scheduling policy (of such a semantic scheduler) is given

by the structure of continuations. In the particular case of

the language LMR studied in this paper, a continuation is a

multiset of computations that are evaluated in parallel.

The evaluation by maximal parallel rewriting in LMR

allows to express repetitive computations (including non-

terminating computations). Following the tradition of pro-

gramming languages theory, in denotational semantics we

express repetitive computation by using continuations in

combination with semantic environments defined based on

fixed point constructions. In the case of operational seman-

tics we express repetitive computation by resumption ma-

nipulations and body replacement (syntactic environments).

C. Contribution

We define and then relate an operational semantics and

a denotational semantics for a multiset concurrent language

with computations specified by means of multiset rewriting

rules and execution based on maximal parallelism. These

features are encountered, e.g., in membrane computing [10].

The relation between the operational semantics and the

denotational semantics is obtained within the framework of

metric semantics [4], where the main mathematical tool is

Banach’s fixed point theorem [5]. The semantic models are

defined by using continuations for concurrency [14]; the use

of continuations appears to be essential for the success of

our approach. To the best of our knowledge, this is the

first attempt to present a study of comparative semantics

for concurrent languages based on the parallel rewriting of

multisets.

II. MATHEMATICAL PRELIMINARIES

A multiset is a generalization of a set. Intuitively, a

multiset is a collection in which an element may occur more

than once. We can present a multiset of elements of type

X by using a functions from X to N, or partial functions

m : X → N
+, where N

+ = N \ {0}, namely the set of

natural numbers without 0. m(x) is called the multiplicity
of x, representing its number of occurrences in m.

The notation (x ∈)X introduces the set X with typical

element x ranging over X . Let X be a countable set. We

denote by [X] the set of all finite multisets of elements of

type X , i.e., [X] not.=
⋃

A∈Pfin(X){m | m ∈ (A → N
+)},

where Pfin(X) is the powerset of all finite subsets of

X . Since X is countable, Pfin(X) is also countable. An

274274



element m ∈ [X] is a (finite) multiset of elements of type X ,

namely a function m : A→ N
+, where A ⊆ X is a finite

subset of X , such that ∀x ∈ A : m(x) > 0.

We can also present a multiset m ∈ [X] by enumerating

its elements between parentheses ’[’ and ’]’. Notice that the

elements in a multiset are not ordered; a multiset is just an

unordered list of elements. For example, [] is the empty mul-

tiset, i.e. the function with empty graph. Another example:

[x1, x1, x2] = [x1, x2, x1] = [x2, x1, x1] is the multiset with

two occurrences of x1 and one occurrence of x2, i.e. the

function m : {x1, x2} → N
+,m(x1) = 2,m(x2) = 1.

We can define various operations on multisets m1,m2 ∈
[X]. Below, dom(·) is the domain of function ’·’.
• Multiset sum: m1 �m2 (� : ([X]× [X])→ [X])

dom(m1 �m2) = dom(m1) ∪ dom(m2)
(m1 �m2)(x) =⎧⎨

⎩
m1(x) +m2(x) if x ∈ dom(m1) ∩ dom(m2)
m1(x) if x ∈ dom(m1) \ dom(m2)
m2(x) if x ∈ dom(m2) \ dom(m1)

• Multiset difference: m1 \m2 (\ : ([X]× [X])→ [X])
dom(m1 \m2) = ( dom(m1) \ dom(m2) ) ∪
{x | x ∈ dom(m1) ∩ dom(m2) ,m1(x) > m2(x)}

(m1 \m2)(x) ={
m1(x) if x ∈ dom(m1) \ dom(m2)
m1(x)−m2(x) if x ∈ dom(m1) ∩ dom(m2)

• Submultiset: m1 ⊆ m2 (⊆: ([X]× [X])→ Bool)
m1 ⊆ m2 iff ( dom(m1) ⊆ dom(m2) ) ∧

(∀x ∈ dom(m1) : m1(x) ≤ m2(x)).
The free commutative monoid on a set X can represent the

set of finite multisets with elements from X .

Let f ∈ X→Y be a function. The function ( f |
x �→ y ) : X→Y is defined, for x, x′∈X, y∈Y ), by

( f | x �→ y )(x′) = if x′=x then y else f(x′). We also use

the notation ( f | x1 �→ y1 | · · · | xn �→ yn ) as an abbrevia-

tion for ( ( f | x1 �→ y1 ) · · · | xn �→ yn ). If f : X→X
and f(x) = x, we call x a fixed point of f . When this fixed

point is unique, we write x = fix(f).
The denotational and the operational semantics given in

this paper are defined following the mathematical method-

ology of metric semantics [4]. More exactly, we work

within the mathematical framework of 1-bounded complete
metric spaces. We assume the following notions are known:

metric and ultrametric space, isometry (distance preserving

bijection between metric spaces, denoted by ’∼=’), complete
metric space, and compact set. For details, the reader may

consult the monograph [4], for instance.

