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Material partially based on:

“Simple, unification-based type inference for gadts” (ICFP’06)

with Simon Peyton Jones, Stephanie Weirich, and Geoff Washburn
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Functional programming with internal verification

First type systems (e.g. the ML type system) reason for existence:
I Ensure crash-free program behaviour without runtime tests.

Modern view: type systems for verification of correctness properties.
I Via Curry-Howard correspondence types express properties.
I Specifications written in the types (alas internal).
I Proofs are programs, properties statically verified via type checking.

Expressive type systems:

A form of lightweight internal verification; a process meant to co-exist

with external verification.
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The Haskell view on dependently typed programming

Pseudo-dependently typed programming used all the time!

Phantom types, higher-rank types, type classes with functional

dependencies, generalized algebraic data types.

Complete type inference for such extensions is often undecidable.

Goal: must not sacrifice type inference for the whole language.

Solution: Take advantage of user type annotations, in a mixture of

type checking and type inference.

This presentation: Incorporating gadts in the type inference engine of a

practical programming language. Implemented in the current version of

the Glasgow Haskell Compiler.
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Generalized algebraic data types

The unit conversion problem, in Haskell’98:

type Meters = Double

type Feet = Double

add :: Double -> Double -> Double

add x y = x + y -- terrible!

Or, better:
newtype Meters = M Double

newtype Feet = F Double

addMeter :: Meters -> Meters -> Meters

addMeter (M x) (M y) = M (x+y)

addFeet :: ... -- similarly!
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Generalized algebraic data types

Or, using a single datatype:

data Unit = M Double

| F Double

add (M x) (M y) = M (x+y)

add (F x) (F y) = F (x+y)

add _ _ = error ‘‘can’t convert units!’’

But the consumer of this code may attempt to call the function with

wrong arguments. The gadt solution:

data Meters; data Feet;

data Unit a where

M :: Double -> Unit Meters

F :: Double -> Unit Feet

add :: forall a. Unit a -> Unit a -> Unit a

add (M x) (M y) = M (x+y)

add (F x) (F y) = F (x+y) -- no need for the rest, unreachable branches!

Compare the two definitions of Unit!

6:26



The most famous gadt: typed abstract syntax

Consider a conventional interpreter:

data Term = BLit Bool | ILit Int | If Term Term Term | Suc Term

eval :: Term -> Term

eval (If t1 t2 t3) =

case (eval t1) of

BLit True -> eval t2

BLit False -> eval t3

_ -> error ‘‘must not happen!’’

eval (Suc t) =

case eval t of

ILit i -> ILit (i+1)

_ -> error ‘‘must not happen!’’

Several problems:

Can’t detect and prevent the pattern match failures.

A lot of inefficient tagging and pattern matching.
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The most famous gadt: typed abstract syntax

data Term a where

BLit :: Bool -> Term Bool

ILit :: Int -> Term Int

If :: Term Bool -> Term a -> Term a -> Term a

Suc :: Term Int -> Term Int

eval :: forall a. Term a -> a

eval (BLit b) = b -- a = Bool

eval (ILit i) = i -- a = Int

eval (If t1 t2 t3) = if (eval t1) then (eval t2) else (eval t3)

eval (Suc t) = 1 + eval t -- a = Int

The variable a in Term a is not a parameter, but rather an index.

Return types of constructors not uniform.

Pattern matching introduces refinement.
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Type inference for gadts is problematic

Lack of principal type to infer for a function and use throughout its scope:

Threatens completeness!

Consider:
eval (ILit i) = i

eval (Suc t) = 1 + eval t

What type we infer for eval?

8a :Term a ! Int

Term Int ! Int

8a :Term a ! a

Our solution:

Allow refinement to happen only when types originate in some user

type annotation; otherwise treat patterns as ML.

Implies that the program above gets only Term Int ! Int .
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Wobbly and rigid types

We need to separate types:

Rigid types; originating in some user annotation.
I If one thinks operationally, they cannot contain unification variables.

Wobbly types; containing guessed information.
I Operationally, may contain unification variables.

