
Issues in writing a Parallel
Compiler starting from a Serial
Compiler

Alexandros Tzannes,
Rajeev Barua,
George C. Caragea,
Uzi Vishkin

University of Maryland, College Park

2

Motivation

“The Free Lunch is Over” [Herb Sutter]
CPU clock speed stopped increasing
Dual Cores (on chip) are now
mainstream and Quad cores around the
corner
Intel has a 5 year roadmap for a 80-core
teraflop processor

3

Motivation

Parallel machines need to be
programmed Parallel compilers are
needed
Writing an optimizing compiler is hard.
Parallelism cannot be implemented
exclusively as a library (e.g., PThreads)
[Boehm05]
Can we use a serial compiler as the
basis for a parallel compiler ?

4

Background

Conflict:
Statement instances p and q conflict if they
access the same memory location m and at
least one of them is a write.

Dependence:
if p always accesses m before q then we
have a dependence and q depends on p.

5

Sequential Consistency

Memory Consistency Model.
Definition

Two levels:
Hardware
Software

[Mark Hill] The programmer should
program in SC semantics.

6

Our Focus

Shared Memory SPMD PL with SC semantics
XMTC: spawn statement:

spawn (low,high) { CODE }
create high-low+1 threads with IDs in {low,
low+1,…,high}
the threads are executed in any order at any speed
and implicitly synchronize at the end of the spawn
statement.
the TID can be accessed in CODE by means of the
special symbol ‘$’.
No jumps across serial parallel boundaries.

7

Spawn Example

int A[100];
spawn (0, 99) {

A[$] = $*$;
}

8

Why not…

compile each thread as a serial
program?[Midkiff90]

conflicts and dependencies make many
serial optimizations inapplicable. (More on
this later)

9

Adding the spawn statement

Alternative 1:
Augment the internal representation with
new types of nodes for parallel constructs.
Update all optimization passes to deal with
new nodes.

Alternative 2:
Insert placeholder nodes (e.g., by means of
function calls) that will be expanded at the
end of the compilation.

10

Illegal dataflow

int main (void) {
int c=0;
spawn (0,4) {

increment c by 1 atomically;
}
… = c;

}

A solution: outlining

1

11

Outlining Example

outlined_spawn (int *c) {
spawn(0,4) {

increment *c atomically by 1
}

}
int main (void) {

int c = 0;
outlined_spawn(&c);
… = c;

}

12

Outlining

Outlined functions placed in a different
file.
Outlined Functions Might need
arguments (by value or by reference).
Global variables might need to be
accessible
Inlining cannot be done before all
optimization passes are through. It is
hard and not very rewarding.

13

Shared Variables

[Midkiff90] Some serial optimizations
become illegal for SC semantics :

T1 T2
write x read y
write y read x

14

1st Alternative

Turn off all optimizations that can reorder
memory accesses.
But the we disallow register allocation.

Solution: declare shared vars as volatile
If the parallel code is outlined to a
separate file, optimizations need to be
turned off only when compiling that file.

15

2nd Alternative

[Shasha88] It is enough to turn off illegal
optimizations only on shared variables.
Detect which statements contain shared
variables and annotate them

This can be complicated if we want to be
precise(ptr analysis, array footprint analysis)

Update optimizations to honor the
annotations.

16

3rd Alternative

Do elaborate whole program
dependence analysis for shared vars
[Krishnamurthy95]
Need to do shared var detection as in
Alternative 2.
Alternative 3 builds on Alternative 2
which builds on Alternative 1.

17

Stack allocation for parallel threads

Dynamic Memory Allocation is
considered inefficient for stack
allocation
Cactus Stacks are a popular data
structure [Sardesai]
Stack sharing techniques can be
relevant [Middha]

18

Vectorize by Processor vs. by Thread

The number of processors is a fixed
constant.
The number of threads can be
unbounded.
Ideally we would like to allocate the
minimum of these two numbers for each
spawn statement.

19

Vector of stack frames vs. vector of variables

Vector of Frames:
1 update of the stack pointer at the
beginning of the parallel code, and one at
the end.

Vector of Vars:
no update of the stack pointer, but indirect
access of all shared variables (overhead)

20

Function Calls in parallel threads

Same issues with shared variables as
with parallel code.
Each function must be compiled for use
in parallel or serial mode.
If function does not have side effects and
does not access shared vars no
complications in compilation

21

Functionality in Libraries

We do not address issues that fall under
the category of “Functionality in
Libraries” such as:

Dynamic Memory Allocation
Synchronization

There is rich literature on these topics.

22

Conclusions

For our class of PLs (SPMD, SC, shared
memory) we presented a methodology to:

Prevent Illegal dataflow and control-flow (Outlining)
Prevent Illegal optimizations on shred variables (3
incremental alternatives).

We pointed out pitfalls and solutions for:
Stack Allocation
Function Calls

23

Questions ?

24

References

[Herb Sutter] http://www.gotw.ca/publications/concurrency-ddj.htm
[Boehm05] Boehm, H.J.: Threads cannot be implemented as a library. In
PLDI `05. ACM Press (2005) 261-268
[Mark Hill] Hill, M. D.: Multiprocessors should support simple memory –
consistency models. Computer 31(8) (1998) 28-34.
[Midkiff90] Midkiff, S.P., Padua, D.A.: Issues in the optimization of
parallel programs. In ICPP (2). (1990) 105-113.
[Shasha88] Shasha, D., Snir, M.: Efficient and correct execution of
parallel programs that share memory. ACM Trans. Program. Lang. Syst.
10(2) (1998) 282-312.
[Sardesai] Sardesai, S., McLaughlin, D. Dasgupta, P.: Distributed cactus
stacks: Runtime stack-sharing support for distributed parallel programs.
[Middha] Middha, B., Simpson, M., Barua, R.: MTSS: Multi Task Stack
Sharing for embedded systems.

http://www.gotw.ca/publications/concurrency-ddj.htm

	Issues in writing a Parallel Compiler starting from a Serial Compiler
	Motivation
	Motivation
	Background
	Sequential Consistency
	Our Focus
	Spawn Example
	Why not…
	Adding the spawn statement
	Illegal dataflow
	Outlining Example
	Outlining
	Shared Variables
	1st Alternative
	2nd Alternative
	3rd Alternative
	Stack allocation for parallel threads
	Vectorize by Processor vs. by Thread
	Vector of stack frames vs. vector of variables
	Function Calls in parallel threads
	Functionality in Libraries
	Conclusions
	Questions ?
	References