Some metrics are frequently used in metric semantics.

For example, if X is any nonempty set, we can define the

discrete metric d : X × X → [0, 1] as follows: d(x, y) :=
if x = y then 0 else 1. (X, d) is a complete ultrametric

space. Also, let A be a nonempty set, and A∞ = A∗ ∪Aω,

where A∗(Aω) is the set of all finite (infinite) sequences

over A. A metric over A∞ can be defined by d(x, y) =
2− sup{n | x(n)=y(n) }, where x(n) denotes the prefix of x

of length n, in case length(x) ≥ n, and x otherwise (by

convention, 2−∞ = 0). d is a Baire-like metric, and (A∞, d)
is a complete ultrametric space.

We recall that if (X, dX), (Y, dY ) are metric spaces, a

function f :X→Y is a contraction if ∃c ∈ R, 0 ≤ c < 1,

∀x1, x2 ∈ X : dY (f(x1), f(x2))≤ c · dX(x1, x2). In metric

semantics, it is usual to attach a contracting factor c = 1
2 to

each computation step. When c = 1 the function f is called

nonexpansive. In what follows, we denote by X
1→Y the

set of all nonexpansive functions from X to Y .

The following theorem is at the core of metric semantics.

Theorem 2.1 (Banach): Let (X, dX) be a complete met-

ric space. Each contraction f : X→X has a unique fixed

point.

Definition 2.2: Let (X, dX), (Y, dY ) be (ultra)metric

spaces. We define the following metrics over X , X→Y
(function space), X×Y (Cartesian product), X+Y (disjoint

union defined by X + Y = ({1} × X) ∪ ({2} × Y )), and

P(X) (powerset of X), respectively.

(a) d 1
2 ·X :X×X→[0, 1] d 1

2 ·X(x1, x2) = 1
2 · dX(x1, x2)

(b) dX→Y : (X→Y )× (X→Y )→[0, 1]
dX→Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X × Y )× (X × Y )→[0, 1]
dX×Y ((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)};

Also, fst : (X × Y ) → X and snd : (X × Y ) → Y
are defined by fst(x, y) = x and snd(x, y) = y;

both fst and snd are nonexpansive mappings.

(d) dX+Y : (X + Y )× (X + Y )→[0, 1]
dX+Y (u, v) = if (u, v ∈ X) then dX(u, v)

else if (u, v∈Y ) then dY (u, v) else 1
(e) dH : P(X)× P(X)→[0, 1]:

dH(U, V ) = max{supu∈U d(u, V ), supv∈V d(v, U)}
where d(u,W )= infw∈W d(u,w) and by convention

sup ∅=0 and inf ∅=1; dH is a Hausdorff metric.

We use the abbreviation Pnco(X) to denote the powerset

of non-empty and compact subsets of X . Also, we often

suppress the metrics part in domain definitions, and write

only 1
2 · X instead of (X, d 1

2 ·X).
Remark 2.3: Let (X, dX), (Y, dY ), d 1

2 ·X , dX→Y , dX×Y ,

dX+Y and dH be as in Definition 2.2. If dX , dY are

ultrametrics, then so are d 1
2 ·X , dX→Y , dX×Y , dX+Y and

dH . Moreover, if (X, dX), (Y, dY ) are complete then 1
2 · X ,

X→Y , X
1→Y , X × Y ,X + Y , and Pnco(X) with their

metrics defined above are also complete metric spaces [4].

We also use the abbreviation Pfin(X) to denote the

powersets of finite subsets of X . In general, the construct

Pfin(·) does not give rise to a complete metric space; we

use it to create a structure equipped with the discrete metric.

Any set equipped with the discrete metric is a complete

ultrametric space.

275275



A. Alternative representation of multisets

Let X be a set. We use the following notation:

{|X |}A not.= Pfin(A)× (A→ X),

where A is a countable set. An element of type {|X |}A is

a pair (π,�) consisting of a finite set π ∈ Pfin(A) of

identifiers, and an occurrence mapping � ∈ A→ X . We use

this structure to represent a finite bag or multiset of elements

of type X . The set A is used to distinguish between multiple

occurrences of an element in a multiset. We treat (π,�) as

a ’function’ with finite graph {(α,�(α)) | α ∈ π}, thus

ignoring the behavior of � for any α /∈ π (π is the ’domain’

of the ’function’). For example, if π = {α1, α2, α3} and

� : A→ X , with �(α1) = x1, �(α2) = x2, �(α3) = x1

then (π,�) is a representation of the multiset with 2

occurrences of x1 and 1 occurrence of x2.