Two judgements:

� ` e :w � and � ` e :r �

The rules for these judgements maintain the wobbly-rigid invariant:

� ` e1 :
w �1 � ` e2 :

w �1 ! �2

� ` e1 e2 :
m �2

�; x :m�1 ` e :m �2

� ` �x :e :m �1 ! �2
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Rigidity can be traced down to annotations

Rigidity is originating in some user annotation:

� ` u :r � �; x :r� ` e :m �

� ` let x ::� = u in e :m
� ` u :r �

� ` u ::� :m �

Moreover, we have a way of inferring the rigidity of a given type:

(x :m� ) 2 �

� ` x : � � m

� ` e :m �

� ` e : � � w

� ` e :r �

� ` (e ::� ) : � � r

. . . and this last procedure can be made more or less precise, this is not

the important part!
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The important part: simple, unification-based refinement!

All magic lies in pattern matching expressions:

case e of J1 x ! e1

: : : ! : : :

Jn y ! en

Call e , the scrutinee of the case expression. Two basic principles:

1 If the scrutinee type is unannotated do not use refinement; treat

pattern matching as in ML!.

2 Subtle: Apply refinement only to rigid parts of judgement.
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Principle 1: Do not use refinement if scrutinee is wobbly!

It is threatening type inference completeness:

data T a where TInt :: Int -> T Int

TBool :: Bool -> T Bool

foo = let bar = fun x ->

case x of TInt y -> y

in (bar (TBool True) , bar (TInt 42))

It’s the same example from the introduction, really:

Type system gives bar the type 8a :T a ! a , and succeeds.

Any simple algorithm would go with the more specialized type

T Int ! Int . The algorithm would fail!

Completeness is gone!
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Principle 2: Never apply refinement to wobbly types!

It is threatening type inference completeness (same old problem):

data T a where MkT :: T Int

foo :: forall a. T a -> Int

foo x = let = fun z ->

(fun -> (case x of MkT -> [x,z])) [x,z]

in 42

First, x :rT a , z :w� in context.
Next, refinement of a to Int happens, since scrutinee is rigid.
I Type system: could guess that a for � , and check both [x ; z ]’s, inner

one typed as [Int ], outer one typed as [a ].
I But, the algorithm could only put a unification variable there for � ,

then apply the refinement for x and infer that � = Int . This would

immediately make the outer [x ; z ] to fail!

Conclusion: We must not apply refinement if the return type of the case is

wobbly (as is here!), in order to achieve a complete type inference

search-free, unbiased algorithm!
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Type checking case expressions with wobbly scrutinee

� ` e : �s � ms � ` Ji x ! ei :
ms ;m �s ! � for all i

� ` case e of fJ x ! eg :m �

If the scrutinee is wobbly, no refinement is happening—just as in Haskell:

J :r 8a :�1 ! T �2 2 � a#ftv(�; �p ; �t )

ac = a \ ftv(�2) � = [ac 7! v ] �(�2) = �p

�; x :w �(�1) ` t :m �t

� ` J x ! e :w ;m T �p ! �t
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Type checking case expressions with rigid scrutinee

If the scrutinee is rigid, use refinement, respecting the previous principles:

J :r 8a :�1 ! T �2 2 � a#ftv(�; �p ; �t )

� 2 fmgu(�p
:
= �2) �(�; x :r�1) ` t :m �m(�t )

� ` J x ! e :r ;m T �p ! �t

Refinement expressed as a most general unifier.

Refinement is selectively applied. Notice

�(�; x :r�1) and �m(�t )

Remarks:

It is sound to use a most general unifier, or any pre-unifier!

Is it sound to use any unifier? (No)

What if there is no unifier?
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Still trouble: How many mgus are there?

data Eq a b where Refl :: forall c. Eq c c

f :: forall a b. Eq a b -> (a -> Int) -> b -> Int

f x y z = (fun w -> case x of Refl -> y w) z

x , y , z with rigid types in environment, refinement in pattern

matching, then applied to rigid environment:

� 2 mgu(Eq c c
:
= Eq a b)

But there are three of those unifiers:
I � = [a 7! c; b 7! c]
I � = [a 7! b; c 7! b]
I � = [b 7! a ; c 7! a ]

But the type of z outside the pattern match is simply b and therefore

only the second unifier will succeed!

