A Live Variable Analysis for Non-higher order Languages based on 0-CFA

Flow Analysis

- Prediction of the possible values of any expression
- Prediction of the possible values of a variable
- Data flow
- Control flow

Higher-order Languages and flow analysis

- $\operatorname{proc}(\mathrm{x})$... (x y) ...
- must build control flow and data flow at the same time
- Solution: track closures and their flow through the program

First Approach

- mark each expression with a label

$$
\ell \in L A B
$$

- modify standard semantics
- find every procedure call
- record the call in a table as a call cache

$$
\text { CCache }=(L A B \times E N V) \rightarrow \operatorname{Pr} \text { oc }
$$

return the table

- unrealistic!

First Approach

- mark each expression with a label

$$
\ell \in L A B
$$

- modify standard semantics
- find every procedure call
- record the call in a table as a call cache

$$
\text { CCache }=(L A B \times(E N V)) \rightarrow \operatorname{Pr} \text { oc }
$$

return the table

- unrealistic!

Another Approach

- collapse context environments
- collapse call caches
- abstract semantics
- different abstraction, different analysis

0-CFA

- no context environment
- all bindings of a given variable are merged together
- calls with distinct environments from the same call are merged together

0-CFA

consider the CBV lambda-calculus with scalars

$$
\begin{aligned}
& x \in V A R \\
& l \in L A B \\
& \left.e \equiv x^{l}\left|\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right)^{l}\right|\left(\lambda^{l} \text { x.e }\right) \right\rvert\, b^{l} \\
& v \equiv\left(\lambda^{l} x . e, \rho\right) \mid b^{l} \\
& \rho \equiv[] \mid[x=v] \rho
\end{aligned}
$$

0-CFA

$$
\begin{aligned}
& \left(x^{\prime}, \rho\right) \Downarrow \rho(x) \\
& \left(\left(\lambda^{\prime} x . e\right), \rho\right) \Downarrow\left(\left(\lambda^{\prime} x . e\right), \rho\right) \\
& \left(b^{\prime}, \rho\right) \Downarrow\left(b^{\prime}, \rho\right) \\
& \left(e_{1}, \rho\right) \Downarrow\left(\left(\lambda^{\prime} x . e\right), \rho^{\prime}\right) \\
& \left(e_{2}, \rho\right) \Downarrow v \\
& \frac{\left(e,[x=v] \rho^{\prime}\right) \Downarrow w}{\left.\left.\left(\left(e_{1} \quad e_{2}\right)^{\prime}, \rho\right),\right)^{\prime}\right) \Downarrow}
\end{aligned}
$$

0-CFA

0-CFA

0-CFA

Defining a correct analysis

- So an analysis can be defined as:

$$
\Phi:(L A B+V A R) \rightarrow P(\hat{V})
$$

- An analysis describes an environment

$$
\Phi \quad \succ \quad \rho
$$

$$
\begin{aligned}
& \Phi \succ[] \\
& \Phi \succ\left[x=b^{l}\right] \rho \quad, \text { iff }(l \in \Phi(x)) \wedge(\Phi \succ \rho) \\
& \Phi \succ\left[x=\left(\left(\lambda^{l} z . e\right), \rho^{\prime}\right)\right] \rho \quad, \quad, i f f(l \in \Phi(x)) \wedge\left(\Phi \succ \rho^{\prime}\right) \wedge(\Phi \succ \rho)
\end{aligned}
$$

Defining a correct analysis

$\Phi \succ e^{l}$ iff for all ρ :
if $\Phi \succ \rho$ and $\left(e^{l}, \rho\right) \Downarrow v^{l^{\prime}}$, then
$1 . \ell^{\prime} \in \Phi(\ell)$
2.if $\mathrm{v}^{\prime \prime}=\left(\left(\lambda^{\prime \prime} z . e\right), \rho^{\prime}\right)$,
then $\left(\Phi \succ \rho^{\prime}\right)$