We define id : {|X |}A → Pfin(A), id(π,�) = π. We

assume that there is always a mapping ν : Pfin(A) → A
generating a new identifier, such that ν(π) /∈ π,∀π ∈ Π. For

example, we could set A = N, and ν(π) = 1+max{α | α ∈
π}. We introduce the functions: (·)(·) : {|X |}A × A → X ,

(· \ ·) : {|X |}A × Pfin(A) → {|X |}A, and (· : ·) : X ×
{|X |}A → {|X |}A, defined as follows:

(π,�)(α) = �(α)
(π,�) \ π′ = (π \ π′, �)
x : (π,�) = (π ∪ {α}, (� | α �→ x ))

where α = ν(π)

The functions behave as follows. id(·) returns the collection

of identifiers for the valid elements contained in the multiset,

(·)(α) returns the element with identifier α. (·) \ π removes

the elements with identifiers in π, and x : (·) adds the

element x to the multiset (a new, fresh identifier α(/∈ π)
is automatically generated for x).

Clearly, this representation of multisets is less abstract

than the one given at the beginning of section II, but it

can be used to model finite multisets of elements taken

from an arbitrary (possibly uncountable) set X . We use this

construction for both plain sets and metric domains.

Let X be a metric domain, i.e. a complete metric space.

By a slight abuse, we use the (same) notation {|X|}A for

both when X is a metric domain and just a plain set.

{|X|}A not.= Pfin(A)× (A→ X)

We equip both sets A and Pfin(A) with discrete metrics.

By using the composite metrics given in Definition 2.2,

{|X|}A becomes also a metric domain. We treat an element

of {|X|}A as a finite multiset of computations of type X.

We define the functions

id : {|X|}A → Pfin(A) by id(π,�) = π,

(·)(·) : {|X|}A ×A→ X by (π,�)(α) = �(α),
(· \ ·) : {|X|}A × Pfin(A) → {|X|}A by (π,�) \ π′ =

(π \ π′, �), and

(· : ·) : X× {|X|}A → {|X|}A by x : (π,�) =
(π ∪ {α}, (� | α �→ x )), where α = ν(π), as above.

Here X is a metric domain (rather than just a plain set).

When X is a metric domain (and {|X|}A, A and Pfin(A)
are equipped with metrics as explained above), we can easily

check that each of the functions id(·), (·)(·), (· \ ·), (· : ·) is

nonexpansive.

Let X be a set, x1, · · · , xn ∈ X , and (π,�) ∈ {|X |}A.

It is convenient to use the following notations:

{|x1, · · · , xn|}(π,�)
not.= (x1 : · · · (xn : (π,�)) · · · )

{|xi | i ∈ {i1, · · · , in}|}(π,�)
not.= {|xi1 , · · · , xin

|}(π,�).

Similarly, when X is a metric domain, x1, · · · , xn ∈ X, and

(π,�) ∈ {|X|}A. When (π,�) is understood from the con-

text, we write {|x1, · · · , xn|} instead of {|x1, · · · , xn|}(π,�).

Notice that (π,�) = {||}(π,�),∀(π,�) ∈ {|X |}A.

III. SYNTAX OF LMR

The syntax of LMR was introduced in [8]. Let (o ∈)O be

an alphabet of objects; we assume that O is a countable set.

W = [O] is the set of all finite multisets of O objects. 1

Definition 3.1: (Syntax of LMR)

(a) (Statements) x ::= o | x‖x
(b) (Rules) r ::= ε | w ⇒ x� r
(c) (Programs) (ρ ∈)LMR = R×X

An LMR program ρ is a pair (r, x) consisting of a set of

rewriting rules r ∈ R and a statement x ∈ X . The rules of

a list r = (w1 ⇒ x1 � · · · �wn ⇒ xn) are assumed to be

pairwise distinct.

An LMR statement is either an object o or the parallel

composition of two statements (x1 ‖ x2). The semantics of

an LMR statement is a multiset of objects that are evaluated

in parallel. A rule is similar to a ’procedure’ declaration.

Intuitively, in a construct w ⇒ x, the multiset w is the

’name’, and x is the ’body’ of the ’procedure’; w is com-

posed of several objects which may be seen as ’fragments’ of

the ’procedure name’. This intuition is inspired by the Join

Calculus [9], where procedure names are also composed of

several fragments. Only when all the ’fragments’ of such

a ’procedure name’ are prepared for interaction a rewriting

rule is applied by replacing the ’name of the procedure’

with its ’body’. Essentially, a construct w ⇒ x specifies a

multiset rewriting rule, and the semantics of x is a multiset

of computations that are evaluated in parallel.