Terrible news! We lose completeness of the algorithm again.
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Solution: fresh mgus

A fresh mgu or fmgu is a unifier where such ambiguities are resolved with

the introduction of fresh variables, and no spurious equalities are justified.

Almost like an mgu but with more completely fresh variables.

Intuitively, these fresh variables express a uniquely chosen

representative of each equivalence class.

E.g only � = [a 7! c; b 7! c] is an fmgu of Eq c c
:
= Eq a b.

fmgus solve the directionality problem, and are still sound! (why?)

More technical details in the paper or the technical report.
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Summary of contributions of this work

Proofs of elaboration-based type soundness.

Existence of principal types and a complete type inference algorithm.

Treatment of lexically-scoped type variables in annotations.

Treatment of nested patterns.

The paper is now implemented in GHC! Pattern matching with unification

is a very delicate technically subject! Our counterexamples and design

choices were driven by horrible proof failures!

Most closely related work is

“Stratified type inference for generalized algebraic datatypes” (POPL’06)

by François Pottier and Yann Régis-Giannas.
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Dependently typed programming with gadts

gadts for dependently typed programming or theorem proving:

data S a; data Z;

data DList n where

Nil :: DList Z

Cons :: forall m. Double -> List m -> List (S m)

safehead :: forall m. List (S m) -> Double

safehead (Cons d l) = d
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What is missing?

But consider the append function:

data Plus n m q where

Base :: forall m. Plus Z m m

Ind :: Plus n m q -> Plus (S n) m (S q)

append :: Plus n m q -> List n -> List m -> List q

append Base Nil l = l

append (Ind pr) (Cons d l0) l = Cons d (append pr l0 l)

Works, but a little unsatisfactory: The user did all the proofs! Haskell

hackers today try to eliminate the Plus n m q predicate with type classes

with functional dependencies:

append :: Plus n m q => List n -> List m -> List q

But the interaction of gadts and type classes is not well-specified (work

on this is ongoing)
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True type functions

Perhaps what is missing, is true type functions!

typefun Add :: * -> * where

Add Z m = m

Add (S n) m = S (Add n m)

append :: List n -> List m -> List (Add n m)

append Nil l = l

append (Cons d l0) l = Cons d (append l0 l)

But there are problems:

Higher-order unification!

How does HOU interact with gadt refinement?

Type functions must define a confluent (for type inference

completeness) and normalizing (for decidability) rewrite system.
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First-class existential types

Another common style of dependently typed programming is returning

values together with proofs about their properties:

append :: 8nm :List n ! List m ! 9p:(List p;Plus n m p)

Good, only GHC does not support first class existentials!

data FakeEx n m where

MkF :: forall p n m. (List p, Plus n m p) -> FakeEx n m

append :: List n -> List m -> FakeEx n m

append Nil l = MkF (l, Base)

append (Cons d l0) l = case (append l0 l) of

MkF (al,prf) -> MkF (Cons d al, Ind prf)

Type inference figures out all types for us, but the fact that we used a

specially introduced existential type for this instead of built-in is terribly

annoying!
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Work plan

Type-level computations.
I Start point: a dependently typed language.
I Type system tracking termination behaviour of type-indexing functions.
I Exploring pattern matching that introduces only unifiers with

first-order domains. Open question: Can we still make any use of the

second-order constraints in the right-hand sides?

First-class existentials.
I Extension of GHC’s first-class polymorphism support (Vytiniotis et al.,

ICFP’06) for existential types.
I Seems tricky, with a lot of design choices that must be evaluated.
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Related

Coq may not be that bad for development.
I But the lack of context refinement is often unsatisfactory.

Tim Sheard’s 
mega is a Very nice attempt in addressing the first

point above. Check it out! It takes the Haskell approach of type-level

computations; instead of the dependent types avenue.

What about interactions of dependent types and store properties?

Aaron Stump’s RSP1 is an attempt towards this direction, but offers

weak pattern matching, and allows no computations inside types

using a syntactic criterion.

Epigram?
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Thank you for your attention!
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