Previous Next Table of Contents

5. Writing UDP/SOCK_DGRAM applications

Warning: This is the first release of the faq to have a section on UDP. This means that the answers haven't had time to be read by all the experts in comp.unix.programmer, and corrected if they are wrong.

5.1 When should I use UDP instead of TCP?

UDP is good for sending messages from one system to another when the order isn't important and you don't need all of the messages to get to the other machine. This is why I've only used UDP once to write the example code for the faq. Usually TCP is a better solution. It saves you having to write code to ensure that messages make it to the desired destination, or to ensure the message ordering. Keep in mind that every additional line of code you add to your project in another line that could contain a potentially expensive bug.

If you find that TCP is too slow for your needs you may be able to get better performance with UDP so long as you are willing to sacrifice message order and/or reliability.

UDP must be used to multicast messages to more than one other machine at the same time. With TCP an application would have to open separate connections to each of the destination machines and send the message once to each target machine. This limits your application to only communicate with machines that it already knows about.

5.2 What is the difference between "connected" and "unconnected" sockets?

From Andrew Gierth (

If a UDP socket is unconnected, which is the normal state after a bind() call, then send() or write() are not allowed, since no destination address is available; only sendto() can be used to send data.

Calling connect() on the socket simply records the specified address and port number as being the desired communications partner. That means that send() or write() are now allowed; they use the destination address and port given on the connect call as the destination of the packet.

5.3 Does doing a connect() call affect the receive behaviourof the socket?

From Richard Stevens (

Yes, in two ways. First, only datagrams from your "connected peer" are returned. All others arriving at your port are not delivered to you.

But most importantly, a UDP socket must be connected to receive ICMP errors. Pp. 748-749 of "TCP/IP Illustrated, Volume 2" give all the gory details on why this is so.

5.4 How can I read ICMP errors from "connected" UDP sockets?

If the target machine discards the message because there is no process reading on the requested port number, it sends an ICMP message to your machine which will cause the next system call on the socket to return ECONNREFUSED. Since delivery of ICMP messages is not guarenteed you may not recieve this notification on the first transaction.

Remember that your socket must be "connected" in order to receive the ICMP errors. I've been told that Linux will return them on "unconnected" sockets, but I haven't verfied it. This may cause porting problems if your application isn't ready for it.

5.5 How can I be sure that a UDP message is received?

You have to design your protocol to expect a confirmation back from the destination when a message is received. Of course is the confirmation is sent by UDP, then it too is unreliable and may not make it back to the sender. If the sender does not get confirmation back by a certain time, it will have to re-transmit the message, maybe more than once. Now the receiver has a problem because it may have already received the message, so some way of dropping duplicates is required. Most protocols use a message numbering scheme so that the receiver can tell that it has already processed this message and return another confirmation. Confirmations will also have to reference the message number so that the sender can tell which message is being confirmed. Confused? That's why I stick with TCP.

5.6 How can I be sure that UDP messages are received in order?

You can't. What you can do is make sure that messages are processed in order by using a numbering system as mentioned in 5.5 How can I be sure that a UDP message is received?. If you need your messages to be received and be received in order you should really consider switching to TCP. It is unlikely that you will be able to do a better job implementing this sort of protocol than the TCP people already have, without a significant investment of time.

5.7 How often should I re-transmit un-acknowleged messages?

The simplest thing to do is simply pick a fairly small delay such as one second and stick with it. The problem is that this can congest your network with useless traffic if there is a problem on the lan or on the other machine, and this added traffic may only serve to make the problem worse.

A better technique, described with source code in "UNIX Network Programming" by Richard Stevens (see 1.5 Where can I get source code for the book [book title]?), is to use an adaptive timeout with an exponential backoff. This technique keeps statistical information on the time it is taking messages to reach a host and adjusts timeout values accordingly. It also doubles the timeout each time it is reached as to not flood the network with useless datagrams. Richard has been kind enough to post the source code for the book on the web. Check out his home page at

5.8 How come only the first part of my datagram is getting through?

This has to do with the maximum size of a datagram on the two machines involved. This depends on the sytems involved, and the MTU (Maximum Transmission Unit). According to "UNIX Network Programming", all TCP/IP implementations must support a minimum IP datagram size of 576 bytes, regardless of the MTU. Assuming a 20 byte IP header, this leaves 556 bytes as a safe maximum size for UDP messages. The maximum size is 65516 bytes. Some platforms support IP fragmentation which will allow datagrams to be broken up (because of MTU values) and then re-assembled on the other end, but not all implementations support this.

This information is taken from my reading of "UNIX Netowrk Programming" (see 1.5 Where can I get source code for the book [book title]?). I had hoped to test it out myself before releasing this copy of the faq, but as usual the 21st came more quickly than I would like! I would like to hear from anyone who has information to add to this (or any other) section.

Previous Next Table of Contents