Notice that we incorporate the semantic notion of a

multiset in the syntax of LMR. However, it would be easy to

make a complete separation between syntax and semantics.

For example, in Definition 3.1 we could use rules of the

form j ⇒ x, where j ::= o | j& j is the set of procedure

names (this syntax is again inspired by the Join Calculus).

We decided to use multisets as procedure names because

the order in which ’fragments’ occur in such a ’procedure

name’ is irrelevant.

1The construction [·] was introduced at the beginning of section II.

276276



IV. OPERATIONAL SEMANTICS

The operational semantics of LMR is based on a transition

relation embedded in a deductive system in the style of

Plotkin’s structural operational semantics [12]. We define

the transition semantics of LMR by using continuations

for concurrency [14]. We use the term resumption as an

operational counterpart of the term continuation.

An LMR program consists of a finite set of rewriting

rules, that are applied in a maximally parallel manner.

When several combinations of rules are applicable, the

selection of (the combination of) rules is nondeterministic.

We model computations in LMR as collections of sequences

of multisets of objects. We employ “collections” because

computation is nondeterministic. We use multisets of objects

(rather than just objects) because the reduction of parallel

objects proceeds simultaneously, without interleaving. We

define the semantic universe P for LMR, both for operational

and denotational semantics.

Definition 4.1: We consider P = Pnco(Q), where Q
is the (unique) solution of the following metric domain

equation:

Q ∼= {ε}+ (W × 1
2
· Q)

The set W = [O] is equipped with the discrete metric.

We use ’·’ as a prefixing operator over (Q) sequences: w ·
q = (w, q), for q ∈ Q. Instead of (w1, (w2, · · · (wn, ε) · · · ))
we write w1w2 · · ·wn. Also, we use the notation w · p =
{w · q | q ∈ p}, for any p ∈ P.

In Definition 4.2 we introduce an auxiliary mapping

appRules(r, w′) which takes as arguments a set r of

LMR rewriting rules and a multiset w′ of objects. The

mapping appRules(r, w′) computes a (finite) set of pairs

{(r′′1 , w′′1 ), · · · , (r′′n, w′′n)}. Each r′′i is a multiset of rewriting

rules applicable to w and w′′i is a (sub)multiset (of w) which

is irreducible with respect to r.

Definition 4.2: appRules : (R×W ) → Pfin(R×W )
appRules(r, w) =

if aux(r, w) = ∅
then {(ε, w)}
else {(w ⇒ x� r′, w′′)

| ((w, x), w′) ∈ aux(r, w)
(r′, w′′) ∈ appRules(r, w′)}

where

aux : (R×W ) → Pfin((W ×X)×W )
aux(ε, w) = ∅
aux(w′ ⇒ x′� r, w) =

if (w′ ⊆ w)
then {((w′, x′), w \ w′)} ∪ aux(r, w)
else aux(r, w).

Remarks 4.3:
(a) The definitions of appRules(r, w) and aux(r, w) can

be justified by an easy induction (on the number of

elements in the multiset w, and by induction on the

length of list r, respectively).

(b) For any r ∈ R and w ∈ W , either

appRules(r, w) = {(ε, w)}, or appRules(r, w) =
{(r′′1 , w′′1 ), · · · , (r′′m, w′′m)}, where each r′′j �= ε, i.e.

r′′j = w1 ⇒ x1 � · · · �wn ⇒ xn (m ≥ 1, n ≥ 1).

We introduce the configurations of the transition system. Let

Id be a (countable) set of identifiers. 2

Definition 4.4: (Configurations)

(a) Conf = (X × C) ∪ {E},
(b) C = (K ×W ),
(c) K = {|X |}Id.

Conf is the class of configurations of the transition system

defined later by Definition 4.6. A configuration z ∈ Conf is

either a pair (x, c) ∈ X × C consisting of an LMR statement

x ∈ X and a resumption c ∈ C, or the symbol E which

denotes termination. A resumption c ∈ C is a pair (k,w)
consisting of a multiset k ∈ {|X |}Id of LMR statements (that

are evaluated in parallel), and a multiset w ∈ W of objects

that is irreducible with respect to the set of rules of the

program.

Definition 4.5: Let mset : X → W defined by

mset(o) = [o], mset(x1 ‖ x2) = mset(x1) � mset(x2).
Let msetK : {|X |}Id → W and msetK(k) =⊎

α∈id(k)mset(k(α)); mset and msetK compute the

multiset of objects contained in either an X statement or

an {|X |}Id multiset, respectively.