Generating a correct analysis based on a set of constraints

$$
\frac{\left(\lambda^{l} x . e\right) \in U}{(l \in \Phi(l)) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\frac{\left(\lambda^{l} x . e\right) \in U}{(l \in \Phi(l)) \in C[U]}
$$

$$
\frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\frac{\left(\lambda^{l} x . e\right) \in U}{(l \in \Phi(l)) \in C[U]}
$$

$$
\frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]}
$$

$$
\frac{x^{l} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\frac{\left(\lambda^{\prime} \times . e\right) \in U}{(l \in \Phi(l)) \in C[U]} \quad \frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]}
$$

$$
\frac{x^{\prime} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\frac{\left(\lambda^{\prime} x . e\right) \in U}{(l \in \Phi(l)) \in C[U]} \quad \frac{b^{\prime} \in U}{(l \in \Phi(l)) \in C[U]}
$$

$$
\left.\left.\frac{x^{\prime} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]} \quad \frac{\left(e_{1}^{l_{1}}\right.}{} e_{2}^{l_{2}}\right\}\right) \in U\left(\chi^{\prime} x, e\right) \in U ~\left(\left(l l^{\prime} \in \Phi\left(l_{1}\right)\right) \Rightarrow \Phi\left(l_{2}\right) \subseteq \Phi(x)\right) \in C[U]
$$

$$
\begin{array}{|l}
\left(\begin{array}{cc}
e_{1}^{l_{1}} & e_{2}^{l_{2}}
\end{array}\right) \in U \quad\left(\lambda^{l^{\prime}} x \cdot e^{l^{\prime \prime}}\right) \in U \\
\left(\left(l^{\prime} \in \Phi\left(l_{1}\right)\right) \Rightarrow \Phi\left(l^{\prime \prime}\right) \subseteq \Phi(l)\right) \in C[U] \\
\hline
\end{array}
$$

Generating a correct analysis based on a set of constraints

- $O\left(n^{2}\right)$ constraints
- Relaxation on the rules in $C[U]$
- We can find the smallest correct Φ in $O\left(n^{3}\right)$ time

A Non-higher order Language

- $\quad e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p|\operatorname{New}| \operatorname{Upd}|\operatorname{Re} f| f_{i}
$$

only scalars
in the arrays

A Non-higher order Language

- $\quad e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . . e_{n}\right) \mid$ if ${ }^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p|N e w| U p d|\operatorname{Re} f| f_{i}
$$

$$
f_{1}\left(x_{11}, \ldots, x_{1 n}\right)=e_{1}^{\ell_{1}}
$$

$$
\begin{gathered}
f_{n}\left(x_{n 1}, \ldots, x_{n n}\right)=e_{n}^{\ell n} \\
\text { in } e_{0}^{\ell_{0}}
\end{gathered}
$$

A Non-higher order Language

- $e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}
$\varphi \equiv o p \mid$ New \mid Upd $|\operatorname{Re} f| f_{i}$

Conf $\equiv\langle$ halted,$v\rangle \mid\langle a, \rho, G, K, \Sigma\rangle$

A Non-higher order Language

- $e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p \mid \text { New }|U p d| \operatorname{Re} f \mid f_{i}
$$

- Conf $\equiv\langle$ halted,$v\rangle \mid$ @, $\rho, G, K, \Sigma\rangle$
computation address

A Non-higher order Language

- $e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}
$\varphi \equiv o p \mid$ New \mid Upd $|\operatorname{Re} f| f_{i}$
- Conf $\equiv\langle$ halted,$v\rangle \mid\langle a, @ G, K, \Sigma\rangle$

A Non-higher order Language

- $e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p \mid \text { New }|U p d| \operatorname{Re} f \mid f_{i}
$$

- Conf $\equiv\langle$ halted,$v\rangle \mid\langle a, \rho, G, K, \Sigma\rangle$
partially reduced expressions

A Non-higher order Language

- $e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p \mid \text { New }|U p d| \operatorname{Re} f \mid f_{i}
$$

- Conf $\equiv\langle$ halted,$v\rangle \mid\langle a, \rho, G, \overparen{K}, \Sigma\rangle$

A Non-higher order Language

- $e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . . e_{n}\right) \mid i f^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p \mid \text { New }|U p d| \operatorname{Re} f \mid f_{i}
$$

- Conf $\equiv\langle$ halted,$v\rangle|\langle a, \rho, G, K, \Sigma\rangle\rangle$