Notation: Let ô ∈ O be a distinguished object, and c0 =
({||}k0 , []) ∈ C the empty resumption, where k0 ∈ {|X |}Id,

k0 = (∅, λ . ô).
The operational semantics of LMR is based on a transi-

tion relation −→⊆ Conf ×W ×R× Conf with elements

(z, w, r, z′) written as z
w−→r z′. Intuitively, z is the initial

configuration, z′ is the final configuration and w is the ’label’

of such a transition. In general, a transition also depends on

the set r of rules of the program that is evaluated. We specify

the transition relation by a set of axioms z
w−→r z′, and

rules of the form z2
w−→r z′

z1
w−→r z′ . The transitions of the system

can be inferred by backward chaining. In order to find the

transitions of z1 we try to infer the transitions of z2, as

any transition of z2 is also a transition of z1. We use the

following notation:

(a) z1 ↗r z2 is an abbreviation for
z2

w−→r z′

z1
w−→r z′

.

(b) 〈n \ i〉 is an abbreviation for the set {1, · · · , n} \ {i},
where n, i ∈ N.

Definition 4.6: (Transition system TMR) The

transition relation −→ for LMR is the smallest subset

of Conf ×R×W × Conf satisfying the axioms

and rules given below. In axioms (A1) and (A2)

2For example, we can set Id = N and define ν : Pfin(Id) → Id,
ν(π) = 1 + max{α | α ∈ π}, as explained in subsection II-A.

277277



w′ = [o] � w �msetK(k), 
 = appRules(r, w′), and

k0 is part of the empty resumption.

(A1) (o, (k,w)) w′
−→r E if 
 = {(ε, w′)}

(A2) (o, (k,w)) w′
−→r (xi, ({|xj | j ∈ 〈n \ i〉|}k0 , w

′′))
if (w1 ⇒ x1 � · · · �wn ⇒ xn, w

′′) ∈ 
, 1 ≤ i ≤ n

(R3) (x1 ‖ x2, (k,w)) ↗r (x1, (x2 : k,w))

(R4) (x1 ‖ x2, (k,w)) ↗r (x2, (x1 : k,w))

A configuration of the form (x, (k,w)) is a semantic

representation of an LMR program decomposed into a

current statement x, and the remainder of the program

which is encapsulated in the resumption (k,w), The current

computation is evaluated in parallel with the resumption.

If the current computation x is an (elementary) object o
the system performs a reduction step corresponding to a

multiset of rewriting rules which are applied in parallel; this

is expressed in axioms (A1) and (A2).

The multiset of rewriting rules is computed by the map-

ping appRules(r, w′) which takes as arguments the set r of

rules of the program which is evaluated, and a multiset w′

containing the (current) object o plus all objects contained in

the resumption (k,w). appRules(r, w′) computes a (finite)

set 
 of pairs (r′′, w′′), each such pair consisting of a

multiset of rewriting rules r′′ = w1 ⇒ x1 � · · · �wn ⇒ xn

applicable to w′ and an irreducible (sub)multiset w′′ (of w′).
According to axiom (A2) the multiset of rules is selected in

a nondeterministic manner and all rules (in the multiset)

are applied in parallel in a single step. When no rule in r is

applicable to w′, the mapping appRules returns {(ε, w′)}; in

this case axiom (A1) states that the LMR program produces

w′ as observable, and then terminates.

According to rules (R3) and (R4), the semantics of parallel

composition x1 ‖ x2 is based on a nondeterministic choice

between two computations: one evaluates x1 in parallel with

x2 added to the resumption and the other one evaluates x2

in parallel with x1 added to the resumption.

Definition 4.7: (Operational semantics of LMR)

(a) Let SemO = Conf → P and let

Ψr : SemO → SemO be defined by

Ψr(S)(E) = {ε},
Ψr(S)(x, c) =

⋃{w · S(z) | (x, c) w−→r z}
(b) We put Or = fix(Ψr), and define O[[·]] : LMR → P

by O[[(r, x)]] = Or(x, c0) = Or(x, ({||}k0 , [])).
Remarks 4.8:

(a) It is not difficult to prove that TMR is finitely branch-

ing (i.e., for all z ∈ Conf , r ∈ R, the set

{(w′, z′) | z w′
−→r z′} is finite), and thus it induces

a compact operational semantics (see [4]). E has no

transitions. When z = (x, c), the proof can proceed by

structural induction on x (using the fact that appRules
yields a finite set).

(b) Ψr is contracting due to the ”w · ”-step in its definition,

and thus it has a unique fixed point

Example 4.9: Let ρ ∈ LMR be ρ = (r, o1 ‖
o2), where r = [o1] ⇒ o2 � [o1]⇒ o3. In this example we

simply write {| · · · |} instead of {| · · · |}k0 . We compute

O[[(r, o1 ‖ o2)]] = Or(o1 ‖ o2, ({||}, [])). We have:

(o1 ‖ o2, ({||}, []))↗r (o1, ({|o2|}, []))
(o1 ‖ o2, ({||}, []))↗r (o2, ({|o1|}, []))

Let z1 = (o1, ({|o2|}, [])), z2 = (o2, ({|o1|}, [])).
Or(o1 ‖ o2, ({||}, [])) = p1 ∪ p2, where

p1 =
⋃{w · Or(z) | z1 w−→r z}

and p2 =
⋃{w · Or(z) | z2 w−→r z}.

We compute the transitions of z1 = (o1, ({|o2|}, [])).
Let w′ = [o1] � [ ] �msetK({|o2|}) = [o1, o2].

As appRules(r, w′)={([o1] ⇒ o2, [o2]), ([o1]⇒ o3, [o2])},
(o1, ({|o2|}, []))

[o1,o2]−→ r (o2, ({||}, [o2]))
(o1, ({|o2|}, []))

[o1,o2]−→ r (o3, ({||}, [o2]))
[o2] � [o2] � msetK({||}) = [o2, o2] and

appRules(r, [o2, o2]) = {(ε, [o2, o2])}, hence

(o2, ({||}, [o2]))
[o2,o2]−→ r E

Also, [o3] � [o2] � msetK({||}) = [o2, o3] and

appRules(r, [o2, o3]) = {(ε, [o2, o3])}, therefore

(o3, ({||}, [o2]))
[o2,o3]−→ r E

Thus,

p1 = [o1, o2] · Or(o2, ({||}, [o2]))∪
[o1, o2] · Or(o3, ({||}, [o2]))

= [o1, o2] ·([o2, o2] ·Or(E))∪ [o1, o2] ·([o2, o3] ·Or(E))
= {[o1, o2][o2, o2], [o1, o2][o2, o3]}

It turns out that p2 = p1. Therefore

O[[ρ]] = O[[(r, o1 ‖ o2)]] = {[o1, o2][o2, o2], [o1, o2][o2, o3]}.

V. DENOTATIONAL SEMANTICS

The denotational semantics [[·]] of LMR is similar to that

presented in [8]. Here the definitions are without the formal

justifications given in [8]. 3 The domain definitions are:

(ψ ∈)D = W × F
(φ ∈)F ∼= C

1→P
(γ ∈)C = K×W
(κ ∈)K = {|W × (1

2 · F)|}Id

(η ∈)E = O → D
D is the domain of denotations. and C is the domain of

continuations. The notation {|·|}Id is explained in Subsection

II-A, and the set W = [O] is as in Sections III and IV. Here

the sets W and Id are equipped with discrete metrics. E is

the domain of semantic environments, which are mappings

3There is only one ’cosmetic’ difference: C = W × K in [8].

278278



from object names O to denotations D. The final domain P
is given in Definition 4.1. The domain equation for D has

a unique solution up to an isomorphism ’∼=’ [2]. For further

explanations see [8].

The denotational mapping [[·]] : X → E→ D is defined by

[[·]] : X → E
1→D

[[o ]]η = η(o)
[[x1 ‖ x2]]η =

let (w1, φ1) = [[x1]]η
(w2, φ2) = [[x2]]η

in (w1 � w2 , λ(κ,w).(φ1((w2, φ2) : κ,w)∪
φ2((w1, φ1) : κ,w))).

We define a semantic environment η0 : E as (the unique)

fixed point of a higher-order mapping Φr, which is given

(for any set r ∈ R of LMR rewriting rules) by:

Φr : E→ E
Φr(η)(o) =

([o],
λ(κ,w) .

let w′ = [o] � w � (
⊎

α∈id(κ) fst(κ(α)))

 = appRules(r, w′)

in w′ · ( if 
 = {(ε, w′′)} then {ε}
else

⋃
(r′′,w′′)∈� exe(r′′, w′′, η))),

where

exe(w1 ⇒ x1 � · · · �wn ⇒ xn, w
′′, η) =⋃

i∈I(snd([[xi]]η))({|[[xj ]]η | j ∈ 〈n \ i〉|}κ0 , w
′′),

and κ0 = (∅, λα . [[ô]]η0). In [8] it is shown that Φr is indeed

a contraction (Φr : E
1
2→E). We denote η0 = fix(Φr).

Finally, we define D[[·]] : LMR → P by:

D[[(r, x)]] = (snd([[x]]η0))({||}κ0 , [])
Remark 5.1: fst([[x]]η0) = mset(x), for all x ∈ X .

This can be checked easily by structural induction on x.