A Non-higher order Language

- $\quad e \equiv x^{l}\left|b^{l}\right| \varphi^{l}\left(e_{1} \ldots . e_{n}\right) \mid$ if ${ }^{l} e_{0}$ then e_{1} else e_{2}

$$
\varphi \equiv o p|N e w| U p d|\operatorname{Re} f| f_{i}
$$

- Conf $\equiv\langle$ halted,$v\rangle \mid\langle a, \rho, G, K, \Sigma\rangle$
- the initial configuration:

$$
\left\langle a_{0}, \rho_{0}, e_{0}, \text { halt }, \varnothing\right\rangle
$$

Generating a correct analysis based on a set of constraints

$$
\frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\frac{b^{\prime} \in U}{(l \in \Phi(l)) \in C[U]}
$$

$\frac{x^{l} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]}$

Generating a correct analysis based on a set of constraints

$$
\frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]}
$$

$$
\frac{x^{\prime} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]}
$$

$$
\frac{f_{i}^{l}\left(e_{1}^{l_{1}}, \ldots, e_{n}^{l_{n}}\right) \in U \quad f_{i}\left(x_{i 1}, \ldots, x_{i n}\right) \equiv e^{l^{\prime}}}{\left(\Phi\left(l_{j}\right) \subseteq \Phi\left(x_{i j}\right)\right) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\begin{gathered}
\frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]} \\
\frac{f_{i}^{l}\left(e_{1}^{\left.l_{1}, \ldots, e_{n}^{l_{n}}\right) \in U \quad f_{i}\left(x_{i 1}, \ldots, x_{i n}\right) \equiv e^{l^{\prime}}}\right.}{\left(\Phi\left(l_{j}\right) \subseteq \Phi\left(x_{i j}\right)\right) \in C[U]}
\end{gathered}
$$

$$
\frac{x^{l} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]}
$$

$$
\frac{f_{i}^{l}\left(e_{1}^{l_{1}}, \ldots, e_{n}^{l_{n}}\right) \in U \quad f_{i}\left(x_{i 1}, \ldots, x_{i n}\right) \equiv e^{l^{l}}}{\left(\Phi\left(l^{\prime}\right) \subseteq \Phi(l)\right) \in C[U]}
$$

Generating a correct analysis based on a set of constraints

$$
\frac{b^{l} \in U}{(l \in \Phi(l)) \in C[U]} \quad \frac{x^{\prime} \in U}{(\Phi(x) \in \Phi(l)) \in C[U]}
$$

$\frac{f_{i}^{\prime}\left(e_{1}^{l_{1}}, \ldots e_{n}^{l_{n}}\right) \in U \quad f_{i}\left(x_{i}, \ldots, \mathcal{X}_{i n}\right) \equiv e^{\prime \prime}}{\left(\Phi\left(l_{j}\right) \subseteq \Phi\left(x_{i j}\right)\right) \in Q U} \frac{\left.f_{i}^{\prime}\left(e_{1}^{l_{1}}, \ldots, e_{n}^{l_{n}}\right) \in U \quad f_{i}\left(x_{i}\right) \ldots, \chi_{i n}\right) \equiv e^{l}}{\left(\Phi\left(l^{\prime}\right) \subseteq \Phi(l)\right) \in[U]}$

$$
\begin{array}{|l|}
\hline \frac{\text { f }^{l} e_{0}^{l_{0}} \text { then } e_{1}^{l_{1}} \text { else } e_{2}^{l_{2}} \in U}{\left.\left(\Phi\left(l_{1}\right) \cup \Phi\left(l_{2}\right) \subseteq \Phi(l)\right)\right) \in C[U]} \\
\hline
\end{array}
$$

Defining a Live Location

1.No location is live in halt
2. ℓ is live in $\langle\mathrm{a}, \rho, \mathrm{R}, \mathrm{K}\rangle$ iff either :
a. ℓ occurs in R , or
b. there exists $\mathrm{x} \in \mathrm{fv}(\mathrm{R})$ such that $\rho(\mathrm{x})=\ell$, or
c. ℓ is live in K

Defining a Sound Live Variable Analysis

A live variableanalysis $\mathrm{L}[-]$ is a map from expression labels ℓ to sets of variables. $\mathrm{L}[-]$ is sound iff for each label $\ell, \mathrm{L}[\ell]$ is a set of variablessuch that for all reachablestore configurations of the form $\left\langle\mathrm{a}, \rho, \mathrm{e}^{\ell}, K, \Sigma\right\rangle, \rho(\mathrm{x})$ live in K implies $\mathrm{x} \in \mathrm{L}[\ell]$.