Examples 5.2:
(a) Let ρ=(r, o1 ‖ o2) be the LMR program given in

example 4.8. In [8] it is shown that D[[ρ]] =
{[o1, o2][o2, o2], [o1, o2][o2, o3]}, i.e. D[[ρ]] = O[[ρ]].

(b) Let ρ′ = (r′, o1 ‖ o2), r′ = [o1] ⇒ o2 ‖ o4 �

[o1, o2] ⇒ o2 � [o2]⇒ o3; the behavior of this

LMR example program is explained in [8]. We do not

give here the details of how O[[·]] and D[[·]] provide the

meaning of ρ′. One can check that D[[ρ′]] = O[[ρ′]] =
{[o1, o2][o2, o3, o4][o3, o3, o4],[o1, o2][o2][o3]}.

VI. THE RELATION BETWEEN THE OPERATIONAL

SEMANTICS AND THE DENOTATIONAL SEMANTICS

In this section we prove that O[[ρ]] = D[[ρ]], ∀ρ ∈ LMR.

First, we introduce an auxiliary mapping Rr : Conf → P.

We show that Rr = fix(Ψr), where Ψr is given in

Definition 4.7. The desired result is obtained in Theorem 6.4

by using Lemma 6.3; as is customary in metric semantics,

the proof relies on Banach’s fixed point.

Definition 6.1:
(a) Let [[[·]]] : K → K be given by

[[[k]]] = (id(k), λα . [[k(α)]]η0)
(b) We define Rr : Conf → P by

Rr(E) = {ε}
Rr(x, (k,w)) = (snd([[x]]η0))([[[k]]], w)

The following result is needed in the proof of Lemma 6.3.

Lemma 6.2: Let x, xi ∈ X, k ∈ Conf . We have

(a) [[[x : k]]] = [[x]]η0 : [[[k]]]
(b) [[[{|xi | i ∈ I |}k]]] = {|[[xi]]η0 | i ∈ I |}[[[k]]], I ∈ Pfin(N)
(c) {||}κ0 = κ0 = [[[k0]]] = [[[{||}k0 ]]]

where η0, κ0 are given in section V and k0 is part of the

empty resumption.

The following result is an important ingredient in the proof

of Theorem 6.4.

Lemma 6.3: Rr = fix(Ψr).
Proof: We show that ∀z ∈ Conf : Ψr(Rr)(z) =

Rr(z). Indeed, Ψr(Rr)(E) = Rr(E) = {ε}. Next, when

z = (x, (k,w)) we proceed by structural induction on

x ∈ X .

• Case x = o. Let w′ = [o] � w � msetK(k)
and 
 = appRules(r, w′). Notice that

fst([[[k]]](α)) = fst([[k(α)]]η0) = mset(k(α)),
by Remark 5.1, and id([[[k]]]) = id(k). Hence

w′ = [o] � w � (
⊎

α∈id(k)mset(k(α)))
= [o]�w�(

⊎
α∈id([[[k]]]) fst([[[k]]](α))). If 
 = {(ε, w′′)}

there is a single transition (o, (k,w)) w′
−→r E. In this

subcase we compute as follows:

Ψr(Rr)(o, (k,w))
= w′ · Rr(E) = {w′}
= (snd(η0(o)))([[[k]]], w)
= (snd([[o]]η0))([[[k]]], w)
= Rr(o, (k,w))

Otherwise, 
 = {(r′′1 , w′′1 ), · · · , (r′′m, w′′m)}, where

r′′1 �= ε, · · · , r′′m �= ε, (see Remark 4.3(b)). In this sub-

case:

Ψr(Rr)(o, (k,w))
=

⋃
(w1⇒x1 � ···� wn⇒xn,w′′)∈�

w′ · Rr(xi, ({|xj | j ∈ 〈n \ i〉|}k0 , w
′′))

=
⋃

(w1⇒x1 � ···� wn⇒xn,w′′)∈�

w′·(snd([[xi]]η0))([[[{|xj | j ∈ 〈n \ i〉|}k0 ]]], w
′′)

[Lemma 6.2(b) and Lemma 6.2(c)]

=
⋃

(w1⇒x1 � ···� wn⇒xn,w′′)∈�

w′ ·(snd([[xi]]η0))({|[[xj ]]η0 | j∈〈n \ i〉|}κ0 ,w
′′)

= (snd(η0(o)))([[[k]]], w)
= (snd([[o]]η0))([[[k]]], w)
= Rr(o, (k,w))

• Case x = x1 ‖ x2. Let z = (x1 ‖ x2, (k,w)),
z1 = (x1, (x2 : k,w)) and z2 = (x2, (x1 : k,w)).