Set Constraints for a Sound Variable Analysis

1. if ℓ_{i} occurs in the context

$$
\varphi^{\ell}\left(e_{1}^{l_{1}}, \ldots, e_{i-1}^{l_{i-1}}, e_{i}^{l_{i}}, e_{i+1}^{l_{i+1}}, \ldots, e_{n}^{l_{n}}\right)
$$

then for every $\mathrm{x} \in f v\left(e_{i}\right)$,

$$
\mathrm{x} \in \mathrm{~L}\left[\ell_{\mathrm{i}}\right]
$$

iff

$$
\begin{aligned}
& \Phi(x) \cap\left(\bigcup_{j<i} \Phi\left(\ell_{j}\right)\right) \neq \varnothing \text {, or } \\
& \Phi(x) \cap\left(\bigcup_{j>i} \bigcup_{y \in f v} \Phi\left(e_{j}\right)\right. \\
& x \in L)) \neq \varnothing \text {, or } \\
& \mathrm{x} \in L]
\end{aligned}
$$

Set Constraints for a Sound Variable Analysis

2. if ℓ_{i} occurs in the context

$$
\text { if }{ }^{\ell} \mathrm{e}_{0}^{\ell_{0}} \text { then } \mathrm{e}_{1}^{\ell_{1}} \text { else } \mathrm{e}_{2}^{\ell_{2}}
$$

then for every $\mathrm{x} \in f v\left(e_{0}\right)$,

$$
\mathrm{x} \in \mathrm{~L}\left[\ell_{0}\right]
$$

iff

$$
\begin{gathered}
\Phi(x) \cap\left(\bigcup_{j=1,2} \bigcup_{y \in f v\left(e_{j}\right)} \Phi(y)\right) \neq \varnothing \text {, or } \\
\mathrm{x} \in L[\ell]
\end{gathered}
$$

Set Constraints for a Sound Variable Analysis

3. if ℓ_{i} occurs in the context
if ${ }^{\ell} \mathrm{e}_{0}{ }^{\ell_{0}}$ then $\mathrm{e}_{1}^{\ell_{1}}$ else $\mathrm{e}_{2}^{\ell_{2}}$
then for every $\mathrm{x} \in f v\left(e_{i}\right)$,
$(i=1,2)$

$$
\mathrm{x} \in \mathrm{~L}\left[\ell_{\mathrm{i}}\right]
$$

iff

$$
\mathrm{x} \in L[\ell]
$$

Set Constraints for a Sound Variable Analysis

4. if $f_{k}\left(\mathrm{x}_{\mathrm{k} 1}, \ldots, x_{k n}\right)=\mathrm{e}^{l^{\prime}}$ then for each call

$$
f_{k}^{l}\left(e_{1}^{l_{1}}, \ldots, e_{i-1}^{l_{i-1}}, e_{i}^{l_{i}}, e_{i+1}^{l_{i+1}}, \ldots, e_{n}^{l_{n}}\right)
$$

,

$$
\mathrm{x}_{\mathrm{ki}} \in \mathrm{~L}\left[\ell^{\prime}\right]
$$

iff

$$
L[\ell] \cap\left\{y \in f v\left(e_{j}\right) \mid\left(\Phi\left(\ell_{j}\right) \cap \Phi(y) \neq \varnothing\right)\right\} \neq \varnothing
$$

Work in progress

- "Set Constraints for Destructive Array

Optimization"
Mitch Wand and Will Clinger

Work in progress

- "Set Constraints for Destructive Array Optimization"
Mitch Wand and Will Clinger
- Higher-order Languages

Work in progress

- "Set Constraints for Destructive Array

Optimization"

Mitch Wand and Will Clinger

- Higher-order Languages
- Arrays which can store any kind of value

Thank you