Ψr(Rr)(z) =
⋃{w1 · Rr(z′1) | z1

w1−→r z′1}∪⋃{w2 · Rr(z′2) | z2
w2−→r z′2}

279279



= Ψr(Rr)(z1) ∪Ψr(Rr)(z2)
[Induction hypothesis]

= Rr(z1) ∪Rr(z2)
= (snd([[x1]]η0))([[[x2 : k]]], w)∪

(snd([[x2]]η0))([[[x1 : k]]], w)
[Lemma 6.2(a)]

= (snd([[x1]]η0))([[x2]]η0 : [[[k]]], w)∪
(snd([[x2]]η0))([[x1]]η0 : [[[k]]], w)

= (snd([[x1 ‖ x2]]η0))([[[k]]], w)
= Rr(x1 ‖ x2, (k,w))

We can present now the main result of the paper.

Theorem 6.4: O[[ρ]] = D[[ρ]], ∀ρ ∈ LMR.

Proof: Let ρ = (r, x) ∈ LMR.

O[[(r, x)]] = Or(x, ({||}k0 , [])) =
[Theorem 2.1, Lemma 6.3]

= Rr(x, ({||}k0 , [])) =
= (snd([[x]]η0))([[[{||}k0 ]]], []) =

[Lemma 6.2(c)]

= (snd([[x]]η0))({||}κ0 , []) =
= D[[(r, x)]].

VII. CONCLUSION

This paper is a continuation of the approach started

in [8]. Here we use the mathematical methodology of metric

semantics [4] in defining and relating an operational seman-

tics and a denotational semantics for a multiset concurrent

language LMR. The semantics of parallel composition in

LMR is based on the concept of maximal parallelism and

computations are specified by means of multiset rewriting

rules. These features are encountered in new formalisms

of natural computing, for instance in membrane comput-

ing. The two semantic models were defined by using the

continuation semantics for concurrency technique, and the

formal relation between the operational semantics and the

denotational semantics was established by using Banach’s

fixed point theorem.

ACKNOWLEDGMENT

The research reported in this paper was partially supported

by the Romanian Ministry of Education, Research, Youth

and Sports, National Authority for Scientific Research, Ca-

pabilities / Module III, Bilateral Collaboration between Ro-

mania and Greece, project no. 582/16.07.2012, project title:

”SemNat: Semantic Models and Technologies for Natural

Computing” (2012-2014).

REFERENCES

[1] O. Agrigoroaiei, G. Ciobanu. Flattening the Transition P Sys-
tems with Dissolution. Lecture Notes in Computer Science,
vol.6501, pp.53–64, 2011.

[2] P. America, J.J.M.M. Rutten, ”Solving Reflexive Domain
Equations in a Category of Complete Metric Spaces”, J. of
Comput. System Sci., vol.39, pp.343–375, 1989.

[3] O. Andrei, G. Ciobanu and D. Lucanu, ”A Rewriting Logic
Framework for Operational Semantics of Membrane Systems,”
Theoretical Computer Science, vol.373, pp.163–181, 2007.

[4] J.W. de Bakker, E.P. de Vink. Control Flow Semantics, MIT
Press, 1996.

[5] S. Banach. Sur les Operation dans les Ensembles Abstrait
et leurs Application aux Equation Integrales, Fundamenta
Mathematicae, vol.3, pp.133–181, 1922.

[6] G. Ciobanu. Semantics of P Systems, Handbook of Membrane
Computing, Oxford University Press, pp.413–436, 2009.

[7] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Applications of
Membrane Computing, Natural Computing Series, Springer,
2006.

[8] G. Ciobanu, E.N. Todoran. Metric Denotational Semantics for
Parallel Rewriting of Multisets. In Proceedings SYNASC 2011,
pp.276–284, IEEE Computer Press, 2011.

[9] C. Fournet, G. Gonthier. The Join Calculus: a Language for
Distributed Mobile Programming, Lecture Notes in Computer
Science vol.2395, pp.268–332, 2000.

[10] Gh. Păun, Membrane Computing. An Introduction. Springer,
2002.

[11] G.D. Plotkin. A Powerdomain Construction, SIAM Journal
of Computing, vol.5, pp.452–487, 1976.

[12] G.D. Plotkin. A Structural Approach to Operational Seman-
tics, Journal of Logic and Algebraic Programming, vol.60-61,
pp.17–139, 2004.

[13] C. Stratchey, C. Wadsworth. Continuations: a mathematical
semantics for handling full jumps, Higher Order and Symbolic
Computation, vol.13, pp.135–152, 2000.

[14] E.N. Todoran. Metric Semantics for Synchronous and Asyn-
chronous Communication: a Continuation-Based Approach,
Electronic Notes in Theoretical Computer Science, vol.28,
pp.119–146, 2000.

280280


